UP8206PDX8-D1 [UPI]

Battery Protection IC;
UP8206PDX8-D1
型号: UP8206PDX8-D1
厂家: uPI Semiconductor Corp.    uPI Semiconductor Corp.
描述:

Battery Protection IC

电池
文件: 总24页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
uP8206  
Battery Protection IC  
for 2-Serial to 4-serial-Cell Pack (Secondary Protection)  
Features  
General Description  
The uP8206 series is used for secondary protection of  
lithium-ion rechargeable batteries, and incorporates a high-  
accuracy voltage detection circuit and a delay circuit. Short-  
circuits between cells accommodate series connection of  
two to four cells.  
† High-Accuracy Voltage Detection Circuit for Each  
Cell  
„
Overcharge Detection Voltage n (n = 1 to 4)  
4.0V to 4.6V (in 50 mV steps)  
Accuracy :+25 mV (+25OC),  
Applications  
Accuracy : +30 mV (-5OC to +55OC)  
Overcharge Hysteresis Voltage n (n = 1 to 4)  
0.38 +0.15V  
† Lithium-ion Rechargeable Battery Packs (for  
„
Secondary Protection)  
† Notebook Computers  
† Portable Instrumentation  
† Portable Equipment  
† Delay Time for Overcharge Detection Can be Set  
by an Internal Circuit Only (External Capacitors  
are Unnecessary)  
† Output Control Function via CTL Pin  
Pin Configuration  
† High Withstand Voltage Devices Absolute  
Maximum Rating: 28V  
VDD  
SENSE  
VC1  
1
2
3
4
CO  
8
7
6
5
† Wide Operating Voltage Range 4V to 24V  
CTL  
VSS  
VC3  
† Wide Operating Temperature Range -40OC to  
+85OC  
VC2  
† Low Current Consumption  
UUTDFN1.97x2.46 8L  
„
„
At 3.5V for Each Cell 5.0uA Max. (+25OC)  
At 2.3V for Each Cell 4.0uA Max. (+25OC)  
VDD  
SENSE  
VC1  
1
2
3
4
8
7
6
5
CO  
† RoHS Compliant and Halogen-Free  
CTL  
VSS  
VC3  
VC2  
TSSOP8L  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
1
uP8206  
Ordering Information  
Order Number  
Package  
Top Marking  
ECPXY  
Note  
Code X: Over-Charge Detection Voltage  
A: 4.30V; B: 4.35V; C: 4.40V; D: 4.45V; E: 4.50V  
F: 4.55V;G: 4.60V  
uP8206PDX8-XY UUTDFN1.97x2.46-8L  
Code Y: Over-Charge Detection Delay Time  
1: 6.5s; 2: 3.5s; 3: 4s  
uP8206ATA8-XY  
Note:  
TSSOP-8L  
8206AXY  
(1) Please check the sample/production availability with uPI representatives.  
(2) uPI products are compatible with the current IPC/JEDEC J-STD-020 requirement. They are halogen-free, RoHS  
compliant and 100% matte tin (Sn) plating that are suitable for use in SnPb or Pb-free soldering processes.  
Marking Rule  
Line1: Product Code  
ECPXY  
-ECP: Product Code  
-XY: Version Code  
Line2: Lot Number  
aaa bbb  
UUTDFN1.97x2.46 - 8L  
Line1: Product Code  
8206AXY  
-8206A: Product Code  
-XY: Version Code  
Line2: Lot Number  
aaa bbb  
TSSOP - 8L  
2
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Functional Pin Description  
Pin No.  
Pin Name  
VDD  
Pin Function  
Positive Power Input Pin.  
1
2
Positive Voltage Connection Pin of Battery 1.  
SENSE  
Negative Voltage Connection Pin of Battery 1.  
Positive Voltage Connection Pin of Battery 2.  
3
4
5
6
VC1  
VC2  
VC3  
VSS  
Negative Voltage Connection Pin of Battery 2.  
Positive Voltage Connection Pin of Battery 3.  
Negative Voltage Connection Pin of Battery 3.  
Positive Voltage Connection Pin of Battery 4.  
Negative Power Input Pin.  
Negative Voltage Connection Pin of Battery 4.  
CO Output Control Pin.  
7
8
CTL  
CO  
FET Gate Connection Pin for Charge.  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
3
uP8206  
Functional Block Diagram  
VDD  
Overcharge  
detection  
SENSE  
comparator 1  
Oscillator  
Reference voltage  
1
VC1  
Overcharge  
detection  
comparator 2  
Overcharge  
detection/release  
delay circuit  
Reference voltage  
2
VDD  
Control  
Logic  
VC2  
Overcharge  
detection  
comparator 3  
Reference voltage  
3
CO  
VC3  
Overcharge  
detection  
comparator 4  
Reference voltage  
4
VSS  
CTL  
4
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Example of Application Circuit  
1. Overheat Protection Via PTC  
SC Protector  
EB+  
RVDD  
VDD  
CVDD  
R1  
SENSE  
VC1  
BAT1  
C1  
C2  
C3  
C4  
R2  
BAT2  
R3  
VC2  
BAT3  
R4  
VC3  
CO  
BAT4  
VSS  
CTL  
CCTL  
PTC  
EB-  
Cautions  
1. The above connection example will not guarantee successful operation. Perform thorough evaluation using the actual  
application.  
2. Apull-down resistor is included in the CTLpin. To perform overheat protection via the PTC in the uP8206A/P Series,  
connect the PTC before connecting batteries.  
3. When the power fluctuation is large, connect the power supply of the PTC to the VDDpin of the uP8206A/P Series.  
4. Cell connections: To prevent incorrect output activation, the VSS pin must be connected first. Connect sequences  
must be used as following:  
4-series cell configuration  
BAT4 J BAT3 J BAT2 J BAT1  
3-series cell configuration  
BAT3 J BAT2 J BAT1  
2-series cell configuration  
BAT2 J BAT1  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
5
uP8206  
Test Circuit  
(1) Test Condition 1, Test Circuit 1  
(4) Test Condition 4, Test Circuit 2  
Set V1, V2, V3, and V4 to 3.5V. Overcharge detection In the uP8206A/P Series, set V1, V2, V3, and V4 to 3.5V  
voltage 1 (VCU1) is the V1 voltage when CO is H after the and V5 to 14V. The CTL pin response time (tCTL) is the  
voltage of V1 has been gradually increased. The overcharge period from when V5 reaches 0 V after V5 is in a moment  
hysteresis voltage (VHC1) is the difference between V1 and of time (within 10us) decreased down to 0V to when CO  
VCU1 when CO is L after the voltage of V1 has been gradually becomes H.  
decreased. Overcharge detection voltage VCUn (n = 2 to 4)  
(5) Test Condition 6, Test Circuit 2  
and overcharge hysteresis VHCn (n = 2 to 4) can be  
Set V1, V2, V3, and V4 to 3.5V and V5 to 0V. The CTL  
determined in the same way as when n = 1.  
input H voltage (VCTLH) is the maximum voltage of V5 when  
CO is L after V5 has been gradually increased. Next, set  
(2) Test Condition 2, Test Circuit 1  
Set V1, V2, V3, and V4 to 3.5V and in a moment of time V5 to 14V. The CTL input L voltage (VCTLL) is the minimum  
(within 10us) increase V1 up to 5.0V. The overcharge voltage of V5 when CO is H after V5 has been gradually  
detection delay time (tCU) is the period from whenV1 reached decreased.  
5.0V to when CO becomes H. After that, in a moment of  
time (within 10us) decrease V1 down to 3.5V. The  
overcharge release delay time (tCL) is the period from when  
V1 has reached 3.5V to when CO becomes L.  
VDD  
SENSE  
VC1  
CO  
CTL  
VSS  
VC3  
V
(3) Test Condition 3, Test Circuit 1  
V1  
V2  
V3  
V5  
V4  
Set V1, V2, V3, and V4 to 3.5V and in a moment of time  
(within 10us) increase V1 up to 5.0V. This is defined as the  
first rise. Within tCU 20 ms after the first rise, in a moment  
of time (within 10us) decrease V1 down to 3.5V and then  
in a moment of time (within 10us) restore up to 5.0V. This  
is defined as the second rise. When the period from when  
V1 was fallen to the second rise is short, CO becomes H  
after tCU has elapsed since the first rise. If the period from  
when V1 falls to the second rise is gradually made longer,  
CO becomes H when tCU has elapsed since the second  
rise. The overcharge timer reset delay time (tTR) is the period  
from V1 fall till the second rise at that time.  
VC2  
uP8206  
Test Circuit 2  
(6) Test Condition 5, Test Circuit 3  
After setting V1, V2, V3, and V4 to 3.5V and V5 to 0V, in  
a moment of time (within 10us) increase V5 up to 8.5V and  
decrease V5 again down to 0V. When the period from when  
V5 was raised to when it has fallen is short, if an overcharge  
detection operation is performed subsequently, the  
overcharge detection time is tCU. However, when the period  
from when V5 is raised to when it is fallen is gradually  
made longer, the overcharge detection time during the  
subsequent overcharge detection operation is shorter than  
tCU. The transition time to test mode (tTST) is the period  
from when V5 was raised to when it has fallen at that time.  
VDD  
SENSE  
VC1  
CO  
CTL  
VSS  
VC3  
V
V1  
V2  
V3  
V4  
VC2  
VDD  
SENSE  
VC1  
CO  
CTL  
VSS  
VC3  
V5  
uP8206  
V
Test Circuit 1  
V1  
V2  
V3  
V4  
VC2  
uP8206  
Test Circuit 3  
6
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Test Circuit  
(7) Test Condition 7, Test Circuit 4  
The current consumption during operation (IOPE) is the total  
of the currents that flow in the VDD pin and SENSE pin  
when V1, V2, V3, and V4 are set to 3.5V.  
The current consumption during over discharge (IOPED) is  
the total of the currents that flow in the VDDpin and SENSE  
pin when V1, V2, V3, and V4 are set to 2.3V.  
VDD  
SENSE  
VC1  
CO  
CTL  
VSS  
VC3  
A
V1  
V2  
V3  
V4  
VC2  
uP8206  
Test Circuit 4  
(8) Test Condition 8, Test Circuit 5  
The SENSE pin current (ISENSE) is I1, the VC1 pin current  
(IVC1) is I2, the VC2 pin current (IVC2) is I3, the VC3 pin  
current (IVC3) is I4, and the CTL pin H current (ICTLH) is I5  
when V1, V2, V3, and V4 are set to 3.5V, and V5 to 14V.  
The CTL pin L current (ICTLL) is I5 when V1, V2, V3, and V4  
are set to 3.5V and V5 to 0V.  
VDD  
SENSE  
VC1  
CO  
CTL  
VSS  
VC3  
I1  
I5  
A
A
V5  
V4  
V1  
V2  
V3  
I2  
A
I3  
I4  
VC2  
A
A
uP8206  
Test Circuit 5  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
7
uP8206  
Functional Description  
Overcharge Detection  
When the voltage of one of the batteries exceeds the  
overcharge detection voltage (VCU) during charging under  
normal conditions and the state is retained for the  
overcharge detection delay time (tCU) or longer, CO  
becomes H. This state is called overcharge.Attaching FET  
to the CO pin provides charge control and a second  
protection.  
CTL *1  
In the uP8206A/P Series, if the voltage of all the batteries  
decreases below the total of the overcharge detection  
voltage (VCU) and the overcharge hysteresis voltage (VHC)  
and the state is retained for the overcharge release delay  
time (tCL) or longer, CO becomes L.  
Pull-down resistor  
Overcharge Timer Reset  
*1. The reverse voltage H to L or L to H of CTL pin is VDD  
pin voltage -2.9V (Typ.), does not have the hysteresis.  
When an overcharge release noise that forces the voltage  
of the battery temporarily below the overcharge detection  
voltage (VCU) is input during the overcharge detection delay  
time (tCU) from when VCU is exceeded to when charging is  
stopped, tCU is continuously counted if the time the  
overcharge release noise persists is shorter than the  
overcharge timer reset delay time (tTR). Under the same  
conditions, if the time the overcharge release noise persists  
tTR or longer, counting of tCU is reset once. After that, when  
VCU has been exceeded, counting tCU resumes.  
Caution  
1. Since the CTL pin implements high resistance of 8  
Mto 12Mfor pull down, be careful of external  
noise application. If an external noise is applied, CO  
may become H. Perform thorough evaluation using  
the actual application.  
CTL Pin  
The uP8206 Series has a control pin. The CTL pin is used  
to control the output voltage of the CO pin. In the uP8206A/  
P Series, the CTLpin takes precedence over the overcharge  
detection circuit.  
Table 1. uP8206 Control via CTL Pin  
CO Pin  
CTL PIN  
uP8206A/P  
"H"  
Normal state*1  
"Open"  
"L"  
"H"  
"H"  
--  
"L" to "H"  
"H" to "L"  
--  
*1. The state is controlled by the overcharge detection  
circuit.  
8
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Functional Description  
Test Mode  
Timing Charts  
In the uP8206 Series, the overcharge detection delay time 1. Overcharge Detection Operation  
(tCU) can be shortened by entering the test mode. The test  
mode can be set by retaining the VDD pin voltage 8.5V or  
VCUn  
VHCn  
higher than the SENSE pin voltage for at least 80 ms (V1 =  
Battery Voltage  
V2 = V3 = V4 = 3.5V, TA = 25OC). The status is retained by  
( n = 1 to 4)  
the internal latch and the test mode is retained even if the  
CTL Pin  
VDD pin voltage is decreased to the same voltage as that  
of the SENSE pin. When CO becomes “H” and when the  
delay time has elapsed after overcharge detection, the latch  
for retaining the test mode is reset and the uP8206 Series  
exits from the test mode.  
tTR or shorter  
tTR or  
longer  
CO Pin  
tCU  
tCL  
tCU or shorter  
VDD Pin Voltage  
2. Overcharge Timer Reset Operation  
tTR or longer  
tTR or shorter  
tTR or shorter  
8.5V or more  
VDD, VSENSE  
VCUn  
SENSE Pin Voltage  
VHCn  
VHCn  
Battery Voltage  
( n = 1 to 4)  
VCUn  
Battery Voltage  
n = 1 to 4  
tTR  
CO Pin  
tTST = 80ms max  
tCU  
tCU or shorter  
Test Mode  
Timer reset  
CO Pin  
*1  
tCL  
*1.  
During normal mode, tCU = 6.5s (Typ). In the product tCU  
50ms(Typ.)  
=
=
=
During normal mode, tCU = 3.5s (Typ). In the product tCU  
28ms(Typ.)  
During normal mode, tCU = 4.0s(Typ.). In the product tCU  
32ms(Typ.)  
Caution  
1. Set the test mode when no batteries are  
overcharged.  
2. The overcharge release delay time (tCL) is not  
shortened in the test mode.  
3. The overcharge timer resets delay time (tTR) is not  
shortened in the test mode.  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
9
uP8206  
Functional Description  
Battery Protection IC Connection Example  
(2) 3-serial cell  
(1) 4-serial cell  
SC Protector  
EB+  
SC Protector  
EB+  
RVDD  
VDD  
RVDD  
CVDD  
VDD  
R1  
SENSE  
VC1  
CVDD  
BAT1  
C1  
C2  
C3  
R1  
SENSE  
R2  
BAT1  
C1  
BAT2  
R2  
VC1  
R3  
VC2  
BAT2  
C2  
BAT3  
R3  
VC2  
VC3  
CO  
BAT3  
BAT4  
C3  
C4  
R4  
VC3  
CO  
VSS  
CTL  
External  
input  
VSS  
CTL  
RCTL  
External  
input  
EB-  
RCTL  
EB-  
Table 3. Constants for 3-serial cell External Components  
Table 2. Constants for 4-Serial cell External Components  
No.  
1
Part  
R1 to R3  
C1 to C3, CVDD  
RVDD  
Min. Typ. Max. Unit  
No.  
1
Part  
R1 to R4  
C1 to C4, CVDD  
RVDD  
Min. Typ. Max. Unit  
0.1  
0.01  
50  
1
10  
1
kΩ  
uF  
0.1  
0.01  
50  
1
10  
1
kΩ  
uF  
2
0.1  
100  
2
0.1  
100  
3
500  
3
500  
4
RCTL  
0
100  
500  
4
RCTL  
0
100  
500  
Caution  
Caution  
1. The above constants are subject to change without prior  
notice.  
1. The above constants are subject to change without prior  
notice.  
2. It has not been confirmed whether the operation is normal  
or not in circuits other than the above example of  
connection. In addition, the example of connection shown  
above and the constant will not guarantee successful  
operation. Perform thorough evaluation using the actual  
application to set the constant.  
2. It has not been confirmed whether the operation is normal  
or not in circuits other than the above example of  
connection. In addition, the example of connection shown  
above and the constant will not guarantee successful  
operation. Perform thorough evaluation using the actual  
application to set the constant.  
3. Set the same constants to R1 to R3 and to C1 to C3 and  
3. Set the same constants to R1 to R4 and to C1 to C4 and  
CVDD  
.
CVDD  
.
4. Set RVDD, C1 to C3, and CVDD so that the condition (RVDD  
)
4. Set RVDD, C1 to C4, and CVDD so that the condition (RVDD  
x (C1 to C4, CVDD) > 5x10-6 is satisfied.  
)
x (C1 to C3, CVDD) > 5x10-6 is satisfied.  
5. Set R1 to R3, C1 to C3, and CVDD so that the condition  
(R1 to R3) . (C1 to C3, CVDD) > 1x10-4is satisfied.  
5. Set R1 to R4, C1 to C4, and CVDD so that the condition  
(R1 to R4) . (C1 to C4, CVDD) > 1x10-4is satisfied.  
6. In the uP8206A/P Series, normally input H to the  
external input, and input L when setting CO to H.  
6. In the uP8206A/P Series, normally input H to the  
external input, and input L when setting CO to H.  
7. Cell connections: To prevent incorrect output activation,  
the VSS pin must be connected first. Connect sequences  
must be used as following:  
7. Cell connections: To prevent incorrect output activation,  
the VSS pin must be connected first. Connect sequences  
must be used as following:  
3-series cell configuration  
4-series cell configuration  
BAT3 J BAT2 J BAT1  
BAT4 J BAT3 J BAT2 J BAT1  
10  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Functional Description  
(3) 2-serial cell  
Precautions  
Do not connect batteries charged with VCU + VHC or more.  
If the connected batteries include a battery charged with  
VCU + VHC or more, H may be output at CO after all pins  
are connected.  
SC Protector  
EB+  
RVDD  
VDD  
In some application circuits, even if an overcharged battery  
is not included, the order of connecting batteries may be  
restricted to prevent transient output of CO detection pulses  
when the batteries are connected. Perform thorough  
evaluation with the actual application circuit.  
CVDD  
R1  
SENSE  
VC1  
BAT1  
C1  
C2  
R2  
BAT2  
VC2  
Before the battery connection, short-circuit the battery side  
pins RVDD and R1, shown in the figure in “Battery  
Protection IC Connection Example” .  
VC3  
CO  
VSS  
CTL  
External  
input  
The application conditions for the input voltage, output  
voltage, and load current should not exceed the package  
power dissipation.  
RCTL  
EB-  
Do not apply to this IC an electrostatic discharge that  
exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
Table 4. Constants for 2-serial cell External Components  
No.  
1
Part  
R1 to R2  
C1 to C2, CVDD  
RVDD  
Min. Typ. Max. Unit  
uPI claims no responsibility for any disputes arising out of  
or in connection with any infringement of patents owned  
by a third party by products including this IC.  
0.1  
0.01  
50  
1
10  
1
kΩ  
uF  
2
0.1  
100  
3
500  
4
RCTL  
0
100  
500  
Caution  
1. The above constants are subject to change without prior  
notice.  
2. It has not been confirmed whether the operation is normal  
or not in circuits other than the above example of  
connection. In addition, the example of connection shown  
above and the constant will not guarantee successful  
operation. Perform thorough evaluation using the actual  
application to set the constant.  
3. Set the same constants to R1 to R2 and to C1 to C2 and  
CVDD  
.
4. Set RVDD, C1 to C2, and CVDD so that the condition (RVDD  
x (C1 to C2, CVDD) > 5x10-6 is satisfied.  
)
5. Set R1 to R2, C1 to C2, and CVDD so that the condition  
(R1 to R2) . (C1 to C2, CVDD) > 1x10-4is satisfied.  
6. In the uP8206A/P Series, normally input H to the  
external input, and input L when setting CO to H.  
7. Cell connections: To prevent incorrect output activation,  
the VSS pin must be connected first. Connect sequences  
must be used as following:  
2-series cell configuration  
BAT2 J BAT1  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
11  
uP8206  
Absolute Maximum Rating  
(Note 1)  
Supply Voltage Range between VDDand VSS ------------------------------------------------------------------------ VSS -0.3V to +28V  
Supply Input Voltage Range, SENSE, VC1, VC2, VC3 ------------------------------------------------------------- VSS -0.3V to +28V  
CO Output Pin Voltage Range, CO ------------------------------------------------------------------------------------------------- -0.3Vto +9V  
Supply Input Voltage Range, SENSE to VC1, VC1 to VC2, VC2 to VC3, VC3 to VSS ---------------------------- -0.3V to +8V  
Other Pins, CTL ---------------------------------------------------------------------------------------------------------------------------- -0.3V to 28V  
StorageTemperature Range ----------------------------------------------------------------------------------------------------------- -45OC to +125OC  
JunctionTemperature ------------------------------------------------------------------------------------------------------------------------------------ 125OC  
LeadTemperature (Soldering, 10 sec) ------------------------------------------------------------------------------------------------------------ 260OC  
ESD Rating (Note 2)  
HBM (Human Body Mode) ---------------------------------------------------------------------------------------------------------------------------- 2kV  
CDM (ChargedDevice Mode) ------------------------------------------------------------------------------------------------------------------------- 1kV  
Thermal Information  
Package Thermal Resistance (Note 3)  
UUTDFN1.97x2.46 - 8LθJA --------------------------------------------------------------------------------------------------------- 102OC/W  
UUTDFN1.97x2.46 - 8LθJC --------------------------------------------------------------------------------------------------------- 20OC/W  
TSSOP8 - 8L θJA ----------------------------------------------------------------------------------------------------------------------- 145OC/W  
TSSOP8 - 8L θJC ------------------------------------------------------------------------------------------------------------------------ 50OC/W  
PowerDissipation, PD @ TA = 25OC  
UUTDFN1.97x2.46 - 8L -------------------------------------------------------------------------------------------------------------------------- 0.6W  
TSSOP8 - 8L ------------------------------------------------------------------------------------------------------------------------------------- 0.625W  
Recommended Operation Conditions  
(Note 4)  
Operating JunctionTemperature Range ------------------------------------------------------------------------------------------- -40OC to +125OC  
OperatingAmbientTemperature Range ------------------------------------------------------------------------------------------- -40OC to +85OC  
Supply Input Voltage, VDD,Vss ---------------------------------------------------------------------------------------------------------- 4Vto +25V  
Supply Input Voltage, VC1, VC2, VC3, CTL --------------------------------------------------------------------------------------- 0V to +25V  
Input Voltage, VCn - VC(n-1), (n = 1,2,3), VC0 = Vss ---------------------------------------------------------------------------- 0V to +5V  
Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device.  
These are for stress ratings. Functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may remain possibility to affect device reliability.  
Note 2. Devices are ESDsensitive. Handling precaution recommended.  
Note 3. θJA is measured in the natural convection at TA = 25OC on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
12  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Electrical Characteristics  
(TA = 25oC, unless otherwise specified)  
Test  
Test  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condtion Circuit  
DETECTION VOLTAGE  
4.20V to 4.80V, adjustable,  
TA = 25oC  
VCUn  
0.025  
-
VCUn+  
VCUn  
VCUn  
-0.38  
V
V
V
1
1
1
1
1
1
0.025  
VCUn  
0.030  
VHCn  
0.15  
Overcharge Detection  
Voltage(n = 1, 2, 3, 4)  
VCUn  
4.20V to 4.80V, adjustable,  
TA = -5OC to 55OC*1  
VCUn  
-
+
0.030  
Overcharge Hysteresis  
Voltage(n = 1, 2, 3, 4)  
VHCn  
-
+
VHCn  
0.15  
uP8206XXX8-AY  
uP8206XXX8-BY  
uP8206XXX8-CY  
uP8206XXX8-DY  
uP8206XXX8-EY  
uP8206XXX8-FY  
uP8206XXX8-GY  
4.275 4.30 4.325  
4.325 4.35 4.375  
4.375 4.40 4.425  
4.425 4.45 4.475  
4.475 4.50 4.525  
4.525 4.55 4.575  
4.575 4.60 4.625  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Overcharge Detection  
Voltage  
VCU  
V
Overcharge Hysteresis  
Voltage  
VHC  
-0.53 -0.38 -0.23  
V
V
1
1
INPUT VOLTAGE  
Supply Voltage  
between VDD and  
VSS  
VDSOP  
4
--  
24  
--  
--  
--  
.
VDD  
0.95  
CTL Input "H" Voltage  
VCTLH  
VCTLL  
--  
--  
V
V
6
6
2
2
.
VDD  
0.4  
CTL Input "L" Voltage  
--  
INPUT CURRENT  
Current Consumption  
during Operation  
IOPE  
V1 = V2 = V3 = V4 = 3.5V  
--  
--  
2.5  
2.0  
5.0  
4.0  
uA  
uA  
7
7
4
4
Current Consumption  
during Over Discharge  
IOPED V1 = V2 = V3 = V4 = 2.3V  
ISENSE V1 = V2 = V3 = V4 = 3.5V  
SENSE Pin Current  
VC1 Pin Current  
VC2 Pin Current  
VC3 Pin Current  
--  
1.5  
0
3.2  
0.3  
0.3  
0.3  
uA  
uA  
uA  
uA  
8
8
8
8
5
5
5
5
IVC1  
IVC2  
IVC3  
V1 = V2 = V3 = V4 = 3.5V  
V1 = V2 = V3 = V4 = 3.5V  
V1 = V2 = V3 = V4 = 3.5V  
-0.3  
-0.3  
-0.3  
0
0
V1 = V2 = V3 = V4 = 3.5V,  
VCTL = VDD  
CTL Pin "H" Current  
CTL Pin "L" Current  
ICTLH  
ICTLL  
1.1  
1.5  
--  
1.8  
--  
uA  
uA  
8
8
5
5
V1 = V2 = V3 = V4 = 3.5V,  
VCTL = 0V  
-0.15  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
13  
uP8206  
Electrical Characteristics  
(TA = 25oC, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ Max Units  
Output Current  
CO = 0.1V, VDD = SENSE, SENSE-VC1  
= VC1-VC2 = VC2-VC3 = VC3-VSS = 3.5V  
CO Pin Sink Current  
ICOL  
ICOH  
5
1
--  
--  
--  
--  
uA  
SENSE-VC1 or VC1-VC2 or VC2-VC3 or  
VC3-VSS = VCU, VCO = VCOH - 1V  
CO Pin Source Current  
mA  
Output Voltage  
SENSE-VC1 or VC1-VC2 or VC2-VC3  
or VC3-VSS = VCU , VDD = 14V, IOH = 0mA  
6
7
9
CO Pin Drive Voltage  
VCO  
V
VDD = 4.3V, CTL = 0V  
1.5  
2.0  
--  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is  
guaranteed by design, not tested in production.  
14  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Electrical Characteristics  
TA = -40oC to 85oC  
Test  
Test  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condtion Circuit  
DETECTION VOLTAGE  
Overcharge Detection  
Voltage(n = 1, 2, 3, 4)  
4.20V to 4.80V, adjustable,  
TA = 25oC  
VCUn  
0.045  
-
VCUn  
0.045  
+
VCUn  
VHCn  
VCUn  
V
V
1
1
1
1
Overcharge Hysteresis  
Voltage(n = 1, 2, 3, 4)  
VHCn  
-
VHCn  
+
-0.38  
0.19  
0.19  
uP8206XXX8-AY  
uP8206XXX8-BY  
uP8206XXX8-CY  
uP8206XXX8-DY  
uP8206XXX8-EY  
uP8206XXX8-FY  
uP8206XXX8-GY  
4.255 4.30 4.345  
4.305 4.35 4.395  
4.355 4.40 4.445  
4.405 4.45 4.495  
4.455 4.50 4.545  
4.505 4.55 4.595  
4.555 4.60 4.645  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Overcharge Detection  
Voltage  
VCU  
V
Overcharge Hysteresis  
Voltage  
VHC  
-0.57 -0.38 -0.19  
V
V
1
1
INPUT VOLTAGE  
Supply Voltage  
between VDD and  
VSS  
VDSOP  
4
--  
24  
--  
--  
--  
.
VDD  
0.95  
CTL Input "H" Voltage  
VCTLH  
VCTLL  
--  
--  
V
V
6
6
2
2
.
VDD  
0.4  
CTL Input "L" Voltage  
--  
INPUT CURRENT  
Current Consumption  
during Operation  
IOPE  
V1 = V2 = V3 = V4 = 3.5V  
V1 = V2 = V3 = V4 = 2.3V  
--  
--  
2.50 5.50  
uA  
uA  
7
7
4
4
Current Consumption  
during Over Discharge  
IOPED  
2.00 4.10  
1.50 3.74  
SENSE Pin Current  
VC1 Pin Current  
VC2 Pin Current  
VC3 Pin Current  
ISENSE V1 = V2 = V3 = V4 = 3.5V  
--  
uA  
uA  
uA  
uA  
8
8
8
8
5
5
5
5
IVC1  
IVC2  
IVC3  
V1 = V2 = V3 = V4 = 3.5V  
V1 = V2 = V3 = V4 = 3.5V  
V1 = V2 = V3 = V4 = 3.5V  
-0.42  
-0.42  
-0.42  
0
0
0
0.42  
0.42  
0.42  
V1 = V2 = V3 = V4 = 3.5V,  
VCTL = VDD  
CTL Pin "H" Current  
CTL Pin "L" Current  
ICTLH  
ICTLL  
1.00 1.50 1.90  
-0.18 -- --  
uA  
uA  
8
8
5
5
V1 = V2 = V3 = V4 = 3.5V,  
VCTL = 0V  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
15  
uP8206  
Electrical Characteristics  
TA = -40oC to 85oC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ Max Units  
Output Current  
CO = 0.1V, VDD = SENSE, SENSE-VC1  
= VC1-VC2 = VC2-VC3 = VC3-VSS = 3.5V  
CO Pin Sink Current  
ICOL  
ICOH  
5.5  
1.1  
--  
--  
--  
--  
uA  
SENSE-VC1 or VC1-VC2 or VC2-VC3 or  
VC3-VSS = VCU, VCO = VCOH - 1V  
CO Pin Source Current  
mA  
Output Voltage  
SENSE-VC1 or VC1-VC2 or VC2-VC3 or  
VC3-VSS = VCU , VDD = 14V, IOH = 0mA  
5.94  
1.44  
7
2
9.04  
--  
CO Pin Drive Voltage  
VCO  
V
VDD = 4.3V, CTL = 0V  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is  
guaranteed by design, not tested in production.  
16  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Electrical Characteristics  
Detection Delay Time  
(1) uP8206PDX8-X1, uP8206ATA8-X1 (TA = 25oC, unless otherwise specified)  
Test  
Test  
Parameter  
Delay Time  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condition Circuit  
Overcharge Detection  
Delay Time  
tCU  
tTR  
5.2  
6.5  
7.8  
s
2
3
2
4
5
1
1
1
2
3
Overcharge Timer  
Reset Delay Time  
3.96  
6.34 10.15  
ms  
ms  
ms  
ms  
Overcharge Release  
Delay Time  
tCL  
40.65 50.78 60.94  
CTL Pin Response  
Time  
tCTL  
tTST  
--  
--  
--  
--  
2.5  
80  
Transition Time to Test  
Mode  
V1 = V2 = V3 = V4 = 3.5V,  
VDD >= VSENSE + 8.5V  
(2) uP8206PDX8-X2, uP8206ATA8-X2  
Test  
Test  
Parameter  
Delay Time  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condition Circuit  
Overcharge Detection  
Delay Time  
tC U  
tTR  
2.8  
3.96  
1.37  
--  
3.5  
4.2  
s
2
3
2
4
5
1
1
1
2
3
Overcharge Timer  
Reset Delay Time  
6.34 10.15 ms  
Overcharge Release  
Delay Time  
tC L  
1.71 2.05  
ms  
ms  
ms  
CTL Pin Response  
Time  
tC TL  
tTST  
--  
--  
2.5  
80  
Transition Time to Test  
Mode  
V1 = V2 = V3 =V4 = 3.5V,  
VD D >= VSENSE + 8.5V  
--  
(3) uP8206PDX8-X3, uP8206ATA8-X3  
Test  
Test  
Parameter  
Delay Time  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condition Circuit  
Overcharge Detection  
Delay Time  
tCU  
tTR  
3.2  
3.15  
25  
--  
4
4.8  
s
2
3
2
4
5
1
1
1
2
3
Overcharge Timer  
Reset Delay Time  
3.91 4.69  
31.25 37.5  
ms  
ms  
ms  
ms  
Overcharge Release  
Delay Time  
tCL  
CTL Pin Response  
Time  
tCTL  
tTST  
--  
--  
2.5  
80  
Transition Time to Test  
Mode  
V1 = V2 = V3 =V4 = 3.5V,  
VDD >= VSENSE + 8.5V  
--  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
17  
uP8206  
Detection Delay Time  
(1) uP8206PDX8-X1, uP8206ATA8-X1 (TA = -40oC to 85oC)  
Test  
Test  
Parameter  
Delay Time  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condition Circuit  
Overcharge Detection  
Delay Time  
tCU  
tTR  
3.7  
2
6.5  
9.6  
s
2
3
2
4
5
1
1
1
2
3
Overcharge Timer  
Reset Delay Time  
6.34 13.65  
ms  
ms  
ms  
ms  
Overcharge Release  
Delay Time  
tCL  
36.85 50.78 65.34  
CTL Pin Response  
Time  
tCTL  
tTST  
--  
--  
--  
--  
3
Transition Time to Test  
Mode  
120  
(2) uP8206PDX8-X2, uP8206ATA8-X2  
Test  
Test  
Parameter  
Delay Time  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condition Circuit  
Overcharge Detection  
Delay Time  
tCU  
tTR  
1.99  
2
3.5  
5.16  
s
2
3
2
4
5
1
1
1
2
3
Overcharge Timer  
Reset Delay Time  
6.34 13.65 ms  
Overcharge Release  
Delay Time  
tCL  
1.24  
--  
1.71 2.20  
ms  
ms  
ms  
CTL Pin Response  
Time  
tCTL  
tTST  
--  
--  
3
Transition Time to Test  
Mode  
--  
120  
(3) uP8206PDX8-X3, uP8206ATA8-X3  
Test  
Test  
Parameter  
Delay Time  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Condition Circuit  
Overcharge Detection  
Delay Time  
tCU  
tTR  
2.28  
1.23  
4
5.89  
s
2
3
2
4
5
1
1
1
2
3
Overcharge Timer  
Reset Delay Time  
3.91 8.40  
ms  
ms  
ms  
ms  
Overcharge Release  
Delay Time  
tCL  
22.8 31.25  
40  
3
CTL Pin Response  
Time  
tCTL  
tTST  
--  
--  
--  
--  
Transition Time to Test  
Mode  
120  
18  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Typical Operation Characteristics  
Overcharge Detection Voltage vs.  
Temperature  
Overcharge Release Voltage vs. Temperature  
4.2  
4.5  
4.45  
4.4  
4.15  
4.1  
4.05  
4
VC2  
VC3  
VC2  
VC3  
4.35  
4.3  
VSENSE  
VC1  
VSENSE  
VC1  
3.95  
3.9  
4.25  
4.2  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
Temperature (OC)  
VSENSE = VC1 = VC2 = VC3 = 4.35V  
40  
60  
80  
100  
Temperature (OC)  
VSENSE = VC1 = VC2 = VC3 = 4.05V  
Current Consumption during Operation vs.  
Temperature  
Current Consumption during Over Discharge  
vs. Temperature  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (OC)  
Temperature (OC)  
VSENSE = VC1 = VC2 = VC3 = 3.5V  
VSENSE = VC1 = VC2 = VC3 = 2.3V  
Overcharge Detection Delay Time vs.  
Temperature  
Overcharge Release Delay Time vs.  
Temperature  
7.5  
7.25  
7
55  
54  
53  
52  
51  
50  
6.75  
6.5  
6.25  
6
5.75  
5.5  
-40  
-20  
0
20  
Temperature (OC)  
VSENSE = VC1 = VC2 = VC3 = 4.35V  
40  
60  
80  
100  
-40  
-20  
0
20  
Temperature (OC)  
VSENSE = VC1 = VC2 = VC3 = 4.05V  
40  
60  
80  
100  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
19  
uP8206  
Typical Operation Characteristics  
CTL Input Voltage vs. Temperature  
CTL Pin Response Time vs. Temperature  
12  
11.8  
11.6  
11.4  
11.2  
11  
2
1.8  
1.6  
1.4  
1.2  
1
CTL Input HVoltage  
CTL Input LVoltage  
10.8  
10.6  
10.4  
10.2  
10  
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (OC)  
Temperature (OC)  
VSENSE = VC1 = VC2 = VC3 = 3.5V, VCTL = 0V  
increase and decrease  
VSENSE = VC1 = VC2 = VC3 = 3.5V, VCTL = 14V  
20  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Application Information  
Battery Protection Connections  
The following diagrams show the uP8206 package device  
in two to four cell configurations.  
EB+  
EB+  
1
2
VDD  
CO  
8
1
2
VDD  
CO  
8
SENSE  
VC1  
CTL  
VSS  
VC3  
7
6
5
SENSE  
VC1  
CTL  
VSS  
VC3  
7
6
5
Battery 1  
Battery 2  
Battery 1  
Battery 2  
3
4
3
4
VC2  
VC2  
2-Series Cell  
3-Series Cell  
Battery 3  
EB-  
EB-  
Figure 1. 2-Series Cell  
Figure 3. 3-Series Cell  
EB+  
VDD  
CO  
8
1
2
SENSE  
VC1  
CTL  
VSS  
VC3  
7
6
5
Battery 1  
Battery 2  
3
4
VC2  
4-Series Cell  
Battery 3  
Battery 4  
EB-  
Figure 2. 4-Series Cell  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
21  
uP8206  
Package Information  
UUTDFN1.97x2.46 - 8L  
0.15 - 0.25  
0.15 - 0.25  
1.87 - 2.07  
0.50 BSC  
Bottom View - Exposed Pad  
0.127 REF  
0.00 - 0.05  
Note  
1.Package Outline UnitDescription:  
BSC: Basic. Represents theoretical exact dimension or dimension target  
MIN: Minimum dimension specified.  
MAX: Maximum dimension specified.  
REF: Reference. Represents dimension for reference use only. This value is not a device specification.  
TYP. Typical. Provided as a general value. This value is not a device specification.  
2.Dimensions in Millimeters.  
3.Drawing not to scale.  
4.These dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm.  
22  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
uP8206  
Package Information  
TSSOP - 8L Package  
2.90 - 3.10  
1
0.22 TYP  
0.65 TYP  
0.80 - 1.05  
0.127 TYP  
1.20 MAX  
0.05 - 0.15  
Note  
1.Package Outline UnitDescription:  
BSC: Basic. Represents theoretical exact dimension or dimension target  
MIN: Minimum dimension specified.  
MAX: Maximum dimension specified.  
REF: Reference. Represents dimension for reference use only. This value is not a device specification.  
TYP. Typical. Provided as a general value. This value is not a device specification.  
2.Dimensions in Millimeters.  
3.Drawing not to scale.  
4.These dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm.  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  
23  
uP8206  
Important Notice  
uPI and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other  
changes to its products and services at any time and to discontinue any product or service without notice. Customers  
should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete.  
uPI products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment.  
However, no responsibility is assumed by uPI or its subsidiaries for its use or application of any product or circuit; nor  
for any infringements of patents or other rights of third parties which may result from its use or application, including but  
not limited to any consequential or incidental damages. No uPI components are designed, intended or authorized for  
use in military, aerospace, automotive applications nor in systems for surgical implantation or life-sustaining. No license  
is granted by implication or otherwise under any patent or patent rights of uPI or its subsidiaries.  
COPYRIGHT (C) 2011, UPI SEMICONDUCTOR CORP.  
uPI Semiconductor Corp.  
Sales Branch Office  
uPI Semiconductor Corp.  
Headquarter  
12F-5, No. 408, Ruiguang Rd. NeihuDistrict,  
Taipei Taiwan, R.O.C.  
TEL : 886.2.8751.2062 FAX : 886.2.8751.5064  
9F.,No.5, Taiyuan 1st St. Zhubei City,  
Hsinchu Taiwan, R.O.C.  
TEL : 886.3.560.1666 FAX : 886.3.560.1888  
24  
uP8206-DS-F0001, Apr. 2018  
www.upi-semi.com  

相关型号:

UP8206PDX8-D2

Battery Protection IC
UPI

UP8206PDX8-D3

Battery Protection IC
UPI

UP8206PDX8-E1

Battery Protection IC
UPI

UP8206PDX8-E2

Battery Protection IC
UPI

UP8206PDX8-E3

Battery Protection IC
UPI

UP8206PDX8-F1

Battery Protection IC
UPI

UP8206PDX8-F2

Battery Protection IC
UPI

UP8206PDX8-F3

Battery Protection IC
UPI

UP8206PDX8-G1

Battery Protection IC
UPI

UP8206PDX8-G2

Battery Protection IC
UPI

UP8206PDX8-G3

Battery Protection IC
UPI

UP8207

Battery Protection IC
UPI