MJE13003B(TO-220) [UTC]

Transistor;
MJE13003B(TO-220)
型号: MJE13003B(TO-220)
厂家: Unisonic Technologies    Unisonic Technologies
描述:

Transistor

文件: 总7页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UTC MJE13003  
NPN EPITAXIAL SILICON TRANSISTOR  
NPN SILICON POWER  
TRANSISTORS  
DESCRIPTION  
These devices are designed for high–voltage,  
high–speed power switching inductive circuits where fall time  
is critical. They are particularly suited for 115 and 220V  
SWITCHMODE .  
1
FEATURES  
* Reverse Biased SOA with Inductive Load @ Tc=100  
* Inductive Switching Matrix 0.5 ~ 1.5 Amp, 25 and 100℃  
. . . tc @ 1A, 100is 290 ns (Typ)  
* 700V Blocking Capability  
* SOA and Switching Applications Information  
TO-220  
APPLICATIONS  
* Switching Regulator’s, Inverters  
* Motor Controls  
* Solenoid/Relay drivers  
* Deflection circuits  
1: BASE 2: COLLECTOR 3: EMITTER  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
RATINGS  
400  
UNIT  
Collector-Emitter Voltage  
VCEO (sus)  
V
V
V
Collector-Emitter Voltage  
Emitter Base Voltage  
Collector Current - Continuous  
- Peak (1)  
VCEV  
VEBO  
Ic  
ICM  
IB  
IBM  
IE  
IEM  
700  
9
1.5  
3
0.75  
1.5  
2.25  
4.5  
1.4  
A
A
A
Base Current Continuous  
Peak (1)  
Emitter Current Continuous  
Peak (1)  
Total Power Dissipation @ Ta=25℃  
Derate above 25℃  
Total Power Dissipation @ TC=25℃  
Derate above 25℃  
Operating and Storage Junction Temperature Range  
W
PD  
mW/℃  
11.2  
40  
320  
W
PD  
mW/℃  
Tj , Tstg  
-65 ~ +150  
THERMAL CHARACTERISTICS  
PARAMETER  
SYMBOL  
RθJA  
RθJC  
RATINGS  
89  
UNIT  
/W  
/W  
Thermal Resistance, Junction to Ambient  
Thermal Resistance, Junction to Case  
Maximum Lead Temperature for Soldering  
Purposes: 1/8” from Case for 5 Seconds  
(1) Pulse Test: Pulse Width=5ms, Duty Cycle10%  
3.12  
TL  
275  
1
UTC UNISONIC TECHNOLOGIES CO. LTD  
QW-R203-017,D  
UTC MJE13003  
NPN EPITAXIAL SILICON TRANSISTOR  
ELECTRICAL CHARACTERISTICS (Tc=25, unless otherwise noted)  
PARAMETER  
*OFF CHARACTERISTICS (1)  
Collector-Emitter Sustaining  
Voltage  
SYMBOL  
TEST CONDITIONS  
MIN TYP MAX UNIT  
Ic=10 mA , IB=0  
VCEO (SUS)  
400  
V
Collector Cutoff Current  
VCEV=Rated Value, VBE(off)=1.5 V  
VCEV=Rated Value, VBE(off)=1.5V,  
Tc=100℃  
1
5
ICEV  
IEBO  
mA  
mA  
Emitter Cutoff Current  
VEB=9 V, Ic=0  
1
SECOND BREAKDOWN  
Second Breakdown Collector  
Current with bass forward biased  
Clamped Inductive SOA with base  
reverse biased  
Is/b  
See Figure 5  
See Figure 6  
RBSOA  
*ON CHARACTERISTICS (1)  
DC Current Gain  
HFE1  
HFE2  
Ic=0.5A, VCE=10V  
Ic=1A, VCE=2V  
8
5
40  
25  
0.5  
1
Collector-Emitter Saturation  
Voltage  
Ic=0.5A, IB=0.1A  
Ic=1A, IB=0.25A  
VCE (sat)  
V
V
Ic=1.5A, IB=0.5A  
3
Ic=1A, IB=0.25A, Tc=100℃  
1
Base-Emitter Saturation Voltage  
Ic=0.5A, IB=0.1A  
1
1.2  
1.1  
VBE (sat)  
Ic=1A, IB=0.25A  
Ic=1A, IB=0.25A, Tc=100℃  
DYNAMIC CHARACTERISTICS  
Current-Gain-Bandwidth Product  
Output Capacitance  
SWITCHING CHARACTERISTICS  
Resistive Load (Table 1)  
Delay Time  
Rise Time  
Storage Time  
Fall Time  
fT  
Cob  
Ic=100mA, VCE=10V, f=1MHz  
VCB=10V, IE=0, f=0.1MHz  
4
10  
21  
MHz  
pF  
μs  
μs  
μs  
μs  
td  
tr  
ts  
tf  
Vcc=125V, Ic=1A, IB1=IB2=0.2A,  
tP=25μs, Duty Cycle1%  
0.05  
0.5  
2
0.1  
1
4
0.4  
0.7  
Inductive Load, Clamped (Table 1, Figure 7)  
μs  
μs  
μs  
Storage Time  
Crossover Time  
Fall Time  
tsv  
tc  
tfi  
Ic=1A, Vclamp=300V, IB1=0.2A,  
1.7  
0.29 0.75  
0.15  
4
VBE(off)=5Vdc, Tc=100℃  
(1) Pulse Test : PW=300μs, Duty Cycle2%  
CLASSIFICATION OF HFE1  
RANK  
A
B
C
D
E
F
RANGE  
8 ~ 16  
15 ~ 21  
20 ~ 26  
25 ~ 31  
30 ~ 36  
35 ~ 40  
2
UTC UNISONIC TECHNOLOGIES CO. LTD  
QW-R203-017,D  
UTC MJE13003  
NPN EPITAXIAL SILICON TRANSISTOR  
TABLE 1.TEST CONDITIONS FOR DYNAMIC PERFORMANCE  
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING  
RESISTIVE  
SWITHCING  
+5V  
Vcc  
33  
1N4933  
MJE210  
L
MR826*  
0.001μF  
+125V  
33 1N4933  
5V  
Vclamp  
Rc  
Ic  
Pw  
2N2222  
RB  
TUT  
1k  
1k  
+5V  
DUTY CYCLE10%  
SCOPE  
RB  
D1  
-4.0V  
68  
*SELECTED FOR1kV  
tr, tf10ns  
IB  
5.1k  
51  
VCE  
1k  
T.U.T.  
1N4933  
270  
2N2905  
47  
MJE200  
0.02μF  
100  
NOTE  
PW and Vcc Adjusted for Desired Ic  
RB Adjusted for Desired IB1  
1/2W  
-VBE(off)  
Vcc=125V  
Coil Data :  
GAP for 30 mH/2 A  
Lcoil=50mH  
Vcc=20V  
Vclamp=300V  
Rc=125Ω  
Ferroxcube core #6656  
D1=1N5820 or  
Full Bobbin ( ~ 200 Turns) #20  
Equiv.  
RB=47Ω  
OUTPUT WAVEFORMS  
tf CLAMPED  
+10.3 V  
0
25μS  
Ic  
Ic(pk)  
t1 Adjusted to  
Obtain Ic  
t
t1  
tf  
-8.5V  
Test Equipment  
Scope-Tektronics  
475 or Equivalent  
Lcoil(Icpk)  
Vcc  
t1  
tr, tf<10ns  
VCE  
Duty Cycly=1.0%  
VCE or  
RB and Rc adjusted  
for desired IB and Ic  
Lcoil(Icpk)  
Vclamp  
Vclamp  
t2≒  
t
TIME  
t2  
Table 2. Typical Inductive Switching Performance  
Figure 1. Inductive Switching Measurements  
ICPK  
Ic  
Tc  
tsv  
Vclamp  
trv  
tfi  
tti  
tc  
AMP  
μs  
μs  
μs  
μs  
μs  
90% Ic  
tfi  
90% Vclamp  
trv  
tsv  
tti  
IC  
0.35  
0.40  
1.3  
1.6  
0.23 0.30  
0.26 0.30  
0.30  
0.36  
25  
100  
0.5  
1
tc  
10% Vclamp  
25  
100  
1.5  
1.7  
0.10  
0.13  
0.14 0.05 0.16  
0.26 0.06 0.29  
VCE  
IB  
10%  
Icpk  
2% Ic  
90% IB1  
0.10 0.05 0.16  
0.22 0.08 0.28  
1.8  
3
0.07  
0.08  
25  
100  
1.5  
NOTE: All Data Recorded in the Inductive Switching Circuit in Table 1  
TIME  
3
UTC UNISONIC TECHNOLOGIES CO. LTD  
QW-R203-017,D  
UTC MJE13003  
NPN EPITAXIAL SILICON TRANSISTOR  
SWITCHING TIMES NOTE  
In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage  
waveforms since they are in phase. However, for inductive loads, which are common to SWITCHMODE power  
supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements  
must be made on each waveform to determine the total switching time. For this reason, the following new terms  
have been defined.  
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp  
trv = Voltage Rise Time, 10 ~ 90% Vclamp  
tfi = Current Fall Time, 90 ~ 10% IC  
tti = Current Tail, 10 ~ 2% IC  
tc = Crossover Time, 10% Vclamp to 10% IC  
An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these  
terms.  
For the designer, there is minimal switching loss during storage time and the predominant switching power losses  
occur during the crossover interval and can be obtained using the standard equation from AN–222:  
PSWT = 1/2 VCCIC(tc)f  
In general, trv + tfi tc. However, at lower test currents this relationship may not be valid.  
As is common with most switching transistors, resistive switching is specified at 25and has become a  
benchmark for designers. However, for designers of high frequency converter circuits, the user oriented  
specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (tc and tsv) which are  
guaranteed at 100.  
RESISTIVE SWITCHING PERFORMANCE  
Figure 2. Turn-On Time  
Figure 3. Turn-Off Time  
ts  
10  
7
5
2
Vcc=125V  
Ic/IB=5  
Vcc=125V  
Ic/IB=5  
Tj=25  
1
0.7  
0.5  
Tj=25℃  
3
2
tr  
0.3  
0.2  
1
0.7  
td @ VBE(off)=5V  
0.1  
0.07  
0.05  
0.5  
tf  
0.3  
0.2  
0.03  
0.02  
0.1  
0.07 0.1  
0.2 0.3  
0.7  
20  
0.3  
0.02 0.03 0.05  
0.5  
10  
0.03  
0.07 0.1  
0.05  
0.2  
0.5 0.7  
1
2
0.02  
COLLECTOR CURRENT, IC (AMP)  
COLLECTOR CURRENT, IC (AMP)  
Figure 4. Thermal Response  
1
0.7  
0.5  
D=0.5  
0.2  
0.3  
0.2  
0.1  
0.05  
P (PK)  
0.1  
ZθJC(t)=r(t) RθJC  
RθJC=3.12/W MAX  
0.07  
0.05  
0.02  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t1  
t1 t2  
0.03  
0.02  
TJ(pk)-TC=P(pk) PθJC(t)  
0.01  
DUTY CYCLE, D=t1/t2  
SINGLE PULSE  
0.01  
0.01  
10  
0
20  
0
50  
0
0.05  
0.1  
0.2  
1
2
3
5
10 20  
0.02 0.03  
0.3  
0.5  
50  
1000  
TIME OR PULSE WIDTH, t (ms)  
4
UTC UNISONIC TECHNOLOGIES CO. LTD  
QW-R203-017,D  
UTC MJE13003  
NPN EPITAXIAL SILICON TRANSISTOR  
The Safe Operating Area Figures 5 and 6 are specified ratings  
The Safe Operating Area Figures 5 and 6 are specified ratings for these devices under the test conditions shown.  
Figure 5. Active Region Safe Operating Area  
Figure 6. Reverse Bias Safe Operating Area  
10  
5
1.6  
1.2  
10 ms  
2
1
100μs  
5.0 ms  
VBE(off)=9V  
Tj100℃  
dc  
0.5  
1.0 ms  
Tc=25  
0.8  
0.4  
0
IB1=1A  
0.2  
0.1  
THERMAL LIMIT(SINGLE PULSE)  
BONDING WIRE LIMIT  
SECOND BREAKDOWN LIMIT  
CURVES APPLY BELOW RATED VCEO  
0.05  
5V  
0.02  
0.01  
3V  
1.5V  
10  
20  
50  
100  
500  
400  
600  
700  
800  
5
200 300  
0
100  
200  
300  
500  
COLLECTOR-EMITTER VOLTAGE, VCE (VOLTS)  
Figure 7. Forward Bias Power Derating  
COLLECTOR-EMITTER CLAMP VOLTAGE  
,VCE (VOLTS)  
1
0.8  
0.6  
0.4  
0.2  
0
SECOND BREAKDOWN  
DERATING  
THERMAL  
DERATING  
100  
140  
160  
20  
40  
60  
80  
120  
CASE TEMPERATURE, TC ()  
SAFE OPERATING AREA INFORMATION  
FORWARD BIAS  
There are two limitations on the power handling ability of a transistor: average junction temperature and second  
breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.  
The data of Figure 5 is based on TC = 25; Tj(pk) is variable depending on power level. Second breakdown pulse  
limits are valid for duty cycles to 10% but must be derated when TC25. Second breakdown limitations do not  
derate the same as thermal limitations. Allowable current at the voltages shown on Figure 5 may be found at any  
case temperature by using the appropriate curve on Figure 7.  
TJ(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the  
power that can be handled to values less than the limitations imposed by second breakdown.  
REVERSE BIAS  
For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases,  
with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe  
level at or below a specific value of collector current. This can be accomplished by several means such as active  
clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe  
Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified  
under clamped conditions so that the device is never subjected to an avalanche mode. Figure 6 gives PBSOA  
characteristics.  
5
UTC UNISONIC TECHNOLOGIES CO. LTD  
QW-R203-017,D  
UTC MJE13003  
NPN EPITAXIAL SILICON TRANSISTOR  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 8. DC Current Gain  
Figure 9. Collector Saturation Region  
Tj=25  
80  
2
1.6  
1.2  
0.8  
0.4  
0
60  
Tj=150℃  
40  
30  
25℃  
Ic=0.1A  
0.3A  
0.5A  
1A 1.5A  
20  
-55℃  
1
0
8
VCE=2V  
6
4
- - - - - -VCE=5V  
0.03 0.05 0.07 0.1  
0.2 0.3  
0.5 0.7  
0.002  
0.005 0.01 0.02  
0.05 0.1 0.2  
0.5  
0.02  
1
2
1
2
COLLECTOR CURRENT,IC (AMP)  
BASE CURRENT, IB (AMP)  
Figure 10. Base-Emitter Voltage  
Figure 11. Collector-Emitter Saturation Region  
1.4  
1.2  
0.35  
0.3  
VBE(sat) @ IC/IB=3  
- - - - - -VBE(on) @ VCE=2V  
0.25  
0.2  
Ic/IB=3  
1
0.8  
0.6  
0.4  
Tj=-55℃  
25℃  
Tj=-55℃  
0.15  
25℃  
0.1  
25℃  
150℃  
150℃  
0.05  
0
0.02  
0.5  
0.7  
0.03  
0.05 0.07 0.1  
0.2 0.3  
0.5 0.7  
1
0.03 0.05 0.07 0.1  
0.2 0.3  
1
2
0.02  
2
COLLECTOR CURRENT,IC (AMP)  
COLLECTOR CURRENT, IC (AMP)  
Figure 13. Capacitance  
Figure 12. Collector Cutoff Region  
4
10  
500  
VCE=250V  
300  
200  
Tj=25℃  
3
10  
Cib  
Tj=150℃  
125℃  
100℃  
100  
70  
50  
2
10  
1
10  
30  
20  
75℃  
50℃  
0
10  
Cob  
10  
25℃  
7
5
FORWARD  
+0.2 +0.4  
-1  
REVERSE  
10  
2
200 500 1000  
100  
-0.2  
0
0.2 0.5  
0.1  
1
5
10 20 50  
-0.4  
+0.6  
BASE-EMITTER VOLTAGE, VBE (VOLTS)  
REVERSE VOLTAGE, VR (VOLTS)  
6
UTC UNISONIC TECHNOLOGIES CO. LTD  
QW-R203-017,D  
UTC MJE13003  
NPN EPITAXIAL SILICON TRANSISTOR  
UTC assumes no responsibility for equipment failures that result from using products at values that  
exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or  
other parameters) listed in products specifications of any and all UTC products described or contained  
herein. UTC products are not designed for use in life support appliances, devices or systems where  
malfunction of these products can be reasonably expected to result in personal injury. Reproduction in  
whole or in part is prohibited without the prior written consent of the copyright owner. The information  
presented in this document does not form part of any quotation or contract, is believed to be accurate  
and reliable and may be changed without notice.  
7
UTC UNISONIC TECHNOLOGIES CO. LTD  
QW-R203-017,D  

相关型号:

MJE13003B-AP

Small Signal Bipolar Transistor, 1.5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-92, ROHS COMPLIANT, PLASTIC PACKAGE-3
MCC

MJE13003B-AP-HF

Small Signal Bipolar Transistor,
MCC

MJE13003B-BP

Small Signal Bipolar Transistor, 1.5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-92, ROHS COMPLIANT, PLASTIC PACKAGE-3
MCC

MJE13003B-BP-HF

Small Signal Bipolar Transistor,
MCC

MJE13003BR

MJE SERIES TRANSISTORS
ETC

MJE13003BRH

MJE SERIES TRANSISTORS
ETC

MJE13003D

TECHNICAL SPECIFICATIONS OF NPN EPITAXIAL PLANAR TRANSISTOR
DCCOM

MJE13003D

Silicon NPN Power Transistor
ISC

MJE13003D

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
UTC

MJE13003D-P

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
UTC

MJE13003D-P_15

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
UTC

MJE13003DG-P-A-T92-R

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
UTC