BCM6123T60E10A5T00 [VICOR]

DC/DC CONVERTER 1500W;
BCM6123T60E10A5T00
型号: BCM6123T60E10A5T00
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

DC/DC CONVERTER 1500W

文件: 总29页 (文件大小:2093K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BCM® Bus Converter  
BCM6123x60E10A5yzz  
S
®
C
NRTL US  
C
US  
Isolated Fixed-Ratio DC-DC Converter  
Features & Benefits  
Product Ratings  
Up to 150A continuous secondary current  
Up to 2206W/in3 power density  
97.6% peak efficiency  
VPRI = 54V (36 – 60V)  
ISEC = up to 150A  
K = 1/6  
V
SEC = 9V (6 – 10V)  
(no load)  
2,250VDC isolation  
Product Description  
Parallel operation for multi-kW arrays  
OV, OC, UV, short circuit and thermal protection  
BCM6123 through-hole ChiP package  
The BCM6123x60E10A5yzz is a high-efficiency Bus Converter,  
operating from a 36 to 60VDC primary bus to deliver an isolated,  
ratiometric secondary voltage from 6 to 10VDC  
.
ꢀ„2.402 x 0.990 x 0.284in  
The BCM6123x60E10A5yzz offers low noise, fast transient  
response, and industry leading efficiency and power density. In  
addition, it provides an AC impedance beyond the bandwidth of  
most downstream regulators, allowing input capacitance normally  
located at the input of a PoL regulator to be located at the primary  
side of the BCM. With a primary to secondary K factor of 1/6, that  
capacitance value can be reduced by a factor of 36x, resulting in  
savings of board area, material and total system cost.  
[61.00 x 25.14 x 7.21mm]  
PMBus™ management interface [a]  
Typical Applications  
High-End Computing Systems  
Automated Test Equipment  
Industrial Systems  
Leveraging the thermal and density benefits of Vicor ChiP  
packaging technology, the BCM offers flexible thermal  
management options with very low top and bottom side thermal  
impedances. Thermally-adept ChiP-based power components  
enable customers to achieve low cost power system solutions  
with previously unattainable system size, weight and efficiency  
attributes quickly and predictably.  
High-Density Power Supplies  
Communications Systems  
Transportation  
[a] When used with D44TL1A0 and I13TL1A0  
BCM® Bus Converter  
Page 1 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Typical Applications  
BCM  
TM  
EN  
enable/disable  
switch  
VAUX  
F1  
+VPRI  
–VPRI  
+VSEC  
VPRI  
CPRI  
PoL  
–VSEC  
GND  
PRIMARY  
SECONDARY  
ISOLATION BOUNDARY  
BCM6123x60E10A5y00 at point-of-load  
BCM  
SER-OUT  
SER-OUT  
EN  
SER-IN  
enable/disable  
switch  
SER-IN  
FUSE  
+VPRI  
–VPRI  
+VSEC  
VPRI  
C
PoL  
I_BCM_ELEC  
–VSEC  
PRIMARY  
SECONDARY  
SOURCE_RTN  
Digital  
Supervisor  
D44TL1A0  
ISOLATION BOUNDARY  
Digital Isolator  
Host µC  
I13TL1A0  
NC  
PRI_OUT_A  
SEC_IN_A  
SEC_IN_B  
SEC_OUT_C  
SEC_COM  
VDDB  
t
SER-IN  
+
V
EXT  
VDD  
TXD  
PRI_OUT_B  
PRI_IN_C  
SER-OUT  
SGND  
RXD  
PRI_COM  
SGND  
PMBus  
PMBus  
SGND  
SGND  
SGND  
BCM6123x60E10A5y01 at point-of-load  
BCM® Bus Converter  
Page 2 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Pin Configuration  
TOP VIEW  
2
1
A’ +VSEC  
A
B
C
D
E
+VSEC  
–VSEC  
2
2
B’  
C’  
–VSEC1  
–VSEC  
–VSEC  
1
+VSEC  
+VSEC  
D’ +VSEC  
E’ +VSEC  
–VSEC  
2
2
F’  
–VSEC  
1
1
F
G
H
G’  
–VSEC  
–VSEC  
+VSEC  
H’ +VSEC  
+VPRI  
+VPRI  
+VPRI  
I’  
J’  
K’  
I
J
TM/SER-OUT  
EN  
VAUX/SER-IN  
K
–VPRI  
+VPRI  
L’  
L
BCM6123 ChiP™  
Pin Descriptions  
Power Pins  
Pin Number  
Signal Name  
Type  
Function  
I1, J1, K1, L1  
+VPRI  
PRIMARY POWER  
Positive primary transformer power terminal  
Negative primary transformer power terminal  
PRIMARY POWER  
RETURN  
L’2  
–VPRI  
A1, D1, E1, H1, A’2,  
D’2, E’2, H’2  
SECONDARY  
POWER  
+VSEC  
Positive secondary transformer power terminal  
Negative secondary transformer power terminal  
B1, C1, F1, G1  
B’2, C’2, F’2, G’2  
SECONDARY  
POWER RETURN  
[b]  
–VSEC  
Analog Control Signal Pins  
Pin Number  
Signal Name  
Type  
Function  
I’2  
J’2  
TM  
EN  
OUTPUT  
INPUT  
Temperature Monitor; primary side referenced signals  
Enables and disables power supply; primary side referenced signals  
Auxiliary Voltage Source; primary side referenced signals  
K’2  
VAUX  
OUTPUT  
PMBus™ Control Signal Pins  
Pin Number  
Signal Name  
Type  
Function  
I’2  
J’2  
SER-OUT  
EN  
OUTPUT  
INPUT  
UART transmit pin; Primary side referenced signals  
Enables and disables power supply; Primary side referenced signals  
UART receive pin; Primary side referenced signals  
K’2  
SER-IN  
INPUT  
[b] For proper operation an external low impedance connection must be made between listed –VSEC1 and –VSEC2 terminals.  
BCM® Bus Converter  
Page 3 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Part Ordering Information  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package Package  
Max Primary  
Range  
Identifier  
Temperature  
Option  
Size  
Mounting Input Voltage  
Grade  
BCM  
6123  
x
60  
E
10  
A5  
y
zz  
00 = Analog Ctrl  
01 = PMBus Ctrl  
T = –40 to 125°C  
Bus Converter  
Module  
61 = L  
23 = W  
10V  
No Load  
T = TH  
60V  
36 – 60V  
150A  
M = –55 to 125°C 0R = Reversible Analog Ctrl  
0P = Reversible PMBus Ctrl  
All products shipped in JEDEC standard high profile (0.400” thick) trays (JEDEC Publication 95, Design Guide 4.10).  
Standard Models  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package  
Size  
Package  
Mounting  
Max Primary  
Input Voltage  
Range  
Identifier  
Temperature  
Grade  
Option  
BCM  
BCM  
6123  
6123  
T
T
60  
60  
E
E
10  
10  
A5  
A5  
T
T
00  
01  
Absolute Maximum Ratings  
The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device.  
Parameter  
Comments  
Min  
Max  
Unit  
+VPRI_DC to –VPRI_DC  
–1  
80  
V
VPRI_DC or VSEC_DC Slew Rate  
(Operational)  
1
V/µs  
+VSEC_DC to –VSEC_DC  
TM/SER-OUT to –VPRI_DC  
EN to –VPRI_DC  
–1  
15  
4.6  
5.5  
4.6  
V
V
V
V
–0.3  
VAUX/SER-IN to –VPRI_DC  
BCM® Bus Converter  
Page 4 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Electrical Specifications  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powertrain PRIMARY to SECONDARY Specification (Forward Direction)  
Primary Input Voltage Range  
(Continuous)  
VPRI_DC  
36  
60  
V
V
VPRI_DC voltage where µC is initialized,  
(i.e., VAUX = Low, powertrain inactive)  
VPRI µController  
VµC_ACTIVE  
14  
Disabled, EN Low, VPRI_DC = 54V  
TINTERNAL ≤ 100ºC  
5
PRI to SEC Input Quiescent Current  
IPRI_Q  
mA  
10  
9
VPRI_DC = 54V, TINTERNAL = 25ºC  
VPRI_DC = 54V  
7.2  
5
14  
12  
17  
PRI to SEC No-Load  
Power Dissipation  
PPRI_NL  
W
VPRI_DC = 36 – 60V, TINTERNAL = 25ºC  
VPRI_DC = 36 – 60V  
VPRI_DC = 60V, CSEC_EXT = 6000μF,  
RLOAD_SEC = 20% of full-load current  
30  
PRI to SEC Inrush Current Peak  
IPRI_INR_PK  
A
TINTERNAL ≤ 100ºC  
35  
DC Primary Input Current  
Transformation Ratio  
IPRI_IN_DC  
K
At ISEC_OUT_DC = 150A, TINTERNAL ≤ 100ºC  
Primary to secondary, K = VSEC_DC / VPRI_DC, at no load  
25.5  
A
1/6  
V/V  
Secondary Output Current  
(Continuous)  
ISEC_OUT_DC  
150  
180  
A
A
10ms pulse, 25% duty cycle,  
ISEC_OUT_AVG ≤ 50% of rated ISEC_OUT_DC  
Secondary Output Current (Pulsed)  
ISEC_OUT_PULSE  
VPRI_DC = 54V, ISEC_OUT_DC = 150A  
VPRI_DC = 36 – 60V, ISEC_OUT_DC = 150A  
VPRI_DC = 54V, ISEC_OUT_DC = 75A  
VPRI_DC = 54V, ISEC_OUT_DC = 150A  
96.1  
94.5  
96.9  
95.4  
96.7  
PRI to SEC Efficiency (Ambient)  
PRI to SEC Efficiency (Hot)  
ηAMB  
%
97.6  
96  
ηHOT  
η20%  
%
%
PRI to SEC Efficiency  
(Over Load Range)  
30A < ISEC_OUT_DC < 150A  
90  
RSEC_COLD  
RSEC_AMB  
RSEC_HOT  
FSW  
VPRI_DC = 54V, ISEC_OUT_DC = 150A, TINTERNAL = –40°C  
VPRI_DC = 54V, ISEC_OUT_DC = 150A  
0.9  
1.2  
1.2  
1.6  
2
1.5  
2
PRI to SEC Output Resistance  
mΩ  
VPRI_DC = 54V, ISEC_OUT_DC = 150A, TINTERNAL = 100°C  
Frequency of the output voltage ripple = 2x FSW  
1.6  
2.2  
0.95  
Switching Frequency  
0.85  
0.90  
MHz  
mV  
CSEC_EXT = 0μF, ISEC_OUT_DC =150A, VPRI_DC = 54V,  
20MHz BW  
140  
Secondary Output Voltage Ripple  
VSEC_OUT_PP  
TINTERNAL ≤ 100ºC  
200  
Primary Input Leads Inductance  
(Parasitic)  
Frequency 2.5MHz (double switching frequency),  
simulated lead model  
LPRI_IN_LEADS  
6.7  
nH  
nH  
Secondary Output Leads Inductance  
(Parasitic)  
Frequency 2.5MHz (double switching frequency),  
simulated lead model  
LSEC_OUT_LEADS  
0.64  
BCM® Bus Converter  
Page 5 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powertrain PRIMARY to SECONDARY Specification (Forward Direction) Cont.  
Effective Primary Capacitance  
(Internal)  
CPRI_INT  
CSEC_INT  
CSEC_OUT_EXT  
Effective value at 54VPRI_DC  
Effective value at 9VSEC_DC  
11.2  
202  
µF  
µF  
µF  
Effective Secondary Capacitance  
(Internal)  
Rated Secondary Output  
Capacitance (External)  
Excessive capacitance may drive module  
into short-circuit protection  
6000  
Rated Secondary Output Capacitance  
(External), Parallel Array Operation  
CSEC_OUT_AEXT Max = N • 0.5 • CSEC_OUT_EXT MAX, where  
N = the number of units in parallel  
CSEC_OUT_AEXT  
Powertrain Protection PRIMARY to SECONDARY (Forward Direction)  
Start up into a persistent fault condition. Non-latching  
fault detection given VPRI_DC > VPRI_UVLO+  
Auto Restart Time  
tAUTO_RESTART  
VPRI_OVLO+  
VPRI_OVLO–  
490  
560  
71  
ms  
V
Primary Overvoltage  
Lockout Threshold  
63  
61  
67  
65  
2
Primary Overvoltage  
Recovery Threshold  
69  
V
Primary Overvoltage  
Lockout Hysteresis  
VPRI_OVLO_HYST  
tPRI_OVLO  
V
Primary Overvoltage  
Lockout Response Time  
100  
1
µs  
ms  
A
From powertrain active; fast current limit protection  
disabled during soft start  
Secondary Soft-Start Time  
tSEC_SOFT-START  
ISEC_OUT_OCP  
tSEC_OUT_OCP  
ISEC_OUT_SCP  
tSEC_OUT_SCP  
tOTP+  
Secondary Output Overcurrent  
Trip Threshold  
170  
225  
125  
210  
3
240  
Secondary Output Overcurrent  
Response Time Constant  
Effective internal RC filter  
ms  
A
Secondary Output Short-Circuit  
Protection Trip Threshold  
Secondary Output Short-Circuit  
Protection Response Time  
1
µs  
°C  
Overtemperature  
Shut-Down Threshold  
Temperature sensor located inside controller IC  
BCM® Bus Converter  
Page 6 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Powertrain Supervisory Limits PRIMARY to SECONDARY (Forward Direction)  
Primary Overvoltage  
Lockout Threshold  
VPRI_OVLO+  
VPRI_OVLO–  
VPRI_OVLO_HYST  
tPRI_OVLO  
64  
60  
66  
64  
2
68  
66  
V
V
Primary Overvoltage  
Recovery Threshold  
Primary Overvoltage  
Lockout Hysteresis  
V
Primary Overvoltage  
Lockout Response Time  
100  
28  
30  
2
µs  
V
Primary Undervoltage  
Lockout Threshold  
VPRI_UVLO–  
VPRI_UVLO+  
VPRI_UVLO_HYST  
tPRI_UVLO  
26  
28  
30  
32  
Primary Undervoltage  
Recovery Threshold  
V
Primary Undervoltage  
Lockout Hysteresis  
V
Primary Undervoltage  
Lockout Response Time  
100  
µs  
From VPRI_DC = VPRI_UVLO+ to powertrain active, EN  
Primary-to-Secondary Start-Up Delay tPRI_TO_SEC_DELAY floating (i.e., one-time start-up delay from application  
of VPRI_DC to VSEC_DC  
20  
ms  
)
Secondary Output Overcurrent  
Trip Threshold  
ISEC_OUT_OCP  
tSEC_OUT_OCP  
tOTP+  
192  
204  
3
216  
A
ms  
°C  
°C  
°C  
s
Secondary Output Overcurrent  
Response Time Constant  
Effective internal RC filter  
Overtemperature  
Shut-Down Threshold  
Temperature sensor located inside controller IC  
125  
Overtemperature  
Recovery Threshold  
tOTP–  
105  
110  
3
115  
–45  
Undertemperature  
Shut-Down Threshold  
Temperature sensor located inside controller IC;  
Protection not available for M-Grade units.  
tUTP  
Start up into a persistent fault condition. Non-latching  
fault detection given VPRI_DC > VPRI_UVLO+  
Undertemperature Restart Time  
tUTP_RESTART  
BCM® Bus Converter  
Page 7 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powertrain SECONDARY to PRIMARY Specification (Reverse Direction)  
Secondary Input Voltage Range  
(Continuous)  
VSEC_DC  
6
10  
V
VSEC_DC = 9V, TINTERNAL = 25ºC  
VSEC_DC = 9V  
7.2  
9
14  
12  
17  
152  
25  
5
SEC to PRI No-Load  
Power Dissipation  
PSEC_NL  
W
VSEC_DC = 6 – 10V, TINTERNAL = 25ºC  
VSEC_DC = 6 – 10V  
DC Secondary Input Current  
ISEC_IN_DC  
At IPRI_DC = 25A, TINTERNAL ≤ 100ºC  
A
A
Primary Output Current (Continuous)  
IPRI_OUT_DC  
10ms pulse, 25% duty cycle,  
IPRI_OUT_AVG ≤ 50% of rated IPRI_OUT_DC  
Primary Output Current (Pulsed)  
IPRI_OUT_PULSE  
30  
A
VSEC_DC = 9V, IPRI_OUT_DC = 25A  
VSEC_DC = 6 – 10V, IPRI_OUT_DC= 25A  
VSEC_DC = 9V, IPRI_OUT_DC = 12.5A  
VSEC_DC = 9V, IPRI_OUT_DC = 25A  
96.0  
93.8  
96.9  
95.4  
96.5  
SEC to PRI Efficiency (Ambient)  
SEC to PRI Efficiency (Hot)  
ηAMB  
%
97.5  
95.9  
ηHOT  
η20%  
%
%
SEC to PRI Efficiency  
(Over Load Range)  
5A < IPRI_OUT_DC < 25A  
90  
RPRI_COLD  
RPRI_AMB  
RPRI_HOT  
VSEC_DC = 9V, IPRI_OUT_DC = 25A, TINTERNAL = –40°C  
VSEC_DC = 9V, IPRI_OUT_DC = 25A  
47  
61  
76  
55  
72  
84  
63  
83  
92  
SEC to PRI Output Resistance  
Primary Output Voltage Ripple  
mΩ  
mV  
VSEC_DC = 9V, IPRI_OUT_DC = 25A, TINTERNAL = 100°C  
CPRI_OUT_EXT = 0μF, IPRI_OUT_DC = 25A,  
VSEC_DC = 9V, 20MHz BW  
800  
VPRI_OUT_PP  
TINTERNAL ≤ 100ºC  
1200  
BCM® Bus Converter  
Page 8 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Protection SECONDARY to PRIMARY (Reverse Direction)  
Effective Primary Output  
Capacitance (External)  
Excessive capacitance may drive module  
into SC protection  
CPRI_OUT_EXT  
VSEC_OVLO+  
tPRI_OVLO  
VSEC_UVLO–  
tSEC_UVLO  
100  
V
V
Secondary Overvoltage  
Lockout Threshold  
Module latched shut down with VPRI_DC < VPRI_UVLO–_R  
10.6  
4.3  
11.2  
100  
4.7  
11.8  
Secondary Overvoltage  
Lockout Response Time  
µs  
V
Secondary Undervoltage  
Lockout Threshold  
Module latched shut down with VPRI_DC < VPRI_UVLO–_R  
5.1  
Secondary Undervoltage  
Lockout Response Time  
100  
µs  
Applies only to reversible products in forward and in  
reverse direction; IPRI_DC ≤ 20% while  
VPRI_UVLO–_R < VPRI_DC < VPRI_MIN  
Primary Undervoltage  
Lockout Threshold  
VPRI_UVLO–_R  
26  
28  
28  
30  
32  
V
Primary Undervoltage  
Recovery Threshold  
Applies only to reversible products in forward and in  
reverse direction  
VPRI_UVLO+_R  
VPRI_UVLO_HYST_R  
IPRI_OUT_OCP  
tPRI_OUT_OCP  
IPRI_SCP  
30  
2
V
V
Primary Undervoltage  
Lockout Hysteresis  
Applies only to reversible products in forward and in  
reverse direction  
Primary Output Overcurrent  
Trip Threshold (Analog)  
Module latched shutdown with VPRI_DC < VPRI_UVLO–_R  
Effective internal RC filter  
28.3  
37.5  
32  
35  
3
40  
A
Primary Output Overcurrent  
Response Time Constant (Analog)  
ms  
A
Primary Short Circuit Protection  
Trip Threshold  
Module latched shutdown with VPRI_DC < VPRI_UVLO–_R  
Primary Short Circuit Protection  
Response Time  
tPRI_SCP  
1
34  
3
µs  
A
Primary Output Overcurrent  
Trip Threshold (PMBus™)  
IPRI_OUT_OCP  
tPRI_OUT_OCP  
Module latched shutdown with VPRI_DC < VPRI_UVLO–_R  
Effective internal RC filter  
36  
Primary Output Overcurrent  
Response Time Constant (PMBus)  
ms  
BCM® Bus Converter  
Page 9 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Operating Area  
175  
150  
125  
100  
75  
50  
25  
0
20  
30  
40  
50  
60  
70  
80  
90 100 110 120  
Case Temperature (°C)  
Top only at temperature  
Top and leads at temperature  
Top, leads and belly at temperature  
Figure 1 — Specified thermal operating area  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
200  
150  
100  
50  
0
800  
36  
38  
41  
43  
46  
48  
50  
53  
55  
58  
60  
36  
38  
41  
43  
46  
48  
50  
53  
55  
58  
60  
Primary Input Voltage (V)  
Primary Input Voltage (V)  
ISEC_OUT_DC  
ISEC_OUT_PULSE  
PSEC_OUT_DC  
PSEC_OUT_PULSE  
Figure 2 — Specified electrical operating area using rated RSEC_HOT  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
Secondary Output Current (% ISEC_DC  
)
Figure 3 — Specified primary start up into load current and external capacitance  
BCM® Bus Converter  
Page 10 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Analog Control Signal Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Temperature Monitor  
• The TM pin is a standard analog I/O configured as an output from an internal µC.  
• The TM pin monitors the internal temperature of the controller IC within an accuracy of 5°C.  
• µC 250kHz PWM output internally pulled high to 3.3V.  
Signal Type  
State  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
100  
Max Unit  
Powertrain Active  
to TM Time  
Start Up  
tTM  
µs  
TM Duty Cycle  
TM Current  
TMPWM  
ITM  
18.18  
68.18  
4
%
mA  
Recommended external filtering  
TM Capacitance (External)  
TM Resistance (External)  
CTM_EXT  
RTM_EXT  
Recommended external filtering  
Recommended external filtering  
0.01  
1
µF  
DIGITAL  
OUTPUT  
kΩ  
Regular  
Operation  
Specifications using recommended filter  
TM Gain  
ATM  
10  
mV / °C  
V
TM Voltage Reference  
VTM_AMB  
Internal temperature = 27ºC  
1.27  
RTM_EXT = 1kΩ, CTM_EXT = 0.01µF,  
VPRI_DC = 54V, ISEC_DC = 150A  
28  
TM Voltage Ripple  
VTM_PP  
mV  
TINTERNAL ≤ 100ºC  
40  
Enable / Disable Control  
• The EN pin is a standard analog I/O configured as an input to an internal µC.  
• It is internally pulled high to 3.3V.  
• When held low, the BCM internal bias will be disabled and the powertrain will be inactive.  
• In an array of BCMs, EN pins should be interconnected to synchronize start up.  
Signal Type  
State  
Attribute  
Symbol  
Conditions / Notes  
Min  
2.3  
Typ  
250  
Max Unit  
VPRI_DC > VPRI_UVLO+, EN held low both  
conditions satisfied for T > tPRI_UVLO+_DELAY  
EN to Powertrain  
Active Time  
Start Up  
tEN_START  
µs  
ANALOG  
INPUT  
EN Voltage Threshold  
EN Resistance (Internal)  
EN Disable Threshold  
VEN_TH  
REN_INT  
V
Regular  
Operation  
Internal pull-up resistor  
1.5  
kΩ  
VEN_DISABLE_TH  
1
V
BCM® Bus Converter  
Page 11 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Analog Control Signal Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Auxiliary Voltage Source  
• The VAUX pin is a standard analog I/O configured as an output from an internal µC.  
• VAUX is internally connected to µC output and internally pulled high to a 3.3V regulator with 2% tolerance, a 1% resistor of 1.5kΩ.  
• VAUX can be used as a “Ready to process full power” flag. This pin transitions VAUX voltage after a 2ms delay from the start of powertrain activating,  
signaling the end of soft start.  
• VAUX can be used as “Fault flag”. This pin is pulled low internally when a fault protection is detected.  
Signal Type  
State  
Attribute  
Symbol  
Conditions / Notes  
Min  
2.8  
Typ  
2
Max Unit  
Powertrain Active to  
VAUX Time  
Start Up  
tVAUX  
Powertrain active to VAUX High  
ms  
VAUX Voltage  
VVAUX  
IVAUX  
3.3  
4
V
VAUX Available Current  
mA  
50  
10  
ANALOG  
OUTPUT  
Regular  
Operation  
VAUX Voltage Ripple  
VVAUX_PP  
mV  
µF  
TINTERNAL ≤ 100ºC  
100  
VAUX Capacitance  
(External)  
CVAUX_EXT  
0.01  
VAUX Resistance (External)  
VAUX Fault Response Time  
RVAUX_EXT  
tVAUX_FR  
VPRI_DC < VµC_ACTIVE  
1.5  
kΩ  
µs  
Fault  
From fault to VVAUX = 2.8V, CVAUX = 0pF  
BCM® Bus Converter  
Page 12 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
PMBus™ Control Signal Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
UART SER-IN / SER-OUT Pins  
• Universal Asynchronous Receiver/Transmitter (UART) pins.  
• The BCM communication version is not intended to be used without a Digital Supervisor.  
• Isolated I2C communication and telemetry is available when using Vicor Digital Isolator and Vicor Digital Supervisor. Please see specific product data sheet  
for more details.  
• UART SER-IN pin is internally pulled high using a 1.5kΩ to 3.3V.  
Signal Type  
State  
Attribute  
Baud Rate  
Symbol  
Conditions / Notes  
Min  
Typ  
750  
Max  
Unit  
GENERAL I/O  
BRUART  
Rate  
Kbit/s  
SER-IN Pin  
VSER-IN_IH  
VSER-IN_IL  
2.3  
V
V
SER-IN Input Voltage Range  
1
DIGITAL  
INPUT  
SER-IN Rise Time  
SER-IN Fall Time  
tSER-IN_RISE 10 – 90%  
tSER-IN_FALL 10 – 90%  
RSER-IN_PLP Pull up to 3.3V  
CSER-IN_EXT  
400  
25  
ns  
ns  
kΩ  
pF  
SER-IN RPULLUP  
1.5  
Regular  
Operation  
SER-IN External Capacitance  
SER-OUT Pin  
400  
0.5  
6
VSER-OUT_OH 0mA ≥ IOH ≥ –4mA  
VSER-OUT_OL 0mA ≤ IOL ≤ 4mA  
tSER-OUT_RISE 10 – 90%  
2.8  
V
V
SER-OUT Output  
Voltage Range  
DIGITAL  
OUTPUT  
SER-OUT Rise Time  
55  
45  
ns  
ns  
mA  
Ω
SER-OUT Fall Time  
tSER-OUT_FALL 10 – 90%  
SER-OUT Source Current  
SER-OUT Output Impedance  
ISER-OUT  
ZSER-OUT  
VSER-OUT = 2.8V  
120  
Enable / Disable Control  
• The EN pin is a standard analog I/O configured as an input to an internal µC.  
• It is internally pulled high to 3.3V.  
• When held low, the BCM internal bias will be disabled and the powertrain will be inactive.  
• In an array of BCMs, EN pins should be interconnected to synchronize start up.  
• PMBus ON/OFF command has no effect if the BCM EN pin is not in the active state. This BCM has active high EN pin logic.  
Signal Type  
State  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
250  
Max  
Unit  
VPRI_DC > VPRI_UVLO+  
,
Start Up  
EN to Powertrain Active Time  
tEN_START  
EN held low both conditions satisfied  
for t > tPRI_UVLO+_DELAY  
µs  
ANALOG  
INPUT  
EN Voltage Threshold  
EN Resistance (Internal)  
EN Disable Threshold  
VENABLE  
REN_INT  
2.3  
V
kΩ  
V
Regular  
Operation  
Internal pull-up resistor  
1.5  
VEN_DISABLE_TH  
1
BCM® Bus Converter  
Page 13 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
PMBus™ Reported Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Monitored Telemetry  
• The BCM communication version is not intended to be used without a Digital Supervisor.  
• The current telemetry is only available in forward operation. The input and output current reported value is not supported in reverse operation.  
Digital Supervisor  
PMBus Read Command  
Accuracy  
(Rated Range)  
Functional  
Reporting Range  
Update  
Rate  
Attribute  
Reported Units  
Input Voltage  
(88h) READ_VIN  
(89h) READ_IIN  
5% (LL – HL)  
28 – 66V  
0 – 34A  
100µs  
100µs  
100µs  
100µs  
100ms  
100ms  
VACTUAL = VREPORTED x 10–1  
IACTUAL = IREPORTED x 10–2  
VACTUAL = VREPORTED x 10–1  
IACTUAL = IREPORTED x 10–2  
RACTUAL = RREPORTED x 10–5  
TACTUAL = TREPORTED  
20% (10 – 20% of FL)  
5% (20 – 133% of FL)  
Input Current  
Output Voltage [b]  
Output Current  
Output Resistance  
Temperature [c]  
(8Bh) READ_VOUT  
5% (LL – HL)  
4.7 – 11V  
0 – 204A  
20% (10 – 20% of FL)  
5% (20 – 133% of FL)  
(8Ch) READ_IOUT  
5% (50 – 100% of FL) at NL  
10% (50 – 100% of FL) (LL – HL)  
(D4h) READ_ROUT  
0.5 – 3mΩ  
–55 to 130ºC  
(8Dh) READ_TEMPERATURE_1  
7°C (Full Range)  
[c] Default READ Output Voltage returned when unit is disabled = –300V.  
[d] Default READ Temperature returned when unit is disabled = –273°C.  
Variable Parameter  
• Factory setting of all below Thresholds and Warning limits are 100% of listed protection values.  
• Variables can be written only when module is disabled either EN pulled low or VIN < VIN_UVLO–  
.
• Module must remain in a disabled mode for 3ms after any changes to the below variables allowing ample time to commit changes to EEPROM.  
Functional  
Reporting  
Range  
Digital Supervisor  
Accuracy  
(Rated Range)  
Default  
Value  
Attribute  
Conditions / Notes  
PMBus Command [d]  
Input / Output Overvoltage  
Protection Limit  
VIN_OVLO– is automatically 3%  
lower than this set point  
(55h) VIN_OV_FAULT_LIMIT  
(57h) VIN_OV_WARN_LIMIT  
(D7h) DISABLE_FAULTS  
(5Bh) IIN_OC_FAULT_LIMIT  
(5Dh) IIN_OC_WARN_LIMIT  
(4Fh) OT_FAULT_LIMIT  
5% (LL – HL)  
5% (LL – HL)  
5% (LL – HL)  
28 – 66V  
28 – 66V  
14 – 36V  
0 – 34A  
100%  
100%  
100%  
100%  
100%  
100%  
100%  
0ms  
Input / Output Overvoltage  
Warning Limit  
Input / Output Undervoltage  
Protection Limit  
Can only be disabled to a preset  
default value  
Input Overcurrent  
Protection Limit  
20% (10 – 20% of FL)  
5% (20 – 133% of FL)  
Input Overcurrent  
Warning Limit  
20% (10 – 20% of FL)  
5% (20 – 133% of FL)  
0 – 34A  
Overtemperature  
Protection Limit  
7°C (Full Range)  
7°C (Full Range)  
50µs  
0 – 125°C  
0 – 125°C  
0 – 100ms  
Overtemperature  
Warning Limit  
(51h) OT_WARN_LIMIT  
(60h) TON_DELAY  
Additional time delay to the  
undervoltage start-up delay  
Turn-On Delay  
[e] Refer to Digital Supervisor datasheet for complete list of supported commands.  
BCM® Bus Converter  
Page 14 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
BCM Timing Diagram  
BCM® Bus Converter  
Page 15 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
High-Level Functional State Diagram  
VµC_ACTIVE < VPRI_DC < VPRI_UVLO+  
START-UP SEQUENCE  
TM Low  
VPRI_DC > VPRI_UVLO+  
STANDBY SEQUENCE  
TM Low  
EN High  
EN High  
VAUX Low  
VAUX Low  
Powertrain Stopped  
Powertrain Stopped  
ENABLE falling edge,  
or OTP detected  
tPRI_TO_SEC_DELAY  
expired  
Input OVLO or UVLO,  
Output OCP,  
ONE TIME DELAY  
Fault  
Auto-  
recovery  
INITIAL START UP  
or UTP detected  
ENABLE falling edge,  
or OTP detected  
FAULT  
SEQUENCE  
TM Low  
SUSTAINED  
OPERATION  
TM PWM  
Input OVLO or UVLO,  
Output OCP,  
EN High  
EN High  
or UTP detected  
VAUX Low  
VAUX High  
Powertrain Stopped  
Powertrain Active  
Short Circuit detected  
BCM® Bus Converter  
Page 16 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Application Characteristics  
Temperature controlled via top-side cold plate, unless otherwise noted. All data presented in this section are collected from units processing power in the  
forward direction (primary side to secondary side). See associated figures for general trend data.  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
98.0  
97.5  
97.0  
96.5  
96.0  
4
3
36  
39  
41  
44  
47  
49  
52  
55  
57  
60  
-40  
-20  
0
20  
40  
60  
80  
100  
Primary Input Voltage (V)  
Case Temperature (ºC)  
TTOP SURFACE CASE  
:
- 40°C  
25°C  
80°C  
VPRI  
:
36V  
54V  
60V  
Figure 4 — No-load power dissipation vs. VPRI_DC  
Figure 5 — Full-load efficiency vs. temperature; VPRI_DC  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
54  
48  
42  
36  
30  
24  
18  
12  
6
0
0
15  
30  
45  
60  
75  
90 105 120 135 150  
0
15  
30  
45  
60  
75  
90 105 120 135 150  
Secondary Output Current (A)  
Secondary Output Current (A)  
VPR:I  
36V  
54V  
60V  
VPR:I  
36V  
54V  
60V  
Figure 6 — Efficiency at TCASE = –40°C  
Figure 7 — Power dissipation at TCASE = –40°C  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
54  
48  
42  
36  
30  
24  
18  
12  
6
0
0
15  
30  
45  
60  
75  
90 105 120 135 150  
0
15  
30  
45  
60  
75  
90 105 120 135 150  
Load Current (A)  
Load Current (A)  
VPRI  
:
36V  
54V  
60V  
VPRI  
:
36V  
54V  
60V  
Figure 8 — Efficiency at TCASE = 25°C  
Figure 9 — Power dissipation at TCASE = 25°C  
BCM® Bus Converter  
Page 17 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Application Characteristics (Cont.)  
Temperature controlled via top-side cold plate, unless otherwise noted. All data presented in this section are collected from units processing power in the  
forward direction (primary side to secondary side). See associated figures for general trend data.  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
54  
48  
42  
36  
30  
24  
18  
12  
6
0
0
13  
25  
38  
50  
63  
75  
88 100 113 125  
0
13  
25  
38  
50  
63  
75  
88 100 113 125  
Secondary Output Current (A)  
Secondary Output Current (A)  
VPRI  
:
36V  
54V  
60V  
VPRI  
:
36V  
54V  
60V  
Figure 10 — Efficiency at TCASE = 80°C  
Figure 11 — Power dissipation at TCASE = 80°C  
3
200  
175  
150  
125  
100  
75  
2
1
0
50  
25  
0
0
15  
30  
45  
60  
75  
90 105 120 135 150  
-40  
-20  
0
20  
40  
60  
80  
100  
Load Current (A)  
Case Temperature (°C)  
VPRI  
:
54V  
ISEC  
:
150A  
Figure 12 — RSEC vs. temperature; nominal VPRI_DC  
Figure 13 — VSEC_OUT_PP vs. ISEC_DC ; no external CSEC_OUT_EXT  
.
ISEC_DC = 125A at TCASE = 80°C  
Board-mounted module, scope setting:  
20MHz analog BW  
Figure 14 — Full-load secondary voltage and primary current  
ripple, 2700µF CPRI_IN_EXT; no external CSEC_OUT_EXT  
.
Board-mounted module, scope setting:  
20MHz analog BW  
BCM® Bus Converter  
Page 18 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Application Characteristics (Cont.)  
Temperature controlled via top-side cold plate, unless otherwise noted. All data presented in this section are collected from units processing power in the  
forward direction (primary side to secondary side). See associated figures for general trend data.  
Figure 15 — 0 – 150A transient response:  
CPRI_IN_EXT = 2700µF, no external CSEC_OUT_EXT  
Figure 16 — 150 – 0A transient response:  
CPRI_IN_EXT = 2700µF, no external CSEC_OUT_EXT  
Figure 17 — Start up from application of VPRI_DC = 54V,  
Figure 18 — Start up from application of EN with pre-applied  
20% ISEC_OUT_DC, 100% CSEC_OUT_EXT  
VPRI_DC = 54V, 20% ISEC_OUT_DC, 100% CSEC_OUT_EXT  
BCM® Bus Converter  
Page 19 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
General Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Mechanical  
Min  
Typ  
Max  
Unit  
Length  
Width  
L
W
H
60.87 [2.396] 61.00 [2.402] 61.13 [2.407]  
24.76 [0.975] 25.14 [0.990] 25.52 [1.005]  
mm [in]  
mm [in]  
mm [in]  
cm3 [in3]  
g [oz]  
Height  
Volume  
Weight  
7.11 [0.280]  
7.21 [0.284]  
11.06 [0.675]  
41 [1.45]  
7.31 [0.288]  
Vol  
W
Without heatsink  
Nickel  
0.51  
0.02  
2.03  
0.15  
Lead Finish  
Palladium  
Gold  
µm  
0.003  
0.051  
Thermal  
Operating Temperature  
TINTERNAL  
BCM6123x60E10A5yzz (T-Grade)  
–40  
125  
°C  
Estimated thermal resistance to maximum  
temperature internal component from  
isothermal top  
Thermal Resistance Top Side  
θINT-TOP  
1.4  
1.3  
°C/W  
Estimated thermal resistance to  
Thermal Resistance Leads  
θINT-LEADS maximum temperature internal  
°C/W  
component from isothermal leads  
Estimated thermal resistance to  
θINT-BOTTOM maximum temperature internal  
component from isothermal bottom  
Thermal Resistance Bottom Side  
Thermal Capacity  
1.4  
34  
°C/W  
Ws/°C  
Assembly  
Storage Temperature  
ESD Withstand  
BCM6123x60E10A5yzz (T-Grade)  
–55  
125  
°C  
ESDHBM  
ESDCDM  
Human Body Model, “ESDA / JEDEC JDS-001-2012” Class I-C (1kV to < 2kV)  
Charge Device Model, “JESD 22-C101-E” Class II (200V to < 500V)  
BCM® Bus Converter  
Page 20 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
General Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
–40°C ≤ TINTERNAL ≤ 125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Soldering [e]  
Min  
Typ  
Max  
Unit  
Peak Temperature Top Case  
135  
°C  
Safety  
PRIMARY to SECONDARY  
2,250  
2,250  
707  
Isolation voltage / Dielectric test  
VHIPOT  
PRIMARY to CASE  
SECONDARY to CASE  
Unpowered Unit  
At 500VDC  
VDC  
Isolation Capacitance  
Insulation Resistance  
CPRI_SEC  
RPRI_SEC  
620  
780  
940  
pF  
10  
MΩ  
MIL-HDBK-217Plus Parts Count - 25°C  
Ground Benign, Stationary, Indoors /  
Computer  
4.45  
7.01  
MHrs  
MHrs  
MTBF  
Telcordia Issue 2 - Method I Case III; 25°C  
Ground Benign, Controlled  
cTÜVus EN 60950-1  
cURus UL 60950-1  
Agency Approvals / Standards  
CE Marked for Low Voltage Directive and RoHS Recast Directive, as applicable  
[f] Product is not intended for reflow solder attach.  
BCM® Bus Converter  
Page 21 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
PMBus™ System Diagram  
-OUT  
BCM  
EN Control  
3.3V, at least 20mA  
when using 4xDISO  
SCL  
Ref to Digital Isolator  
datasheet for more details  
Digital Isolator  
3 kΩ  
VDD  
3 kΩ  
BCM EN  
5V EXT  
VDDB  
SEC-IN-A  
SEC-IN-B  
PRI-OUT-A  
PRI-OUT-B  
PRI-IN-C  
SER-IN  
SER-OUT  
-IN BCM  
TXD1’  
RXD1  
RXD4  
RXD3  
RXD2  
RXD1  
TXD4  
TXD3  
SEC-OUT-C  
VDD  
NC  
CP  
D
VCC  
PRI-COM  
SEC-COM  
SD  
RD  
Q
D
D44TL1A0 NC  
Q
NC  
SSTOP  
Flip-flop  
VDD  
Host  
µc  
SGND  
SDA  
SCL  
74LVC1G74DC  
10 kΩ  
PMBus  
FDG6318P  
R1  
R2  
10 kΩ  
SGND  
The PMBus communication enabled bus converter provides accurate telemetry monitoring and reporting, threshold and warning  
limits adjustment, in addition to corresponding status flags.  
The BCM internal µC is referenced to primary ground. The Digital Isolator allows UART communication interface with the host Digital  
Supervisor at typical speed of 750kHz across the isolation barrier. One of the advantages of the Digital Isolator is its low power  
consumption. Each transmission channel is able to draw its internal bias circuitry directly from the input signal being transmitted to  
the output with minimal to no signal distortion.  
The Digital Supervisor provides the host system µC with access to an array of up to four BCMs. This array is constantly polled for  
status by the Digital Supervisor. Direct communication to individual BCM is enabled by a page command. For example, the page  
(0x00) prior to a telemetry inquiry points to the Digital Supervisor data and pages (0x01 – 0x04) prior to a telemetry inquiry points to  
the array of BCMs connected data. The Digital Supervisor constantly polls the BCM data through the UART interface.  
The Digital Supervisor enables the PMBus compatible host interface with an operating bus speed of up to 400kHz. The Digital  
Supervisor follows the PMBus command structure and specification.  
Please refer to the Digital Supervisor data sheet for more details.  
BCM® Bus Converter  
Page 22 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
BCM in a ChiP™  
0.24nH  
5mΩ  
LPRI_IN_LEADS  
6.7nH  
RSEC  
1.62mΩ  
LSEC_OUT_LEADS  
0.64nH  
ISEC  
+
+
CPRI_INT_ESR  
0.75mΩ  
CSEC_INT_ESR  
81µΩ  
V•I  
K
1/6 • ISEC  
+
1/6 • VPRI  
+
IPRI_Q  
140mA  
CPRI_INT  
11.2µF  
CSEC_INT  
202µF  
VSEC  
VPRI  
Figure 19 — BCM AC model  
The BCM uses a high-frequency resonant tank to move energy  
from primary to secondary and vice versa. The resonant LC tank,  
operated at high frequency, is amplitude modulated as a function  
of the primary voltage and the secondary current. A small amount  
of capacitance embedded in the primary and secondary stages of  
The effective DC voltage transformer action provides additional  
interesting attributes. Assuming that RSEC = 0Ω and  
IPRI_Q = 0A, Equation 3 now becomes Equation 1 and is essentially  
load independent, resistor R is now placed in series with VPRI  
.
the module is sufficient for full functionality and is key to achieving  
high power density.  
The BCM6123x60E10A5yzz can be simplified into the model  
shown in Figure 19.  
R
BCM  
K = 1/6  
VSEC  
+
At no load:  
VPRI  
VSEC = VPRI • K  
(1)  
K represents the “turns ratio” of the BCM.  
Rearranging Equation 1:  
Figure 20 — K = 1/6 BCM with series primary resistor  
VSEC  
K =  
(2)  
The relationship between VPRI and VSEC becomes:  
VPRI  
VSEC = VPRI – IPRI • R • K  
(5)  
(
)
In the presence of a load, VSEC is represented by:  
Substituting the simplified version of Equation 4  
(IPRI_Q is assumed = 0A) into Equation 5 yields:  
VSEC = VPRI • K – ISEC • RSEC  
(3)  
and ISEC is represented by:  
2
VSEC = VPRI • K – ISEC • R • K  
(6)  
IPRI – IPRI_Q  
ISEC  
=
(4)  
This is similar in form to Equation 3, where RSEC is used to represent  
the characteristic impedance of the BCM. However, in this case a  
real resistor, R on the primary side of the BCM is effectively scaled  
by K2 with respect to the secondary.  
K
RSEC represents the impedance of the BCM, and is a function of  
the RDS_ON of the primary and secondary MOSFETs and the winding  
resistance of the power transformer. IPRI_Q represents the quiescent  
current of the BCM controller, gate drive circuitry and core losses.  
Assuming that R = 1Ω, the effective R as seen from the secondary  
side is 28mΩ, with K = 1/6.  
BCM® Bus Converter  
Page 23 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
A similar exercise can be performed with the additon of a capacitor  
or shunt impedance at the primary of the BCM. A switch in series  
with VPRI is added to the circuit. This is depicted in Figure 21.  
Low impedance is a key requirement for powering a high-current,  
low-voltage load efficiently. A switching regulation stage  
should have minimal impedance while simultaneously providing  
appropriate filtering for any switched current. The use of a BCM  
between the regulation stage and the point of load provides a  
dual benefit of scaling down series impedance leading back to  
the source and scaling up shunt capacitance or energy storage  
as a function of its K factor squared. However, these benefits are  
not achieved if the series impedance of the BCM is too high. The  
impedance of the BCM must be low, i.e., well beyond the crossover  
frequency of the system.  
S
BCM  
K = 1/6  
VSEC  
+
C
VPRI  
A solution for keeping the impedance of the BCM low involves  
switching at a high frequency. This enables the use of small  
magnetic components because magnetizing currents remain low.  
Small magnetics mean small path lengths for turns. Use of low-loss  
core material at high frequencies also reduces core losses.  
Figure 21 — BCM with primary capacitor  
The two main terms of power loss in the BCM are:  
A change in VPRI with the switch closed would result in a change in  
capacitor current according to the following equation:  
„No load power dissipation (PPRI_NL): defined as the power  
used to power up the module with an enabled powertrain  
at no load.  
dVPRI  
IC (t) = C  
(7)  
„Resistive loss (PRSEC): refers to the power loss across  
dt  
the BCM modeled as pure resistive impedance.  
Assume that with the capacitor charged to VPRI, the switch is  
opened and the capacitor is discharged through the idealized  
BCM. In this case,  
PDISSIPATED = PPRI_NL + PRSEC  
(10)  
Therefore,  
IC = ISEC • K  
(8)  
PSEC_OUT = PPRI_IN – PDISSIPATED = PPRI_IN – PPRI_NL – PRSEC (11)  
substituting Equation 1 and 8 into Equation 7 reveals:  
The above relations can be combined to calculate the overall  
module efficiency:  
C
dVSEC  
dt  
ISEC(t) =  
(9)  
K2  
PSEC_OUT  
PPRI_IN – PPRI_NL – PRSEC  
The equation in terms of the secondary has yielded a K2 scaling  
factor for C, specified in the denominator of the equation.  
η =  
=
=
(12)  
PPRI_IN  
PPRI_IN  
A K factor less than unity results in an effectively larger capacitance  
on the secondary when expressed in terms of the primary. With  
K = 1/6 as shown in Figure 21, C = 1µF would appear as  
2
VPRI • IPRI – PPRI_NL – I  
• RSEC  
( SEC)  
VPRI • IPRI  
C = 36µF when viewed from the secondary.  
2
PPRI_NL + I  
• RSEC  
( SEC)  
= 1 –  
(
)
VPRI • IPRI  
BCM® Bus Converter  
Page 24 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Input and Output Filter Design  
Thermal Considerations  
The ChiP™ module provides a high degree of flexibility in that  
it presents three pathways to remove heat from the internal  
power-dissipating components. Heat may be removed from the  
top surface, the bottom surface and the leads. The extent to which  
these three surfaces are cooled is a key component in determining  
the maximum current that is available from a ChiP, as can be  
seen from Figure 1.  
A major advantage of BCM systems versus conventional PWM  
converters is that the transformer based BCM does not require  
external filtering to function properly. The resonant LC tank,  
operated at extreme high frequency, is amplitude modulated as a  
function of primary voltage and secondary current and efficiently  
transfers charge through the isolation transformer. A small amount  
of capacitance embedded in the primary and secondary stages  
of the module is sufficient for full functionality and is key to  
achieving power density.  
Since the ChiP has a maximum internal temperature rating, it  
is necessary to estimate this internal temperature based on a  
system-level thermal solution. Given that there are three pathways  
to remove heat from the ChiP, it is helpful to simplify the thermal  
solution into a roughly equivalent circuit where power dissipation  
is modeled as a current source, isothermal surface temperatures  
are represented as voltage sources and the thermal resistances are  
represented as resistors. Figure 22 shows the “thermal circuit” for a  
BCM6123 ChiP in an application where the top, bottom, and leads  
are cooled. In this case, the BCM power dissipation is PDTOTAL and  
This paradigm shift requires system design to carefully evaluate  
external filters in order to:  
„Guarantee low source impedance:  
To take full advantage of the BCM’s dynamic response, the  
impedance presented to its primary terminals must be low from  
DC to approximately 5MHz. The connection of the bus converter  
module to its power source should be implemented with minimal  
distribution inductance. If the interconnect inductance exceeds  
100nH, the input should be bypassed with a RC damper to  
retain low source impedance and stable operation. With an  
interconnect inductance of 200nH, the RC damper may be as  
high as 1µF in series with 0.3Ω. A single electrolytic or equivalent  
low-Q capacitor may be used in place of the series RC bypass.  
the three surface temperatures are represented as TCASE_TOP  
,
TCASE_BOTTOM, and TLEADS. This thermal system can now be very  
easily analyzed using a SPICE simulator with simple resistors,  
voltage sources, and a current source. The results of the simulation  
provide an estimate of heat flow through the various dissipation  
pathways as well as internal temperature.  
„Further reduce primary and/or secondary voltage ripple  
without sacrificing dynamic response:  
Thermal Resistance  
MAX INTERNAL TEMP  
Top  
θINT-TOP  
Given the wide bandwidth of the module, the source response  
is generally the limiting factor in the overall system response.  
Anomalies in the response of the primary source will appear at  
the secondary of the module multiplied by its K factor.  
Thermal Resistance  
Bottom  
Thermal Resistance  
Leads  
θINT-BOTTOM  
θINT-LEADS  
Power Dissipation  
(W)  
+
+
+
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
„Protect the module from overvoltage transients imposed  
by the system that would exceed maximum ratings and  
induce stresses:  
The module primary/secondary voltage ranges shall not be  
exceeded. An internal overvoltage lockout function prevents  
operation outside of the normal operating primary range. Even  
when disabled, the powertrain is exposed to the applied voltage  
and the power MOSFETs must withstand it.  
Figure 22 — Top case, bottom case and leads thermal model  
Alternatively, equations can be written around this circuit and  
analyzed algebraically:  
TINT – PD1 • θINT-TOP = TCASE_TOP  
TINT – PD2 • θINT-BOTTOM = TCASE_BOTTOM  
TINT – PD3 • θINT-LEADS = TLEADS  
PDTOTAL = PD1+ PD2+ PD3  
Total load capacitance at the secondary of the BCM shall not  
exceed the specified maximum. Owing to the wide bandwidth and  
low secondary impedance of the module, low-frequency bypass  
capacitance and significant energy storage may be more densely  
and efficiently provided by adding capacitance at the primary of  
the module. At frequencies <500kHz the module appears as an  
impedance of RSEC between the source and load.  
Where TINT represents the internal temperature and PD1, PD2, and  
PD3 represent the heat flow through the top side, bottom side, and  
leads, respectively.  
Within this frequency range, capacitance at the primary appears as  
effective capacitance on the secondary per the relationship defined  
in Equation 13.  
CPRI_EXT  
Thermal Resistance  
CSEC_EXT  
=
(13)  
MAX INTERNAL TEMP  
2
Top  
K
θINT-TOP  
Thermal Resistance  
Bottom  
Thermal Resistance  
Leads  
This enables a reduction in the size and number of capacitors used  
in a typical system.  
θINT-BOTTOM  
θINT-LEADS  
Power Dissipation  
(W)  
+
+
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Figure 23 — Top case and leads thermal model  
BCM® Bus Converter  
Page 25 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Figure 23 shows a scenario where there is no bottom side cooling.  
In this case, the heat flow path to the bottom is left open and the  
equations now simplify to:  
ZIN_EQ1  
ZOUT_EQ1  
BCM®1  
R0_1  
VPRI  
VSEC  
TINT – PD1 • θINT-TOP = TCASE_TOP  
TINT – PD3 • θINT-LEADS = TLEADS  
PDTOTAL = PD1+ PD3  
ZOUT_EQ2  
ZIN_EQ2  
BCM®2  
R0_2  
+
Load  
DC  
Thermal Resistance  
MAX INTERNAL TEMP  
Top  
θINT-TOP  
Thermal Resistance  
Bottom  
Thermal Resistance  
Leads  
ZOUT_EQn  
BCM®n  
R0_n  
ZIN_EQn  
θINT-BOTTOM  
θINT-LEADS  
Power Dissipation  
(W)  
+
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Figure 25 — BCM parallel array  
Figure 24 — Top case thermal model  
Figure 24 shows a scenario where there is no bottom side and  
Fuse Selection  
leads cooling. In this case, the heat flow paths to the bottom and  
leads are left open and the equations now simplify to:  
In order to provide flexibility in configuring power systems,  
ChiP™ modules are not internally fused. Input line fusing  
of ChiP products is recommended at the system level to provide  
thermal protection in case of catastrophic failure.  
TINT – PD1 • θINT-TOP = TCASE_TOP  
PDTOTAL = PD1  
The fuse shall be selected by closely matching system  
requirements with the following characteristics:  
Please note that Vicor has a suite of online tools, including a  
simulator and thermal estimator that greatly simplify the task of  
determining whether or not a BCM thermal configuration is valid  
for a given condition. These tools can be found at:  
„Current rating  
(usually greater than maximum current of BCM)  
„Maximum voltage rating  
http://www.vicorpower.com/powerbench.  
(usually greater than the maximum possible input voltage)  
„Ambient temperature  
„Nominal melting I2t  
Current Sharing  
The performance of the BCM topology is based on efficient  
transfer of energy through a transformer without the need of  
closed loop control. For this reason, the transfer characteristic  
can be approximated by an ideal transformer with a positive  
temperature coefficient series resistance.  
„Recommend fuse: ≤40A Littelfuse 456 Series (primary side)  
Reverse Operation  
BCMs are capable of reverse power operation. Once the unit is  
started, energy will be transferred from the secondary back to  
the primary whenever the secondary voltage exceeds VPRI • K.  
The module will continue operation in this fashion for as long as  
no faults occur.  
This type of characteristic is close to the impedance characteristic  
of a DC power distribution system both in dynamic (AC) behavior  
and for steady state (DC) operation.  
When multiple BCMs of a given part number are connected in an  
array, they will inherently share the load current according to the  
equivalent impedance divider that the system implements from the  
power source to the point of load. Ensuring equal current sharing  
among modules requires that BCM array impedances be matched.  
Transient operation in reverse is expected in cases where there is  
significant energy storage on the output and transient voltages  
appear on the input.  
Some general recommendations to achieve matched array  
impedances include:  
„Dedicate common copper planes within the PCB to deliver and  
return the current to the modules.  
„Provide as symmetric a PCB layout as possible among modules  
„A dedicated input filter for each BCM in an array is required to  
prevent circulating currents.  
For further details see:  
AN:016 Using BCM Bus Converters in High Power Arrays.  
BCM® Bus Converter  
Page 26 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
BCM Through-Hole Package Mechanical Drawing and Recommended Land Pattern  
25.14 .ꢀ3  
.990 .015  
12.57  
.495  
11.4ꢀ  
.450  
2.0ꢀ  
.030  
(9) PL.  
2.0ꢀ  
.030  
(9) PL.  
27.21  
1.071  
(2) PL.  
21.94  
.364  
17.09  
.67ꢀ  
(2) PL.  
(2) PL.  
ꢀ0.50  
1.201  
12.52  
.49ꢀ  
7.94  
.ꢀ12  
(2) PL.  
(2) PL.  
ꢀ.ꢀ7  
.1ꢀ2  
1.49  
.053  
(2) PL.  
0
0
0
0
(2) PL.  
6.76  
.266  
61.00 .1ꢀ  
2.402 .005  
(2) PL.  
1.02  
.040  
1.02  
.040  
(ꢀ) PL.  
(ꢀ) PL.  
13.05  
.710  
20.34  
.320  
(2) PL.  
(2) PL.  
2ꢀ.64  
.9ꢀ1  
(2) PL.  
27.55  
1.035  
(2) PL.  
TOP VIEW (COMPONENT SIDE)  
BOTTOM VIEW  
.05 [.002]  
NOTES:  
1- RoHS COMPLIANT PER CST-0001 LATEST REVISION.  
7.21 .10  
.284 .004  
SEATING  
PLANE  
2- UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE : MM / [INCH]  
4.17  
.164  
.41  
.016  
(24) PL.  
(24) PL.  
27.21 .08  
1.071 .00ꢀ  
(2) PL.  
+VSEC  
-VSEC1  
+VSEC  
21.94 .08  
.864 .00ꢀ  
(2) PL.  
-VSEC2  
17.09 .08  
.67ꢀ .00ꢀ  
(2) PL.  
-VSEC1  
+VSEC  
+VSEC  
-VSEC1  
-VSEC2  
+VSEC  
+VSEC  
-VSEC2  
12.52 .08  
.49ꢀ .00ꢀ  
(2) PL.  
7.94 .08  
.ꢀ12 .00ꢀ  
(2) PL.  
ꢀ.ꢀ7 .08  
.1ꢀ2 .00ꢀ  
(2) PL.  
1.49 .08  
.058 .00ꢀ  
(2) PL.  
0
0
-VSEC1  
+VSEC  
-VSEC2  
+VSEC  
6.76 .08  
.266 .00ꢀ  
(2) PL.  
1.52 .08  
.060 .00ꢀ  
PLATED THRU  
.25 [.010]  
ANNULAR RING  
(6) PL.  
2.54 .08  
.100 .00ꢀ  
PLATED THRU  
.ꢀ8 [.015]  
ANNULAR RING  
(18) PL.  
+VPRI TM/SER-OUT  
+VPRI EN  
+VPRI VAUX/SER-IN  
+VPRI -VPRI  
18.05 .08  
.710 .00ꢀ  
(2) PL.  
20.84 .08  
.820 .00ꢀ  
(2) PL.  
2ꢀ.64 .08  
.9ꢀ1 .00ꢀ  
(2) PL.  
27.55 .08  
1.085 .00ꢀ  
(2) PL.  
RECOMMENDED HOLE PATTERN  
(COMPONENT SIDE)  
BCM® Bus Converter  
Page 27 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Revision History  
Revision  
1.0  
Date  
Description  
Page Number(s)  
08/26/15  
09/28/15  
Initial Release  
Changed PRI to SEC Input Quiescent Current  
n/a  
5
1.1  
Added PMBus enabled product and associated related specifications  
Updated electrical specifications table for forward direction  
Added electrical specifications table for reverse direction  
Updated figure 2  
all  
5, 6 & 7  
8 & 9  
10  
1.2  
07/26/16  
Updated figures 14 & 15  
18  
1.3  
1.4  
07/28/17  
Updated height specification  
1, 20, 27  
All  
07/16/18  
Implemented content improvements  
BCM® Bus Converter  
Page 28 of 29  
Rev 1.4  
07/2018  
BCM6123x60E10A5yzz  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc/isolated-fixed-ratio/lv-bus-converter-module for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by the following U.S. Patents Numbers:  
6,911,848; 6,930,893; 6,934,166; 7,145,786; 7,782,639; 8,427,269 and for use under 6,975,098 and 6,984,965.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2017 – 2018 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
The PMBus™ name, SMIF, Inc. and logo are trademarks of SMIF, Inc.  
I2C™ is a trademark of NXP Semiconductor  
All other trademarks, product names, logos and brands are property of their respective owners.  
BCM® Bus Converter  
Page 29 of 29  
Rev 1.4  
07/2018  

相关型号:

BCM6123T60E10A5T01

DC DC CONVERTER 9V 1600W
VICOR

BCM6123T60E10ASM01

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10ASM02

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10ASM0P

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10ASM0R

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10AST00

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10AST01

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10AST02

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10AST0P

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E10AST0R

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E15A3M01

Fixed Ratio DC-DC Converter
VICOR

BCM6123T60E15A3M02

Fixed Ratio DC-DC Converter
VICOR