GRM32EC80J107ME20 [VICOR]

30 – 60VIN Cool-Power ZVS Buck Regulator;
GRM32EC80J107ME20
型号: GRM32EC80J107ME20
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

30 – 60VIN Cool-Power ZVS Buck Regulator

文件: 总41页 (文件大小:1776K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cool-Power®  
ZVS Switching Regulators  
PI352x-00  
30 – 60VIN Cool-Power ZVS Buck Regulator  
Product Description  
Features & Benefits  
The PI352x-00 is a family of high input voltage, wide input  
range DC-DC ZVS Buck regulators integrating controller, power  
switches, and support components all within a high density  
System-in-Package (SiP).  
High Efficiency HV ZVS Buck Topology  
Wide input voltage range of 30 – 60V  
Power-up into pre-biased load 6.0V  
Parallel capable with single wire current sharing  
Input Over/Undervoltage Lockout (OVLO/UVLO)  
Output Overvoltage Protection (OVP)  
Overtemperature Protection (OTP)  
The integration of a high-performance Zero-Voltage Switching  
(ZVS) topology, within the PI352x-00 series, increases point  
of load performance providing best in class power efficiency.  
The PI352x-00 requires only an external inductor, two voltage  
selection resistors and minimal capacitors to form a complete  
DC-DC switch mode buck regulator.  
Fast and slow current limits  
Output Voltage  
Differential amplifier for output remote sensing  
User adjustable soft start & tracking  
Device  
IOUT Max  
Set  
3.3V  
5.0V  
12V  
Range  
2.2 – 4V  
22A  
20A  
18A  
PI3523-00-LGIZ  
PI3525-00-LGIZ  
PI3526-00-LGIZ  
–40 to 120°C operating range (TINT  
)
4.0 – 6.5V  
6.5 – 14V  
Applications  
HV to PoL Buck Regulator Applications  
Computing, Communications, Industrial,  
Automotive Equipment  
Package Information  
10 x 14 x 2.6mm LGA SiP  
Cool-Power® ZVS Switching Regulators  
Page 1 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Contents  
Order Information  
3
3
SiP Power Dissipation as Percentage of Total System Losses  
33  
34  
34  
34  
35  
35  
35  
36  
37  
38  
39  
40  
41  
Thermal, Storage and Handling Information  
Absolute Maximum Ratings  
Functional Block Diagram  
Pin Description  
Application Description  
Output Voltage Set Point  
Soft Start Adjust and Tracking  
Inductor Pairing  
3
4
5
Package Pinout  
6
Parallel Operation  
PI352x-00 Common Electrical Characteristics  
PI3523-00 (3.3VOUT) Electrical Characteristics  
PI3525-00 (5.0VOUT) Electrical Characteristics  
PI3526-00 (12VOUT) Electrical Characteristics  
Functional Description  
7
Filter Considerations  
VDR Bias Regulator  
8
15  
22  
29  
29  
29  
29  
29  
29  
29  
30  
30  
30  
30  
30  
30  
Layout Guidelines  
Recommended PCB Footprint and Stencil  
Package Drawings  
ENABLE (EN)  
Revision History  
Remote Sensing  
Product Warranty  
Soft Start  
Output Voltage Selection  
Output Current Limit Protection  
Input Undervoltage Lockout  
Input Overvoltage Lockout  
Output Overvoltage Protection  
Overtemperature Protection  
Pulse Skip Mode (PSM)  
Variable Frequency Operation  
Thermal Characteristics  
Cool-Power® ZVS Switching Regulators  
Page 2 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Order Information  
Product  
Rated IOUT  
22A  
Package  
Transport Media  
Nominal Output  
PI3523-00-LGIZ  
PI3525-00-LGIZ  
PI3526-00-LGIZ  
3.3V  
5.0V  
12V  
10 x 14mm LGA  
10 x 14mm LGA  
10 x 14mm LGA  
TRAY  
TRAY  
TRAY  
20A  
18A  
Thermal, Storage and Handling Information  
Name  
Rating  
Storage Temperature  
–65 to 150°C  
–40 to 120°C  
245°C  
Internal Operating Temperature  
Soldering Temperature for 20 seconds  
MSL Rating  
3
ESD Rating, JESD22-A114F, JS-002-2014  
2kV HBM; 1kV CDM, respectively  
Absolute Maximum Ratings  
Name  
VIN  
Rating  
–0.7 to 75V  
–0.7VDC to 75V  
–0.5 to 25V  
100mA  
VS1  
VOUT  
SGND  
TRK  
–0.3 to 5.5V, 30mA  
VDR, SYNCI, SYNCO, PWRGD, EN, COMP,  
EAO, EAIN, VDIFF, VSN, VSP, TESTx  
–0.3 to 5.5V, 5mA  
Notes: Stresses beyond these limits may cause permanent damage to the device. Operation at these conditions or conditions beyond those listed in the  
Electrical Specifications table is not guaranteed. All voltages are referenced to PGND unless otherwise noted.  
Cool-Power® ZVS Switching Regulators  
Page 3 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Functional Block Diagram  
VS1  
VIN  
VOUT  
Q2  
Q1  
VSP  
VSN  
+
VDIFF  
Power  
Control  
VDR  
VCC  
EAIN  
CEAIN-INT  
EAO  
ZVS Control  
+
VREF  
SYNCO  
SYNCI  
PWRGD  
EN  
CHF  
RZI  
Digital Parametric Trim  
COMP  
TRK  
TESTx  
PGND  
0Ω  
Simplified Block Diagram  
Cool-Power® ZVS Switching Regulators  
Page 4 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Pin Description  
Name  
VS1  
Location  
Block 1  
I/O  
Description  
Power  
Power  
Switching Node: and ZVS sense for power switches.  
Input Voltage: and sense for UVLO, OVLO and feed forward ramp.  
VIN  
Block 3  
Gate Driver VCC: Internally generated 5.1V. May be used as a bias supply for low power external  
loads. See Application Description for important considerations.  
VDR  
5K  
I/O  
Synchronization Input: Synchronize to the falling edge of external clock frequency. SYNCI is a  
high impedance digital input node and should always be connected to SGND when not in use. The  
PI352x-00 family is not optimized for external synchronization functionality. Refer to Application  
Description of Parallel Operation for details.  
SYNCI  
4K  
3K  
I
Synchronization Output: Outputs a high signal at the start of each clock cycle for the longer of  
½ of the minimum period or the on time of the high side power MOSFET.  
SYNCO  
O
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
2K  
1K  
1J  
I/O  
I/O  
I/O  
I/O  
I/O  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
1H  
1E  
Power Good: High impedance when regulator is operating and VOUT is in regulation.  
Otherwise pulls to SGND.  
PWRGD  
1G  
O
Enable Input: Regulator enable control. When asserted active or left floating: regulator is enabled.  
Otherwise regulator is disabled.  
EN  
1F  
Block 5  
1C  
I/O  
Signal Ground: Internal logic ground for EA, TRK, SYNCI, SYNCO communication returns. SGND  
and PGND are star connected within the regulator package.  
SGND  
TRK  
Soft-Start and Track Input: An external capacitor may be connected between TRK pin and SGND  
to increase the rise time of the internal reference during soft start.  
I
Compensation Capacitor: Connect capacitor for control loop dominant pole. See Error Amplifier  
section for details. A default CCOMP of 4.7nF is used in the example.  
COMP  
1B  
O
EAO  
EAIN  
VDIFF  
VSN  
1A  
2A  
O
Error amp output: External connection for additional compensation and current sharing.  
Error Amp Inverting Input: Connection for the main VOUT feedback divider tap.  
Independent Amplifier Output: Active only when module is enabled.  
Independent Amplifier Inverting Input: If unused connect in unity gain.  
Independent Amplifier Non-Inverting Input: If unused connect to SGND.  
Direct VOUT Connect: for per-cycle internal clamp node and feed-forward ramp.  
Power Ground: VIN and VOUT power returns.  
I
3A  
O
4A  
I
VSP  
5A  
I
VOUT  
PGND  
6A,B  
Block2  
Power  
Power  
Cool-Power® ZVS Switching Regulators  
Page 5 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Package Pinout  
SGND  
SGND  
SGND  
PGND  
PGND  
PGND  
TEST5  
SGND  
SGND  
PGND  
PGND  
PGND  
PWRG0  
PGND  
PGND  
PGND  
PGND  
PGND  
TEST4  
PGND  
PGND  
PGND  
PGND  
PGND  
TEST3  
PGND  
PGND  
PGND  
PGND  
PGND  
EA0  
EAIN  
VDIFF  
VSN  
COMP  
TRK  
TEST2  
TEST1  
SYNC0  
SYNC1  
VDR  
EN  
1
2
SGND  
SGND  
SGND  
SGND  
SGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
3
4
VSP  
PGND  
VOUT  
5
VOUT  
PGND  
6
7
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
8
9
10  
11  
12 PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
13  
14  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
Pin Block Name  
Group of pins  
VIN  
A8-10, B8-10, C8-10, D8-10, E8-10, F8-10, G8-10, H8-10, J8-10, K8-10  
A14, B14, C14, D14, E14, F14, G14, H14, J14, K14  
A12, B12, C12, D12, E12, F12, G12, H12, J12, K12  
B5, C4-6, D4-6, E4-6, F2-6, G2-6, H2-6, J2-6, K6  
A6, B6  
VS1  
PGND  
PGND  
VOUT  
SGND  
B2-4, C2-3, D1-3, E2-3  
Cool-Power® ZVS Switching Regulators  
Page 6 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI352x-00 Common Electrical Characteristics  
Specifications apply for –40°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Differential Amp  
Open Loop Gain  
96  
5
120  
7
140  
12  
1
dB  
MHz  
mV  
V
Small Signal Gain-bandwidth  
Input Offset  
0.5  
Common Mode Input Range  
Differential Mode Input Range  
Input Bias Current  
–0.1  
2.5  
2
V
–1  
–1  
1
µA  
mA  
Output Current  
1
Maximum VOUT  
IVDIFF = –1mA  
IVDIFF = –1mA  
4.85  
V
Minimum VOUT  
20  
50  
mV  
pF  
Capacitive Load Range for Stability  
Slew Rate  
0
11  
V/µs  
PWRGD  
VOUT Rising Threshold  
VPG_HI%  
78  
75  
84  
81  
90  
% VOUT_DC  
VOUT Falling Threshold  
PWRGD Output Low  
VPG_LO%  
VPG_SAT  
87  
% VOUT_DC  
V
Sink = 4mA  
VIN_DC > 10V  
0.4  
VDR  
Voltage Set Point  
External Loading  
VVDR  
IVDR  
4.9  
0
5.05  
5.2  
2
V
See Application Description for details  
mA  
Enable  
High Threshold  
Low Threshold  
VEN_HI  
VEN_LO  
VEN_HYS  
0.9  
0.7  
100  
1.0  
0.8  
200  
1.1  
0.9  
300  
V
V
Threshold Hysteresis  
mV  
Pull-Up Voltage Level for  
Source Current  
VEN_PU  
2
V
Pull-Up Current  
IEN_PU_POS  
VIN > 8V, excluding tFR_DLY  
50  
µA  
Reliability  
MIL-HDBK-217, 25ºC, Ground Benign: GB  
Telcordia SR-332, 25ºC, Ground Benign: GB  
12.6  
96.9  
MHrs  
MHrs  
MTBF  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3"  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
Cool-Power® ZVS Switching Regulators  
Page 7 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3523-00 (3.3VOUT) Electrical Characteristics  
Specifications apply for –40°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
30  
48  
60  
V
A
VIN = 48V, TCASE = 25°C, IOUT = 22A  
Short at terminals  
1.69  
Input Current At Output Short  
(fault condition duty cycle)  
IIN_Short  
4.7  
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
Input capacitance, Internal  
IQ_VIN  
IQ_VIN  
VIN_SR  
CIN_INT  
Disabled  
0.75  
1.8  
1.2  
1
mA  
mA  
V/µs  
µF  
Enabled, no load, TCASE = 25°C  
Effective value VIN = 48V, 25°C  
0.50  
Output Specifications  
[b]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
2.2  
0.990  
3.3  
1.005  
4.0  
V
[b] [c]  
VOUT_DC  
V
ΔVOUT / ΔVIN @ 25°C, 30V < VIN < 60V  
ΔVOUT / ΔIOUT @ 25°C, 2A < IOUT < 22A  
0.10  
0.10  
76  
%
Load Regulation  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT_DC  
IOUT = 20A, COUT = 8 x 100µF, 20MHz BW [d]  
mVp-p  
[e]  
0
22  
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 230nH inductor.  
25.3  
A
[b]  
Maximum Array Size  
Output Current, array of 2  
Output Current, array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [b] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [b] see applications section for details  
0
0
A
A
[g]  
[g]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
27.0  
2.08  
1.25  
64.3  
1.17  
1.25  
29.1  
2.50  
V
V
1.66  
µs  
V
VOVLO  
62  
VOVLO_HYS  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
Above set VOUT  
0.90  
1.60  
V
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
VOVP_ABS  
20  
%
V
Output Overvoltage Protection,  
Absolute  
4.5  
5.2  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3"  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
Cool-Power® ZVS Switching Regulators  
Page 8 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3523-00 (3.3VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –40°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
[f] While in Discontinuous Conduction Mode (DCM) only,  
SYNCI grounded  
Switching Frequency  
Fault Restart Delay  
fs  
470  
500  
30  
530  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [c] [f]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
250  
4.5  
550  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
1.4  
60  
V
mV  
mV  
µA  
mA  
nF  
20  
50  
30  
40  
80  
TRK to EAIN Offset  
110  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, Internal  
Soft-Start Time  
50  
ITRK_DIS  
CTRK_INT  
tSS  
VTRK = 0.5V  
8.7  
47  
CTRK_EXT = 0µF  
0.6  
0.94  
5.1  
0.6  
56  
1.6  
ms  
mS  
V
[b]  
Error Amplifier Trans-Conductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
CEAIN_INT  
ROUT  
[b]  
EAIN Capacitance, Internal  
Error Amplifier Output Impedance  
Internal Compensation Capacitor  
Internal Compensation Resistor  
pF  
[b]  
[b]  
[b]  
1
MΩ  
pf  
CHF  
56  
6
RZI  
kΩ  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3"  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
Cool-Power® ZVS Switching Regulators  
Page 9 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3523-00 (3.3VOUT) Electrical Characteristics (Cont.)  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
9
8
7
6
5
4
3
2
1
0
2
4
6
8
10  
12  
14  
16  
16  
16  
18  
20  
20  
20  
22  
22  
22  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 1 — System Efficiency, Nominal Trim,  
Figure 4 — System Power Dissipation, Nominal Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
93  
91  
89  
87  
8
7
6
5
4
3
2
85  
83  
81  
79  
77  
1
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
12  
14  
18  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 2 — System Efficiency, Low Trim,  
Figure 5 — System Power Dissipation, Low Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
10  
8
94  
92  
90  
88  
86  
84  
82  
80  
6
4
2
0
2
4
6
8
10  
12  
14  
18  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 3 — System Efficiency, High Trim,  
Figure 6 — System Power Dissipation, High Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
Cool-Power® ZVS Switching Regulators  
Page 10 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3523-00 (3.3VOUT) Electrical Characteristics (Cont.)  
12  
10  
8
92  
90  
88  
86  
84  
82  
80  
78  
6
4
2
0
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
22  
22  
22  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 7 — System Efficiency, Nominal Trim,  
Figure 10 — System Power Dissipation, Nominal Trim,  
Board Temperature = 100ºC  
Board Temperature = 100ºC  
10  
9
91  
89  
87  
8
7
6
5
4
3
2
1
0
85  
83  
81  
79  
77  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
Load Current (A)  
VIN:  
48V  
30V  
60V  
VIN:  
30V  
60V  
Figure 8 — System Efficiency, Low Trim,  
Figure 11 — System Power Dissipation, Low Trim,  
Board Temperature = 100ºC  
Board Temperature = 100ºC  
12  
10  
8
94  
92  
90  
88  
86  
84  
82  
80  
78  
6
4
2
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
Load Current (A)  
48V  
VIN:  
VIN:  
30V  
60V  
30V  
60V  
Figure 9 — System Efficiency, High Trim,  
Figure 12 — System Power Dissipation, High Trim,  
Board Temperature = 100ºC  
Board Temperature = 100ºC  
Cool-Power® ZVS Switching Regulators  
Page 11 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3523-00 (3.3VOUT) Electrical Characteristics (Cont.)  
8
7
94  
92  
90  
88  
86  
84  
82  
80  
6
5
4
3
2
1
0
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
20  
20  
20  
22  
22  
22  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
20  
22  
VIN:  
30V  
60V  
VIN:  
30V  
60V  
Figure 13 — System Efficiency, Nominal Trim,  
Figure 16 — System Power Dissipation, Nominal Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
6
5
4
3
2
1
0
92  
90  
88  
86  
84  
82  
80  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
VIN:  
30V  
60V  
VIN:  
30V  
60V  
Figure 14 — System Efficiency, Low Trim,  
Figure 17 — System Power Dissipation, Low Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
8
7
6
5
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
80  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
VIN:  
30V  
60V  
VIN:  
30V  
60V  
Figure 15 — System Efficiency, High Trim,  
Figure 18 — System Power Dissipation, High Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
Cool-Power® ZVS Switching Regulators  
Page 12 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3523-00 (3.3VOUT) Electrical Characteristics (Cont.)  
Figure 19 — Transient Response: 50% to 100% load, at 1A/µs.  
Nominal Line, Nominal Trim,  
Figure 22 — Output Short Circuit, Nominal Line  
COUT = 8 x 100µF Ceramic  
Figure 20 — Output Voltage Ripple: Nominal Line, Nominal Trim,  
Figure 23 — Output Voltage Ripple: Nominal Line, Nominal Trim,  
100% load, COUT = 8 x 100µF Ceramic  
50% load, COUT = 8 x 100µF Ceramic  
600  
500  
400  
300  
200  
100  
0
25  
20  
15  
Notes:  
1. SiP is based on VS1 and VIN paths only.  
2. Inductor is based on two leads and base  
10  
with inclusion of GEL 30 interface  
resistance (0.15mm thick; 3.5W/m-K  
thermal conductivity).  
5
0
1.1  
3.3  
5.5  
7.7  
9.9 12.1 14.3 16.5 18.7 20.9  
Load Current (A)  
0
20  
40  
60  
80  
100  
120  
140  
Temperature of Isothermal PCB (ºC)  
48VIN  
30VIN  
60VIN  
Figure 21 — Switching Frequency vs. Load, Nominal Trim  
Figure 24 — System Thermal Specified Operating Area: Max IOUT  
at Nominal Trim vs. temperature at locations noted  
Cool-Power® ZVS Switching Regulators  
Page 13 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3523-00 (3.3VOUT) Electrical Characteristics (Cont.)  
25  
20  
15  
10  
5
0
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 25 — Output Current vs. VEAO, Nominal Trim  
Figure 28 — Start Up From VIN Applied, Nominal Line, Nominal  
Trim, Typical Timing, PI3523  
18  
16  
14  
12  
10  
8
6
4
2
0
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 26 — Small Signal Modulator Gain vs. VEAO, Nominal Trim  
Figure 29 — Start Up From EN, VIN Pre-Applied, Nominal Line,  
Nominal Trim, Typical Timing, PI3523  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
-2  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 27 — rEQ_OUT vs VEAO, Nominal Trim  
Cool-Power® ZVS Switching Regulators  
Page 14 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3525-00 (5.0VOUT) Electrical Characteristics  
Specifications apply for –40°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
30  
48  
60  
V
A
VIN = 48V, TCASE = 25°C, IOUT = 20A  
Short at terminals  
2.28  
Input Current At Output Short  
(fault condition duty cycle)  
IIN_Short  
2.3  
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
Input capacitance, Internal  
IQ_VIN  
IQ_VIN  
VIN_SR  
CIN_INT  
Disabled  
0.75  
2.5  
1.2  
1
mA  
mA  
V/µs  
µF  
Enabled, no load, TCASE = 25°C  
Effective value VIN = 48V, 25°C  
0.50  
Output Specifications  
[b]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
4.0  
0.990  
5.0  
1.005  
6.5  
V
[b] [c]  
VOUT_DC  
V
ΔVOUT / ΔVIN @ 25°C, 30V < VIN < 60V  
ΔVOUT / ΔIOUT @ 25°C, 2A < IOUT < 20A  
0.10  
0.10  
75  
%
Load Regulation  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT_DC  
IOUT = 20A, COUT = 12 x 47µF, 20MHz BW [d]  
mVp-p  
[e]  
0
20  
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 230nH inductor.  
23  
A
[b]  
Maximum Array Size  
Output Current, array of 2  
Output Current, array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [b] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [b] see applications section for details  
0
0
A
A
[g]  
[g]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
27.0  
2.08  
1.25  
64.3  
1.17  
1.25  
29.1  
2.50  
V
V
1.66  
µs  
V
VOVLO  
62  
VOVLO_HYS  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
Above set VOUT  
0.90  
1.60  
V
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
VOVP_ABS  
20  
%
V
Output Overvoltage Protection,  
Absolute  
6.7  
7.5  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3"  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
Cool-Power® ZVS Switching Regulators  
Page 15 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3525-00 (5.0VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –40°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
[f] While in Discontinuous Conduction Mode (DCM) only,  
SYNCI grounded  
Switching Frequency  
Fault Restart Delay  
fs  
564  
600  
30  
636  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [c] [f]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
300  
4.5  
660  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
1.4  
60  
V
mV  
mV  
µA  
mA  
nF  
20  
50  
30  
40  
80  
TRK to EAIN Offset  
110  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, Internal  
Soft-Start Time  
50  
ITRK_DIS  
CTRK_INT  
tSS  
VTRK = 0.5V  
8.7  
47  
CTRK_EXT = 0µF  
0.6  
0.94  
7.6  
0.8  
56  
1.6  
ms  
mS  
V
[b]  
Error Amplifier Trans-Conductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
CEAIN_INT  
ROUT  
[b]  
EAIN Capacitance, Internal  
Error Amplifier Output Impedance  
Internal Compensation Capacitor  
Internal Compensation Resistor  
pF  
[b]  
[b]  
[b]  
1
MΩ  
pf  
CHF  
56  
5
RZI  
kΩ  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3"  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
Cool-Power® ZVS Switching Regulators  
Page 16 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3525-00 (5VOUT) Electrical Characteristics (Cont.)  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
12  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
12  
14  
16  
18  
18  
18  
20  
20  
20  
2
4
6
8
10  
12  
14  
16  
18  
18  
18  
20  
20  
20  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 30 — System Efficiency, Nominal Trim,  
Figure 33 — System Power Dissipation, Nominal Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
12  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
Load Current (A)  
VIN:  
VIN:  
48V  
30V  
60V  
30V  
60V  
Figure 31 — System Efficiency, Low Trim,  
Figure 34 — System Power Dissipation, Low Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
12  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
Load Current (A)  
VIN:  
VIN:  
48V  
30V  
60V  
30V  
60V  
Figure 32 — System Efficiency, High Trim,  
Figure 35 — System Power Dissipation, High Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
Cool-Power® ZVS Switching Regulators  
Page 17 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3525-00 (5VOUT) Electrical Characteristics (Cont.)  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
12  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
12  
14  
16  
18  
18  
18  
20  
20  
20  
2
4
6
8
10  
12  
14  
16  
18  
18  
18  
20  
20  
20  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
VIN:  
48V  
60V  
30V  
60V  
30V  
Figure 36 — System Efficiency, Nominal Trim,  
Figure 39 — System Power Dissipation, Nominal Trim,  
Board Temperature = 90ºC  
Board Temperature = 90ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
12  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
12  
14  
16  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
VIN:  
48V  
30V  
60V  
30V  
60V  
Figure 37 — System Efficiency, Low Trim,  
Figure 40 — System Power Dissipation, Low Trim,  
Board Temperature = 90ºC  
Board Temperature = 90ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
12  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
12  
14  
16  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
VIN:  
48V  
30V  
60V  
30V  
60V  
Figure 38 — System Efficiency, High Trim,  
Figure 41 — System Power Dissipation, High Trim,  
Board Temperature = 90ºC  
Board Temperature = 90ºC  
Cool-Power® ZVS Switching Regulators  
Page 18 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3525-00 (5VOUT) Electrical Characteristics (Cont.)  
12  
11  
10  
9
8
7
6
5
4
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
3
2
1
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
18  
18  
18  
20  
20  
20  
2
4
6
8
10  
12  
14  
16  
18  
18  
18  
20  
20  
20  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 42 — System Efficiency, Nominal Trim,  
Figure 45 — System Power Dissipation, Nominal Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
12  
11  
10  
9
8
7
6
5
4
3
2
1
86  
85  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
VIN:  
VIN:  
30V  
60V  
30V  
60V  
Figure 43 — System Efficiency, Low Trim,  
Figure 46 — System Power Dissipation, Low Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
12  
11  
10  
9
8
7
6
5
4
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
3
2
1
86  
85  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
48V  
12  
14  
16  
VIN:  
30V  
60V  
VIN:  
30V  
60V  
Figure 44 — System Efficiency, High Trim,  
Figure 47 — System Power Dissipation, High Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
Cool-Power® ZVS Switching Regulators  
Page 19 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3525-00 (5VOUT) Electrical Characteristics (Cont.)  
Figure 48 — Transient Response: 50% to 100% load, at 1A/µs.  
Nominal Line, Nominal Trim,  
Figure 51 — Output Short Circuit, Nominal Line  
COUT = 12 x 47µF Ceramic  
Figure 49 — Output Voltage Ripple: Nominal Line, Nominal Trim,  
Figure 52 — Output Voltage Ripple: Nominal Line, Nominal Trim,  
100% load, COUT = 12 x 47µF Ceramic  
50% load, COUT = 12 x 47µF Ceramic  
22  
20  
18  
16  
14  
12  
10  
8
6
625  
600  
575  
550  
525  
500  
475  
450  
425  
400  
375  
350  
325  
300  
Note:  
SiP is based on VIN and VS1 paths  
only. Inductor is based on base with  
inclusion of GEL 30 interface  
resistance (0.15mm thick; 3.5W/m-K  
thermal conductivity), and all leads.  
4
2
0
0
2
4
6
8
10  
Load Current (A)  
48VIN  
12  
14  
16  
18  
20  
25  
50  
75  
100  
125  
Temperature of Isothermal SiP VIN and VS1 pins,  
and PCB at Inductor (ºC)  
30VIN  
60VIN  
Figure 50 — Switching Frequency vs. Load, Nominal Trim  
Figure 53 — System Thermal Specified Operating Area: Max IOUT  
at Nominal Trim vs. temperature at locations noted  
Cool-Power® ZVS Switching Regulators  
Page 20 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3525-00 (5VOUT) Electrical Characteristics (Cont.)  
20  
18  
16  
14  
12  
10  
8
6
4
2
0.8  
1.3  
1.8  
2.3  
2.8  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 54 — Output Current vs. VEAO, Nominal Trim  
Figure 57 — Start Up From VIN Applied, Nominal Line, Nominal  
Trim, Typical Timing, PI3525  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
0.8  
1
1.2 1.4 1.6 1.8  
2.0 2.2 2.4 2.6 2.8  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 55 — Small Signal Modulator Gain vs. VEAO, Nominal Trim  
Figure 58 — Start Up From EN, VIN Pre-Applied, Nominal Line,  
Nominal Trim, Typical Timing, PI3525  
25  
20  
15  
10  
5
0
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 56 — rEQ_OUT vs VEAO, Nominal Trim  
Cool-Power® ZVS Switching Regulators  
Page 21 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3526-00 (12VOUT) Electrical Characteristics  
Specifications apply for –40°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
30  
48  
60  
V
A
VIN = 48V, TCASE = 25°C, IOUT = 18A  
Short at terminals  
4.68  
Input Current At Output Short  
(fault condition duty cycle)  
IIN_Short  
4.5  
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
Input capacitance, Internal  
IQ_VIN  
IQ_VIN  
VIN_SR  
CIN_INT  
Disabled  
0.75  
3.2  
1.2  
1
mA  
mA  
V/µs  
µF  
Enabled, no load, TCASE = 25°C  
Effective value VIN = 48V, 25°C  
0.50  
Output Specifications  
[b]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
6.5  
0.990  
12  
1.005  
14  
V
[b] [c]  
VOUT_DC  
V
ΔVOUT / ΔVIN @ 25°C, 30V < VIN < 60V  
ΔVOUT / ΔIOUT @ 25°C, 2A < IOUT < 20A  
0.10  
0.10  
240  
%
Load Regulation  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT_DC  
IOUT = 18A, COUT = 8 x 10µF, 20MHz BW [d]  
mVp-p  
[e]  
0
18  
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 480nH inductor.  
20.7  
A
[b]  
Maximum Array Size  
Output Current, array of 2  
Output Current, array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [b] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [b] see applications section for details  
0
0
A
A
[g]  
[g]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
27  
29.1  
2.50  
V
V
1.66  
2.08  
1.25  
64.3  
1.17  
1.25  
µs  
V
VOVLO  
62  
VOVLO_HYS  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
Above set VOUT  
0.90  
1.60  
V
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
VOVP_ABS  
20  
%
V
Output Overvoltage Protection,  
Absolute  
14.6  
15.7  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3"  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
Cool-Power® ZVS Switching Regulators  
Page 22 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3526-00 (12VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –40°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
Switching Frequency  
Fault Restart Delay  
fs  
[f] While in DCM operating mode only, SYNCI grounded  
658  
700  
30  
742  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [c] [f]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
350  
4.5  
770  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
1.4  
60  
V
mV  
mV  
µA  
mA  
nF  
20  
50  
30  
40  
80  
TRK to EAIN Offset  
110  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, Internal  
Soft-Start Time  
50  
ITRK_DIS  
CTRK_INT  
tSS  
VTRK = 0.5V  
8.7  
47  
CTRK_EXT = 0µF  
0.6  
0.94  
7.6  
0.8  
56  
1.6  
ms  
mS  
V
[b]  
Error Amplifier Trans-Conductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
CEAIN-INT  
ROUT  
[b]  
EAIN Capacitance, Internal  
Error Amplifier Output Impedance  
Internal Compensation Capacitor  
Internal Compensation Resistor  
pF  
[b]  
[b]  
[b]  
1
MΩ  
pf  
CHF  
56  
5
RZI  
kΩ  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3"  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
Cool-Power® ZVS Switching Regulators  
Page 23 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3526-00 (12VOUT) Electrical Characteristics (Cont.)  
10  
9
98  
97  
96  
95  
94  
93  
92  
91  
90  
8
7
6
5
4
3
2
1
0
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 59 — System Efficiency, Nominal Trim,  
Figure 62 — System Power Dissipation, Nominal Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
8
7
6
5
4
3
2
1
0
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 60 — System Efficiency, Low Trim,  
Figure 63 — System Power Dissipation, Low Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
98  
97  
96  
95  
94  
93  
92  
91  
90  
12  
10  
8
6
4
2
0
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 61 — System Efficiency, High Trim,  
Figure 64 — System Power Dissipation, High Trim,  
Board Temperature = 25ºC  
Board Temperature = 25ºC  
Cool-Power® ZVS Switching Regulators  
Page 24 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3526-00 (12VOUT) Electrical Characteristics (Cont.)  
14  
12  
10  
8
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
6
4
2
0
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 65 — System Efficiency, Nominal Trim,  
Figure 68 — System Power Dissipation, Nominal Trim,  
Board Temperature = 100ºC  
Board Temperature = 100ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
10  
9
8
7
6
5
4
3
2
1
0
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
VIN:  
30V  
60V  
VIN:  
30V  
60V  
Figure 66 — System Efficiency, Low Trim,  
Figure 69 — System Power Dissipation, Low Trim,  
Board Temperature = 100ºC  
Board Temperature = 100ºC  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
14  
12  
10  
8
6
4
2
0
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 67 — System Efficiency, High Trim,  
Figure 70 — System Power Dissipation, High Trim,  
Board Temperature = 100ºC  
Board Temperature = 100ºC  
Cool-Power® ZVS Switching Regulators  
Page 25 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3526-00 (12VOUT) Electrical Characteristics (Cont.)  
9
8
7
6
5
4
3
2
1
0
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2 18  
Load Current (A)  
Load Current (A)  
VIN:  
48V  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 71 — System Efficiency, Nominal Trim,  
Figure 74 — System Power Dissipation, Nominal Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
7
6
5
4
3
2
1
0
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
VIN:  
30V  
60V  
VIN:  
30V  
60V  
Figure 72 — System Efficiency, Low Trim,  
Figure 75 — System Power Dissipation, Low Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
10  
9
8
7
6
5
4
3
2
1
0
1.8  
3.6  
5.4  
7.2  
Load Current (A)  
48V  
9
10.8 12.6 14.4 16.2  
18  
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
Load Current (A)  
VIN:  
30V  
60V  
VIN:  
48V  
30V  
60V  
Figure 73 — System Efficiency, High Trim,  
Figure 76 — System Power Dissipation, High Trim,  
Board Temperature = –40ºC  
Board Temperature = –40ºC  
Cool-Power® ZVS Switching Regulators  
Page 26 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3526-00 (12VOUT) Electrical Characteristics (Cont.)  
Figure 77 — Transient Response: 50% to 100% load, at 1A/µs.  
Nominal Line, Nominal Trim,  
Figure 80 — Output Short Circuit, Nominal Line  
COUT = 8 x 10µF Ceramic  
Figure 78 — Output Voltage Ripple: Nominal Line, Nominal Trim,  
Figure 81 — Output Voltage Ripple: Nominal Line, Nominal Trim,  
100% load, COUT = 8 x 10µF Ceramic  
50% load, COUT = 8 x 10µF Ceramic  
725  
650  
575  
500  
425  
350  
20  
18  
16  
14  
12  
Note:  
SiP is based on VIN and VS1 paths  
10  
only. Inductor is based on base with  
inclusion of GEL 30 interface  
8
resistance (0.15mm thick; 3.5W/m-K  
thermal conductivity), and all leads.  
6
4
2
0
1.8  
3.6  
5.4  
7.2  
9
10.8 12.6 14.4 16.2  
18  
25  
50  
75  
100  
125  
Load Current (A)  
Temperature of Isothermal SiP VIN and VS1 pins,  
and PCB at Inductor (ºC)  
48VIN  
30VIN  
60VIN  
Figure 79 — Switching Frequency vs. Load, Nominal Trim  
Figure 82 — System Thermal Specified Operating Area: Max IOUT  
at Nominal Trim vs. temperature at locations noted  
Cool-Power® ZVS Switching Regulators  
Page 27 of 41  
Rev 1.5  
03/2018  
PI352x-00  
PI3526-00 (12VOUT) Electrical Characteristics (Cont.)  
25  
20  
15  
10  
5
0
0.8  
1
1.2  
1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 83 — Output Current vs. VEAO, Nominal Trim  
Figure 86 — Start Up From VIN Applied, Nominal Line, Nominal  
Trim, Typical Timing, PI3526  
14  
12  
10  
8
6
4
2
0
0.8  
1
1.2 1.4 1.6 1.8  
2.0 2.2 2.4 2.6 2.8  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 84 — Small Signal Modulator Gain vs. VEAO, Nominal Trim  
Figure 87 — Start Up From EN, VIN Pre-Applied, Nominal Line,  
Nominal Trim, Typical Timing, PI3526  
35  
30  
25  
20  
15  
10  
5
0
0.8  
1.3  
1.8  
2.3  
2.8  
VEAO (V)  
48VIN  
30VIN  
60VIN  
Figure 85 — rEQ_OUT vs VEAO, Nominal Trim  
Cool-Power® ZVS Switching Regulators  
Page 28 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Soft Start  
Functional Description  
The PI352x-00 includes an internal soft-start capacitor to  
control the rate of rise of the output voltage. See the Electrical  
Characteristics Section for the default value. Connecting an  
external capacitor from the TRK pin to SGND will increase the  
start-up ramp period. See, “Soft Start Adjustment and Track,” in  
the Applications Description section for more details.  
The PI352x-00 is a family of highly integrated ZVS Buck  
regulators. The PI352x-00 has an output voltage that can be set  
within a prescribed range shown in Table 1. Performance and  
maximum output current are characterized with a specific external  
power inductor (see Table 3).  
Output Voltage Selection  
The PI352x-00 output voltage is set with REA1 and REA2 as  
shown in Figure 88. Table 1 defines the allowable operational  
voltage ranges for the PI352x-00 family. Refer to the Output  
Voltage Set Point Application Description for details.  
L1  
VIN  
VS1  
VOUT  
VSP  
VIN  
VOUT  
CIN  
COUT  
ZVS-Buck  
PGND  
VDR  
VSN  
SYNCO  
SYNCI  
PWRGD  
EN  
VDIFF  
TRK  
REA1  
REA2  
EAIN  
EAO  
Output Voltage  
Device  
TESTx  
SGND  
COMP  
Nom.  
3.3V  
5.0V  
Range  
CCOMP  
PI3523-00-LGIZ  
PI3525-00-LGIZ  
PI3526-00-LGIZ  
2.2 – 4.0V  
4.0 – 6.5V  
6.5 14V  
12V  
Figure 88 — ZVS Buck with required components  
Table 1 — PI352x-00 family output voltage ranges  
For basic operation, Figure 88 shows the connections  
and components required. No additional design or  
settings are required.  
Output Current Limit Protection  
The PI352x-00 has a current limit protection, which prevents  
the output from sourcing current higher than the regulator’s  
maximum rated current. If the output current exceeds the  
Current Limit (IOUT_CL) for 1024µs, a slow current limit fault is  
initiated and the regulator is shutdown which eliminates output  
current flow. After Fault Restart Delay (tFR_DLY), a soft-start cycle  
is initiated. This restart cycle will be repeated indefinitely until the  
excessive load is removed.  
ENABLE (EN)  
EN is the enable pin of the converter. The EN Pin is referenced  
to SGND and permits the user to turn the regulator on or off.  
The EN default polarity is a positive logic assertion. If the EN pin  
is left floating or asserted high, the converter output is enabled.  
Pulling EN pin below VEN_LO with respect to SGND will disable the  
regulator output.  
The PI352x-00 also has short circuit protection which can  
immediately stop switching to protect against catastrophic failure  
of an external component such as a saturated inductor. If short  
circuit protection is triggered the PI352x-00 will complete the  
current cycle and stop switching. The module will attempt to soft  
start after Fault Restart Delay (tFR_DLY).  
Remote Sensing  
If remote sensing is required, the PI352x-00 product family  
is equipped with a general purpose op-amp. This amplifier  
can allow full differential remote sense by configuring it as a  
differential follower and connecting the VDIFF pin to the EAIN pin.  
Input Undervoltage Lockout  
If VIN falls below the input Undervoltage Lockout (UVLO)  
threshold, but remains high enough to power the internal bias  
supply, the PI352x-00 will complete the current cycle and stop  
switching. The system will soft start once the input voltage is  
reestablished and after the Fault Restart Delay.  
Cool-Power® ZVS Switching Regulators  
Page 29 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Input Overvoltage Lockout  
Pulse Skip Mode (PSM)  
If VIN exceeds the input Overvoltage Lockout (OVLO) threshold  
(VOVLO), while the controller is running, the PI352x-00 will  
complete the current cycle and stop switching. If VIN remains  
above OVLO for at least tFR_DLY, then the input voltage is  
considered reestablished once VIN goes below VOVLO-VOVLO_HYS  
If VIN goes below OVLO before tFR_DLY elapses, then the input  
PI352x-00 features a Pulse Skip Mode (PSM) to achieve high  
efficiency at light loads. The regulators are setup to skip pulses  
if EAO falls below a PSM threshold (PSMSKIP). Depending on  
conditions and component values, this may result in single pulses  
or several consecutive pulses followed by skipped pulses. Skipping  
cycles significantly reduces gate drive power and improves light  
load efficiency. The regulator will leave PSM once the EAO rises  
above the Pulse Skip Mode threshold.  
.
voltage is considered reestablished once VIN goes below VOVLO  
.
The system will soft start once the input voltage is reestablished  
and after the Fault Restart Delay.  
Variable Frequency Operation  
Output Overvoltage Protection  
Each PI352x-00 is preprogrammed to a base operating frequency,  
with respect to the power stage inductor (see Table 2), to operate  
at peak efficiency across line and load variations. At low line  
and high load applications, the base frequency will decrease to  
accommodate these extreme operating ranges. By stretching  
the frequency, the ZVS operation is preserved throughout  
the total input line voltage range therefore maintaining  
optimum efficiency.  
The PI352x-00 family is equipped with output Overvoltage  
Protection (OVP) to prevent damage to input voltage sensitive  
devices. If the output voltage exceeds VOVP-REL or VOVP-ABS, the  
regulator will complete the current cycle and stop switching. The  
system will resume operation once the output voltage falls below  
the OVP threshold and after Fault Restart Delay.  
Overtemperature Protection  
Thermal Characteristics  
The PI352x features an over temperature protection (OTP), which  
will not engage until after the product is operated above the  
maximum rated temperature. The OTP circuit is only designed to  
protect against catastrophic failure due to excessive temperatures  
and should not be relied upon to ensure the device stays within  
the recommended operating temperature range. Thermal  
shutdown terminates switching and discharges the soft-start  
capacitor. The PI352x will restart after the excessive temperature  
has decreased by 30ºC  
Figure 89(a) and 83(c) thermal impedance models that can predict  
the maximum temperature of the hottest component for a given  
operating condition. This model assumes that all customer PCB  
connections are at one temperature, which is PCB equivalent  
Temperature TPCB °C.  
The SiP model can be simplified as shown in Figure 89(b). which  
assumes all PCB nodes are at the same temperature.  
Cool-Power® ZVS Switching Regulators  
Page 30 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Maximum SiP Internal Temperature  
INT ( oC )  
T
Thermal Resistance  
SiP Case Top  
Thermal Resistances  
θINT-VIN  
oC / W  
θINT-VS1  
oC / W  
θINT-PGND1 θINT-PGND2  
θINT-SGND  
oC / W  
oC / W  
oC / W  
SiP PCB Pads  
θINT-TOP oC / W  
SiP Power  
Dissipaꢁon  
PDSiP (W)  
SiP Case Top  
Temperature  
TTOP oC  
TVS1  
oC  
TPGND2  
oC  
TVIN  
oC  
TPGND1  
oC  
TSGND  
oC  
SiP PCB Pad  
Temperatures  
(a)  
Maximum SiP Internal Temperature  
TINT ( oC )  
Thermal Resistance  
SiP PCB Equivalent  
θINT-PCB oC / W  
Thermal Resistance  
SiP Case Top  
SiP Power  
Dissipaꢀon  
PDSIP (W)  
θINT-TOP oC / W  
SiP PCB Common  
Temperature  
TPCB oC  
Case Top  
Temperature  
TTOP oC  
(b)  
Maximum Inductor Internal Temperature  
TINT ( oC )  
Thermal Resistance  
Thermal Resistance  
Inductor Case Boꢀom  
θINT-BOTTOM oC / W  
Thermal Resistances  
Inductor PCB Pads  
θINT-TAB  
oC / W  
θINT-LEAD2  
θINT-LEAD1  
oC / W  
oC / W  
Inductor Case Top  
θINT-TOP oC / W  
Inductor Power  
Dissipaꢀon  
PDIND (W)  
Inductor Case Top  
Temperature  
TTOP oC  
Inductor Case Boꢀom  
Temperature  
TVS1  
oC  
TVOUT  
oC  
Inductor PCB Pad  
Temperatures  
TTAB  
oC  
TBOTTOM oC  
(c)  
Figure 89 — PI352x-00 Thermal model (a), SiP simplified version (b) and inductor thermal model (c)  
Cool-Power® ZVS Switching Regulators  
Page 31 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Where the symbol in Figure 89(a) and (b) is defined as the following:  
θINT-TOP the thermal impedance from the hottest component inside the SiP to the top side  
the thermal impedance from the hottest component inside the SiP to the customer PCB, assuming all pins are  
θINT-PCB  
θINT-VIN  
θINT-VS1  
at one temperature.  
the thermal impedance from the hottest component inside the SiP to the circuit board VIN pads.  
the thermal impedance from the hottest component inside the SiP to the circuit board VS1 pads.  
the thermal impedance from the hottest component inside the SiP to the circuit board at the PGND1 pads.  
PGND1 is pins 12A-K.  
θINT-PGND1  
the thermal impedance from the hottest component inside the SiP to the circuit board at the PGND2 pads .  
PGND2 is pins 2F-J, 3F-J, 4C-J, 5B-J and 6C-K.  
θINT-PGND2  
θINT-SGND  
the thermal impedance from the hottest component inside the SiP to the circuit board at the SGND pads.  
Where the symbol in Figure 89(c) is defined as the following:  
θINT-TOP  
θINT-BOT  
θINT-TAB  
the thermal impedance from the hot spot to the top surface of the core.  
the thermal impedance from the hot spot to the bottom surface of the core.  
the thermal impedance from the hot spot to the metal mounting tab on the core body, if applicable.  
the thermal impedance from the hot spot to one of the mounting leads.  
Since the leads are the same thermal impedance, there is no need to specify by explicit pin number.  
θINT-LEAD1  
θINT-LEAD2  
the thermal impedance from the hot spot to the other mounting lead.  
The following equation can predict the junction temperature  
based on the heat load applied to the SiP and the known ambient  
conditions with the simplified thermal circuit model:  
TTOP  
TPCB  
θINT-PCB  
1
PD +  
+
θINT-TOP  
TINT  
=
(1)  
1
+
θINT-TOP  
θINT-PCB  
Simplified SiP  
Thermal Impedances  
Detailed SiP Thermal Impedances  
Product  
System  
θINT-TOP  
θINT-PCB  
θINT-TOP  
θINT-VIN  
θINT-VS1  
θINT-PGND1  
θINT-PGND2  
θINT-SGND  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
PI3523  
PI3525  
PI3526  
0.98  
1.477  
1.79  
69.9  
68.7  
3.43  
3.34  
3.40  
1.74  
3.76  
5.75  
9.81  
22.61  
23.80  
27.45  
19.78  
26.65  
86.72  
58.78  
86.44  
69.9  
68.7  
108  
108.25  
Table 2 — PI352x-00 SiP Thermal Impedance  
Effective Thermal Impedances  
Inductor Part  
Number  
Product  
System  
θINT-TOP  
θINT-LEAD1, θINT-LEAD2  
θINT-BOTTOM  
θINT-TAB  
(°C / W)  
11.01  
8.75  
(°C / W)  
9.42  
(°C / W)  
(°C / W)  
n/a  
PI3523  
PI3525  
PI3526  
FP2207R1-R230-R  
FP2207R1-R230-R  
6.87  
5.99  
9.54  
n/a  
HCV1707R1-R48-R  
65.41  
17.74  
20.46  
703  
Table 3 — Inductor effective thermal model parameters  
Cool-Power® ZVS Switching Regulators  
Page 32 of 41  
Rev 1.5  
03/2018  
PI352x-00  
SiP Power Dissipation as Percentage of Total System Losses  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
30  
35  
40  
45  
VIN (V)  
50  
55  
60  
60  
60  
IOUT  
:
<5% Rated Load  
30% Rated Load  
100% Rated Load  
Figure 90 — PI3523-00-LGIZ  
100  
90  
80  
70  
60  
50  
40  
30  
35  
40  
45  
VIN (V)  
50  
55  
IOUT  
:
<5% Rated Load  
30% Rated Load  
100% Rated Load  
Figure 91 — PI3525-00-LGIZ  
100  
90  
80  
70  
60  
50  
40  
30  
30  
35  
40  
45  
50  
55  
VIN (V)  
IOUT  
:
<5% Rated Load  
30% Rated Load  
100% Rated Load  
Figure 92 — PI3526-00-LGIZ  
Cool-Power® ZVS Switching Regulators  
Page 33 of 41  
Rev 1.5  
03/2018  
PI352x-00  
minimum absolute OVP, provided the value does not exceed  
Application Description  
6V. For start up into loads which are pre-biased above 6V, an  
ORing FET or equivalent sub-circuit is required to decouple the  
buck output from the load during start up. In any application  
with a CV type load, the regulator must be configured in a  
constant-current mode of operation; the built-in current limit is a  
fault protection only.  
Output Voltage Set Point  
The PI352x-00 family of Buck Regulators utilizes VREF, an internal  
reference for regulating the output voltage. The output voltage  
setting is accomplished using external resistors as shown in  
Figure 93. Select R2 to be at or around 1kΩ for best noise  
immunity. Use Equations 2 and 3 to determine the proper value  
based on the desired output voltage.  
There is typically either proportional or direct tracking  
implemented within a design. For proportional tracking between  
several regulators at start up, simply connect all PI352x-00 device  
TRK pins together. This type of tracking will force all connected  
regulators to start up and reach regulation at the same time  
(see Figure 94a).  
VOUT  
R1  
VOUT  
1
EAIN  
-
+
CEAIN-INT  
V
OUT 2  
VREF  
R2  
EAO  
(a)  
CHF  
RZI  
Master VOUT  
COMP  
VOUT  
2
(b)  
t
Figure 93 — External resistor divider network  
R1 + R2  
Figure 94 — PI352x-00 tracking responses  
VOUT = VREF  
R1 = R2 •  
(2)  
(3)  
R2  
For Direct Tracking, choose the PI352x-00 with the highest output  
voltage as the master and connect the master to the TRK pin of  
the other PI352x-00 regulators through a divider (Figure 95) with  
the same ratio as the slave’s feedback divider.  
V
OUT – VREF  
VREF  
where VREF = VEAIN  
Master VOUT  
Note: When using the above method of trimming by adjusting the value  
of R1, the compensation of the control loops is modified and additional  
Cout may be needed depending on the model. When the PI3526-00-LGIZ  
is trimmed below 10V, the effective COUT must be at least 120µF, including  
tolerance and voltage coefficient.  
R1  
PI352x  
TRK  
Soft Start Adjust and Tracking  
Slave  
R2  
The TRK pin offers a means to increase the regulator’s soft-start  
time or to track with additional regulators. The soft-start slope  
is controlled by an internal capacitor and a fixed charge current  
to provide a Soft-Start Time tSS for all PI352x-00 regulators.  
By adding an additional external capacitor to the TRK pin, the  
soft-start time can be increased further. The following equation  
can be used to calculate the proper capacitor for a desired  
soft-start time in excess of tSS:  
SGND  
Figure 95 — Voltage divider connections for direct tracking  
All connected PI352x-00 regulator soft-start slopes will track  
with this method. Direct tracking timing is demonstrated in  
Figure 94b. All tracking regulators should have their Enable (EN)  
pins connected together to work properly.  
CTRK = (tTRK • ITRK )CTRK_INT  
(4)  
where tTRK is the soft-start time and ITRK is a 50µA internal charge  
current (see Electrical Characteristics for limits).  
In applications such as battery or super-capacitor charging  
where the load is pre-biased, the PI352x can start into output  
voltages up to the externally applied trim set point, or the  
Cool-Power® ZVS Switching Regulators  
Page 34 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Inductor Pairing  
Parallel Operation  
Multiple PI352x-00 can be connected in parallel to increase  
the output capability of a single output rail. When connecting  
modules in parallel, each EAO, TRK, and EN pin should be  
connected together. EAIN pins should remain separated, each  
with an REA1 and REA2, to reject noise differences between  
different modules' SGND pins. Current sharing will occur  
automatically in this manner so long as each inductor is the same  
value. Refer to the Electrical Characteristics table for maximum  
array size and array rated output current. Current sharing may be  
considered independent of synchronization and/or interleaving.  
Modules do not have to be interleaved or synchronized  
to share current.  
The PI352x-00 utilizes an external inductor. This inductor has  
been optimized for maximum efficiency performance. Table 3  
details the specific inductor value and part number utilized for  
each PI352x-00.  
Value  
(nH)  
Max Operating  
Temp (°C)  
Product  
System  
MFR  
Part Number  
PI3523  
PI3525  
PI3526  
230  
230  
480  
Eaton FP2207R1-R230-R  
Eaton FP2207R1-R230-R  
125  
125  
125  
Eaton  
HCV1707R1-R48-R  
Table 4 — PI352x-00 Inductor pairing  
Due to the high output current capability of a single module and  
Critical Conduction Mode (CrCM) occurring at approximately  
50% rated load, interleaving is not supported.  
The same inductor model may have different effective thermal  
impedances, depending on the model ZVS Buck paired with  
it. The thermal impedances are used in a virtual model of the  
inductor to estimate the maximum temperature, and the location  
of the maximum temperature may vary depending on the  
ZVS Buck model that the inductor is used with. This is because the  
effective thermal impedances are not only based on the geometry  
and materials used in the inductor, but include how the inductor  
power dissipation is distributed among core losses, DC copper  
losses, and AC copper losses. This distribution is dependent on  
the ZVS buck model that uses the inductor.  
Use of the PI352x-00 SYNCI pin is practical only under a limited  
set of conditions. Synchronizing to another converter or to a fixed  
external clock source can result in a significant reduction in output  
power capability or higher than expected ripple.  
Filter Considerations  
The PI352x-00 requires low impedance ceramic input capacitors  
(X7R/X5R or equivalent) to ensure proper start up and high  
frequency decoupling for the power stage. The PI352x-00  
will draw nearly all of the high frequency current from the  
low impedance ceramic capacitors when the main high side  
MOSFET(s) are conducting. During the time the MOSFET(s) are off,  
the input capacitors are replenished from the source.  
Table 6 shows the recommended input and output capacitors  
to be used for the PI352x-00 as well as per capacitor RMS ripple  
current and the input and output ripple voltages. Table 5 lists the  
recommended input and output ceramic capacitors manufacturer  
and part numbers. It is very important to verify that the voltage  
supply source as well as the interconnecting lines are stable and  
do not oscillate.  
L1_1  
VIN  
VS1  
VOUT  
VSP  
VSN  
VDIFF  
TRK  
EAIN  
EAO  
COMP  
VIN  
EN  
VOUT  
CIN_1  
COUT_1  
ZVS-Buck  
#1  
PGND  
VDR  
SYNCO  
SYNCI  
PWRGD  
EN  
REA1_1  
REA2_1  
TRK  
EAO  
TESTx  
SGND  
CCOMP_1  
L1_2  
VIN  
VS1  
VOUT  
VSP  
VSN  
VDIFF  
TRK  
EAIN  
EAO  
COMP  
VIN  
EN  
VOUT  
CIN_2  
COUT_2  
ZVS-Buck  
Input Filter Case 1 — Inductive source and local, external,  
input decoupling capacitance with negligible ESR  
(i.e., ceramic type):  
PGND  
VDR  
SYNCO  
SYNCI  
PWRGD  
EN  
#2  
REA1_2  
REA2_2  
TRK  
EAO  
TESTx  
SGND  
The voltage source impedance can be modeled as a series  
Rline Lline circuit. The high performance ceramic decoupling  
capacitors will not significantly damp the network because  
of their low ESR; therefore in order to guarantee stability the  
following conditions must be verified:  
CCOMP_2  
Figure 96 — PI352x-00 parallel operation  
Lline  
Rline  
>
(5)  
CIN_INT + CIN_EXT • rEQ_IN  
(
)
Rline << rEQ_IN  
(6)  
Where rEQ_IN can be calculated by dividing the lowest line voltage  
by the full load input current. It is critical that the line source  
impedance be at least an octave lower than the converter’s  
dynamic input resistance, Equation 6. However, Rline cannot  
be made arbitrarily low otherwise Equation 5 is violated and  
the system will show instability, due to an under-damped  
RLC input network.  
Cool-Power® ZVS Switching Regulators  
Page 35 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Input Filter case 2 — Inductive source and local, external  
input decoupling capacitance with significant RCIN_EXT ESR  
(i.e., electrolytic type):  
2. No direct connection is allowed. Any noise source that can  
disturb the VDR voltage can also affect the internal controller  
operation. A series impedance is required between the VDR pin  
and any external circuitry.  
In order to simplify the analysis in this case, the voltage source  
impedance can be modeled as a simple inductor Lline  
.
3. All loads must be locally de-coupled using a 0.1µF ceramic  
capacitor. This capacitor must be connected to the VDR output  
through a series resistor no smaller than 1kΩ, which forms a  
low-pass filter.  
Notice that the high performance ceramic capacitors CIN_INT  
within the PI352x-00 should be included in the external  
electrolytic capacitance value for this purpose. The stability  
criteria will be:  
Additional System Design Considerations  
1. Inductive loads: As with all power electronic applications,  
consideration must be given to driving inductive loads that  
may be exposed to a fault in the system which could result  
in consequences beyond the scope of the power supply  
primary protection mechanisms. An inductive load could be a  
filter, fan motor or even excessively long cables. Consider an  
instantaneous short circuit through an un-damped inductance  
that occurs when the output capacitors are already at an  
initial condition of fully charged. The only thing that limits the  
current is the inductance of the short circuit and any series  
resistance. Even if the power supply is off at the time of the  
short circuit, the current could ramp up in the external inductor  
and store considerable energy. The release of this energy will  
result in considerable ringing, with the possibility of ringing  
nodes connected to the output voltage below ground. The  
system designer should plan for this by considering the use  
of other external circuit protection such as load switches,  
fuses, and transient voltage protectors. The inductive filters  
should be critically damped to avoid excessive ringing or  
damaging voltages. Adding a high current Schottky diode  
from the output voltage to PGND close to the PI352x-00 is  
recommended for these applications.  
rEQ_IN > RC  
(7)  
IN_EXT  
Lline  
< rEQ_IN  
(8)  
CIN_INT • RC  
IN_EXT  
Equation 8 shows that if the aggregate ESR is too small – for  
example by using very high quality input capacitors (CIN_EXT) – the  
system will be under-damped and may even become destabilized.  
As noted, an octave of design margin in satisfying Equation 7  
should be considered the minimum. When applying an electrolytic  
capacitor for input filter damping the ESR value must be chosen to  
avoid loss of converter efficiency and excessive power dissipation  
in the electrolytic capacitor.  
VDR Bias Regulator  
The VDR internal bias regulator is a ZVS switching regulator that  
resides internal to the PI352x-00 SiP. It is intended primarily to  
power the internal controller and driver circuitry. The power  
capability of this regulator is sized for the PI352x-00, with  
adequate reserve for the application it was intended for.  
2. Low voltage operation: There is no isolation from an SELV  
(Safety-Extra-Low-Voltage) power system. Powering low  
voltage loads from input voltages as high as 60V may require  
additional consideration to protect low voltage circuits from  
excessive voltage in the event of a short circuit from input to  
output. A fast TVS (transient voltage suppressor) gating an  
external load switch is an example of such protection.  
It may be used for as a pullup source for open collector  
applications and for other very low power uses with the  
following restrictions:  
1. The total external loading on VDR must be less than IVDR  
.
Manufacturer  
Murata  
Part Number  
Value  
100µF  
47µF  
Description  
GRM32EC80J107ME20  
GRM32ER71A476KE15  
GRM32ER72A225KA35  
GRM32DR71E106MA12  
100µF 6.3V 1210 X6S  
47µF 10V 1210 X7R  
2.2µF 100V 1210 X7R  
10µF 25V 1210 X7R  
Murata  
Murata  
2.2µF  
10µF  
Murata  
Table 5 — Recommended input and output capacitor components  
Transient  
CIN  
Ripple  
Current  
COUT  
Ripple  
Current  
(IRMS)  
Load  
Step  
(% Rating)  
(1A/µs)  
Load  
Current  
(A)  
VIN  
Ripple  
(mVpp)  
VOUT  
Ripple  
(mVpp)  
Deviation  
Excluding  
Ripple  
VOUT  
Recovery  
Time (µs)  
Product  
CIN  
COUT  
(IRMS  
)
(mVpk)  
10 x  
2.2µF  
PI3523  
PI3525  
PI3526  
22  
20  
18  
8 x 100µF  
12 x 47µF  
8 x 10µF  
7.3  
16.1  
14  
900  
960  
700  
75  
75  
50 – 100  
50 – 100  
50 – 100  
110  
160  
260  
<80  
<80  
<80  
10 x  
2.2µF  
8.0  
10 x  
2.2µF  
10.1  
11  
210  
Table 6 — Recommended input and output capacitor quantity and performance at nominal line, nominal trim.  
Cool-Power® ZVS Switching Regulators  
Page 36 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Layout Guidelines  
To optimize maximum efficiency and low noise performance  
from a PI352x-00 design, layout considerations are necessary.  
Reducing trace resistance and minimizing high current loop  
returns along with proper component placement will contribute  
to optimized performance.  
VIN  
CIN  
A typical buck converter circuit is shown in Figure 97. The  
potential areas of high parasitic inductance and resistance are the  
circuit return paths, shown as LR below.  
COUT  
Figure 99 — Current flow: Q2 closed  
VIN  
Figure 100 illustrates the tight path between CIN and COUT  
(and VIN and VOUT) for the high AC return current. The  
PI352x-00 evaluation board uses a layout optimized for  
performance in this way.  
CIN  
COUT  
Figure 97 — Typical Buck Regulator  
The path between the COUT and CIN capacitors is of particular  
importance since the AC currents are flowing through both of  
them when Q1 is turned on. Figure 98, schematically, shows the  
reduced trace length between input and output capacitors. The  
shorter path lessens the effects that copper trace parasitics can  
have on the PI352x-00 performance.  
PGND  
VOUT  
Inductor  
VS1  
ZVS-  
Buck  
SIP  
VIN  
VIN  
CIN  
PGND  
COUT  
Figure 100 — Recommended layout for Optimized AC Current  
within the SiP, Inductor, and Ceramic Input and  
Output Capacitors  
Figure 98 — Current flow: Q1 closed  
When Q1 is on and Q2 is off, the majority of CIN’s current is used  
to satisfy the output load and to recharge the COUT capacitors.  
When Q1 is off and Q2 is on, the load current is supplied by the  
inductor and the COUT capacitor as shown in Figure 99. During  
this period CIN is also being recharged by the VIN. Minimizing CIN  
loop inductance is important to reduce peak voltage excursions  
when Q1 turns off. Also, the difference in area between the CIN  
loop and COUT loop is vital to minimize switching and GND noise.  
Cool-Power® ZVS Switching Regulators  
Page 37 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Recommended PCB Footprint and Stencil  
E1  
D1  
L
D1  
E1  
L
Recommended receiving footprint for PI352x-00 10 x 14mm package. All pads should have a final copper size of 0.55 x 0.55mm,  
whether they are solder-mask defined or copper defined, on a 1 x 1mm grid. All stencil openings are 0.45mm when using either a  
5mil or 6mil stencil.  
Cool-Power® ZVS Switching Regulators  
Page 38 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Package Drawings  
E1  
A
K
G
E
D
A
1
2
3
4
5
6
7
D
D1  
8
9
1
10  
11  
12  
13  
14  
E
DETAIL B  
1
DETAIL A  
M
M
A
L
2
L1  
M
M
A
DETAIL B  
SCALE 36 : 1  
3
A2  
A
A
A1  
A2  
SEATING PLANE  
METALLIZED  
PAD  
A1  
SOLDER MASK  
L
D
E
D1  
E1  
DETAIL A  
L1  
AND POSITION  
Cool-Power® ZVS Switching Regulators  
Page 39 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Revision History  
Revision  
1.0  
Date  
Description  
Page Number(s)  
01/20/17  
02/21/17  
03/01/17  
Initial Release  
n/a  
All  
1.1  
Full data sheet release  
Update Figures 1-18  
1.2  
10-12  
Part number PI3526-00-LGIZ added  
1-3, 15-22, 25-27, 30  
Correct DIFF AMP Slew Rate  
Correct OVLO-Hyst specs  
7
8
1.3  
1.4  
06/06/17  
09/07/17  
Typo correction  
9
Update PI3525-00 System Thermal Specified Operating Area  
Update recommendations for Parallel Operation connections  
Table 6: clarify heading, update PI3525 typical performance  
13  
28  
29  
Clarified conditions where PI3526 can start into prebiased VOUT  
Clarified conditions for EN bias  
Part number PI3523-00-LGIZ added  
Simplified current limit specs  
1, 34  
7
8-15, 29, 32-33, 35-36  
8, 15, 22  
21  
Added new Figure 54  
Updated inductor pairing  
35  
Updated features & benefits  
1
Corrected typo in ESD rating name  
Clarified block diagram  
3
4
Updated pin descriptions  
5
Updated package pinout  
6
Updated evaluation board size in note  
Added start-up wave forms (figures 28, 29, 57, 58, 86, 87)  
Corrected PI3526 OVP specification  
Corrected PI3526 –40ºC system efficiency chart (figure 71)  
Updated output voltage selection description  
Updated Overtemperature Protection description  
Updated thermal model  
7, 8, 9, 15, 16, 22, 23  
1.5  
03/13/18  
14, 21, 28  
22  
26  
29  
30  
31, 32  
38, 39  
Updated mechanical drawings  
Please note: Pages added in Revs 1.3 and 1.4.  
Cool-Power® ZVS Switching Regulators  
Page 40 of 41  
Rev 1.5  
03/2018  
PI352x-00  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicors product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc-converters-board-mount/cool-power-pi33xx-and-pi34xx for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicors Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicors webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicors Intellectual Property Department.  
The products described on this data sheet are protected by U.S. Patents. Please see www.vicorpower.com/patents for the latest  
patent information.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2017 – 2018 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
Cool-Power® ZVS Switching Regulators  
Page 41 of 41  
Rev 1.5  
03/2018  

相关型号:

GRM32EC80J107ME20#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM32EC80J227ME01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM32EC80J476KE64

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM32EC80J476KE64#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM32EC80J476KE64K

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM32EC80J476KE64L

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM32EC80J476ME64

Chip Monolithic Ceramic Capacitors
MURATA

GRM32EC80J476ME64#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM32EC81A476KE19#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM32EC81A476M

Chip Monolithic Ceramic Capacitor 1210 X6S 47μF 10V
MURATA

GRM32EC81A476ME19

Chip Monolithic Ceramic Capacitors
MURATA

GRM32EC81A476ME19#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA