PI3311-01-LGIZ [VICOR]

8V to 36Vin, 15A Cool-Power ZVS Buck Regulator;
PI3311-01-LGIZ
型号: PI3311-01-LGIZ
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

8V to 36Vin, 15A Cool-Power ZVS Buck Regulator

文件: 总26页 (文件大小:3042K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cool-Power®  
PI33XX-X1  
8V to 36Vin, 15A Cool-Power ZVS Buck Regulator  
Description  
Features  
The PI33XX-X1 is a family of high efficiency, wide  
input range DC-DC ZVS-Buck regulators integrating  
controller, power switches, and support components  
all within a high density System-in-Package (SiP). The  
integration of a high performance Zero-Voltage  
Switching (ZVS) topology, within the PI33XX-X1 series,  
increases point of load performance providing best in  
class power efficiency. The PI33XX-X1 requires only  
an external inductor and minimal capacitors to form a  
complete DC-DC switching mode buck regulator.  
High Efficiency ZVS-Buck Topology  
Wide input voltage range of 8V to 36V  
Very-Fast transient response  
High accuracy pre-trimmed output voltage  
User adjustable soft-start & tracking  
Power-up into pre-biased load (select versions)  
Parallel capable with single wire current sharing  
Input Over/Under Voltage Lockout (OVLO/UVLO)  
Output Overvoltage Protection (OVP)  
Over Temperature Protection (OTP)  
Fast and slow current limits  
Output Voltage  
Device  
Iout Max  
-40°C to 125°C operating range (TJ)  
Optional I2C functionality & programmability:  
Set  
Range  
PI3311-X1-LGIZ  
PI3318-X1-LGIZ  
PI3312-X1-LGIZ  
PI3301-X1-LGIZ  
1.0V  
1.8V  
2.5V  
3.3V  
1.0 to 1.4V  
1.4 to 2.0V  
2.0 to 3.1V  
2.3 to 4.1V  
15A  
15A  
15A  
15A  
Vout margining  
Fault reporting  
Enable and SYNCI pin polarity  
Phase delay (interleaving multiple regulators)  
Table 1 - PI33XX-X1-X1 Portfolio.  
Applications  
The ZVS architecture also enables high frequency  
operation while minimizing switching losses and  
maximizing efficiency. The high switching frequency  
operation reduces the size of the external filtering  
components, improves power density, and enables  
very fast dynamic response to line and load  
transients. The PI33XX-X1 series sustains high  
switching frequency all the way up to the rated input  
voltage without sacrificing efficiency and, with its  
20ns minimum on-time, supports large step down  
conversions up to 36Vin.  
High efficiency systems  
Computing, Communications, Industrial,  
Automotive Equipment  
High voltage battery operation  
Package Information  
10mm x 14mm x 2.6mm LGA SiP  
I2C is a trademark of NXP Semiconductors  
vicorpower.com  
Rev 1.3  
Cool-Power®  
800 735.6200  
09/2015  
Page 1 of 26  
PI33XX-X1  
Contents  
Application Description.............................................21  
Output Voltage Trim .......................................... 21  
Soft-Start Adjust and Tracking ........................... 22  
Inductor Pairing ................................................. 22  
Layout Guidelines......................................................23  
Recommended PCB Footprint and Stencil ................24  
Package Drawings .....................................................25  
Warranty...................................................................26  
Order Information ......................................................3  
Absolute Maximum Ratings........................................4  
Block Diagram.............................................................4  
Pin Description............................................................5  
Package Pin-Out..........................................................5  
PI3311-X1 (1.0 Vout) Electrical Characteristics...........6  
PI3318-X1 (1.8 Vout) Electrical Characteristics...........9  
PI3312-X1 (2.5 Vout) Electrical Characteristics.........12  
PI3301-X1 (3.3 Vout) Electrical Characteristics.........15  
Functional Description..............................................18  
ENABLE (EN) .......................................................18  
Remote Sensing..................................................18  
Switching Frequency Synchronization................18  
Soft-Start ............................................................18  
Output Voltage Trim...........................................18  
Output Current Limit Protection ........................19  
Input Under-Voltage Lockout .............................19  
Input Over Voltage Lockout................................19  
Output Over Voltage Protection.........................19  
Over Temperature Protection ............................19  
Pulse Skip Mode (PSM).......................................19  
Variable Frequency Operation ...........................20  
Parallel Operation...............................................20  
I2C Interface Operation......................................20  
vicorpower.com  
Rev 1.3  
Cool-Power®  
800 735.6200  
09/2015  
Page 2 of 26  
PI33XX-X1  
Order Information  
Output Range  
Range  
Iout  
Max  
Cool-Power  
Package  
Transport Media  
Set  
PI3311-01-LGIZ  
PI3318-01-LGIZ  
PI3312-01-LGIZ  
PI3301-01-LGIZ  
1.0V  
1.8V  
2.5V  
3.3V  
1.0 to 1.4V  
1.4 to 2.0V  
2.0 to 3.1V  
2.3 to 4.1V  
15A  
15A  
15A  
15A  
TRAY  
TRAY  
TRAY  
TRAY  
10mm x 14mm 123-pin LGA  
10mm x 14mm 123-pin LGA  
10mm x 14mm 123-pin LGA  
10mm x 14mm 123-pin LGA  
I2C Functionality & Programmability  
PI3311-21-LGIZ  
PI3318-21-LGIZ  
PI3312-21-LGIZ  
PI3301-21-LGIZ  
1.0V  
1.8V  
2.5V  
3.3V  
1.0 to 1.4V  
1.4 to 2.0V  
2.0 to 3.1V  
2.3 to 4.1V  
15A  
15A  
15A  
15A  
TRAY  
TRAY  
TRAY  
TRAY  
10mm x 14mm 123-pin LGA  
10mm x 14mm 123-pin LGA  
10mm x 14mm 123-pin LGA  
10mm x 14mm 123-pin LGA  
vicorpower.com  
Rev 1.3  
Cool-Power®  
800 735.6200  
09/2015  
Page 3 of 26  
PI33XX-X1  
Absolute Maximum Ratings  
VIN  
-0.7V to 36V  
-0.7 to 36V, -4V for 5ns  
100mA  
VS1  
SGND  
PGD, SYNCO, SYNCI, EN, EAO, ADJ, TRK, ADR1, ADR2, SCL, SDA  
-0.3V to 5.5V / 5mA  
-0.3V to 5.5V  
-0.5V to 9V  
PI3311-X0-LGIZ  
PI3318-X0-LGIZ  
VOUT, REM  
PI3312-X0-LGIZ  
-0.8V to 13V  
PI3301-X0-LGIZ  
Storage Temperature  
-1.0V to 18V  
-65°C to 150°C  
-40°C to 125°C  
245°C  
Operating Junction Temperature  
Soldering Temperature for 20 seconds  
ESD Rating  
2kV HBM  
Notes: At 25°C ambient temperature. Stresses beyond these limits may cause permanent damage to the device. Operation at these  
conditions or conditions beyond those listed in the Electrical Specifications table is not guaranteed. All voltage nodes are referenced to  
PGND unless otherwise noted. Test conditions are per the specifications within the individual product electrical characteristics.  
Block Diagram  
Figure 1: Simplified Block Diagram  
(I2C pins SCL, SDA, ADR0, and ADR1 only active for PI33XX-21 device versions)  
vicorpower.com  
Rev 1.3  
Cool-Power®  
800 735.6200  
09/2015  
Page 4 of 26  
PI33XX-X1  
Pin Description  
Name  
SGND  
Number  
Description  
Signal ground: Internal logic ground for EA, TRK, SYNCI, SYNCO, ADJ and I2C (options)  
communication returns. SGND and PGND are star connected within the regulator package.  
Block 1  
PGND  
VIN  
Block 2  
Block 3  
Block 5  
Block 4  
A1  
Power ground: VIN and VOUT power returns  
Input voltage: and sense for UVLO, OVLO and feed forward ramp  
Output voltage: and sense for power switches and feed-forward ramp  
Switching node: and ZVS sense for power switches  
VOUT  
VS1  
PGD  
EAO  
Parallel Good: Used for parallel timing management intended for lead regulator.  
Error amp output: External connection for additional compensation and current sharing.  
A2  
Enable Input: Regulator enable control. Asserted high or left floating – regulator enabled;  
Asserted low, regulator output disabled. Polarity is programmable via I2C interface.  
EN  
A3  
A5  
B1  
REM  
ADJ  
Remote Sense: High side connection. Connect to output regulation point.  
Adjust input: An external resistor may be connected between ADJ pin and SGND or VOUT to trim  
the output voltage up or down.  
Soft-start and track input: An external capacitor may be connected between TRK pin and SGND  
to decrease the rate of rise during soft-start.  
TRK  
C1  
K3, A4  
K4  
NC  
No Connect: Leave pins floating.  
Synchronization output: Outputs a low signal for ½ of the minimum period for synchronization of  
other converters.  
SYNCO  
Synchronization input: Synchronize to the falling edge of external clock frequency. SYNCI is a high  
impedance digital input node and should always be connected to SGND when not in use.  
SYNCI  
K5  
SDA  
D1  
E1  
H1  
G1  
Data Line: Connect to SGND for PI33XX-10 and -11. For use with PI33XX-20 and -21 only.  
Clock Line: Connect to SGND for PI33XX-01. For use with PI33XX-21 only.  
Tri-state Address : No connect for PI33XX-01. For use with PI33XX-21 only.  
Tri-state Address : No connect for PI33XX-01. For use with PI33XX-21 only.  
SCL  
ADR1  
ADR0  
Package Pin-Out  
PGND  
Block 2  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Block 1: B2-4, C2-4, D2-3, E2-3, F1-3, G2-3,  
H2-3, J1-3, K1-2  
K
SGND  
Block 1  
J
H
G
F
VIN  
Block 3  
ADR1  
ADR0  
SGND  
SCL  
Block 2: A8-10, B8-10, C8-10, D8-10, E4-10,  
F4-10, G4-10, H4-10, J4-10, K6-10  
E
D
C
B
SDA  
Block 3: G12-14, H12-14, J12-14, K12-14  
TRK  
VS1  
Block 4  
ADJ  
Block 4: A12-14, B12-14, C12-14, D12-14,  
PGD  
A
E12-14,  
VOUT  
Block 5  
123-Lead LGA (10mm x 14mm)  
Block 5: A6-7, B6-7, C6-7, D6-7  
Top view  
vicorpower.com  
Rev 1.3  
Cool-Power®  
800 735.6200  
09/2015  
Page 5 of 26  
PI33XX-X1  
PI3311-X1 (1.0 Vout) Electrical Characteristics  
Specifications apply for -40C < TJ < 125C, Vin =24V, L1=85nH (Note 1) unless other conditions are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Conditions  
Input Specifications  
Minimum 1mA load  
required  
Vin = 24V, TC = 25°C,  
Iout=15A  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
8
24  
36  
V
740  
mA  
Input Current At Output Short  
(fault condition duty cycle)  
Note 2.  
25  
mA  
IIN_Short  
2
2.5  
Disabled  
Enabled (no load)  
Input Quiescent Current  
IQ_VIN  
VIN_SR  
mA  
Input Voltage Slew Rate  
Output Specifications  
Output Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
1
V/μs  
Note 2.  
Note 2.  
VOUT_DC  
VOUT_DC  
V
V
0.987  
1.0  
1.0  
1.013  
1.4  
Note 3.  
@25°C, 8V<Vin<36V  
@25°C, 0.5A<Iout<15A  
0.10  
0.10  
%
%
∆VOUT(∆VIN)  
Load Regulation  
∆VOUT(∆IOUT  
)
Iout=5A, Cout=8x100μF,  
20MHz BW Note 4.  
Output Voltage Ripple  
45  
mVp-p  
VOUT_AC  
Note 2.  
Continuous Output Current Range  
Current Limit  
0.001  
15  
A
A
IOUT_DC  
IOUT_CL  
18.0  
Protection  
VIN UVLO Start Threshold  
VIN UVLO Stop Threshold  
VIN UVLO Hysteresis  
VIN OVLO Start Threshold  
VIN OVLO Stop Threshold  
VIN OVLO Hysteresis  
VUVLO_START  
VUVLO_STOP  
VUVLO_HYS  
VOVLO_START  
VOVLO_STOP  
VOVLO_HYS  
7.10  
6.80  
7.60  
7.25  
0.35  
8.00  
7.60  
V
V
V
V
V
V
36.1  
37.0  
37.6  
38.4  
0.8  
Number of the  
switching freq cycles  
128  
140  
Cycles  
VIN UVLO/OVLO Fault Delay Time  
tf_DLY  
500  
20  
ns  
%
VIN UVLO/OVLO Response Time  
Output Over Voltage Protection  
Over-Temperature Fault Threshold  
Over-Temperature Restart  
Hysteresis  
tf  
Above VOUT  
Note 2.  
VOVP  
TOTP  
130  
135  
°C  
30  
°C  
TOTP_HYS  
Note 1: All parameters reflect regulator and inductor system  
performance. Measurements were made using a standard PI33XX  
evaluation board with 3x4” dimensions and 4 layer, 2oz copper.  
Refer to inductor pairing table within Application Description  
section for specific inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specifications  
by design, test correlation, characterization, and/or statistical  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characteristics when  
switching frequency or Vout is modified.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
vicorpower.com  
Rev 1.3  
Cool-Power®  
800 735.6200  
09/2015  
Page 6 of 26  
PI33XX-X1  
PI3311-X1 (1.0 Vout) Electrical Characterisꢀcs  
Specificaꢀons apply for -40 C < TJ < 125 C, Vin =24V, L1=85nH (Note 1) unless other condiꢀons are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Condiꢀons  
Timing  
Note 6.  
Switching Frequency  
Fault Restart Delay  
500  
30  
kHz  
fS  
ms  
tFR_DLY  
Sync In (SYNCI)  
Relave to set switching  
frequency. Note 3.  
Synchronizaon Frequency Range  
fSYNCI  
50  
110  
0.5  
%
V
SYNCI Threshold  
Sync Out (SYNCO)  
VSYNCI  
2.5  
Source 1mA  
Sink 1mA  
SYNCO High  
SYNCO Low  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
4.5  
V
V
20pF load  
SYNCO Rise Time  
10  
10  
ns  
20pF load  
SYNCO Fall Time  
tSYNCO_FT  
ns  
Soꢁ Start And Tracking  
Internal reference  
tracking range.  
0
1.04  
V
TRK Active Input Range  
VTRK  
1.2  
40  
V
TRK Max Output Voltage  
TRK Disable Threshold  
Charge Current (Soft – Start)  
Discharge Current (Fault)  
Soꢁ-Start Time  
VTRK_MAX  
VTRK_OV  
ITRK  
20  
60  
mV  
µA  
mA  
ms  
-70  
-50  
6.8  
2.2  
-30  
ITRK_DIS  
tSS  
CTRK = 0uF  
Enable  
High Threshold  
VEN_HI  
VEN_LO  
VEN_HYS  
0.9  
0.7  
1
1.1  
0.9  
V
V
Low Threshold  
0.8  
200  
Threshold Hysteresis  
100  
300  
mV  
With posiꢀve logic  
EN polarity  
With negaꢀve logic  
EN polarity  
With posiꢀve logic  
EN polarity  
With negaꢀve logic  
EN polarity  
Enable Pull-Up Voltage  
(oaꢀng, unfaulted)  
Enable Pull-Down Voltage  
(oaꢀng, faulted)  
VEN_PU  
VEN_PD  
IEN_SO  
IEN_SK  
2
0
V
V
Source Current  
Sink Current  
-50  
50  
µA  
µA  
Note 1: All parameters reect regulator and inductor system  
performance. Measurements were made using a standard PI33XX  
evaluaon board with 3x4” dimensions and 4 layer, 2oz copper.  
Refer to inductor pairing table within Applicaon Descripon  
secon for specic inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specicaꢀons  
by design, test correlaon, characterizaon, and/or staꢀsꢀcal  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characterisꢀcs when  
switching frequency or Vout is modied.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 7 of 26  
PI33XX-X1  
PI3311-X1 (1.0 Vout) Electrical Characteristics  
Efficiency at 25°C  
Transient Response: 7.5A to 15A, at 5A/µs  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
8Vin  
12Vin  
24Vin  
36Vin  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Load Current (A)  
Regulator and inductor performance  
331101  
24Vin to 1.0Vout, Cout = 8X 100μF Ceramic  
331102  
Vout (Ch2) = 100mV/Div, Iout (Ch3) = 5A/Div, 200uS/Div  
Short Circuit Test  
Output Ripple: 24Vin, 1.0Vout at 15A  
Vout (Ch2) = 500mV/Div, Iin (Ch4) = 500mA/Div, 2ms/Div 331103  
Cout = 8X 100µF Ceramic, Vout = 50mV/Div, 2.0us/Div  
331104  
Output ripple: 24Vin, 1.0Vout at 7A  
Switching Frequency vs. Load Current  
600  
500  
400  
300  
200  
8Vin  
12Vin  
24Vin  
36Vin  
100  
-
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Load Current (A)  
331105  
Cout = 8X 100µF Ceramic, Vout = 50mV/Div, 2.0us/Div  
331106  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 8 of 26  
PI33XX-X1  
PI3318-X1 (1.8 Vout) Electrical Characteristics  
Specifications apply for -40C < TJ < 125C, Vin =24V, L1=125nH (Note 1) unless other conditions are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Conditions  
Input Specifications  
Input Voltage  
VIN_DC  
IIN_DC  
8
24  
36  
V
Input Current  
1.25  
A
Iout=15A  
Input Current At Output Short  
(fault condition duty cycle)  
Note 2.  
45  
mA  
IIN_Short  
2
2.5  
Disabled  
Enabled (no load)  
Input Quiescent Current  
IQ_VIN  
VIN_SR  
mA  
Input Voltage Slew Rate  
Output Specifications  
Output Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
1
V/μs  
Note2.  
Note 2.  
VOUT_DC  
VOUT_DC  
V
V
1.773  
1.4  
1.8  
1.827  
2.0  
Note 3.  
@25°C, 8V<Vin<36V  
@25°C, 0.5A<Iout<15A  
0.10  
0.10  
%
%
∆VOUT(∆VIN)  
Load Regulation  
∆VOUT(∆IOUT  
)
Iout=5A, Cout=8x100μF,  
20MHz BW Note 4.  
Output Voltage Ripple  
30  
mVp-p  
VOUT_AC  
Note 2.  
Continuous Output Current Range  
Current Limit  
0
15  
A
A
IOUT_DC  
IOUT_CL  
18.0  
Protection  
VIN UVLO Start Threshold  
VIN UVLO Stop Threshold  
VIN UVLO Hysteresis  
VIN OVLO Start Threshold  
VIN OVLO Stop Threshold  
VIN OVLO Hysteresis  
VUVLO_START  
VUVLO_STOP  
VUVLO_HYS  
VOVLO_START  
VOVLO_STOP  
VOVLO_HYS  
7.10  
6.80  
7.60  
7.25  
0.35  
8.00  
7.60  
V
V
V
V
V
V
36.1  
37.0  
37.6  
38.4  
0.8  
Number of the  
switching freq cycles  
128  
140  
Cycles  
VIN UVLO/OVLO Fault Delay Time  
tf_DLY  
500  
20  
ns  
%
VIN UVLO/OVLO Response Time  
Output Over Voltage Protection  
Over-Temperature Fault Threshold  
Over-Temperature Restart  
Hysteresis  
tf  
Above VOUT  
Note 2.  
VOVP  
TOTP  
130  
135  
°C  
30  
°C  
TOTP_HYS  
Note 1: All parameters reflect regulator and inductor system  
performance. Measurements were made using a standard PI33XX  
evaluation board with 3x4” dimensions and 4 layer, 2oz copper.  
Refer to inductor pairing table within Application Description  
section for specific inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specifications  
by design, test correlation, characterization, and/or statistical  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characteristics when  
switching frequency or Vout is modified.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
vicorpower.com  
Rev 1.3  
Cool-Power®  
800 735.6200  
09/2015  
Page 9 of 26  
PI33XX-X1  
PI3318-X1 (1.8 Vout) Electrical Characteristics  
Specifications apply for -40C < TJ < 125C, Vin =24V, L1=125nH (Note 1) unless other conditions are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Conditions  
Timing  
Note 6.  
Switching Frequency  
Fault Restart Delay  
550  
30  
kHz  
ms  
fS  
tFR_DLY  
Sync In (SYNCI)  
Relative to set switching  
frequency. Note 3.  
Synchronization Frequency Range  
∆fSYNCI  
VSYNCI  
50  
110  
0.5  
%
V
SYNCI Threshold  
Sync Out (SYNCO)  
2.5  
Source 1mA  
Sink 1mA  
SYNCO High  
SYNCO Low  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
4.5  
V
V
20pF load  
SYNCO Rise Time  
10  
10  
ns  
20pF load  
SYNCO Fall Time  
tSYNCO_FT  
ns  
V
Soft Start And Tracking  
Internal reference  
tracking range.  
0
1.04  
TRK Active Input Range  
VTRK  
1.2  
40  
V
TRK Max Output Voltage  
TRK Disable Threshold  
Charge Current (Soft – Start)  
Discharge Current (Fault)  
Soft-Start Time  
VTRK_MAX  
VTRK_OV  
ITRK  
20  
60  
mV  
µA  
mA  
ms  
-70  
-50  
6.8  
2.2  
-30  
ITRK_DIS  
tSS  
CTRK = 0uF  
Enable  
High Threshold  
VEN_HI  
VEN_LO  
VEN_HYS  
0.9  
0.7  
1
1.1  
0.9  
V
V
Low Threshold  
0.8  
200  
Threshold Hysteresis  
100  
300  
mV  
Enable Pull-Up Voltage  
(floating, unfaulted)  
Enable Pull-Down Voltage  
(floating, faulted)  
VEN_PU  
2
0
V
V
VEN_PD  
IEN_SO  
IEN_SK  
Source Current  
-50  
50  
µA  
µA  
Sink Current  
Note 1: All parameters reflect regulator and inductor system  
performance. Measurements were made using a standard PI33XX  
evaluation board with 3x4” dimensions and 4 layer, 2oz copper.  
Refer to inductor pairing table within Application Description  
section for specific inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specifications  
by design, test correlation, characterization, and/or statistical  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characteristics when  
switching frequency or Vout is modified.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 10 of 26  
PI33XX-X1  
PI3318-X1 (1.8 Vout) Electrical Characteristics  
Efficiency at 25°C  
Transient Response: 7A to 15A, at 5A/µs  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
8Vin  
12Vin  
24Vin  
36Vin  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Load Current (A)  
Regulator and inductor performance  
331801  
24Vin to 1.8Vout, Cout = 8X 100µF Ceramic  
331802  
Vout (Ch3) = 100mV/Div, Iin (Ch4) = 10A/Div, 80us/Div  
Short Circuit Test  
Output Ripple: 24Vin, 1.8Vout at 15A  
Vout (Ch3) = 500mV/Div, Iin (Ch2) = 1A/Div, 1ms/Div  
331803  
Cout = 8X 100µF Ceramic, Vout = 20mV/Div, 2.0us/Div  
331804  
Switching Frequency vs. Load Current  
Output ripple: 24Vin, 1.8Vout at 7.5A  
600  
500  
400  
300  
200  
100  
0
8Vin  
12Vin  
24Vin  
36Vin  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Load Current(A)  
Cout = 8X 100µF Ceramic, Vout = 20mV/Div, 2.0us/Div  
331806  
331805  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 11 of 26  
PI33XX-X1  
PI3312-X1 (2.5 Vout) Electrical Characteristics  
Specifications apply for -40C < TJ < 125C, Vin =24V, L1=125nH (Note 1) unless other conditions are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Conditions  
Input Specifications  
Input Voltage  
Note 7.  
VIN_DC  
IIN_DC  
8
24  
36  
V
A
Vin = 24V, TC = 25°C,  
Iout=15A  
Input Current  
1.7  
Input Current At Output Short  
(fault condition duty cycle)  
Note 2.  
60  
mA  
IIN_Short  
2
2.5  
Disabled  
Enabled (no load)  
Input Quiescent Current  
IQ_VIN  
VIN_SR  
mA  
Input Voltage Slew Rate  
Output Specifications  
Output Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
1
V/μs  
Note 2.  
Note 2.  
VOUT_DC  
VOUT_DC  
V
V
2.465  
2.0  
2.5  
2.5  
0.10  
0.10  
2.535  
3.1  
Note 3. Note 7.  
@25°C, 8V<Vin<36V  
@25°C, 0.5A<Iout<15A  
%
%
∆VOUT (∆VIN)  
Load Regulation  
∆VOUT (∆IOUT  
)
Iout=5A, Cout=8x100μF,  
20MHz BW Note 4.  
Output Voltage Ripple  
28  
mVp-p  
VOUT_AC  
Note 2. Note 7.  
Continuous Output Current Range  
Current Limit  
0
15  
A
A
IOUT_DC  
IOUT_CL  
18.0  
Protection  
VIN UVLO Start Threshold  
VIN UVLO Stop Threshold  
VIN UVLO Hysteresis  
VIN OVLO Start Threshold  
VIN OVLO Stop Threshold  
VIN OVLO Hysteresis  
VUVLO_START  
VUVLO_STOP  
VUVLO_HYS  
VOVLO_START  
VOVLO_STOP  
VOVLO_HYS  
7.10  
6.80  
7.60  
7.25  
0.35  
8.00  
7.60  
V
V
V
V
V
V
36.1  
37.0  
37.6  
38.4  
0.8  
Number of the  
switching freq cycles  
128  
140  
Cycles  
VIN UVLO/OVLO Fault Delay Time  
tf_DLY  
500  
20  
ns  
%
VIN UVLO/OVLO Response Time  
Output Over Voltage Protection  
Over-Temperature Fault Threshold  
Over-Temperature Restart  
Hysteresis  
tf  
Above VOUT  
Note 2.  
VOVP  
TOTP  
130  
135  
°C  
30  
°C  
TOTP_HYS  
Note 1: All parameters reflect regulator and inductor system  
performance. Measurements were made using a standard PI33XX  
evaluation board with 3x4” dimensions and 4 layer, 2oz copper.  
Refer to inductor pairing table within Application Description  
section for specific inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specifications  
by design, test correlation, characterization, and/or statistical  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characteristics when  
switching frequency or Vout is modified.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
Note 7: Minimum 5V between Vin-Vout must be maintained or a  
minimum load of 1mA required.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 12 of 26  
PI33XX-X1  
PI3312-X1 (2.5 Vout) Electrical Characteristics  
Specifications apply for -40C < TJ < 125C, Vin =24V, L1=125nH (Note 1) unless other conditions are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Conditions  
Timing  
Note 6.  
Switching Frequency  
Fault Restart Delay  
650  
30  
kHz  
ms  
fS  
tFR_DLY  
Sync In (SYNCI)  
Relative to set switching  
frequency. Note 3.  
Synchronization Frequency Range  
∆fSYNCI  
VSYNCI  
50  
110  
0.5  
%
V
SYNCI Threshold  
Sync Out (SYNCO)  
2.5  
Source 1mA  
Sink 1mA  
SYNCO High  
SYNCO Low  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
4.5  
V
V
20pF load  
SYNCO Rise Time  
10  
10  
ns  
20pF load  
SYNCO Fall Time  
tSYNCO_FT  
ns  
V
Soft Start And Tracking  
Internal reference  
tracking range.  
0
1.04  
TRK Active Input Range  
VTRK  
1.2  
40  
V
TRK Max Output Voltage  
TRK Disable Threshold  
Charge Current (Soft – Start)  
Discharge Current (Fault)  
Soft-Start Time  
VTRK_MAX  
VTRK_OV  
ITRK  
20  
60  
mV  
µA  
mA  
ms  
-70  
-50  
6.8  
2.2  
-30  
ITRK_DIS  
tSS  
CTRK = 0uF  
Enable  
High Threshold  
VEN_HI  
VEN_LO  
VEN_HYS  
0.9  
0.7  
1
1.1  
0.9  
V
V
Low Threshold  
0.8  
200  
Threshold Hysteresis  
100  
300  
mV  
Enable Pull-Up Voltage  
(floating, unfaulted)  
Enable Pull-Down Voltage  
(floating, faulted)  
VEN_PU  
2
0
V
V
VEN_PD  
IEN_SO  
IEN_SK  
Source Current  
-50  
50  
µA  
µA  
Sink Current  
Note 1: All parameters reflect regulator and inductor system  
performance. Measurements were made using a standard PI33XX  
evaluation board with 3x4” dimensions and 4 layer, 2oz copper.  
Refer to inductor pairing table within Application Description  
section for specific inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specifications  
by design, test correlation, characterization, and/or statistical  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characteristics when  
switching frequency or Vout is modified.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
Note 7: Minimum 5V between Vin-Vout must be maintained or a  
minimum load of 1mA required.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 13 of 26  
PI33XX-X1  
PI3312-X1 (2.5 Vout) Electrical Characteristics  
Efficiency at 25°C  
Transient Response: 7.5A to 15A, at 5A/µs  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
8Vin  
12Vin  
24Vin  
36Vin  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Load Current (A)  
Regulator and inductor performance  
331201  
24Vin to 2.5Vout, Cout = 8 x 100µF Ceramic  
331202  
Vout (Ch1) = 200mV/Div, Iout (Ch4) = 5A/Div, 200us/Div  
Output Ripple: 24Vin, 2.5Vout at 15A  
Short Circuit  
Vout (Ch1) = 1V/Div, Iin (Ch4) = 1A/Div, 800us/Div  
331203  
Vout = 50mV/Div, 4.0us/Div, Cout = 8 x 100µF Ceramic  
331204  
Output Ripple: 24Vin, 2.5Vout at 7.5A  
Switching Frequency vs. Load Current  
700  
600  
500  
400  
300  
8Vin  
200  
100  
0
12Vin  
24Vin  
36Vin  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Load Current (A)  
331205  
Vout = 50mV/Div, 4.0us/Div, Cout = 8 x 100µF Ceramic  
331206  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 14 of 26  
PI33XX-X1  
PI3301-X1 (3.3 Vout) Electrical Characteristics  
Specifications apply for -40C < TJ < 125C, Vin =24V, L1=155nH (Note 1) unless other conditions are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Conditions  
Input Specifications  
Input Voltage  
Note 7.  
VIN_DC  
IIN_DC  
8
24  
36  
V
A
Vin = 24V, TC = 25°C,  
Iout=15A  
Input Current  
2.25  
Input Current At Output Short  
(fault condition duty cycle)  
Note 2.  
75  
mA  
IIN_Short  
2
2.5  
Disabled  
Enabled (no load)  
Input Quiescent Current  
IQ_VIN  
VIN_SR  
mA  
Input Voltage Slew Rate  
Output Specifications  
Output Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
1
V/μs  
Note 2.  
Note 2.  
VOUT_DC  
VOUT_DC  
V
V
3.25  
2.3  
3.30  
3.3  
0.10  
0.10  
3.36  
4.1  
Note 3. Note 7.  
@25°C, 8<Vin<36V  
@25°C, 0.5A<Iout<15A  
%
%
∆VOUT(∆VIN)  
Load Regulation  
∆VOUT(∆IOUT  
)
Iout=5A, Cout=8x100μF,  
20MHz BW Note 4.  
Output Voltage Ripple  
37.5  
mVp-p  
VOUT_AC  
Note 2. Note 7.  
Continuous Output Current Range  
Current Limit  
0
15  
A
A
IOUT_DC  
IOUT_CL  
18.0  
Protection  
VIN UVLO Start Threshold  
VIN UVLO Stop Threshold  
VIN UVLO Hysteresis  
VIN OVLO Start Threshold  
VIN OVLO Stop Threshold  
VIN OVLO Hysteresis  
VUVLO_START  
VUVLO_STOP  
VUVLO_HYS  
VOVLO_START  
VOVLO_STOP  
VOVLO_HYS  
7.10  
6.80  
7.60  
7.25  
0.35  
8.00  
7.60  
V
V
V
V
V
V
36.1  
37.0  
37.6  
38.4  
0.8  
Number of the  
switching freq cycles  
128  
140  
Cycles  
VIN UVLO/OVLO Fault Delay Time  
tf_DLY  
500  
20  
ns  
%
VIN UVLO/OVLO Response Time  
Output Over Voltage Protection  
Over-Temperature Fault Threshold  
Over-Temperature Restart  
Hysteresis  
tf  
Above VOUT  
Note 2.  
VOVP  
TOTP  
130  
135  
°C  
30  
°C  
TOTP_HYS  
Note 1: All parameters reflect regulator and inductor system  
performance. Measurements were made using a standard PI33XX  
evaluation board with 3x4” dimensions and 4 layer, 2oz copper.  
Refer to inductor pairing table within Application Description  
section for specific inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specifications  
by design, test correlation, characterization, and/or statistical  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characteristics when  
switching frequency or Vout is modified.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 15 of 26  
PI33XX-X1  
PI3301-X1 (3.3 Vout) Electrical Characteristics  
Specifications apply for -40C < TJ < 125C, Vin =24V, L1=155nH (Note 1) unless other conditions are noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Conditions  
Timing  
Note 6.  
Switching Frequency  
Fault Restart Delay  
650  
30  
kHz  
ms  
fS  
tFR_DLY  
Sync In (SYNCI)  
Relative to set switching  
frequency. Note 3.  
Synchronization Frequency Range  
∆fSYNCI  
VSYNCI  
50  
110  
0.5  
%
V
SYNCI Threshold  
Sync Out (SYNCO)  
2.5  
Source 1mA  
Sink 1mA  
SYNCO High  
SYNCO Low  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
4.5  
V
V
20pF load  
SYNCO Rise Time  
10  
10  
ns  
20pF load  
SYNCO Fall Time  
tSYNCO_FT  
ns  
V
Soft Start And Tracking  
Internal reference  
tracking range.  
0
1.04  
TRK Active Input Range  
VTRK  
1.2  
40  
V
TRK Max Output Voltage  
TRK Disable Threshold  
Charge Current (Soft – Start)  
Discharge Current (Fault)  
Soft-Start Time  
VTRK_MAX  
VTRK_OV  
ITRK  
20  
60  
mV  
µA  
mA  
ms  
-70  
-50  
6.8  
2.2  
-30  
ITRK_DIS  
tSS  
CTRK = 0uF  
Enable  
High Threshold  
VEN_HI  
VEN_LO  
VEN_HYS  
0.9  
0.7  
1
1.1  
0.9  
V
V
Low Threshold  
0.8  
200  
Threshold Hysteresis  
100  
300  
mV  
Enable Pull-Up Voltage  
(floating, unfaulted)  
Enable Pull-Down Voltage  
(floating, faulted)  
VEN_PU  
2
0
V
V
VEN_PD  
IEN_SO  
IEN_SK  
Source Current  
-50  
50  
µA  
µA  
Sink Current  
Note 1: All parameters reflect regulator and inductor system  
performance. Measurements were made using a standard PI33XX-  
X1 evaluation board with 3x4” dimensions and 4 layer, 2oz  
copper. Refer to inductor pairing table within Application  
Description section for specific inductor manufacturer and value.  
Note 2: Regulator is assured to meet performance specifications  
by design, test correlation, characterization, and/or statistical  
process control.  
Note 3: Output current capability may be limited and other  
performance may vary from noted electrical characteristics when  
switching frequency or Vout is modified.  
Note 4: Refer to Output Ripple plots.  
Note 5: Refer to Load Current vs. Ambient Temperature curves.  
Note 6: Refer to Switching Frequency vs. Load current curves.  
Note 7: Minimum 5V between Vin-Vout must be maintained or a  
minimum load of 1mA required.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 16 of 26  
PI33XX-X1  
PI3301-X1 (3.3 Vout) Electrical Characteristics  
Efficiency at 25°C  
Transient Response: 7.5 to 15A, at 5A/µs  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
8Vin  
12Vin  
24Vin  
36Vin  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Load Current (A)  
Regulator and inductor performance  
330101  
24Vin to 3.3Vout, Cout = 8 x 100µF Ceramic  
330102  
Vout (Ch1) = 200mV/Div, Iout (Ch4) = 5A/Div, 200us/Div  
Output Ripple: 24Vin, 3.3Vout at 15A  
Short Circuit  
Vout = 50mV/Div, 2.0us/Div, Cout = 8 x 100µF Ceramic  
330104  
Vout (Ch1) = 1V/Div, Iout (Ch4) = 1A/Div, 800us/Div  
330103  
Output Ripple: 24Vin, 3.3Vout at 7.5A  
Switching Frequency vs. Load Current  
800  
700  
600  
500  
400  
8Vin  
300  
12Vin  
200  
24Vin  
100  
0
36Vin  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Load Current (A)  
330105  
Vout = 50mV/Div, 2.0us/Div, Cout = 8 x 100µF Ceramic  
330106  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 17 of 26  
PI33XX-X1  
remote sensing to compensate additional  
distribution losses in the system. The REM pin  
should not be left floating.  
Functional Description  
The PI33XX-X1 is a family of highly integrated ZVS-  
Buck regulators. The PI33XX-X1 has a set output  
voltage that is trimmable within a prescribed range  
shown in Table 1. Performance and maximum  
output current are characterized with a specific  
external power inductor (see Table 5).  
Switching Frequency Synchronization  
The SYNCI input allows the user to synchronize the  
controller switching frequency by an external clock  
referenced to SGND.  
The external clock can  
synchronize the unit between 50% and 110% of the  
preset switching frequency (fS). For PI33XX-21 device  
versions only, the phase delay can be programmed  
via I2C bus with respect to the clock  
applied at SYNCI pin. Phase delay allows PI33XX-X1  
regulators to be paralleled and operate in an  
interleaving mode.  
L1  
Vin  
VS1  
Vin  
Vout  
Cin  
PI33XX  
Cout  
Vout  
PGND  
REM  
SYNCI  
SYNCO  
EN  
TRK  
ADJ  
EAO  
The PI33XX-X1 default for SYNCI is to sync with  
respect to the falling edge of the applied clock  
providing 180° phase shift from SYNCO. This allows  
for the paralleling of two PI33XX-X1 devices without  
the need for further user programming or external  
sync clock circuitry. The user can change the SYNCI  
polarity to sync with the external clock rising edge  
via the I2C data bus (PI33XX-21 device versions only).  
Figure 2 - ZVS-Buck with required components  
For basic operation, Figure 2 shows the connections  
and components required. No additional design or  
settings are required.  
ENABLE (EN)  
EN is the enable pin of the converter. The EN Pin is  
referenced to SGND and permits the user to turn the  
converter on or off. The EN default polarity is a  
positive logic assertion. If the EN pin is left floating  
or asserted high, the converter output is enabled.  
Pulling EN pin below 0.8 Vdc with respect to SGND  
will disable the regulator output.  
When using the internal oscillator, the SYNCO pin  
provides a 5V clock that can be used to sync other  
regulators. Therefore, one PI33XX-X1 can act as the  
lead regulator and have additional PI33XX-X1s  
running in parallel and interleaved.  
Soft-Start  
The EN input polarity can be programmed (PI33XX-  
21 device versions only) via the I2C data bus. When  
the EN pin polarity is programmed for negative logic  
assertion; and if the EN pin is left floating, the  
regulator output is enabled. Pulling the EN pin above  
1.0 Vdc with respect to SGND, will disable the  
regulator output.  
The PI33XX-X1 includes an internal soft-start  
capacitor to ramp the output voltage in 2ms from 0V  
to full output voltage. Connecting an external  
capacitor from the TRK pin to SGND will increase the  
start-up ramp period. See, “Soft Start Adjustment  
and Track,” in the Applications Description section  
for more details.  
Remote Sensing  
Output Voltage Trim  
An internal 100Ω resistor is connected between REM  
pin and VOUT pin to provide regulation when the  
REM connection is broken. Referring to Figure 2, it is  
important to note that L1 and Cout are the output  
filter and the local sense point for the power supply  
output. As such, the REM pin should be connected  
at Cout as the default local sense connection unless  
The PI33XX-X1 output voltage can be trimmed up  
from the preset output by connecting a resistor from  
ADJ pin to SGND and can be trimmed down by  
connecting a resistor from ADJ pin to VOUT. The  
Table 2 defines the voltage ranges for the PI33XX-X1  
family.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 18 of 26  
PI33XX-X1  
Input Over Voltage Lockout  
Output Voltage  
Range  
If VIN exceeds the input Over Voltage Lockout  
(OVLO) threshold (VOVLO), while the regulator is  
running, the PI33XX-X1 will complete the current  
cycle and stop switching. The system will resume  
operation after the Fault Restart Delay. The OVLO  
fault is stored in a Fault Register and can be read and  
cleared (PI33XX-21 device versions only) via I2C data  
bus.  
Device  
Set  
PI3311-X1-LGIZ  
PI3318-X1-LGIZ  
PI3312-X1-LGIZ  
PI3301-X1-LGIZ  
1.0V  
1.8V  
2.5V  
3.3V  
1.0 to 1.4V  
1.4 to 2.0V  
2.0 to 3.1V  
2.3 to 4.1V  
Table 2 - PI33XX-X1 family output voltage ranges.  
.
Output Over Voltage Protection  
Output Current Limit Protection  
The PI33XX-X1 family is equipped with output Over  
Voltage Protection (OVP) to prevent damage to  
input voltage sensitive devices. If the output voltage  
exceeds 20% of its set regulated value, the regulator  
will complete the current cycle, stop switching and  
issue an OVP fault. The system will resume  
operation once the output voltage falls below the  
OVP threshold and after Fault Restart Delay. The  
OVP fault is stored in a Fault Register and can be  
read and cleared (PI33XX-21 device versions only) via  
I2C data bus.  
PI33XX-X1 has two methods implemented to protect  
from output short or over current condition.  
Slow Current Limit protection: prevents the output  
load from sourcing current higher than the  
regulator’s maximum rated current. If the output  
current exceeds the Current Limit (IOUT_CL) for  
1024us, a slow current limit fault is initiated and the  
regulator is shutdown which eliminates output  
current flow. After Fault Restart Delay (tFR_DLY), a  
soft-start cycle is initiated. This restart cycle will be  
repeated indefinitely until the excessive load is  
removed.  
Over Temperature Protection  
The internal package temperature is monitored to  
prevent internal components from reaching their  
Fast Current Limit protection: PI33XX-X1 monitors  
the regulator inductor current pulse-by-pulse to  
prevent the output from supplying very high current  
due to a sudden low impedance short. If the  
regulator senses a high inductor current pulse, it will  
initiate a fault and stop switching until Fault Restart  
Delay ends and then initiate a soft-start cycle.  
thermal maximum.  
If the Over Temperature  
Protection Threshold (OTP) is exceeded (TOTP), the  
regulator will complete the current switching cycle,  
enter a low power mode, set a fault flag, and will  
soft-start when the internal temperature falls below  
Over-Temperature Restart Hysteresis (TOTP_HYS). The  
OTP fault is stored in a Fault Register and can be  
read and cleared (PI33XX-21 device versions only) via  
I2C data bus.  
Both the Fast and Slow current limit faults are stored  
in a Fault Register and can be read and cleared  
(PI33XX-21 device versions only) via I2C data bus.  
Input Under-Voltage Lockout  
Pulse Skip Mode (PSM)  
If VIN falls below the input Under Voltage Lockout  
(UVLO) threshold, the regulator will enter a low  
power state and initiate a fault. The system will  
restart once the input voltage is reestablished and  
after the Fault Restart Delay. A UVLO fault is stored  
in a Fault Register and can be read and cleared  
(PI33XX-21 device versions only) via I2C data bus.  
PI33XX-X1 features a PSM to achieve high efficiency  
at light loads. The regulators are setup to skip pulses  
if EAO falls below a PSM threshold. Depending on  
conditions and component values, this may result in  
single pulses or several consecutive pulses followed  
by skipped pulses. Skipping cycles significantly  
reduces gate drive power and improves light load  
efficiency. The regulator will leave PSM once the  
EAO rises above the Skip Mode threshold.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 19 of 26  
PI33XX-X1  
lead regulator’s SYNCI (#1) pin, as shown in Figure 3.  
In this configuration, at system soft-start, the PGD  
pin pulls SYNCI low forcing the lead regulator to  
initialize the open-loop startup synchronization.  
Once the regulators reach regulation, SYNCI is  
released and the system is now synchronized in a  
closed-loop configuration which allows the system to  
adjust, on the fly, when any of the individual  
regulators begin to enter variable frequency mode in  
the loop.  
Variable Frequency Operation  
Each PI33XX-X1 is preprogrammed to a base  
operating frequency, with respect to the power  
stage inductor (see Table 5), to operate at peak  
efficiency across line and load variations. At low line  
and high load applications, the base frequency will  
decrease to accommodate these extreme operating  
ranges.  
By stretching the frequency, the ZVS  
operation is preserved throughout the total input  
line voltage range therefore maintaining optimum  
efficiency.  
Multi-phasing three regulators is possible (PI33XX-21  
only) with no change to the basic single-phase  
design. For more information about how to program  
phase delays within the regulator, please refer to  
Picor application note PI33XX-2X Multi-Phase Design  
Guide.  
Parallel Operation  
Paralleling modules can be used to increase the  
output current capability of a single power rail and  
reduce output voltage ripple.  
L1  
I2C Interface Operation  
Vin  
VS1  
Vin  
Vout  
Vout  
Cin  
Cout  
PGND  
PI33XX-21 devices provide an I2C digital interface  
that enables the user to program the EN pin polarity  
(from high to low assertion) and switching frequency  
synchronization phase/delay. These are one time  
programmable options to the device.  
ZVS Buck  
(#1)  
REM  
PGD  
SYNCI  
SYNCO  
EN  
R1  
SYNCO(#2)  
SYNCI(#2)  
EN(#2)  
EAO(#2)  
TRK(#2)  
EAO  
TRK  
SGND  
L1  
Vin  
VS1  
Vin  
Vout  
Cin  
Cout  
PGND  
Also, the PI33XX-21 devices allow for dynamic Vout  
margining via I2C that is useful during development  
(settings stored in volatile memory only and not  
retained by the device). The PI33XX-21 also have the  
option for fault telemetry including:  
ZVS Buck  
PGD  
REM  
(#2)  
SYNCO(#1)  
SYNCI  
SYNCO  
EN  
To R1  
EN(#1)  
EAO(#1)  
TRK(#1)  
EAO  
TRK  
SGND  
Figure 3 - PI33XX-X1 parallel operation  
Over temperature protection  
Fast/Slow current limit  
Output voltage high  
Input overvoltage  
By connecting the EAO pins and SGND pins of each  
module together the units will share the current  
equally. When the TRK pins of each unit are  
connected together, the units will track each other  
during soft-start and all unit EN pins have to be  
released to allow the units to start (See Figure 3).  
Also, any fault event in any regulator will disable the  
other regulators. The two regulators will be out of  
phase with each other reducing output ripple (refer  
to Switching Frequency Synchronization).  
Input undervoltage  
For more information about how to utilize the I2C  
interface please refer to Picor application note  
PI33XX-2X I2C Digital Interface Guide.  
To provide synchronization between regulators over  
the entire operational frequency range, the Parallel  
Good (PGD) pin must be connected to the lead  
regulator’s (#1) SYNCI pin and a 2.5kΩ Resistor, R1,  
must be placed between SYNCO (#2) return and the  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 20 of 26  
PI33XX-X1  
Application Description  
Output Voltage Trim  
Device  
R1  
1k  
0.806k  
1.5k  
R2  
R4  
The PI33XX-X1 family of Buck Regulators provides  
four common output voltages: 1.0V, 1.8V, 2.5V, and  
3.3V. A post-package trim step is implemented to  
offset any resistor divider network errors ensuring  
maximum output accuracy. With a single resistor  
connected from the ADJ pin to SGND or REM, each  
device’s output can be varied above or below the  
nominal set voltage (with the exception of the  
PI3311-X1 which can only be above the set voltage  
of 1V).  
PI3311-X1-LGIZ  
PI3318-X1-LGIZ  
PI3312-X1-LGIZ  
PI3301-X1-LGIZ  
Open 100  
1.0k  
1.0k  
100  
100  
2.61k  
1.13k 100  
Table 4 - PI33XX-X1 Internal divider values  
By choosing an output voltage value within the  
ranges stated in Table 3, VOUT can simply be  
adjusted up or down by selecting the proper R_high  
or R_low value, respectively.  
The following  
equations can be used to calculate R_high and R_low  
values:  
Output Voltage  
Device  
Set  
Range  
PI3311-X1-LGIZ  
PI3318-X1-LGIZ  
PI3312-X1-LGIZ  
PI3301-X1-LGIZ  
1.0V  
1.8V  
2.5V  
3.3V  
1.0 to 1.4V  
1.4 to 2.0V  
2.0 to 3.1V  
2.3 to 4.1V  
 
ꢀꢁꢂꢀ  
ꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍ(ꢄ)  
(
)
ꢅꢆꢇꢈ    
 ꢋ  
   
 ꢄ  
Table 3 - PI33XX-X1 family output voltage ranges  
 
ꢎꢏꢐ  
ꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍ(ꢋ)  
 ꢄ  
   
(
)
 ꢋ ꢅꢆꢇꢈ    
The remote pin (REM) should always be connected  
to the VOUT pin, if not used, to prevent an output  
voltage offset. Figure 4 shows the internal feedback  
voltage divider network.  
If, for example, a 4.0V output is needed, the user  
should choose the regulator with a trim range  
covering 4.0V from Table 3. For this example, the  
PI3301 is selected (3.3V set voltage). First step  
would be to use Equation (1) to calculate R_high  
since the required output voltage is higher than the  
regulator set voltage. The resistor-divider network  
values for the PI3301 are can be found in Table 4 and  
are R1=2.61kand R2=1.13kΩ. Inserting these  
values in to Equation (1), R_high is calculated as  
follows:  
VOUT  
R4  
REM  
R_low  
R1  
R2  
ADJ  
-
+
R_high  
1.0Vdc  
SGND  
ꢑꢒꢓꢔꢕ   
(
)
ꢖꢒꢗ    
ꢋꢒꢘꢄꢕ  
   
Figure 4 - Internal resistor divider network  
ꢄꢒꢄꢑꢕ  
Resistor R-high would be connected as in Figure 4 to  
achieve the 4.0V regulator output. No R_low resistor  
would be used since in this example the trim is  
above the regulator set voltage.  
R1, R2, and R4 are all internal 1.0 % resistors and  
R_low and R_high are external resistors for which  
the designer can add to modify VOUT to a desired  
output.  
The internal resistor value for each  
regulator is listed below in Table 4.  
The PI3311-X1 output voltage can only be trimmed  
higher than the factory 1V setting. The following  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 21 of 26  
PI33XX-X1  
equation (3) can be used to calculate Rhigh values for  
the PI3311-X0 regulators.  
through a divider (Figure 6) with the same ratio as  
the slave’s feedback divider (see Table 4 for values).  
Rꢀꢁꢂꢀ(ꢙꢚ)  
ꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍꢍ(ꢑ)ꢍꢍꢍ  
Master VOUT  
(
)
ꢅꢆꢇꢈ    
R1  
PI33XX  
Soft-Start Adjust and Tracking  
TRK  
The TRK pin offers a means to increase the  
regulator’s soft-start time or to track with additional  
regulators. The soft-start slope is controlled by an  
internal capacitor and a fixed charge current to  
provide a Soft-Start Time tSS for all PI33XX-X1  
Slave  
R2  
SGND  
Figure 6 - Voltage divider connections for direct tracking  
regulators.  
By adding an additional external  
All connected regulators’ soft-start slopes will track  
with this method. Direct tracking timing is  
demonstrated in Figure 5 (b). All tracking regulators  
should have their Enable (EN) pins connected  
together to work properly.  
capacitor to the TRK pin, the soft-start time can be  
increased further. The following equation can be  
used to calculate the proper capacitor for a desired  
soft-start times:  
ꢜꢝꢞ  ꢜꢝꢞ  ꢜꢝꢞ  ꢄꢗꢗꢢꢄꢗꢣꢤ  
(
)
Inductor Pairing  
Where, tTRK is the soft-start time and ITRK is a 50uA  
internal charge current (see Electrical Characteristics  
for limits).  
The PI33XX-X1 utilizes an external inductor. This  
inductor has been optimized for maximum efficiency  
performance. Table 5 details the specific inductor  
value and part number utilized for each PI33XX-X1  
device which are manufactured by Eaton.Data sheets  
are available at http://www.cooperindustries.com.  
There is typically either proportional or direct  
tracking implemented within  
a
design. For  
proportional tracking between several regulators at  
startup, simply connect all devices TRK pins  
together. This type of tracking will force all  
connected regulators to startup and reach regulation  
at the same time (see Figure 5 (a)).  
Inductor  
[nH]  
85  
125  
125  
Inductor  
Device  
Manufacturer  
Part Number  
FPV1006-85-R  
FPV1006-125-R  
FPV1006-125-R  
FPV1006-150-R  
PI3311-X1  
PI3318-X1  
PI3312-X1  
PI3301-X1  
Eaton  
Eaton  
Eaton  
Eaton  
VOUT 1  
VOUT 2  
150  
Table 5 - PI33XX-X1 Inductor pairing  
(a)  
Master VOUT  
VOUT 2  
(b)  
t
Figure 5 - PI33XX-X1 tracking methods  
For Direct Tracking, choose the regulator with the  
highest output voltage as the master and connect  
the master to the TRK pin of the other regulators  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 22 of 26  
PI33XX-X1  
When Q1 is on and Q2 is off, the majority of CIN’s  
current is used to satisfy the output load and to  
recharge the COUT capacitors. When Q1 is off and  
Q2 is on, the load current is supplied by the inductor  
and the COUT capacitor as shown in Figure 11.  
During this period CIN is also being recharged by the  
VIN. Minimizing CIN loop inductance is important to  
reduce peak voltage excursions when Q1 turns off.  
Also, the difference in area between the CIN loop  
and COUT loop is vital to minimize switching and  
GND noise.  
Layout Guidelines  
To optimize maximum efficiency and low noise  
performance from a PI33XX-X1 design, layout  
considerations are necessary. Reducing trace  
resistance and minimizing high current loop returns  
along with proper component placement will  
contribute to optimized performance.  
A typical buck converter circuit is shown in Figure 9.  
The potential areas of high parasitic inductance and  
resistance are the circuit return paths, shown as LR  
below.  
Figure 9 - Typical Buck Converter  
Figure 11 - Current flow: Q2 closed  
The path between the COUT and CIN capacitors is of  
particular importance since the AC currents are  
flowing through both of them when Q1 is turned on.  
Figure 10, schematically, shows the reduced trace  
length between input and output capacitors. The  
shorter path lessens the effects that copper trace  
parasitics can have on the PI33XX-X1 performance.  
The recommended component placement, shown in  
Figure 12, illustrates the tight path between CIN and  
COUT (and VIN and VOUT) for the high AC return  
current. This optimized layout is used on the PI33XX-  
X1 evaluation board.  
Figure 10 - Current flow: Q1 closed  
Figure 12 - Recommended component  
placement and metal routing  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 23 of 26  
PI33XX-X1  
Recommended PCB Footprint and Stencil  
Figure 13 - Recommended Receiving PCB footprint.  
Figure 133 details the recommended receiving footprint for PI33XX-X1 10mm x 14mm package. All pads should  
have a final copper size of 0.55mm x 0.55mm, whether they are solder-mask defined or copper defined, on a 1mm  
x 1mm grid. All stencil openings are 0.55mm when using a 6mil stencil.  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 24 of 26  
 
PI33XX-X1  
Package Drawings  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 25 of 26  
PI33XX-X1  
Warranty  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use.  
Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor  
reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information  
published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no  
responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s  
product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
Specifications are subject to change without notice.  
Vicor’s Standard Terms and Conditions  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, which are available on Vicor’s webpage or upon request.  
Product Warranty  
In Vicor’s standard terms and conditions of sale, Vicor warrants that its products are free from non-conformity to its Standard  
Specifications (the “Express Limited Warranty”). This warranty is extended only to the original Buyer for the period expiring two (2)  
years after the date of shipment and is not transferable.  
UNLESS OTHERWISE EXPRESSLY STATED IN A WRITTEN SALES AGREEMENT SIGNED BY A DULY AUTHORIZED VICOR  
SIGNATORY, VICOR DISCLAIMS ALL REPRESENTATIONS, LIABILITIES, AND WARRANTIES OF ANY KIND (WHETHER  
ARISING BY IMPLICATION OR BY OPERATION OF LAW) WITH RESPECT TO THE PRODUCTS, INCLUDING, WITHOUT  
LIMITATION, ANY WARRANTIES OR REPRESENTATIONS AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR  
PURPOSE, INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT, OR ANY  
OTHER MATTER.  
This warranty does not extend to products subjected to misuse, accident, or improper application, maintenance, or storage. Vicor  
shall not be liable for collateral or consequential damage. Vicor disclaims any and all liability arising out of the application or use of  
any product or circuit and assumes no liability for applications assistance or buyer product design. Buyers are responsible for their  
products and applications using Vicor products and components. Prior to using or distributing any products that include Vicor  
components, buyers should provide adequate design, testing and operating safeguards.  
Vicor will repair or replace defective products in accordance with its own best judgment. For service under this warranty, the buyer  
must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without  
prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor  
will pay all reshipment charges if the product was defective within the terms of this warranty.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for  
surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical  
component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the  
failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user  
of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability  
and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications)  
relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to  
any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property  
Department.  
The products described on this data sheet are protected by the following U.S. Patents Numbers: RE 40,072.  
Vicor Corporation  
25 Frontage Road  
Picor Corporation  
51 Industrial Drive  
Andover, MA, USA 01810 USA  
North Smithfield, RI 02896 USA  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
vicorpower.com  
800 735.6200  
Rev 1.3  
09/2015  
Cool-Power®  
Page 26 of 26  

相关型号:

PI3311-20-LGIZ

8V to 36VIN Cool-Power ZVS Buck Regulator Family
VICOR

PI3311-21-LGIZ

8V to 36Vin, 15A Cool-Power ZVS Buck Regulator
VICOR

PI3311-x0

8V to 36VIN Cool-Power ZVS Buck Regulator Family
VICOR

PI3311-X0-LGIZ

8V to 36Vin Cool-Power
VICOR

PI3311-X1

8V to 36Vin, 15A Cool-Power ZVS Buck Regulator
VICOR

PI3311-X1-LGIZ

8V to 36Vin, 15A Cool-Power ZVS Buck Regulator
VICOR

PI3311-XO-LGIZ

8V to 36Vin Cool-Power
VICOR

PI3312-00-LGIZ

8V to 36VIN Cool-Power ZVS Buck Regulator Family
VICOR

PI3312-01-LGIZ

8V to 36Vin, 15A Cool-Power ZVS Buck Regulator
VICOR

PI3312-20-LGIZ

8V to 36VIN Cool-Power ZVS Buck Regulator Family
VICOR

PI3312-21-LGIZ

8V to 36Vin, 15A Cool-Power ZVS Buck Regulator
VICOR

PI3312-x0

8V to 36VIN Cool-Power ZVS Buck Regulator Family
VICOR