PI3323-00 [VICOR]

14 – 42VIN ZVS Buck Regulator;
PI3323-00
型号: PI3323-00
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

14 – 42VIN ZVS Buck Regulator

文件: 总36页 (文件大小:1147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZVS Regulators  
PI332x-00  
14 – 42VIN ZVS Buck Regulator  
Product Description  
Features & Benefits  
The PI332x-00 is a family of high-input-voltage, wide-input-range  
DC-DC ZVS Buck regulators integrating controller, power  
switches and support components all within a high-density  
System-in-Package (SiP).  
High‑Efficiency HV ZVS Buck Topology  
Wide input voltage range of 14 – 42V  
Power‑up into pre‑biased load  
The integration of a high-performance Zero-Voltage Switching  
(ZVS) topology, within the PI332x-00 series, increases point-of-load  
performance providing best-in-class power efficiency. The  
PI332x-00 requires only an external inductor, two voltage selection  
resistors and minimal capacitors to form a complete DC-DC  
switch-mode buck regulator.  
Parallel capable with single‑wire current sharing  
Input Over/Undervoltage Lockout (OVLO/UVLO)  
Output Overvoltage Protection (OVP)  
Overtemperature Protection (OTP)  
Fast and slow current limits  
Output Voltage  
Differential amplifier for output remote sensing  
User‑adjustable soft start & tracking  
Device  
IOUT Max  
Set  
3.3V  
5.0V  
Range  
2.2 – 4.0V  
4.0 – 6.5V  
22A  
20A  
PI3323-00  
PI3325-00  
–40 to 120°C operating range (TINT),  
‑LGIZ, ‑BGIZ models  
–55 to 120°C operating range (TINT),  
‑LGMZ, ‑BGMZ, ‑BGMP models  
Applications  
HV to PoL Buck Regulator Applications  
Computing, Communications, Industrial,  
Automotive Equipment  
Package Information  
10 x 14 x 2.56mm LGA SiP  
10.5 x 14.5 x 3.05mm BGA SiP  
Note: Product images may not highlight current product markings.  
ZVS Regulators  
Page 1 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Contents  
Order Information  
3
3
Application Description  
Output Voltage Set Point  
Soft Start Adjust and Tracking  
Inductor Pairing  
27  
27  
27  
28  
28  
28  
29  
30  
31  
32  
33  
34  
Thermal, Storage and Handling Information  
Absolute Maximum Ratings  
Functional Block Diagram  
3
4
Pin Description  
5
Parallel Operation  
Package Pinout  
6
Filter Considerations  
VDR Bias Regulator  
PI332x-00 Common Electrical Characteristics  
PI3323-00 (3.3VOUT) Electrical Characteristics  
PI3325-00 (5.0VOUT) Electrical Characteristics  
Functional Description  
7
8
Layout Guidelines  
15  
22  
22  
22  
22  
22  
22  
22  
23  
23  
23  
23  
23  
23  
26  
Recommended PCB Footprint and Stencil  
Package Drawings  
ENABLE (EN)  
Revision History  
Remote Sensing  
Warranty  
Soft Start  
Output Voltage Selection  
Output Current Limit Protection  
Input Undervoltage Lockout  
Input Overvoltage Lockout  
Output Overvoltage Protection  
Overtemperature Protection  
Pulse Skip Mode (PSM)  
Variable Frequency Operation  
Thermal Characteristics  
SiP Power Dissipation as Percentage of Total System Losses  
ZVS Regulators  
Page 2 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Order Information  
Nominal  
Output Voltage  
Rated  
Output Current  
Product  
Temperature Range  
Package  
Transport Media  
PI3323-00-BGIZ  
PI3323-00-BGMZ  
PI3323-00-BGMP  
PI3323-00-LGMZ  
PI3325-00-BGIZ  
PI3325-00-BGMZ  
PI3325-00-BGMP  
PI3325-00-LGIZ  
PI3325-00-LGMZ  
–40 to 120°C  
10.5 x 14.5mm BGA  
3.3V  
5.0V  
22A  
20A  
–55 to 120°C  
10.5 x 14.5mm lead-solder BGA  
10 x 14mm LGA  
–40 to 120°C  
–55 to 120°C  
TRAY  
10.5 x 14.5mm BGA  
10.5 x 14.5mm lead-solder BGA  
10 x 14mm LGA  
–40 to 120°C  
–55 to 120°C  
Thermal, Storage and Handling Information  
Name  
Rating  
Storage Temperature  
–65 to 150°C  
–40 to 120°C  
–55 to 120°C  
245°C  
-LGIZ, BGIZ  
Internal Operating Temperature  
-LGMZ, -BGMZ, -BGMP  
Soldering Temperature for 20 seconds  
MSL Rating  
3
ESD Rating, JESD22-A114F, JESD22-C101F  
2kV HBM; 1kV CDM, respectively  
Absolute Maximum Ratings  
Name  
VIN  
Rating  
–0.7 to 55V  
–0.7VDC to 55V  
–0.5 to 25V  
100mA  
VS1  
VOUT  
SGND  
TRK  
–0.3 to 5.5V, 30mA  
VDR, SYNCI, SYNCO, PWRGD, EN, COMP,  
EAO, EAIN, VDIFF, VSN, VSP, TESTx  
–0.3 to 5.5V, 5mA  
Notes: Stresses beyond these limits may cause permanent damage to the device. Operation at these conditions or conditions beyond those listed in the  
Electrical Specifications table is not guaranteed. All voltages are referenced to PGND unless otherwise noted.  
ZVS Regulators  
Page 3 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Functional Block Diagram  
VS1  
VIN  
VOUT  
Q2  
Q1  
VSP  
VSN  
+
-
VDIFF  
Power  
Control  
VDR  
VCC  
EAIN  
CEAIN-INT  
EAO  
ZVS Control  
-
+
VREF  
SYNCO  
SYNCI  
PWRGD  
EN  
CHF  
RZI  
Digital Parametric Trim  
COMP  
TESTx  
TRK  
PGND  
0Ω  
Simplified block diagram  
ZVS Regulators  
Page 4 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Pin Description  
Name  
VS1  
Location  
Block 1  
I/O  
Description  
Power  
Power  
Switching Node: and ZVS sense for power switches.  
Input Voltage: and sense for UVLO, OVLO and feed forward ramp.  
VIN  
Block 3  
Gate Driver VCC: Internally generated 5.1V. May be used as a bias supply for low power external  
loads. See Application Description for important considerations.  
VDR  
5K  
I/O  
Synchronization Input: Synchronize to the falling edge of external clock frequency. SYNCI is a  
high impedance digital input node and should always be connected to SGND when not in use. The  
PI332x-00 family is not optimized for external synchronization functionality. Refer to Application  
Description of Parallel Operation for details.  
SYNCI  
4K  
3K  
I
Synchronization Output: Outputs a high signal at the start of each clock cycle for the longer of  
½ of the minimum period or the on time of the high-side power MOSFET.  
SYNCO  
O
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
2K  
1K  
1J  
I/O  
I/O  
I/O  
I/O  
I/O  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
Test Connections: Use only with factory guidance. Connect to SGND for proper operation.  
1H  
1E  
Power Good: High impedance when regulator is operating and VOUT is in regulation.  
Otherwise pulls to SGND.  
PWRGD  
1G  
O
Enable Input: Regulator enable control. When asserted active or left floating: regulator is enabled.  
Otherwise regulator is disabled.  
EN  
1F  
Block 5  
1C  
I/O  
Signal Ground: Internal logic ground for EA, TRK, SYNCI, SYNCO communication returns. SGND  
and PGND are star connected within the regulator package.  
SGND  
TRK  
Soft Start and Track Input: An external capacitor may be connected between TRK pin and SGND  
to increase the rise time of the internal reference during soft start.  
I
Compensation Capacitor: Connect capacitor for control loop dominant pole. See Error Amplifier  
section for details. A default CCOMP of 4.7nF is used in the example.  
COMP  
1B  
O
EAO  
EAIN  
VDIFF  
VSN  
1A  
2A  
O
Error Amp Output: External connection for additional compensation and current sharing.  
Error Amp Inverting Input: Connection for the main Vout feedback divider tap  
Independent Amplifier Output: Active only when module is enabled.  
Independent Amplifier Inverting Input: If unused connect in unity gain.  
Independent Amplifier Non-Inverting Input: If unused connect to SGND.  
Direct VOUT Connect: for per-cycle internal clamp node and feed-forward ramp.  
Power Ground: VIN and VOUT power returns.  
I
3A  
O
4A  
I
VSP  
5A  
I
VOUT  
PGND  
6A,B  
Block2  
Power  
Power  
ZVS Regulators  
Page 5 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Package Pinout  
SGND  
SGND  
SGND  
PGND  
PGND  
PGND  
TEST5  
SGND  
SGND  
PGND  
PGND  
PGND  
PWRG0  
PGND  
PGND  
PGND  
PGND  
PGND  
TEST4  
PGND  
PGND  
PGND  
PGND  
PGND  
TEST3  
PGND  
PGND  
PGND  
PGND  
PGND  
EA0  
EAIN  
VDIFF  
VSN  
COMP  
TRK  
TEST2  
TEST1  
SYNC0  
SYNC1  
VDR  
EN  
1
2
SGND  
SGND  
SGND  
SGND  
SGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
3
4
VSP  
PGND  
VOUT  
5
VOUT  
PGND  
6
7
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
8
9
10  
11  
12 PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
13  
14  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
10x14mm SiP  
Pin Block Name  
Group of pins  
VIN  
A8-10, B8-10, C8-10, D8-10, E8-10, F8-10, G8-10, H8-10, J8-10, K8-10  
A14, B14, C14, D14, E14, F14, G14, H14, J14, K14  
A12, B12, C12, D12, E12, F12, G12, H12, J12, K12  
B5, C4-6, D4-6, E4-6, F2-6, G2-6, H2-6, J2-6, K6  
A6, B6  
VS1  
PGND  
PGND  
VOUT  
SGND  
B2-4, C2-3, D1-3, E2-3  
ZVS Regulators  
Page 6 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI332x-00 Common Electrical Characteristics  
Specifications apply for –40°C < TINT < 120°C for -LGIZ, -BGIZ, –55°C < TJ < 115°C for -LGMZ, -BGMZ, -BGMP, VIN = 24V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Differential Amp  
[b]  
[b]  
Open Loop Gain  
96  
5
120  
7
140  
12  
1
dB  
MHz  
mV  
V
Small Signal Gain-Bandwidth  
Input Offset  
0.5  
Common Mode Input Range  
Differential Mode Input Range  
Input Bias Current  
–0.1  
2.5  
2
V
–1  
–1  
1
µA  
mA  
Output Current  
1
Maximum VOUT  
IVDIFF = –1mA  
4.85  
V
Minimum VOUT  
IVDIFF = –1mA  
20  
50  
mV  
pF  
[b]  
Capacitive Load Range for Stability  
Slew Rate  
0
11  
V/µs  
PWRGD  
VOUT Rising Threshold  
VPG_HI%  
78  
75  
84  
81  
90  
% VOUT_DC  
VOUT Falling Threshold  
PWRGD Output Low  
VPG_LO%  
VPG_SAT  
87  
% VOUT_DC  
V
Sink = 4mA  
VIN_DC > 10V  
0.4  
VDR  
Voltage Setpoint  
External Loading  
VVDR  
IVDR  
4.9  
0
5.05  
5.2  
2
V
See Application Description for details  
mA  
Enable  
High Threshold  
Low Threshold  
VEN_HI  
VEN_LO  
VEN_HYS  
0.9  
0.7  
100  
1.0  
0.8  
200  
1.1  
0.9  
300  
V
V
Threshold Hysteresis  
mV  
Pull Up Voltage Level for  
Source Current  
VEN_PU  
2
V
Pull Up Current  
IEN_PU_POS  
VIN > 8V, excluding tFR_DLY  
50  
µA  
Reliability  
MIL-HDBK-217, 25°C, Ground Benign: GB  
Telcordia SR-332, 25°C, Ground Benign: GB  
14.6  
201  
MHrs  
MHrs  
MTBF  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI332x evaluation board with 3 x 3”  
dimensions and four-layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
ZVS Regulators  
Page 7 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3323-00 (3.3VOUT) Electrical Characteristics  
Specifications apply for –40°C < TINT < 120°C for -LGIZ, -BGIZ, –55°C < TJ < 115°C for -LGMZ, -BGMZ, -BGMP, VIN = 24V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
14  
24  
42  
V
A
VIN = 24V, TCASE = 25°C, IOUT = 22A  
Short at terminals  
3.35  
Input Current At Output Short  
(Fault Condition Duty Cycle)  
IIN_Short  
5
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
Input capacitance, Internal  
IQ_VIN  
IQ_VIN  
VIN_SR  
CIN_INT  
Disabled  
0.94  
3.2  
1.6  
1
mA  
mA  
V/µs  
µF  
Enabled, no load, TCASE = 25°C  
[b]  
Effective value VIN = 24V, 25°C  
0.7  
Output Specifications  
[b]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
2.2  
0.990  
3.3  
1.005  
4.0  
V
[b] [c]  
VOUT_DC  
V
ΔVOUT / ΔVIN At 25°C, 14V < VIN < 42V  
ΔVOUT / ΔIOUT At 25°C, 2A < IOUT < 20A  
0.10  
0.10  
67  
%
Load Regulation  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT = 20A, COUT = 8 x 100µF, 20MHz BW [d]  
mVP-P  
[e]  
IOUT_DC  
0
22  
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 230nH inductor.  
25.1  
A
[b]  
Maximum Array Size  
Output Current, Array of 2  
Output Current, Array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [b] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [b] see applications section for details  
0
0
A
A
[g]  
[g]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
12.9  
1.21  
1.25  
47  
13.8  
1.75  
V
V
0.85  
µs  
V
VOVLO  
44  
VOVLO_HYS  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
Above set VOUT  
0.5  
0.9  
1.3  
V
1.25  
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
20  
%
Output Overvoltage Protection,  
Absolute  
VOVP_ABS  
4.3  
4.7  
V
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI332x evaluation board with 3 x 3”  
dimensions and four-layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
ZVS Regulators  
Page 8 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3323-00 (3.3VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –40°C < TINT < 120°C for -LGIZ, -BGIZ, –55°C < TJ < 115°C for -LGMZ, -BGMZ, -BGMP, VIN = 24V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
[f] While in Discontinuous Conduction Mode (DCM) only,  
SYNCI grounded  
Switching Frequency  
Fault Restart Delay  
fs  
470  
500  
30  
530  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [c] and [f]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
250  
4.5  
550  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
1.4  
60  
V
mV  
mV  
µA  
mA  
nF  
20  
40  
30  
40  
80  
TRK to EAIN Offset  
120  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, Internal  
Soft-Start Time  
50  
ITRK_DIS  
CTRK_INT  
tSS  
VTRK = 0.5V  
8.7  
47  
CTRK_EXT = 0µF  
0.6  
0.94  
5.06  
0.6  
56  
1.6  
ms  
mS  
V
Error Amplifier Transconductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
CEAIN_INT  
ROUT  
EAIN Capacitance, Internal  
Error Amplifier Output Impedance  
Internal Compensation Capacitor  
Internal Compensation Resistor  
pF  
[b]  
1
MΩ  
pf  
CHF  
56  
5
RZI  
kΩ  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI332x evaluation board with 3 x 3”  
dimensions and four-layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
ZVS Regulators  
Page 9 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3323-00 (3.3VOUT) Electrical Characteristics (Cont.)  
97  
95  
93  
91  
89  
87  
10  
9
8
7
6
5
4
3
2
1
0
85  
83  
81  
79  
77  
2
4
6
8
10  
12  
14  
16  
16  
16  
18  
20  
20  
20  
22  
22  
22  
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
22  
22  
22  
Load Current (A)  
14V  
Load Current (A)  
VIN:  
24V  
42V  
VIN:  
24V  
14V  
42V  
Figure 1 — System efficiency, nominal trim,  
Figure 4 — System power dissipation, nominal trim,  
board temperature = 25°C  
board temperature = 25°C  
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
10  
9
8
7
6
5
4
3
2
1
0
2
4
6
8
10  
12  
14  
18  
2
4
6
8
10  
12  
14  
16  
18  
Load Current (A)  
Load Current (A)  
14V  
VIN:  
24V  
42V  
VIN:  
24V  
14V  
42V  
Figure 2 — System efficiency, low trim,  
Figure 5 — System power dissipation, low trim,  
board temperature = 25°C  
board temperature = 25°C  
97  
95  
93  
91  
89  
87  
10  
9
8
7
6
5
4
3
2
1
0
85  
83  
81  
79  
77  
2
4
6
8
10  
12  
14  
18  
2
4
6
8
10  
12  
14  
16  
18  
Load Current (A)  
Load Current (A)  
VIN:  
24V  
14V  
42V  
VIN:  
24V  
14V  
42V  
Figure 3 — System efficiency, high trim,  
Figure 6 — System power dissipation, high trim,  
board temperature = 25°C  
board temperature = 25°C  
ZVS Regulators  
Page 10 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3323-00 (3.3VOUT) Electrical Characteristics (Cont.)  
97  
95  
93  
91  
89  
87  
10  
9
8
7
6
5
4
3
2
1
0
85  
83  
81  
79  
77  
2
4
6
8
10  
12  
14  
16  
16  
16  
18  
20  
20  
20  
22  
22  
22  
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
22  
22  
22  
Load Current (A)  
14V  
Load Current (A)  
VIN:  
24V  
42V  
VIN:  
24V  
14V  
42V  
Figure 7 — System efficiency, nominal trim,  
Figure 10 — System power dissipation, nominal trim,  
board temperature = 90°C  
board temperature = 90°C  
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
10  
9
8
7
6
5
4
3
2
1
0
2
4
6
8
10  
12  
14  
18  
2
4
6
8
10  
12  
14  
16  
18  
Load Current (A)  
Load Current (A)  
14V  
VIN:  
24V  
42V  
VIN:  
24V  
14V  
42V  
Figure 8 — System efficiency, low trim,  
Figure 11 — System power dissipation, low trim,  
board temperature = 90°C  
board temperature = 90°C  
97  
95  
93  
91  
89  
87  
10  
9
8
7
6
5
4
3
2
1
0
85  
83  
81  
79  
77  
2
4
6
8
10  
12  
14  
18  
2
4
6
8
10  
12  
14  
16  
18  
Load Current (A)  
Load Current (A)  
VIN:  
24V  
14V  
42V  
VIN:  
24V  
14V  
42V  
Figure 9 — System efficiency, high trim,  
Figure 12 — System power dissipation, high trim,  
board temperature = 90°C  
board temperature = 90°C  
ZVS Regulators  
Page 11 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3323-00 (3.3VOUT) Electrical Characteristics (Cont.)  
97  
95  
93  
91  
89  
87  
10  
9
8
7
6
5
4
3
2
1
0
85  
83  
81  
79  
77  
2
4
6
8
10  
12  
14  
16  
16  
16  
18  
20  
20  
20  
22  
22  
22  
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
22  
22  
22  
Load Current (A)  
14V  
Load Current (A)  
VIN:  
24V  
42V  
VIN:  
24V  
14V  
42V  
Figure 13 — System efficiency, nominal trim,  
Figure 16 — System power dissipation, nominal trim,  
board temperature = –40°C  
board temperature = –40°C  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
10  
9
8
7
6
5
4
3
2
1
0
2
4
6
8
10  
12  
14  
18  
2
4
6
8
10  
12  
14  
16  
18  
Load Current (A)  
Load Current (A)  
14V  
VIN:  
24V  
42V  
VIN:  
24V  
14V  
42V  
Figure 14 — System efficiency, low trim,  
Figure 17 — System power dissipation, low trim,  
board temperature = –40°C  
board temperature = –40°C  
99  
97  
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
10  
9
8
7
6
5
4
3
2
1
0
2
4
6
8
10  
12  
14  
18  
2
4
6
8
10  
12  
14  
16  
18  
Load Current (A)  
Load Current (A)  
VIN:  
24V  
14V  
42V  
VIN:  
24V  
14V  
42V  
Figure 15 — System efficiency, high trim,  
Figure 18 — System power dissipation, high trim,  
board temperature = –40°C  
board temperature = –40°C  
ZVS Regulators  
Page 12 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3323-00 (3.3VOUT) Electrical Characteristics (Cont.)  
CH2  
CH1  
CH1  
CH2  
CH1 VOUT: 50mV/div  
CH2 IIN: 1A/div  
Timebase: 4ms/div  
CH1 IOUT: 5A/div  
CH2 VOUT: 200mV/div  
Timebase: 200µs/div  
Figure 19 — Transient response: 50 – 100% load, at 1A/µs.  
nominal line, nominal trim,  
Figure 22 — Output short circuit, nominal line  
COUT = 8 x 100µF ceramic  
CH1  
CH1  
CH1 VOUT: 20mV/div  
Timebase: 2µs/div  
CH1 VOUT: 20mV/div  
Timebase: 2µs/div  
Figure 20 — Output voltage ripple: nominal line, nominal trim,  
Figure 23 — Output voltage ripple: nominal line, nominal trim,  
100% load, COUT = 8 x 100µF ceramic  
50% load, COUT = 8 x 100µF ceramic  
525  
500  
475  
450  
425  
400  
375  
350  
325  
300  
275  
250  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
Notes:  
1. SiP is based on VS1 and VIN paths only.  
2. Inductor is based on two leads and base  
with inclusion of GEL 30 interface  
resistance (0.15mm thick; 3.5W/m-K  
thermal conductivity).  
225  
200  
0
2
4
6
8
10 12  
Load Current (A)  
24V  
14 16 18  
20  
22  
20  
40  
60  
80  
100  
120  
Temperature of Isothermal PCB (ºC)  
VIN:  
14V  
42V  
Figure 21 — Switching frequency vs. load, nominal trim  
Figure 24 — System thermal specified operating area: max IOUT at  
nominal trim vs. temperature at locations noted  
ZVS Regulators  
Page 13 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3323-00 (3.3VOUT) Electrical Characteristics (Cont.)  
18  
16  
14  
12  
10  
8
CH1  
CH2  
CH3  
CH4  
4
6
8
10  
12  
14  
16  
18  
20  
22  
Output Current (A)  
CH1 VIN: 10V/div  
CH2 TRK: 2V/div  
CH3 VOUT: 2V/div Timebase: 2.00ms/div  
CH4 EN: 2V/div  
24V  
VIN  
:
14V  
42V  
Figure 25 — Small-signal modulator gain vs. VEAO, nominal trim  
Figure 27 — Start up from VIN applied, nominal line, nominal trim,  
typical timing, PI3323 shown  
6
5
4
3
2
1
0
CH1  
CH2  
CH3  
CH4  
4
6
8
10  
12  
14  
16  
18  
20  
22  
Output Current (A)  
CH1 VIN: 10V/div  
CH2 EN: 2V/div  
CH3 VOUT: 2V/div  
CH4 PWRGD: 2V/div  
Timebase: 400µs/div  
24V  
VIN  
:
14V  
42V  
Figure 26 — rEQ_OUT vs VEAO, nominal trim  
Figure 28 — Start up from EN, VIN pre-applied, nominal line,  
nominal trim, typical timing, PI3323 shown  
ZVS Regulators  
Page 14 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3325-00 (5.0VOUT) Electrical Characteristics  
Specifications apply for –40°C < TINT < 120°C for -LGIZ, -BGIZ, –55°C < TJ < 115°C for -LGMZ, -BGMZ, -BGMP, VIN = 24V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
14  
24  
42  
V
A
VIN = 24V, TCASE = 25°C, IOUT = 20A  
Short at terminals  
4.41  
Input Current At Output Short  
(Fault Condition Duty Cycle)  
IIN_Short  
5
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
Input capacitance, Internal  
IQ_VIN  
IQ_VIN  
VIN_SR  
CIN_INT  
Disabled  
0.94  
4.2  
1.6  
1
mA  
mA  
V/µs  
µF  
Enabled, no load, TCASE = 25°C  
[b]  
Effective value VIN = 24V, 25°C  
0.7  
Output Specifications  
[b]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
4.0  
0.990  
5.0  
1.005  
6.5  
V
[b] [c]  
VOUT_DC  
V
ΔVOUT / ΔVIN At 25°C, 14V < VIN < 42V  
ΔVOUT / ΔIOUT At 25°C, 2A < IOUT < 20A  
0.10  
0.10  
55.7  
%
Load Regulation  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT = 20A, COUT = 12 x 47µF, 20MHz BW [d]  
mVP-P  
[e]  
IOUT_DC  
0
20  
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 230nH inductor.  
24  
A
[b]  
Maximum Array Size  
Output Current, Array of 2  
Output Current, Array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [b] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [b] see applications section for details  
0
0
A
A
[g]  
[g]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
12.9  
1.21  
1.25  
47  
13.8  
1.75  
V
V
0.85  
µs  
V
VOVLO  
44  
VOVLO_HYS  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
Above set VOUT  
0.5  
0.9  
1.3  
V
1.25  
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
20  
%
Output Overvoltage Protection,  
Absolute  
VOVP_ABS  
6.7  
7.37  
V
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI332x evaluation board with 3 x 3”  
dimensions and four-layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
[g] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
ZVS Regulators  
Page 15 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3325-00 (5.0VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –40°C < TINT < 120°C for -LGIZ, -BGIZ, –55°C < TJ < 115°C for -LGMZ, -BGMZ, -BGMP, VIN = 24V, EN = High, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
[f] While in Discontinuous Conduction Mode (DCM) only,  
SYNCI grounded  
Switching Frequency  
Fault Restart Delay  
fs  
564  
600  
30  
636  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [c] and [f]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
300  
4.5  
660  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
1.4  
60  
V
mV  
mV  
µA  
mA  
nF  
20  
40  
30  
40  
80  
TRK to EAIN Offset  
120  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, Internal  
Soft-Start Time  
50  
ITRK_DIS  
CTRK_INT  
tSS  
VTRK = 0.5V  
8.7  
47  
CTRK_EXT = 0µF  
0.6  
0.94  
7.6  
0.8  
56  
1.6  
ms  
mS  
V
Error Amplifier Transconductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
CEAIN_INT  
ROUT  
EAIN Capacitance, Internal  
Error Amplifier Output Impedance  
Internal Compensation Capacitor  
Internal Compensation Resistor  
pF  
[b]  
1
MΩ  
pf  
CHF  
56  
5
RZI  
kΩ  
[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI332x evaluation board with 3 x 3”  
dimensions and four-layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[d] Refer to Output Ripple plots.  
[e] Refer to Load Current vs. Ambient Temperature curves.  
[f] Refer to Switching Frequency vs. Load current curves.  
ZVS Regulators  
Page 16 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3325-00 (5VOUT) Electrical Characteristics (Cont.)  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
18  
18  
18  
20  
20  
20  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
18  
18  
18  
20  
20  
20  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 29 — System efficiency, nominal trim,  
Figure 32 — System power dissipation, nominal trim,  
board temperature = 25°C  
board temperature = 25°C  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 30 — System efficiency, low trim,  
Figure 33 — System power dissipation, low trim,  
board temperature = 25°C  
board temperature = 25°C  
97  
11  
10  
9
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
8
7
6
5
4
86  
85  
84  
83  
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 31 — System efficiency, high trim,  
Figure 34 — System power dissipation, high trim,  
board temperature = 25°C  
board temperature = 25°C  
ZVS Regulators  
Page 17 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3325-00 (5VOUT) Electrical Characteristics (Cont.)  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
18  
18  
18  
20  
20  
20  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
18  
18  
18  
20  
20  
20  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 35 — System efficiency, nominal trim,  
Figure 38 — System power dissipation, nominal trim,  
board temperature = 90°C  
board temperature = 90°C  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 36 — System efficiency, low trim,  
Figure 39 — System power dissipation, low trim,  
board temperature = 90°C  
board temperature = 90°C  
97  
11  
10  
9
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
8
7
6
5
4
86  
85  
84  
83  
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 37 — System efficiency, high trim,  
Figure 40 — System power dissipation, high trim,  
board temperature = 90°C  
board temperature = 90°C  
ZVS Regulators  
Page 18 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3325-00 (5VOUT) Electrical Characteristics (Cont.)  
97  
10  
9
8
7
6
5
4
3
2
1
0
95  
93  
91  
89  
87  
85  
83  
81  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
18  
18  
18  
20  
20  
20  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
18  
18  
18  
20  
20  
20  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 41 — System efficiency, nominal trim,  
Figure 44 — System power dissipation, nominal trim,  
board temperature = –40°C  
board temperature = –40°C  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
11  
10  
9
8
7
6
5
4
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 42 — System efficiency, low trim,  
Figure 45 — System power dissipation, low trim,  
board temperature = –40°C  
board temperature = –40°C  
97  
11  
10  
9
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
8
7
6
5
4
86  
85  
84  
83  
3
2
1
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
2
4
6
8
10  
Load Current (A)  
24V  
12  
14  
16  
VIN:  
14V  
42V  
VIN:  
14V  
42V  
Figure 43 — System efficiency, high trim,  
Figure 46 — System power dissipation, high trim,  
board temperature = –40°C  
board temperature = –40°C  
ZVS Regulators  
Page 19 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3325-00 (5VOUT) Electrical Characteristics (Cont.)  
CH1  
CH2  
CH2  
CH1  
CH1 VOUT: 500mV/div  
CH2 IIN: 1A/div  
Timebase: 4ms/div  
CH1 IOUT: 5A/div  
CH2 VOUT: 200mV/div  
Timebase: 200µs/div  
Figure 47 — Transient response: 50 – 100% load, at 1A/µs.  
nominal line, nominal trim,  
Figure 50 — Output short circuit, nominal line  
COUT = 12 x 47µF ceramic  
CH1  
CH1  
CH1 VOUT: 20mV/div  
Timebase: 2µs/div  
CH1 VOUT: 20mV/div  
Timebase: 2µs/div  
Figure 48 — Output voltage ripple: nominal line, nominal trim,  
Figure 51 — Output voltage ripple: nominal line, nominal trim,  
100% load, COUT = 12 x 47µF ceramic  
50% load, COUT = 12 x 47µF ceramic  
625  
600  
575  
550  
525  
500  
475  
450  
425  
400  
375  
350  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
Notes:  
1. SiP is based on VS1 and VIN paths only.  
2. Inductor is based on two leads and base  
with inclusion of GEL 30 interface  
resistance (0.15mm thick; 3.5W/m-K  
thermal conductivity).  
325  
300  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
40  
60  
80  
100  
120  
Load Current (A)  
Temperature of Isothermal PCB (ºC)  
24V  
VIN:  
14V  
42V  
Figure 49 — Switching frequency vs. load, nominal trim  
Figure 52 — System thermal specified operating area: max IOUT at  
nominal trim vs. temperature at locations noted  
ZVS Regulators  
Page 20 of 36  
Rev 1.6  
02/2021  
PI332x-00  
PI3325-00 (5VOUT) Electrical Characteristics (Cont.)  
20  
18  
16  
14  
12  
10  
8
CH1  
CH2  
CH3  
CH4  
6
4
2
0.8  
1.2  
VIN  
1.6  
2
2.4  
2.8  
VEAO (V)  
CH1 VIN: 10V/div  
CH2 TRK: 2V/div  
CH3 VOUT: 2V/div Timebase: 2.00ms/div  
CH4 EN: 2V/div  
24V  
:
14V  
42V  
Figure 53 — Output current vs. VEAO, nominal trim  
Figure 56 — Start up from VIN applied, nominal line, nominal trim,  
typical timing, PI3325 shown  
20  
18  
16  
14  
12  
10  
8
CH1  
CH2  
CH3  
CH4  
6
4
2
0.8  
1.2  
VIN  
1.6  
2.0  
2.4  
2.8  
VEAO (V)  
CH1 VIN: 10V/div  
CH2 TRK: 2V/div  
CH3 VOUT: 2V/div  
Timebase: 400µs/div  
24V  
:
14V  
42V  
CH4 PWRGD: 2V/div  
Figure 54 — Small signal modulator gain vs. VEAO, nominal trim  
Figure 57 — Start up from EN, VIN pre-applied, nominal line,  
nominal trim, typical timing, PI3325 shown  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0.8  
1.2  
VIN  
1.6  
2.0  
2.4  
2.8  
VEAO (V)  
24V  
:
14V  
42V  
Figure 55 — rEQ_OUT vs VEAO, nominal trim  
ZVS Regulators  
Page 21 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Soft Start  
Functional Description  
The PI332x-00 includes an internal soft-start capacitor to  
control the rate of rise of the output voltage. See the Electrical  
Characteristics Section for the default value. Connecting an  
external capacitor from the TRK pin to SGND will increase the  
start-up ramp period. See, “Soft Start Adjustment and Track,” in  
the Applications Description section for more details.  
The PI332x-00 is a family of highly integrated ZVS Buck regulators.  
The PI332x-00 has an output voltage that can be set within a  
prescribed range shown in Table 1. Performance and maximum  
output current are characterized with a specific external power  
inductor (see Table 3).  
Output Voltage Selection  
The PI332x-00 output voltage is set with REA1 and REA2 as shown  
in Figure 58. Table 1 defines the allowable operational voltage  
ranges for the PI332x-00 family. Refer to the Output Voltage Set  
Point Application Description for details.  
L1  
VIN  
VS1  
VOUT  
VSP  
VIN  
VOUT  
CIN  
COUT  
ZVS Buck  
PGND  
VDR  
VSN  
SYNCO  
SYNCI  
PWRGD  
EN  
VDIFF  
TRK  
REA1  
REA2  
EAIN  
EAO  
Output Voltage  
Device  
TESTx  
SGND  
COMP  
Nominal  
Range  
CCOMP  
PI3323-00-BGIZ  
PI3325-00-LGIZ  
3.3V  
2.2 – 4.0V  
4.0 – 6.5V  
5.0V  
Table 1 — PI332x-00 family output voltage ranges  
Figure 58 — ZVS Buck with required components  
For basic operation, Figure 58 shows the connections and  
Output Current Limit Protection  
The PI332x-00 has a current limit protection, which prevents  
the output from sourcing current higher than the regulator’s  
maximum rated current. If the output current exceeds the Current  
Limit (IOUT_CL) for 1024μs, a slow current limit fault is initiated and  
the regulator is shutdown which eliminates output current flow.  
After Fault Restart Delay (tFR_DLY), a soft-start cycle is initiated.  
This restart cycle will be repeated indefinitely until the excessive  
load is removed.  
components required. No additional design or settings are required.  
ENABLE (EN)  
EN is the enable pin of the converter. The EN Pin is referenced to  
SGND and permits the user to turn the regulator on or off. The  
EN default polarity is a positive logic assertion. If the EN pin is  
left floating or asserted high, the converter output is enabled.  
Pulling EN pin below VEN_LO with respect to SGND will disable the  
regulator output.  
The PI332x-00 also has short circuit protection which can rapidly  
stop switching to protect against catastrophic failure of an external  
component such as a saturated inductor. If short-circuit protection  
is triggered the PI332x-00 will complete the current cycle and stop  
switching. The module will attempt to soft start after Fault Restart  
Delay (tFR_DLY).  
Remote Sensing  
If remote sensing is required, the PI332x-00 product family is  
equipped with a general purpose op-amp. This amplifier can allow  
full differential remote sense by configuring it as a differential  
follower and connecting the VDIFF pin to the EAIN pin.  
Input Undervoltage Lockout  
If VIN falls below the input Undervoltage Lockout (UVLO) threshold,  
but remains high enough to power the internal bias supply, the  
PI332x-00 will complete the current cycle and stop switching. The  
system will soft start once the input voltage is reestablished and  
after the Fault Restart Delay.  
ZVS Regulators  
Page 22 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Input Overvoltage Lockout  
Pulse Skip Mode (PSM)  
If VIN exceeds the input Overvoltage Lockout (OVLO) threshold  
(VOVLO), while the controller is running, the PI332x-00 will  
complete the current cycle and stop switching. If VIN remains above  
OVLO for at least tFR_DLY, then the input voltage is considered  
reestablished once VIN goes below VOVLO-VOVLO_HYS. If VIN goes  
below OVLO before tFR_DLY elapses, then the input voltage is  
considered reestablished once VIN goes below VOVLO. The system  
will soft start once the input voltage is reestablished and after the  
Fault Restart Delay.  
PI332x-00 features a Pulse Skip Mode (PSM) to achieve high  
efficiency at light loads. The regulators are set up to skip pulses  
if EAO falls below a PSM threshold (PSMSKIP). Depending on  
conditions and component values, this may result in single pulses  
or several consecutive pulses followed by skipped pulses. Skipping  
cycles significantly reduces gate drive power and improves light  
load efficiency. The regulator will leave PSM once the EAO rises  
above the Pulse Skip Mode threshold.  
Variable Frequency Operation  
Output Overvoltage Protection  
Each PI332x-00 is preprogrammed to a base operating frequency,  
with respect to the power stage inductor (see Table 2), to operate  
at peak efficiency across line and load variations. At low-line  
and high-load applications, the base frequency will decrease to  
accommodate these extreme operating ranges. By stretching the  
frequency, the ZVS operation is preserved throughout the total  
input line voltage range therefore maintaining optimum efficiency.  
The PI332x-00 family is equipped with output Overvoltage  
Protection (OVP) to prevent damage to input voltage sensitive  
devices. If the output voltage exceeds VOVP-REL or VOVP-ABS, the  
regulator will complete the current cycle and stop switching. The  
system will resume operation once the output voltage falls below  
the OVP threshold and after Fault Restart Delay.  
Overtemperature Protection  
Thermal Characteristics  
The PI332x features an overtemperature protection (OTP), which  
will not engage until after the product is operated above the  
maximum rated temperature. The OTP circuit is only designed to  
protect against catastrophic failure due to excessive temperatures  
and should not be relied upon to ensure the device stays within  
the recommended operating temperature range. Thermal shut  
down terminates switching and discharges the soft-start capacitor.  
The PI332x will restart after the excessive temperature has  
decreased by 30°C.  
Figure 59(a) and 59(c) thermal impedance models that can predict  
the maximum temperature of the hottest component for a given  
operating condition. This model assumes that all customer PCB  
connections are at one temperature, which is PCB equivalent  
Temperature TPCB °C.  
The SiP model can be simplified as shown in Figure 59(b). which  
assumes all PCB nodes are at the same temperature.  
ZVS Regulators  
Page 23 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Maximum SiP Internal Temperature  
INT ( oC )  
T
Thermal Resistance  
SiP Case Top  
Thermal Resistances  
θINT-VIN  
oC / W  
θINT-VS1  
oC / W  
θINT-PGND1  
oC / W  
θINT-PGND2  
oC / W  
θINT-SGND  
oC / W  
SiP PCB Pads  
SiP Power  
Dissipaꢁon  
PDSiP (W)  
θINT-TOP oC / W  
SiP Case Top  
Temperature  
TTOP oC  
TVS1  
oC  
TPGND2  
oC  
TVIN  
oC  
TPGND1  
oC  
TSGND  
oC  
SiP PCB Pad  
Temperatures  
(a)  
Maximum SiP Internal Temperature  
TINT ( oC )  
Thermal Resistance  
Thermal Resistance  
SiP Case Top  
SiP PCB Equivalent  
SiP Power  
Dissipaꢀon  
PDSIP (W)  
θINT-PCB oC / W  
θINT-TOP oC / W  
SiP PCB Common  
Temperature  
TPCB oC  
Case Top  
Temperature  
TTOP oC  
(b)  
Maximum Inductor Internal Temperature  
TINT ( oC )  
Thermal Resistance  
Inductor Case Top  
θINT-TOP oC / W  
Thermal Resistance  
Inductor Case Boꢀom  
θINT-BOTTOM oC / W  
Thermal Resistances  
Inductor PCB Pads  
θINT-LEAD1  
oC / W  
θINT-LEAD2  
θINT-TAB  
oC / W  
oC / W  
Inductor Power  
Dissipaꢀon  
PDIND (W)  
Inductor Case Top  
Temperature  
TTOP oC  
Inductor Case Boꢀom  
Temperature  
TVOUT  
oC  
TVS1  
oC  
Inductor PCB Pad  
Temperatures  
TTAB  
oC  
TBOTTOM oC  
(c)  
Figure 59 — PI332x-00 thermal model (a), SiP simplified version (b) and inductor thermal model (c)  
ZVS Regulators  
Page 24 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Where the symbol in Figure 59(a) and (b) is defined as the following:  
θINT-TOP the thermal impedance from the hottest component inside the SiP to the top side  
the thermal impedance from the hottest component inside the SiP to the customer PCB, assuming all pins are  
θINT-PCB  
at one temperature.  
θINT-VIN  
the thermal impedance from the hottest component inside the SiP to the circuit board VIN pads.  
θINT-VS1  
the thermal impedance from the hottest component inside the SiP to the circuit board VS1 pads.  
the thermal impedance from the hottest component inside the SiP to the circuit board at the PGND1 pads.  
PGND1 is pins 12A-K.  
θINT-PGND1  
θINT-PGND2  
θINT-SGND  
the thermal impedance from the hottest component inside the SiP to the circuit board at the PGND2 pads .  
PGND2 is pins 2F-J, 3F-J, 4C-J, 5B-J and 6C-K.  
the thermal impedance from the hottest component inside the SiP to the circuit board at the SGND pads.  
Where the symbol in Figure 59(c) is defined as the following:  
θINT-TOP the thermal impedance from the hot spot to the top surface of the core.  
θINT-BOT  
the thermal impedance from the hot spot to the bottom surface of the core.  
θINT-TAB  
the thermal impedance from the hot spot to the metal mounting tab on the core body, if applicable.  
the thermal impedance from the hot spot to one of the mounting leads.  
Since the leads are the same thermal impedance, there is no need to specify by explicit pin number.  
θINT-LEAD1  
θINT-LEAD2  
the thermal impedance from the hot spot to the other mounting lead.  
The following equation can predict the junction temperature  
based on the heat load applied to the SiP and the known ambient  
conditions with the simplified thermal circuit model:  
TTOP  
TPCB  
θINT-PCB  
1
PD +  
+
θINT-TOP  
TINT  
=
(1)  
1
+
θINT-TOP  
θINT-PCB  
Simplified SiP  
Thermal Impedances  
Detailed SiP Thermal Impedances  
Product  
System  
θINT-TOP  
θINT-PCB  
θINT-TOP  
θINT-VIN  
θINT-VS1  
θINT-PGND1  
θINT-PGND2  
θINT-SGND  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
PI332x-00  
1.7  
110  
3.4  
4.8  
33  
33  
91  
110  
Table 2 — PI332x-00 SiP thermal impedance  
Effective Thermal Impedances  
Inductor Part  
Number  
Product  
System  
θINT-LEAD1, θINT-LEAD2  
θINT-TAB  
(°C / W)  
θINT-TOP  
θINT-BOTTOM  
(°C / W)  
(°C / W)  
(°C / W)  
PI332x-00  
FP2207R1-R230-R  
11  
9.4  
6.8  
N/A  
Table 3 — Inductor effective thermal model parameters  
ZVS Regulators  
Page 25 of 36  
Rev 1.6  
02/2021  
PI332x-00  
SiP Power Dissipation as Percentage of Total System Losses  
100  
90  
80  
70  
60  
50  
14  
18  
22  
26  
30  
34  
38  
42  
VIN (V)  
IOUT  
:
<5% Rated Load  
30% Rated Load  
100% Rated Load  
Figure 60 — PI3323-00-LGIZ  
100  
90  
80  
70  
60  
50  
40  
14  
18  
22  
26  
30  
34  
38  
42  
VIN (V)  
IOUT  
:
<5% Rated Load  
30% Rated Load  
100% Rated Load  
Figure 61 — PI3325-00-LGIZ  
ZVS Regulators  
Page 26 of 36  
Rev 1.6  
02/2021  
PI332x-00  
There is typically either proportional or direct tracking implemented  
within a design. For proportional tracking between several  
Application Description  
regulators at start up, simply connect all PI332x-00 device TRK pins  
together. This type of tracking will force all connected regulators to  
start up and reach regulation at the same time (see Figure 63a).  
Output Voltage Set Point  
The PI332x-00 family of buck regulators utilizes VREF, an internal  
reference for regulating the output voltage. The output voltage  
setting is accomplished using external resistors as shown in  
Figure 62. Select R2 to be at or around 1kΩ for best noise  
immunity. Use Equations 2 and 3 to determine the proper value  
based on the desired output voltage.  
VOUT  
1
V
OUT 2  
(a)  
Parent VOUT  
VOUT  
VOUT  
2
R1  
(b)  
t
EAIN  
CEAIN-INT  
-
+
VREF  
R2  
EAO  
Figure 63 — PI332x-00 tracking responses  
CHF  
RZI  
COMP  
For Direct Tracking, choose the PI332x-00 with the highest output  
voltage as the parent and connect the parent to the TRK pin of the  
other PI332x-00 regulators through a divider (Figure 64) with the  
same ratio as the child’s feedback divider.  
Figure 62 — External resistor divider network  
R1 + R2  
VOUT = VREF  
R1 = R2 •  
(2)  
(3)  
Parent VOUT  
R2  
V
OUT – VREF  
VREF  
R1  
PI332x  
TRK  
Child  
R2  
where VREF = VEAIN  
SGND  
Soft Start Adjust and Tracking  
The TRK pin offers a means to increase the regulator’s soft-start  
time or to track with additional regulators. The soft-start slope is  
controlled by an internal capacitor and a fixed charge current to  
provide a Soft-Start Time tSS for all PI332x-00 regulators. By adding  
an additional external capacitor to the TRK pin, the soft-start  
time can be increased further. The following equation can be  
used to calculate the proper capacitor for a desired soft-start time  
in excess of tSS:  
Figure 64 — Voltage divider connections for direct tracking  
All connected PI332x-00 regulator soft-start slopes will track with  
this method. Direct tracking timing is demonstrated in Figure 63b.  
All tracking regulators should have their Enable (EN) pins connected  
together to work properly.  
CTRK = (tTRK • ITRK )CTRK_INT  
(4)  
where tTRK is the soft-start time and ITRK is a 50µA internal charge  
current (see Electrical Characteristics for limits).  
In applications such as battery or super-capacitor charging where  
the load is pre-biased, the PI332x can start into output voltages up  
to the externally applied trim setpoint, or the minimum absolute  
OVP, provided the value does not exceed 6V. For start up into  
loads which are pre-biased above 6V, an ORing FET or equivalent  
sub-circuit is required to decouple the buck output from the  
load during start up. In any application with a CV type load,  
the regulator must be configured in a constant-current mode of  
operation; the built-in current limit is a fault protection only.  
ZVS Regulators  
Page 27 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Inductor Pairing  
Parallel Operation  
Multiple PI332x-00 can be connected in parallel to increase the  
output capability of a single output rail. When connecting modules  
in parallel, each EAO, TRK and EN pin should be connected  
together. EAIN pins should remain separated, each with an REA1  
and REA2, to reject noise differences between different modules'  
SGND pins. Current sharing will occur automatically in this manner  
so long as each inductor is the same value. Refer to the Electrical  
Characteristics table for maximum array size and array rated  
output current. Current sharing may be considered independent  
of synchronization and/or interleaving. Modules do not have to be  
interleaved or synchronized to share current.  
The PI332x-00 utilizes an external inductor. This inductor has  
been optimized for maximum efficiency performance. Table 3  
details the specific inductor value and part number utilized for  
each PI332x-00.  
Product  
System  
Value  
(nH)  
Max Operating  
Temp (°C)  
MFR  
Part Number  
Eaton  
Pulse  
Eaton  
Pulse  
FP2207R1-R230-R  
PA4792.231HLT  
FP2207R1-R230-R  
PA4792.231HLT  
PI3323-00  
PI3325-00  
230  
230  
125  
125  
Due to the high output current capability of a single module and  
Critical Conduction Mode (CrCM) occurring at approximately 50%  
rated load, interleaving is not supported.  
Table 3 — PI332x-00 Inductor pairing  
Use of the PI332x-00 SYNCI pin is practical only under a limited  
set of conditions. Synchronizing to another converter or to a fixed  
external clock source can result in a significant reduction in output  
power capability or higher than expected ripple.  
The same inductor model may have different effective thermal  
impedances, depending on the model ZVS Buck paired with it. The  
thermal impedances are used in a virtual model of the inductor  
to estimate the maximum temperature, and the location of the  
maximum temperature may vary depending on the ZVS Buck  
model that the inductor is used with. This is because the effective  
thermal impedances are not only based on the geometry and  
materials used in the inductor, but include how the inductor power  
dissipation is distributed among core losses, DC copper losses and  
AC copper losses. This distribution is dependent on the ZVS Buck  
model that uses the inductor.  
Filter Considerations  
The PI332x-00 requires low impedance ceramic input capacitors  
(X7R/X5R or equivalent) to ensure proper start up and  
high-frequency decoupling for the power stage. The PI332x-00  
will draw nearly all of the high-frequency current from the  
low-impedance ceramic capacitors when the main high-side  
MOSFET(s) are conducting. During the time the MOSFET(s) are off,  
the input capacitors are replenished from the source. Table 6 shows  
the recommended input and output capacitors to be used for the  
PI332x-00 as well as per capacitor RMS ripple current and the input  
and output ripple voltages. Table 5 lists the recommended input  
and output ceramic capacitors manufacturer and part numbers. It  
is very important to verify that the voltage supply source as well as  
the interconnecting lines are stable and do not oscillate.  
L1_1  
VIN  
VS1  
VOUT  
VSP  
VSN  
VDIFF  
TRK  
EAIN  
EAO  
COMP  
VIN  
EN  
VOUT  
CIN_1  
COUT_1  
ZVS Buck  
#1  
PGND  
VDR  
SYNCO  
SYNCI  
PWRGD  
EN  
REA1_1  
REA2_1  
TRK  
EAO  
TESTx  
SGND  
CCOMP_1  
Input filter case 1 — Inductive source and local, external,  
input decoupling capacitance with negligible ESR  
(i.e., ceramic type):  
L1_2  
VIN  
VS1  
VOUT  
VSP  
VSN  
VDIFF  
TRK  
EAIN  
EAO  
COMP  
VIN  
EN  
VOUT  
CIN_2  
COUT_2  
ZVS Buck  
PGND  
VDR  
SYNCO  
SYNCI  
PWRGD  
EN  
The voltage source impedance can be modeled as a series  
RLINE LLINE circuit. The high performance ceramic decoupling  
capacitors will not significantly damp the network because of their  
low ESR; therefore in order to guarantee stability the following  
conditions must be verified:  
#2  
REA1_2  
REA2_2  
TRK  
EAO  
TESTx  
SGND  
CCOMP_2  
LLINE  
RLINE  
>
(5)  
Figure 65 — PI332x-00 parallel operation  
CIN_INT + CIN_EXT • rEQ_IN  
(
)
RLINE << rEQ_IN  
(6)  
Where rEQ_IN can be calculated by dividing the lowest line voltage  
by the full load input current. It is critical that the line source  
impedance be at least an octave lower than the converter’s  
dynamic input resistance, Equation 6. However, RLINE cannot  
be made arbitrarily low otherwise Equation 5 is violated and  
the system will show instability, due to an under-damped  
RLC input network.  
ZVS Regulators  
Page 28 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Input filter case 2 — Inductive source and local, external  
input decoupling capacitance with significant RCIN_EXT ESR  
(i.e., electrolytic type):  
2. No direct connection is allowed. Any noise source that can  
disturb the VDR voltage can also affect the internal controller  
operation. A series impedance is required between the VDR pin  
and any external circuitry.  
In order to simplify the analysis in this case, the voltage source  
impedance can be modeled as a simple inductor LLINE  
.
3. All loads must be locally decoupled using a 0.1μF ceramic  
capacitor. This capacitor must be connected to the VDR output  
through a series resistor no smaller than 1kΩ, which forms a  
low-pass filter.  
Notice that the high performance ceramic capacitors CIN_INT within  
the PI332x-00 should be included in the external electrolytic  
capacitance value for this purpose. The stability criteria will be:  
Additional System Design Considerations  
rEQ_IN > RC  
(7)  
1. Inductive loads: As with all power electronic applications,  
consideration must be given to driving inductive loads that  
may be exposed to a fault in the system which could result  
in consequences beyond the scope of the power supply  
primary protection mechanisms. An inductive load could be a  
filter, fan motor or even excessively long cables. Consider an  
instantaneous short circuit through an un-damped inductance  
that occurs when the output capacitors are already at an  
initial condition of fully charged. The only thing that limits the  
current is the inductance of the short circuit and any series  
resistance. Even if the power supply is off at the time of the  
short circuit, the current could ramp up in the external inductor  
and store considerable energy. The release of this energy will  
result in considerable ringing, with the possibility of ringing  
nodes connected to the output voltage below ground. The  
system designer should plan for this by considering the use of  
other external circuit protection such as load switches, fuses  
and transient voltage protectors. The inductive filters should  
be critically damped to avoid excessive ringing or damaging  
voltages. Adding a high-current Schottky diode from the output  
voltage to PGND close to the PI332x-00 is recommended for  
these applications.  
IN_EXT  
LLINE  
< rEQ_IN  
(8)  
CIN_INT • RC  
IN_EXT  
Equation 8 shows that if the aggregate ESR is too small – for  
example by using very high quality input capacitors (CIN_EXT) – the  
system will be under-damped and may even become destabilized.  
As noted, an octave of design margin in satisfying Equation 7  
should be considered the minimum. When applying an electrolytic  
capacitor for input filter damping the ESR value must be chosen to  
avoid loss of converter efficiency and excessive power dissipation in  
the electrolytic capacitor.  
VDR Bias Regulator  
The VDR internal bias regulator is a ZVS switching regulator  
that resides internal to the PI332x-00 SiP. It is intended primarily  
to power the internal controller and driver circuitry. The power  
capability of this regulator is sized for the PI332x-00, with adequate  
reserve for the application it was intended for.  
It may be used for as a pullup source for open collector applications  
and for other very low power uses with the following restrictions:  
2. Low-voltage operation: There is no isolation from an SELV  
(Safety-Extra-Low-Voltage) power system. Powering low voltage  
loads from input voltages as high as 60V may require additional  
consideration to protect low voltage circuits from excessive  
voltage in the event of a short circuit from input to output. A  
fast TVS (transient voltage suppressor) gating an external load  
switch is an example of such protection.  
1. The total external loading on VDR must be less than IVDR  
.
Manufacturer  
Murata  
Part Number  
Value  
47µF  
Description  
GRM32ER71A476KE15  
GRM32ER71A476K  
47μF 10V 1210 X7R  
4.7μF 80V 1210 X7R  
100μF 6.3V 1210 X7S  
Murata  
4.7µF  
100µF  
Murata  
GRM32EC70J107ME15K  
Table 5 — Recommended input and output capacitor components  
Transient  
CIN  
Ripple  
Current  
COUT  
Ripple  
Current  
(IRMS)  
Load  
Step  
(% Rating)  
(1A/µs)  
Load  
Current  
(A)  
VIN  
Ripple  
(mVpp)  
VOUT  
Ripple  
(mVpp)  
Deviation  
Excluding  
Ripple  
VOUT  
Recovery  
Time (µs)  
Product  
CIN  
COUT  
(IRMS  
)
(mVpk)  
8 x  
4.7µF  
PI3323-00  
PI3325-00  
22  
20  
8 x 100µF  
12 x 47µF  
10.85  
10.43  
14.5  
540  
512  
67  
50 – 100  
50 – 100  
110  
90  
<90  
<80  
6 x  
4.7µF  
13.25  
55.7  
Table 6 — Recommended input and output capacitor quantity and performance at nominal line, nominal trim.  
ZVS Regulators  
Page 29 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Layout Guidelines  
To optimize maximum efficiency and low noise performance  
from a PI332x-00 design, layout considerations are necessary.  
Reducing trace resistance and minimizing high-current loop  
returns along with proper component placement will contribute to  
optimized performance.  
VIN  
CIN  
A typical buck converter circuit is shown in Figure 66. The potential  
areas of high parasitic inductance and resistance are the circuit  
return paths, shown as LR below.  
COUT  
Figure 68 — Current flow: Q2 closed  
Figure 69 illustrates the tight path between CIN and COUT (and VIN  
and VOUT) for the high AC return current. The PI332x-00 evaluation  
board uses a layout optimized for performance in this way.  
VIN  
CIN  
COUT  
Figure 66 — Typical buck regulator  
The path between the COUT and CIN capacitors is of particular  
importance since the AC currents are flowing through both of  
them when Q1 is turned on. Figure 67, schematically, shows the  
reduced trace length between input and output capacitors. The  
shorter path lessens the effects that copper trace parasitics can  
have on the PI332x-00 performance.  
PGND  
VOUT  
Inductor  
VS1  
ZVS-  
Buck  
SIP  
VIN  
PGND  
VIN  
CIN  
COUT  
Figure 69 — Recommended layout for optimized AC current  
within the SiP, inductor and ceramic input and  
output capacitors  
Figure 67 — Current flow: Q1 closed  
When Q1 is on and Q2 is off, the majority of CIN’s current is used  
to satisfy the output load and to recharge the COUT capacitors.  
When Q1 is off and Q2 is on, the load current is supplied by the  
inductor and the COUT capacitor as shown in Figure 68. During this  
period CIN is also being recharged by the VIN. Minimizing CIN loop  
inductance is important to reduce peak voltage excursions when  
Q1 turns off. Also, the difference in area between the CIN loop and  
COUT loop is vital to minimize switching and GND noise.  
ZVS Regulators  
Page 30 of 36  
Rev 1.6  
02/2021  
PI332x-00  
LGA Recommended PCB Footprint and Stencil  
E1  
D1  
L
D1  
E1  
L
Recommended receiving footprint for PI332x-00 10 x 14mm package. All pads should have a final copper size of 0.55 x 0.55mm,  
whether they are solder-mask defined or copper defined, on a 1 x 1mm grid. All stencil openings are 0.45mm when using either a 5mil or  
6mil stencil.  
ZVS Regulators  
Page 31 of 36  
Rev 1.6  
02/2021  
PI332x-00  
LGA Package Drawings  
E1  
A
K
G
E
D
A
1
2
3
4
5
6
7
D
D1  
8
9
1
10  
11  
12  
13  
14  
E
DETAIL B  
1
DETAIL A  
M
A
L
M
2
L1  
M
M
A
3
A2  
A
DETAIL B  
SEATING PLANE  
METALLIZED  
PAD  
A1  
SOLDER MASK  
DETAIL A  
A
A1  
A2  
L
D
E
AND POSITION  
D1  
E1  
L1  
ZVS Regulators  
Page 32 of 36  
Rev 1.6  
02/2021  
PI332x-00  
BGA Recommended PCB Footprint and Stencil  
E1  
e
PIN 1  
e
b
D1  
FOR PCB LAND PATTERN  
BB 10.5x14.5mm SiP  
DIMENSIONSAL REFERENCES  
REF.  
b
MIN.  
0.59  
NOM.  
0.64  
MAX.  
0.69  
D1  
E1  
e
13.00 BSC.  
9.00 BSC.  
1.00 BSC.  
ZVS Regulators  
Page 33 of 36  
Rev 1.6  
02/2021  
PI332x-00  
BGA Package Drawings  
A
K
J H G F E D C B A  
PIN 1 INDEX  
CORNER  
DETAIL B  
1
2
3
PIN 1 INDEX  
CORNER  
4
5
6
D
7
8
D1  
9
10  
11  
12  
13  
14  
2
e
e
2
E
B
(4X)  
aaa C  
E1  
BUMPS UP VIEW  
BUMPS DOWN VIEW  
4
nX Øb  
DETAIL A  
M
0.25  
C
A B  
M
0.1  
C
e
DETAIL B  
A3  
bbb  
C
DIMENSIONAL REFERENCES  
REF.  
A
A1  
A3  
D
D1  
E
MIN.  
2.96  
0.44  
1.95  
NOM.  
3.05  
MAX.  
3.14  
0.54  
2.05  
0.49  
A
C
2.00  
14.50  
13.00 BSC  
10.50  
9.00 BSC  
0.64  
6
SEATING PLANE  
E1  
b
A1  
0.59  
0.69  
DETAIL DETAIL A  
SCALE 25 : 1  
aaa  
bbb  
ddd  
e
MD/ME  
n
0.20  
0.25  
5
ddd  
C
0.15  
1.00 BSC  
14/10  
110  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. 'e' REPRESENTS THE BASIC SOLDER BALL GRID PITCH.  
3. 'M' REPRESENTS THE BASIC SOLDER BALL MATRIX SIZE.  
AND SYMBOL 'n' IS THE NUMBER OF BALLS AFTER DEPOPULATING.  
4. 'b' IS MEASURABLE AT THE MAXIMUM SOLDER BALL DIAMETER AFTER REFLOW  
PARALLEL TO PRIMARY DATUM  
5. DIMENSION 'ddd' IS MEASURED PARALLEL TO PRIMARY DATUM  
6. PRIMARY DATUM AND SEATING PLANE ARE DEFINED BY THE SPERICAL  
CROWNS OF THE SOLDER BALLS.  
C
.
C
.
C
7. THE OVERALL PACKAGE THICKNESS "A" ALREADY CONSIDERS COLLAPSE BALLS  
8. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.  
9. REFERENCE TO JEDEC MO-234B.  
10.RoHS COMPLIANT PER CST-0001 LATEST REVISION.  
ZVS Regulators  
Page 34 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Revision History  
Revision  
1.0  
Date  
Description  
Page Number(s)  
12/05/17  
02/06/18  
Initial release  
n/a  
14  
1.1  
Added typical start-up waveforms  
Updated figure 28  
Removed note  
14  
20  
1.2  
1.3  
07/25/19  
04/17/20  
Added PI3323-00 part numbers, and BGIZ, BGMZ, BGMP options  
Updated PI3325 enabled input quiescent current  
Added BGA drawings  
1, 3, 8 – 14, 22, 26, 28, 29  
8
33, 34  
1.4  
1.5  
1.6  
06/22/20  
08/12/20  
02/22/21  
Updated to add recommended Pulse Electronics inductor  
Updated terminology  
28  
27  
Updated to include PI3323-00-LGMZ, PI3325-00-LGMZ  
1, 3, 7, 8, 9, 15, 16  
Please note: Pages added in Rev 1.3.  
ZVS Regulators  
Page 35 of 36  
Rev 1.6  
02/2021  
PI332x-00  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc-converters-board-mount/cool-power-pi33xx-and-pi34xx for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by U.S. Patents. Please see www.vicorpower.com/patents for the latest  
patent information.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2017 – 2021 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
ZVS Regulators  
Page 36 of 36  
Rev 1.6  
02/2021  

相关型号:

PI3323-00-BGIZ

14 – 42VIN ZVS Buck Regulator
VICOR

PI3323-00-BGMP

14 – 42VIN ZVS Buck Regulator
VICOR

PI3323-00-BGMZ

14 – 42VIN ZVS Buck Regulator
VICOR

PI3323-00-LGMZ

14 – 42VIN ZVS Buck Regulator
VICOR

PI3325-00

14 – 42VIN ZVS Buck Regulator
VICOR

PI3325-00-BGIZ

14 – 42VIN ZVS Buck Regulator
VICOR

PI3325-00-BGMP

14 – 42VIN ZVS Buck Regulator
VICOR

PI3325-00-BGMZ

14 – 42VIN ZVS Buck Regulator
VICOR

PI3325-00-LGIZ

14 – 42VIN Cool-Power ZVS Buck Regulator
VICOR

PI3325-00-LGMZ

14 – 42VIN ZVS Buck Regulator
VICOR

PI332X-00

14 – 42VIN Cool-Power ZVS Buck Regulator
VICOR

PI332X-00_V01

14 – 42VIN ZVS Buck Regulator
VICOR