PI3741-0X_18 [VICOR]

21V to 60VIN, 150W, Cool-Power ZVS Buck-Boost Regulator;
PI3741-0X_18
型号: PI3741-0X_18
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

21V to 60VIN, 150W, Cool-Power ZVS Buck-Boost Regulator

文件: 总39页 (文件大小:968K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cool-Power®  
ZVS Switching Regulators  
PI3741-0x  
21V to 60VIN, 150W, Cool-Power ZVS Buck-Boost Regulator  
Product Description  
Features & Benefits  
The PI3741-0x series is a high efficiency, wide range DC-DC ZVS  
Buck-Boost Regulator with two output range configurations that  
utilize the same high density System-in-Package (SiP). Integrating  
controller, power switches, support components and a high  
performance Zero-Voltage Switching (ZVS) topology within the  
PI3741-0x increases point of load performance while providing  
best in class power efficiency.  
Up to 97% efficiency  
150W of continuous output power  
(for specific conditions)  
Fast transient response  
Parallel capable with single wire current sharing  
External frequency synchronization / interleaving  
High Side Current Sense Amplifier  
General Purpose Amplifier  
The PI3741-0x requires an external inductor, resistive divider and  
minimal capacitors to form a complete DC-DC switching mode  
buck-boost regulator.  
Output Voltage  
Device  
Input Over/Undervoltage Lockout (OVLO/UVLO)  
Output Overvoltage Protection (OVP)  
Over Temperature Protection (OTP)  
Fast and slow current limits  
Set  
24V  
48V  
Range  
21 to 36V  
36 to 54V  
PI3741-00-LGIZ  
PI3741-01-LGIZ  
The ZVS architecture also enables high frequency operation while  
minimizing switching losses and maximizing efficiency. The high  
switching frequency operation reduces the size of the external  
filtering components, improves power density, and enables fast  
dynamic response to line and load transients.  
-40°C to 115°C operating range (TJ)  
Excellent light load efficiency  
Applications  
Telecom, Networking, Lighting  
Computing, Communications, Industrial  
Renewable Energy Systems  
Package Information  
10mm x 14mm x 2.56mm LGA SiP  
Typical Application  
L1  
VIN  
VIN  
VS1  
VS2  
VOUT  
VOUT  
CIN  
COUT  
PGND  
ISP  
PGND  
ISN  
IMON  
VSN  
VDR  
10kΩ  
PI3741  
PGD  
EN  
R1  
R2  
VSP  
VDIFF  
SYNCO  
EAIN  
EAO  
SYNCI  
TRK  
COMP  
SGND  
CCOMP  
CTRK  
4700pF  
Cool-Power® ZVS Switching Regulators  
Page 1 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Rated Output Current / Power  
6.0  
5.5  
5.0  
4.5  
4.0  
150  
140  
130  
120  
110  
100  
90  
3.5  
3.0  
80  
20  
25  
30  
35  
40  
45  
50  
55  
60  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input Voltage (V)  
Input Voltage (V)  
32VOUT  
36VOUT  
32VOUT  
36VOUT  
21VOUT  
24VOUT  
28VOUT  
21VOUT  
24VOUT  
28VOUT  
Output Current of PI3741-00-LGIZ  
Output Power of PI3741-00-LGIZ  
160  
150  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
140  
130  
120  
110  
100  
90  
20  
25  
30  
35  
40  
45  
50  
55  
60  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input Voltage (V)  
Input Voltage (V)  
36VOUT  
40VOUT  
48VOUT  
54VOUT  
36VOUT / 40VOUT  
48VOUT / 54VOUT  
Output Current of PI3741-01-LGIZ  
Output Power of PI3741-01-LGIZ  
Cool-Power® ZVS Switching Regulators  
Page 2 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Contents  
Order Information  
4
4
Application Description  
Output Voltage Trim  
Soft-Start Adjustment and Tracking  
Inductor Pairing  
23  
23  
23  
23  
24  
26  
Absolute Maximum Ratings  
Pin Description  
5
Package Pin-Out  
6
Large Pin Blocks  
6
Filter Considerations  
Thermal Design  
Storage and Handling Information  
Block Diagram  
7
7
PI3741-00-LGIZ Percentage of SiP Loss to Total Loss  
PI3741-01-LGIZ Percentage of SiP Loss to Total Loss  
Evaluation Board Thermal De-rating  
Parallel Operation  
30  
31  
32  
34  
34  
34  
35  
35  
35  
35  
36  
37  
38  
39  
PI3741-00-LGIZ Electrical Characteristics  
PI3741-01-LGIZ Electrical Characteristics  
PI3741-00-LGIZ Performance Characteristics TA = 25°C  
PI3741-01-LGIZ Performance Characteristics TA = 25°C  
MTBF  
8
11  
14  
17  
20  
21  
21  
21  
21  
21  
21  
21  
21  
21  
22  
22  
22  
22  
22  
Synchronization  
Interleaving  
Functional Description  
VDR Bias Regulator  
Enable  
System Design Considerations  
Inductive Loads  
Switching Frequency Synchronization  
Soft-Start and Tracking  
Low Voltage Operation  
Remote Sensing Differential Amplifier  
Power Good  
Package Drawings  
Receiving PCB Pattern Design Recommendations  
Revision History  
Output Current Limit Protection  
Input Undervoltage Lockout  
Input Overvoltage Lockout  
Output Overvoltage Protection  
Overtemperature Protection  
Pulse Skip Mode (PSM)  
Warranty  
Variable Frequency Operation  
IMON Amplifier  
Cool-Power® ZVS Switching Regulators  
Page 3 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Order Information  
Part Number  
PI3741-00-LGIZ  
PI3741-01-LGIZ  
Description  
Package  
Transport Media  
TRAY  
MFG  
Vicor  
Vicor  
21 – 60VIN to 21 – 36VOUT  
21 – 60VIN to 36 – 54VOUT  
10mm x 14mm 108-pin LGA  
10mm x 14mm 108-pin LGA  
TRAY  
Absolute Maximum Ratings  
Note: Stresses beyond these limits may cause permanent damage to the device. Operation at these conditions or conditions beyond those listed in the  
Electrical Specifications table is not guaranteed. All voltage nodes are referenced to PGND unless otherwise noted.  
Location  
Name  
VIN  
VMAX  
75V  
VMIN  
-0.7V  
-0.7VDC  
-0.7VDC  
-0.7VDC  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-1.5V  
-1.5V  
-0.5V  
-0.3V  
-0.3V  
-0.3V  
-2VDC  
-2VDC  
-0.3V  
N/A  
ISOURCE  
40A [1]  
40A [1]  
40A [1]  
40A [1]  
30mA  
20mA  
5mA  
ISINK  
40A [1]  
18A [1]  
18A [1]  
40A [1]  
200mA  
20mA  
5mA  
1–2, G–K  
4–5, G–K  
VS1  
75V  
10–11, G–K  
VS2  
75V  
13–14, G–K  
VOUT  
VDR  
75V  
1E  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
75V  
1D  
PGD  
SYNCO  
SYNCI  
FT1  
1C  
1B  
5mA  
5mA  
1A  
5mA  
5mA  
2A  
FT2  
5mA  
5mA  
3A  
FT3  
5mA  
5mA  
4A  
FT4  
10mA  
5mA  
10mA  
5mA  
5A  
EN  
6A  
TRK  
50mA  
5mA  
50mA  
5mA  
7A  
LGH  
8A  
COMP  
VSN  
5mA  
5mA  
9A  
5mA  
5mA  
10A  
VSP  
5mA  
5mA  
11A  
VDIFF  
EAIN  
EAO  
IMON  
ISN [2]  
ISP [2]  
SGND  
PGND  
5mA  
5mA  
12A  
5mA  
5mA  
13A  
5mA  
5mA  
14A  
5mA  
5mA  
14D  
5mA  
5mA  
14E  
75V  
5mA  
5mA  
10–14, B + 10–12, C–E  
2–9, B–E + 7-8, F–K  
[1] Non-Operating Test Mode Limits.  
0.3V  
N/A  
200mA  
18A [1]  
200mA  
18A [1]  
[2] The ISP pin to ISN pin has a maximum differential limit of +5.5VDC and -0.5VDC  
.
Cool-Power® ZVS Switching Regulators  
Page 4 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Pin Description  
Pin Number  
1–2, G–K  
Pin Name  
VIN  
Description  
Input voltage and sense node for UVLO, OVLO and feed forward compensation.  
Input side switching node and ZVS sense node for power switches.  
Output side switching node and ZVS sense node for power switches.  
4–5, G–K  
VS1  
10–11, G–K  
VS2  
Output voltage and sense node for power switches, VOUT feed forward compensation, VOUT_OV  
and internal signals.  
13–14, G–K  
VOUT  
VDR  
Internal 5.1V supply for gate drivers and internal logic. May be used as reference or low power bias supply  
for up to 2mA. Must be impedance limited by the user.  
1E  
1D  
1C  
Fault & Power Good indicator. PGD pulls low when the regulator is not operating or if EAIN is less  
than 1.4V.  
PGD  
Synchronization output. Outputs a high signal for ½ of the programmed switching period at the beginning  
of each switching cycle, for synchronization of other regulators.  
SYNCO  
Synchronization input. When a falling edge synchronization pulse is detected, the PI3741-0x will delay  
the start of the next switching cycle until the next falling edge sync pulse arrives, up to a maximum delay  
of two times the programmed switching period. If the next pulse does not arrive within two times the  
programmed switching period, the controller will leave sync mode and start a switching cycle automatically.  
Connect to SGND when not in use.  
1B  
SYNCI  
1A  
2A  
3A  
4A  
FT1  
FT2  
FT3  
FT4  
For factory use only. Connect to SGND or leave floating in application.  
For factory use only. Connect to SGND or leave floating in application.  
For factory use only. Connect to SGND in application.  
For factory use only. Connect to SGND in application.  
Regulator Enable control. Asserted high or left floating – regulator enabled;  
Asserted low, regulator output disabled.  
5A  
EN  
Soft-start and track input. An external capacitor may be connected between TRK pin and SGND to decrease  
the rate of output rise during soft-start.  
6A  
7A  
TRK  
LGH  
For factory use only. Connect to SGND in application.  
Error amp compensation dominant pole. Connect a capacitor of 4700pF by default between COMP  
and SGND to set the control loop dominant pole. If the application requires output capacitance from  
recommended in table 1, please contact Applications Support to compensate the control loop.  
8A  
COMP  
9A  
VSN  
VSP  
General purpose amplifier inverting input.  
10A  
11A  
12A  
General purpose amplifier non-inverting input.  
VDIFF  
EAIN  
General Purpose amplifier output. When unused connect VDIFF to VSN and VSP to SGND.  
Error amplifier inverting input and sense for PGD. Connect by resistive divider to the output.  
Error amp output: External connection for additional compensation and current sharing. Leave floating  
to use the internal error amplifier capacitance for default loop compensation. Please contact Applications  
Support if additional compensation is needed.  
13A  
EAO  
14A  
14D  
14E  
IMON  
ISN  
High side current sense amplifier output.  
High side current sense amplifier negative input.  
High side current sense amplifier positive input.  
ISP  
Signal ground. Internal logic and analog ground for the regulator. SGND and PGND are star connected  
within the regulator package.  
10–14, B + 10–12, C–E  
2–9, B-E + 7–8, F–K  
SGND  
PGND  
Power ground. VIN, VOUT, VS1 and VS2 power returns. SGND and PGND are star connected within the  
regulator package.  
Cool-Power® ZVS Switching Regulators  
Page 5 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Package Pin-Out  
1
2
FT1  
FT2  
SYNCI  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
SGND  
SGND  
SYNC0  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
PGD  
VDR  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
3
FT3  
4
FT4  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
EN  
5
TRK  
6
LGH  
COMP  
VSN  
VSP  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
7
8
9
VS2  
VS2  
VS2  
VS2  
VS2  
VS2  
VS2  
VS2  
10  
11  
12  
13  
14  
VDIFF  
EAIN  
EAO  
IMON  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
ISN  
ISP  
Large Pin Blocks  
Pin Block Name  
Group of pins  
VIN  
G1-2, H1-2, J1-2, K1-2  
G4-5, H4-5, J4-5, K4-5  
VS1  
PGND  
VS2  
B2-9, C2-9, D2-9, E2-9, F7-8, G7-8, H7-8, J7-8, K7-8  
G10-11, H10-11, J10-11, K10-11  
VOUT  
SGND  
G13-14, H13-14, J13-14, K13-14  
B10-14, C10-12, D10-12, E10-12  
Cool-Power® ZVS Switching Regulators  
Page 6 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Storage and Handling Information  
Maximum Storage Temperature Range  
Maximum Operating Junction Temperature Range  
Soldering Temperature for 20 seconds  
MSL Rating  
-65°C to 150°C  
-40°C to 115°C  
245°C  
3
ESD Rating [3]  
2.0kV HBM; 1.0kV CDM  
[3] JS-200-2014, JESD22-A114F.  
Block Diagram  
VS1 VS2  
VIN  
VOUT  
Q1  
Q3  
ISN  
ISP  
IMON  
-
+
VS1  
Q2  
VS2  
Q4  
VSN  
VSP  
-
+
LDO  
VDIFF  
VDR  
EAIN  
EAO  
ZVS Buck Boost Control  
and  
Digital Parametric Trim  
-
+
SYNCO  
SYNCI  
PGD  
VREF  
EN  
FT1 - FT5  
COMP  
TRK  
CLAMP  
0Ω  
PGND  
Cool-Power® ZVS Switching Regulators  
Page 7 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-00-LGIZ Electrical Characteristics  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 48V, VOUT = 24V, LEXT = 900nH [4], external CIN = 5 x 2.2µF, external COUT = 8 x 2.2µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
VIN_DC  
21  
48  
60  
V
Input Current During Output Short  
(Fault Condition Duty Cycle)  
[5]  
IIN_SHORT  
1.9  
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
Internal Input Capacitance  
VIN UVLO Threshold Rising  
VIN UVLO Hysteresis  
IQ_VIN  
IQ_VIN  
Enabled (no load)  
4
mA  
mA  
V / µs  
µF  
Disabled  
1.5  
[5]  
VIN_SR  
1
CIN  
25°C, VIN = 48V  
0.5  
19.2  
0.7  
VIN_UVLO_START  
VIN_UVLO_HYS  
VIN_OVLO_START  
VIN_OVLO_HYS  
V
V
VIN OVLO Threshold Rising  
VIN OVLO Hysteresis  
61  
64.5  
1.3  
68  
V
V
Output Specifications  
EAIN Voltage Total Regulation  
Output Voltage Range  
VEAIN_DC  
VOUT_DC  
IOUT_DCR  
1.667  
21  
1.7  
24  
1.734  
36  
V
V
A
[6]  
Output Current Range  
0
max  
VIN = 21 – 48V, VOUT 24V, TCASE = 25°C [6]  
VIN = 48 – 60V, VOUT 24V, TCASE = 25°C [6]  
VIN = 21 – 48V, VOUT = 24 – 36V, TCASE = 25°C [6]  
VIN = 48 – 60V, VOUT = 24 – 36V, TCASE = 25°C [6]  
4.17  
5.42  
100  
130  
Output Current Steady State  
Output Power Steady State  
IOUT_DC  
A
POUT_DC  
W
Line Regulation  
Load Regulation  
VOUT(VIN) @ 25°C, 21V < VIN < 60V  
0.10  
0.10  
%
%
VOUT(IOUT  
)
@ 25°C, IOUT above 5% of the typical full load  
IOUT = 5.42A, VIN = 48V, VOUT = 24V, TCASE = 25°C  
COUT_EX = 8 x 2.2µF, 100V, X7R, 20MHz BW  
Output Ripple  
VOUT_AC  
208  
mVp-p  
Internal Output Capacitance  
VOUT Overvoltage Threshold  
VOUT Overvoltage Hysteresis  
COUT  
25°C, VOUT = 24V  
0.75  
41.9  
0.8  
µF  
V
VOUT_OVT  
VOUT_OVH  
Rising VOUT threshold to detect open loop  
39.8  
4.9  
44  
V
VDR  
VDR Supply Voltage  
VDR  
Generated internally  
5.1  
5.36  
260  
V
Current Sense Amplifier (Dedicated to monitor Input or Output Current)  
ISP Pin Bias Current (Sink)  
ISN Pin Bias Current  
Common Mode Input Range  
IMON Source Current  
IMON Sink Current  
IMON Output At No Load  
Full Scale Error  
VOUT = 10V, Flows to SGND  
VOUT = 10V  
90  
150  
0
µA  
µA  
8
1
60  
3
V
1.8  
1.6  
10  
mA  
mA  
mV  
%
1
2.6  
20  
4
0
40mV input  
-4  
[5]  
Bandwidth  
40  
20  
20  
kHz  
µs  
Settling Time For Full Scale Step  
Gain  
1%  
AV_CS  
V / V  
Cool-Power® ZVS Switching Regulators  
Page 8 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-00-LGIZ Electrical Characteristics (Cont.)  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 48V, VOUT = 24V, LEXT = 900nH [4], external CIN = 5 x 2.2µF, external COUT = 8 x 2.2µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
General Purpose Amplifier  
[5]  
[5]  
Open Loop Gain  
96  
5
120  
7
140  
dB  
MHz  
mV  
V
Small Signal Gain-Bandwidth  
Offset  
12  
-1  
1
Common Mode Input Range  
Differential Mode Input Range  
Maximum Output Voltage  
Minimum Output Voltage  
-0.1  
2.5  
2
VDR – 0.2V  
20  
V
IDIFF = -1mA  
No Load  
V
mV  
Capacitive Load for Stable  
Operation  
[5]  
0
100  
pF  
Slew Rate  
10  
V / µs  
mA  
Output Current  
-1  
1
Transconductance Error Amplifier  
EAIN = EAO, 25ºC  
EAIN = EAO  
1.688  
1.674  
0
1.7  
1.7  
1.712  
1.726  
VDR  
Reference  
VREF  
V
Input Range  
VEAIN  
Note VEAIN_OV below  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
Transconductance  
3.35  
3.6  
0.05  
7.6  
6
4.0  
0.15  
V
Factory Set  
mS  
kΩ  
µA  
µA  
dB  
pF  
pF  
Zero Resistor  
Factory Set  
EAO Output Current Sourcing  
EAO Output Current Sinking  
Open Loop Gain  
VEAO = 50mV, VEAIN = 0V  
VEAO = 2V, VEAIN = 5V  
ROUT > 1MΩ [5]  
400  
400  
80  
70  
Input Capacitance  
56  
Output Capacitance  
56  
Control and Protection  
Switching Frequency  
VEAO Pulse Skip Threshold  
Control Node Range  
VEAO Overload Threshold  
Overload Timeout  
FSW  
VEAO_PST  
VRAMP  
VEAO_OL  
TOL  
1
MHz  
V
VEAO to SGND  
0.4  
0
3.3  
V
VEAO to SGND  
VEAO > VEAO_OL  
3.175  
3.3  
1
3.425  
V
ms  
Module shuts down after 1ms of overload and restarts  
after 30ms  
Overload due to EAO limit  
IOUT_EAOLIM  
6.8  
A
VEAIN Output Overvoltage Threshold  
Overtemperature Fault Threshold  
Overtemperature Restart Hysteresis  
VOUT Negative Fault Threshold  
VEAIN_OV  
TOTP  
VEAIN > VEAIN_OV  
1.94  
2.04  
125  
30  
2.14  
V
°C  
°C  
V
[5]  
[5]  
TOPT_HYS  
-0.45  
-0.25  
-0.15  
Cool-Power® ZVS Switching Regulators  
Page 9 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-00-LGIZ Electrical Characteristics (Cont.)  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 48V, VOUT = 24V, LEXT = 900nH [4], external CIN = 5 x 2.2µF, external COUT = 8 x 2.2µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Soft Start and Tracking Function  
TRK Active Range  
Nominal  
0
1.7  
70  
V
TRK Disable Threshold  
TRK Internal Capacitance  
Soft Start Charge Current  
Soft Start Discharge Current  
Soft Start Time  
20  
45  
.047  
50  
mV  
µF  
30  
70  
µA  
mA  
ms  
VTRK = 0.5V  
9
tSS  
Ext CSS = 0µF  
1.6  
Enable  
Enable High Threshold  
Enable Low Threshold  
Enable Threshold Hysteresis  
Enable Pin Bias Current  
Enable Pull-up Voltage  
Fault Restart Delay Time  
ENIH  
ENIL  
0.9  
0.7  
100  
1
1.1  
0.9  
300  
V
V
0.8  
200  
50  
ENHYS  
mV  
µA  
V
VEN = 0V or VEN = 2V  
Floating  
2.0  
30  
tFR_DLY  
ms  
Digital Signals  
SYNCI High Threshold  
SYNCO High  
VDR = 5.1V  
1/2 VDR  
V
V
SYNCOOH  
SYNCOOL  
PGDILH  
VDR - 0.5  
VDR  
0.5  
SYNCO Low  
ISYNCO = 1mA  
VPGD = VDR  
IPGD = 4mA  
V
PGD High Leakage  
PGD Output Low  
10  
µA  
V
PGDOL  
0.4  
PGD EAIN Low Rise  
PGD EAIN Low Fall  
PGD EAIN Threshold Hysteresis  
PGD EAIN High  
1.41  
1.36  
1.45  
1.41  
35  
1.48  
1.46  
V
V
mV  
V
1.94  
2.04  
2.14  
[4] See Inductor Pairing section.  
[5] Assured to meet performance specification by design, test correlation, characterization, and / or statistical process control.  
[6] Output current capability varies with input & output voltage. See rated output current / power curves on page 2.  
Cool-Power® ZVS Switching Regulators  
Page 10 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-01-LGIZ Electrical Characteristics  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 48V, VOUT = 48V, LEXT = 900nH [4], external CIN = 5 x 2.2µF, external COUT = 8 x 2.2µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
VIN_DC  
21  
48  
60  
V
Input Current During Output Short  
(Fault Condition Duty Cycle)  
[5]  
IIN_SHORT  
1.9  
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
Internal Input Capacitance  
VIN UVLO Threshold Rising  
VIN UVLO Hysteresis  
IQ_VIN  
IQ_VIN  
Enabled (no load)  
5
mA  
mA  
V / µs  
µF  
Disabled  
1.5  
[5]  
VIN_SR  
1
CIN  
25°C, VIN = 48V  
0.5  
19.2  
0.7  
VIN_UVLO_START  
VIN_UVLO_HYS  
VIN_OVLO_START  
VIN_OVLO_HYS  
V
V
VIN OVLO Threshold Rising  
VIN OVLO Hysteresis  
61  
64.5  
1.3  
68  
V
V
Output Specifications  
EAIN Voltage Total Regulation  
Output Voltage Range  
VEAIN_DC  
VOUT_DC  
IOUT_DCR  
1.667  
36  
1.7  
48  
1.734  
54  
V
V
A
[6]  
Output Current Range  
0
max  
VIN = 21 – 48V, VOUT 48V, TCASE = 25°C [6]  
VIN = 48 – 60V, VOUT 48V, TCASE = 25°C [6]  
VIN = 21 – 48V, VOUT = 48 – 54V, TCASE = 25°C [6]  
VIN = 48 – 60V, VOUT = 48 – 54V, TCASE = 25°C [6]  
2.09  
3.13  
100  
150  
Output Current Steady State  
Output Power Steady State  
IOUT_DC  
A
POUT_DC  
W
Line Regulation  
Load Regulation  
VOUT(VIN) @ 25°C, 21V < VIN < 60V  
0.10  
0.10  
%
%
VOUT(IOUT  
)
@ 25°C, IOUT above 5% of the typical full load  
IOUT = 3.13A, VIN = 48V, VOUT = 48V, TCASE = 25°C  
COUT_EX = 8 x 2.2µF, 100V, X7R, 20MHz BW  
Output Ripple  
VOUT_AC  
320  
mVp-p  
Internal Output Capacitance  
VOUT Overvoltage Threshold  
VOUT Overvoltage Hysteresis  
COUT  
25°C, VOUT = 48V  
0.5  
63.1  
1.3  
µF  
V
VOUT_OVT  
VOUT_OVH  
Rising VOUT threshold to detect open loop  
60  
66.3  
V
VDR  
VDR Supply Voltage  
VDR  
Generated Internally  
4.9  
5.1  
5.36  
260  
V
Current Sense Amplifier (Dedicated to monitor Input or Output Current)  
ISP Pin Bias Current (Sink)  
ISN Pin Bias Current  
Common Mode Input Range  
IMON Source Current  
IMON Sink Current  
IMON Output At No Load  
Full Scale Error  
VOUT = 10V, Flows to SGND  
VOUT = 10V  
90  
150  
0
µA  
µA  
8
1
60  
3
V
1.8  
1.6  
mA  
mA  
mV  
%
1
2.6  
10  
4
0
40mV input  
-4  
[5]  
Bandwidth  
40  
20  
20  
kHz  
µs  
Settling Time For Full Scale Step  
Gain  
1%  
AV_CS  
V / V  
Cool-Power® ZVS Switching Regulators  
Page 11 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-01-LGIZ Electrical Characteristics (Cont.)  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 48V, VOUT = 48V, LEXT = 900nH [4], external CIN = 5 x 2.2µF, external COUT = 8 x 2.2µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
General Purpose Amplifier  
[5]  
[5]  
Open Loop Gain  
96  
5
120  
7
140  
dB  
MHz  
mV  
V
Small Signal Gain-Bandwidth  
Offset  
12  
-1  
1
Common Mode Input Range  
Differential Mode Input Range  
Maximum Output Voltage  
Minimum Output Voltage  
-0.1  
2.5  
2
VDR – 0.2V  
20  
V
IDIFF = -1mA  
No Load  
V
mV  
Capacitive Load for Stable  
Operation  
[5]  
0
100  
pF  
Slew Rate  
10  
V / µs  
mA  
Output Current  
-1  
1
Transconductance Error Amplifier  
EAIN = EAO, 25ºC  
EAIN = EAO  
1.688  
1.674  
0
1.7  
1.7  
1.712  
1.726  
VDR  
Reference  
VREF  
V
Input Range  
VEAIN  
Note VEAIN_OV below  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
Transconductance  
3.35  
3.6  
0.05  
5.1  
5
4.0  
0.15  
V
Factory Set  
mS  
kΩ  
µA  
µA  
dB  
pF  
pF  
Zero Resistor  
Factory Set  
EAO Output Current Sourcing  
EAO Output Current Sinking  
Open Loop Gain  
VEAO = 50mV, VEAIN = 0V  
VEAO = 2V, VEAIN = 5V  
ROUT > 1MΩ [5]  
400  
400  
80  
70  
Input Capacitance  
56  
Output Capacitance  
56  
Control and Protection  
Switching Frequency  
VEAO Pulse Skip Threshold  
Control Node Range  
VEAO Overload Threshold  
Overload Timeout  
FSW  
VEAO_PST  
VRAMP  
VEAO_OL  
TOL  
1
MHz  
V
VEAO to SGND  
0.4  
0
3.3  
V
VEAO to SGND  
VEAO > VEAO_OL  
3.175  
3.3  
1
3.425  
V
ms  
Module shuts down after 1ms of overload and restarts  
after 30ms  
Overload due to EAO limit  
IOUT_EAOLIM  
VEAIN_OV  
5.0  
A
V
VEAIN Output Overvoltage Threshold  
VEAIN > VEAIN_OV  
1.94  
2.04  
2.14  
[5]  
[5]  
Overtemperature Fault Threshold  
Overtemperature Restart Hysteresis  
VOUT Negative Fault Threshold  
TOTP  
125  
30  
°C  
°C  
V
TOPT_HYS  
-0.45  
-0.25  
-0.15  
Cool-Power® ZVS Switching Regulators  
Page 12 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-01-LGIZ Electrical Characteristics (Cont.)  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 48V, VOUT = 48V, LEXT = 900nH [4], external CIN = 5 x 2.2µF, external COUT = 8 x 2.2µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Soft Start and Tracking Function  
TRK Active Range  
Nominal  
0
1.7  
70  
V
TRK Disable Threshold  
TRK Internal Capacitance  
Soft Start Charge Current  
Soft Start Discharge Current  
Soft Start Time  
20  
45  
.047  
50  
mV  
µF  
30  
70  
µA  
mA  
ms  
VTRK = 0.5V  
9
tSS  
Ext CSS = 0µF  
1.6  
Enable  
Enable High Threshold  
Enable Low Threshold  
Enable Threshold Hysteresis  
Enable Pin Bias Current  
Enable Pull-up Voltage  
Fault Restart Delay Time  
ENIH  
ENIL  
0.9  
0.7  
100  
1
1.1  
0.9  
300  
V
V
0.8  
200  
50  
ENHYS  
mV  
µA  
V
VEN = 0V or VEN = 2V  
Floating  
2.0  
30  
tFR_DLY  
ms  
Digital Signals  
SYNCI High Threshold  
SYNCO High  
VDR = 5.1V  
1/2 VDR  
V
V
SYNCOOH  
SYNCOOL  
PGDILH  
VDR - 0.5  
VDR  
0.5  
SYNCO Low  
ISYNCO = 1mA  
VPGD = VDR  
IPGD = 4mA  
V
PGD High Leakage  
PGD Output Low  
10  
µA  
V
PGDOL  
0.4  
PGD EAIN Low Rise  
PGD EAIN Low Fall  
PGD EAIN Threshold Hysteresis  
PGD EAIN High  
1.41  
1.36  
1.45  
1.41  
35  
1.48  
1.46  
V
V
mV  
V
1.94  
2.04  
2.14  
[4] See Inductor Pairing section.  
[5] Assured to meet performance specification by design, test correlation, characterization, and/or statistical process control.  
[6] Output current capability varies with input & output voltage. See rated output current / power curves on page 2.  
Cool-Power® ZVS Switching Regulators  
Page 13 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-00-LGIZ Performance Characteristics TA = 25°C  
98  
97  
96  
95  
94  
93  
92  
91  
90  
0
1
2
3
4
5
6
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 1 — 24VOUT Efficiency  
Figure 4 48VIN to 24VOUT, COUT = 8 x 2.2µF Ceramic  
5.42A to 2.71A Load Step, 0.1A/µs  
98  
97  
96  
95  
94  
93  
92  
91  
90  
0
1
2
3
4
5
6
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 2 — 21VOUT Efficiency  
Figure 5 — 60VIN to 21VOUT, COUT = 8 x 2.2µF Ceramic  
5.72A to 2.86A Load Step, 0.1A/µs  
98  
97  
96  
95  
94  
93  
92  
91  
0
1
2
3
4
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 3 — 36VOUT Efficiency  
Figure 6 — 21VIN to 36VOUT, COUT = 8 x 2.2µF Ceramic  
3.34A to 1.67A Load Step, 0.1A/µs  
Cool-Power® ZVS Switching Regulators  
Page 14 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-00-LGIZ Performance Characteristics TA = 25°C (Cont.)  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 7 — Switching Frequency vs. Output Current @ 24VOUT  
Figure 10 — Start-up with 48VIN to 24VOUT at 5.42A,  
Ext CSS = 0µF  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 8 — Switching Frequency vs. Output Current @ 21VOUT  
Figure 11 — Output voltage ripple at 48VIN to 24VOUT, 5.42A;  
COUT = 8 x 2.2µF Ceramic  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 9 — Switching Frequency vs. Output Current @ 36VOUT  
Cool-Power® ZVS Switching Regulators  
Page 15 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-00-LGIZ Efficiency & Power Loss TA = 25°C [7] (Cont.)  
4.5  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
4
3.5  
3
2.5  
2
20  
25  
30  
35  
40  
45  
50  
55  
60  
VIN (V)  
Efficiency  
Power Dissipation  
Figure 12 — 24VOUT Efficiency and Power Dissipation at maximum  
current (4.17A) over full input dynamic range  
4.5  
4
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
3.5  
3
2.5  
2
20  
25  
30  
35  
40  
45  
50  
55  
60  
VIN (V)  
Efficiency  
Power Dissipation  
Figure 13 — 21VOUT Efficiency and Power Dissipation at maximum  
current (4.29A) over full input dynamic range  
4.5  
4
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
3.5  
3
2.5  
2
20  
25  
30  
35  
40  
45  
50  
55  
60  
VIN (V)  
Efficiency  
Power Dissipation  
Figure 14 — 36VOUT Efficiency and Power Dissipation at maximum  
current (3.34A) over full input dynamic range  
[7] Note: Testing was performed using a 3in. x 3in., four 2oz. copper layers, FR4 evaluation board platform.  
Cool-Power® ZVS Switching Regulators  
Page 16 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-01-LGIZ Performance Characteristics TA = 25°C  
98  
96  
94  
92  
90  
88  
86  
0
1
2
3
4
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 15 — 48VOUT Efficiency  
Figure 18 48VIN to 48VOUT, COUT = 8 x 2.2µF Ceramic  
3.13A to 1.57A Load Step, 0.1A/µs  
98  
97  
96  
95  
94  
93  
92  
91  
0
1
2
3
4
5
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 16 — 36VOUT Efficiency  
Figure 19 — 60VIN to 36VOUT, COUT = 8 x 2.2µF Ceramic  
4.17A to 2.09A Load Step, 0.1A/µs  
98  
96  
94  
92  
90  
88  
86  
84  
0
1
2
3
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 17 — 54VOUT Efficiency  
Figure 20 — 21VIN to 54VOUT, COUT = 8 x 2.2µF Ceramic  
1.86A to 0.93A Load Step, 0.1A/µs  
Cool-Power® ZVS Switching Regulators  
Page 17 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-01-LGIZ Performance Characteristics TA = 25°C (Cont.)  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 21 — Switching Frequency vs. Output Current @ 48VOUT  
Figure 24 — Start-up with 48VIN to 48VOUT at 3.13A, Ext CSS = 0µF  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 22 — Switching Frequency vs. Output Current @ 36VOUT  
Figure 25 — Output voltage ripple at 48VIN to 48VOUT  
,
3.13A; COUT = 8 x 2.2µF Ceramic  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
1.5  
2
2.5  
3
0.5  
Output Current (A)  
21VIN  
48VIN  
60VIN  
Figure 23 — Switching Frequency vs. Output Current @ 54VOUT  
Cool-Power® ZVS Switching Regulators  
Page 18 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-01-LGIZ Efficiency & Power Loss TA = 25°C [7] (Cont.)  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
5
4.5  
4
3.5  
3
2.5  
2
20  
25  
30  
35  
40  
45  
50  
55  
60  
VIN (V)  
Efficiency  
Power Dissipation  
Figure 26 — 48VOUT Efficiency and Power Dissipation at maximum  
current (2.09A) over full input dynamic range  
99  
98  
4
3.8  
3.6  
3.4  
3.2  
3
97  
96  
95  
94  
93  
92  
2.8  
2.6  
2.4  
2.2  
2
91  
90  
20  
25  
30  
35  
40  
45  
50  
55  
60  
VIN (V)  
Efficiency  
Power Dissipation  
Figure 27 — 36VOUT Efficiency and Power Dissipation at maximum  
current (2.78A) over full input dynamic range  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
5.5  
5
4.5  
4
3.5  
3
2.5  
20  
25  
30  
35  
40  
45  
50  
55  
60  
VIN (V)  
Efficiency  
Power Dissipation  
Figure 28 — 54VOUT Efficiency and Power Dissipation at maximum  
current (1.86A) over full input dynamic range  
[7] Note: Testing was performed using a 3in. x 3in., four 2oz. copper layers, FR4 evaluation board platform.  
Cool-Power® ZVS Switching Regulators  
Page 19 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
MTBF  
1000  
100  
10  
1
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
MTBF Calculations Over Temperature Using Telcordia SR-332  
Figure 29 — PI3741-0x calculated MTBF Telcordia SR-332 GB  
Cool-Power® ZVS Switching Regulators  
Page 20 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
47nF soft-start capacitor to set the start-up ramp period greater  
than tSS. The PI3741-0x internal reference and regulated output  
Functional Description  
The PI3741-0x is a family of highly integrated ZVS Buck-Boost  
regulators. The PI3741-0x has an adjustable output voltage that  
is set with a resistive divider. Performance and maximum output  
current are characterized with a specific external power inductor  
as defined in the electrical specifications, and in the inductor  
pairing section.  
will proportionally follow the TRK ramp when it is below 1.7VDC  
When the ramp is greater than 1.7VDC, the internal reference will  
remain at 1.7VDC while the TRK ramp rises and clamps at 2.5VDC  
If the TRK pin goes below the disable threshold, the regulator will  
finish the current switching cycle and then stop switching.  
.
.
Remote Sensing Differential Amplifier  
A general purpose operational amplifier is provided to assist with  
differential remote sensing and/or level shifting of the output  
voltage. The VDIFF pin can be connected to the transconductance  
error amplifier input EAIN pin, or with proper configuration can  
also be connected to the EAO pin to drive the modulator directly.  
If unused, connect in unity gain with VSP connected to SGND.  
L1  
VIN  
VIN  
VS1  
VS2  
VOUT  
VOUT  
CIN  
COUT  
PGND  
ISP  
PGND  
ISN  
VDR  
IMON  
10kΩ  
Power Good  
PI3741  
VSN  
VSP  
PGD  
EN  
R1  
R2  
The PI3741-0x PGD pin functions as a power good indicator and  
pulls low when the regulator is not operating or if EAIN is less  
than 1.4V.  
SYNCO  
VDIFF  
EAIN  
SYNCI  
TRK  
EAO  
COMP  
SGND  
Output Current Limit Protection  
CCOMP  
4700pF  
PI3741-0x has three methods implemented to protect from output  
short circuit or over current condition.  
Figure 30 — ZVS Buck-Boost with required components  
Slow Current Limit protection: prevents the regulator load  
from sourcing current higher than the maximum rated regulator  
current. If the output current exceeds the VOUT Slow Current Limit  
(VOUT_SCL) a slow current limit fault is initiated and the regulator  
is shutdown, which eliminates output current flow. After the  
Fault Restart Delay (tFR_DLY), a soft-start cycle is initiated. This  
restart cycle will be repeated indefinitely until the excessive  
load is removed.  
For basic operation, Figure 30 shows the minimum connections  
and components required.  
Enable  
The EN pin of the regulator is referenced to SGND and permits the  
user to turn the regulator on or off. The EN polarity is a positive  
logic assertion. If the EN pin is left floating or asserted high, the  
regulator output is enabled. Pulling the EN pin below 0.8VDC with  
respect to SGND will discharge the SS/TRK pin until the output  
reaches zero or the EN pin is released. When the converter is  
disabled via the EN pin or due to a fault mode, the internal gate  
driver high side charge pumps are enabled as long as there is  
enough input voltage for the internal VDR supply voltage to be  
available. The return path for this charge pump supply is through  
the output. If the output load is disconnected or high impedance,  
the output capacitors will float up to about 3.4V maximum,  
sourced by 960µA of leakage current. This pre-biased condition  
poses no issue for the converter. The 960µA leakage current  
may be safely bypassed to SGND. A simple application circuit is  
available to bypass this current in a non-dissipative manner. Please  
contact Applications Engineering for details.  
Fast Current Limit protection: monitors the external inductor  
current pulse-by-pulse to prevent the output from supplying  
saturation current. If the regulator senses a high inductor  
current pulse, it will initiate a fault and stop switching. After  
the Fault Restart Delay (tFR_DLY), a soft-start cycle is initiated.  
This restart cycle will be repeated indefinitely until the excessive  
load is removed.  
Overload Timeout protection: If the regulator is providing  
greater than the maximum output power for longer than the  
Overload Timeout delay (TOL), it will initiate a fault and stop  
switching. After Fault Restart Delay (tFR_DLY), a soft-start cycle is  
initiated. This restart cycle will be repeated indefinitely until the  
overload load is removed.  
Input Undervoltage Lockout  
If VIN falls below the input Undervoltage Lockout (UVLO)  
threshold, the PI3741-0x will complete the current cycle and  
stop switching. The system will restart once the input voltage is  
reestablished and after the Fault Restart Delay.  
Switching Frequency Synchronization  
The SYNCI input allows the user to synchronize the controller  
switching frequency to the falling edge of an external clock  
referenced to SGND. The external clock can synchronize the unit  
between 50% and 110% of the preset switching frequency (FSW).  
The SYNCI pin should be connected to SGND when not in use,  
and should never be left floating.  
Input Overvoltage Lockout  
If VIN rises above the input Overvoltage Lockout (OVLO) threshold,  
the PI3741-0x will complete the current cycle and stop switching.  
The system will restart once the input voltage is reestablished and  
after the Fault Restart Delay.  
Soft-Start and Tracking  
The PI3741-0x provides a soft start and tracking feature using  
the TRK pin. Programmable Soft Start requires an external  
capacitor from the TRK pin to SGND in addition to the internal  
Cool-Power® ZVS Switching Regulators  
Page 21 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Output Overvoltage Protection  
The PI3741-0x family is equipped with two methods of detecting  
an output over voltage condition. To prevent damage to input  
voltage sensitive devices, if the output voltage exceeds 20% of its  
set regulated value as measured by the EAIN pin (VEAIN_OV), the  
regulator will complete the current cycle, stop switching and issue  
an OVP fault. Also if the output voltage of the regulator exceeds  
the VOUT Overvoltage Threshold (VOUT_OVT) then the regulator will  
complete the current cycle, stop switching and issue an OVP fault.  
The system will resume operation once the output voltage falls  
below the OVP threshold and after Fault Restart Delay.  
Overtemperature Protection  
The internal package temperature is monitored to prevent  
internal components from reaching their thermal maximum. If  
the Overtemperature Protection threshold is exceeded (TOTP), the  
regulator will complete the current switching cycle, enter a low  
power mode, set a fault flag, and will soft-start when the internal  
temperature decreases by more than the Overtemperature Restart  
Hysteresis (TOTP_HYS).  
Pulse Skip Mode (PSM)  
PI3741-0x features a hysteretic Pulse Skip Mode to achieve high  
efficiency at light loads. The regulator is setup to skip pulses if  
VEAO falls below the Pulse Skip Threshold (VEAO_PST). Depending  
on conditions and component values, this may result in single  
pulses or several consecutive pulses followed by skipped pulses.  
Skipping cycles significantly reduces gate drive power and  
improves light load efficiency. The regulator will leave Pulse Skip  
Mode once the control node rises above the Pulse Skip Mode  
threshold (VEAO_PST).  
Variable Frequency Operation  
The PI3741-0x is preprogrammed to a fixed, maximum, base  
operating frequency. The frequency is selected with respect to  
the required power stage inductor to operate at peak efficiency  
across line and load variations. The switching frequency period  
will stretch as needed during each cycle to accommodate low  
line and or high load conditions. By stretching the switching  
frequency period, thus decreasing the switching frequency, the  
ZVS operation is preserved throughout the input line voltage  
range maintaining optimum efficiency.  
IMON Amplifier  
The PI3741-0x provides a differential amplifier with a level  
shifted, SGND referenced output, the IMON Pin, which is useful  
for sensing input or output current on high voltage rails. A fixed  
gain of 20:1 is provided over a large common mode range.  
When using the amplifier, the ISN pin must be referenced to the  
common mode voltage of the ISP pin for proper operation. See  
Absolute Maximum Ratings for more information. If not in use,  
the ISN and ISP pins should be connected to SGND and the IMON  
pin left floating.  
Cool-Power® ZVS Switching Regulators  
Page 22 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
For Direct Tracking, choose the regulator with the highest output  
voltage as the master and connect the master to the TRK pin of  
the other regulators through a divider (Figure 32) with the same  
ratio as the slave’s feedback divider (see Output Voltage Trim).  
The TRK pin should not be driven without 1k minimum  
series resistance.  
Application Description  
Output Voltage Trim  
The output voltage can be adjusted by feeding back a portion  
of the desired output through a voltage divider to the error  
amplifier’s input (see Figure 30). Equation 1 can be used to  
determine resistor values needed for the voltage divider.  
Master VOUT  
VOUT  
(1)  
R1 = R2 •  
-1  
(
1.7
)  
R1  
PI3741  
The R2 value is selected by the user; a 1.07kΩ resistor value  
is recommended.  
TRK  
Slave  
R2  
If, for example, a 24V output is needed, the user can select a  
1.07kΩ (1%) resistor for R2 and use Equation (1) to calculate R1.  
Once R1 value is calculated, the user should select the nearest  
resistor value available. In this example, R1 is 14.03kΩ so a  
14.0kΩ should be selected.  
SGND  
Figure 32 — Voltage divider connections for direct tracking  
Soft-Start Adjustment and Tracking  
The TRK pin offers a means to increase the regulator’s soft-start  
time or to track with additional regulators. The soft-start slope  
is controlled by an internal 47nF and a fixed charge current to  
provide a minimum startup time of 1.6ms (typical). By adding  
an external capacitor to the TRK pin, the soft-start time can be  
increased further. The following equation can be used to calculate  
the proper capacitor for a desired soft-start times:  
All connected regulators’ soft-start slopes will track with this  
method. Direct tracking timing is demonstrated in Figure 31  
(b). All tracking regulators should have their Enable (EN) pins  
connected together for proper operation.  
Inductor Pairing  
Operations and characterization of the PI3741-0x was performed  
using a 900nH inductor, Part # HCV1206-R90-R, manufactured  
by Eaton. This Inductor has a form factor of 12.5mm x 10mm  
x 5mm. No other inductor is recommended for use with the  
PI3741-0x. For additional inductor information and sourcing,  
please contact Eaton directly.  
(tTRK • ISS )  
-9  
(2)  
CTRK  
=
– 47 • 10  
1.7  
Where, tTRK is the desired soft-start time and ISS is the TRK pin  
source current (see Electrical Characteristics for limits).  
The PI3741-0x allows the tracking of multiple like regulators.  
Two methods of tracking can be chosen: proportional or direct  
tracking. Proportional tracking will force all connected regulators  
to startup and reach regulation at the same time (see Figure  
31 (a)). To implement proportional tracking, simply connect all  
devices TRK pins together.  
VOUT  
1
Proporꢀonal  
Tracking  
V
OUT 2  
(a)  
Master VOUT  
Direct  
Tracking  
VOUT  
2
(b)  
t
Figure 31 — PI3741-0x tracking methods  
Cool-Power® ZVS Switching Regulators  
Page 23 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Input Filter case 2; Inductive source and local, external input  
Filter Considerations  
decoupling capacitance with significant RCIN_EXT ESR  
(i.e.: electrolytic type)  
The PI3741-0x requires low impedance ceramic input capacitors  
(X7R/X5R or equivalent) to ensure proper start up and high  
frequency decoupling for the power stage. The PI3741-0x  
will draw nearly all of the high frequency current from the  
low impedance ceramic capacitors when the main high side  
MOSFET(s) are conducting. During the time the MOSFET(s) are  
off, the input capacitors are replenished from the source. Table 1  
shows the recommended input and output capacitors to be used  
for the PI3741-0x. Divide the total RMS current by the number  
of ceramic capacitors used to calculate the individual capacitor’s  
RMS current. Table 2 includes the recommended input and output  
ceramic capacitor. It is very important to verify that the voltage  
supply source as well as the interconnecting line are stable and  
do not oscillate.  
In order to simplify the analysis in this case, the voltage source  
impedance can be modeled as a simple inductor Lline. Notice  
that the high performance ceramic capacitors CIN_INT within  
the PI3741-0x should be included in the external electrolytic  
capacitance value for this purpose. The stability criteria will be:  
(5)  
rEQ_IN > RC  
IN_EXT  
Lline  
CIN_INT • RC  
(6)  
< rEQ_IN  
IN_EXT  
Input Filter case 1; Inductive source and local, external, input  
decoupling capacitance with negligible ESR (i.e.: ceramic type)  
Equation (6) shows that if the aggregate ESR is too small – for  
example by using very high quality input capacitors (CIN_EXT) – the  
system will be under-damped and may even become destabilized.  
Again, an octave of design margin in satisfying Equation (5)  
should be considered the minimum.  
The voltage source impedance can be modeled as a series Rline  
Lline circuit. The high performance ceramic decoupling capacitors  
will not significantly damp the network because of their low ESR;  
therefore in order to guarantee stability the following conditions  
must be verified:  
Note: When applying an electrolytic capacitor for input filter  
damping the ESR value must be chosen to avoid loss of  
converter efficiency and excessive power dissipation in the  
Lline  
(3)  
Rline  
>
CIN_INT + CIN_EXT • rEQ_IN  
electrolytic capacitor.  
(
)
(4)  
Rline << rEQ_IN  
Where rEQ_IN can be calculated by dividing the lowest line voltage  
by the full load input current. It is critical that the line source  
impedance be at least an octave lower than the converter’s  
dynamic input resistance, Equation (4). However, Rline cannot  
be made arbitrarily low otherwise Equation (3) is violated  
and the system will show instability, due to under-damped  
RLC input network.  
CINPUT  
COUTPUT  
(see Table 2)  
(see Table 2)  
5 X 2.2µF  
8 X 2.2µF  
Table 1 — Recommended input and output capacitance  
Part Number  
Description  
2.2µF Capacitor, X7R 20% 100V, 1210  
MFG Description  
GRM32ER72A225KA35  
Murata  
Table 2 — Capacitor manufacturer part numbers  
Cool-Power® ZVS Switching Regulators  
Page 24 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
CINPUT Ripple  
COUTPUT Ripple  
Output Ripple  
(mVpp)  
Input Ripple  
(mVpp)  
Part Number  
VOUT (V)  
VIN (V)  
IOUT(A)  
Current (IRMS  
3.80  
3.91  
3.67  
4.31  
3.86  
3.68  
3.83  
3.76  
3.60  
4.36  
3.56  
3.50  
5.22  
3.46  
3.43  
3.76  
4.46  
4.32  
4.05  
4.35  
4.25  
4.28  
4.18  
4.12  
4.50  
4.03  
4.00  
)
Current (IRMS  
3.60  
4.41  
4.65  
4.19  
4.26  
4.55  
3.95  
4.06  
4.39  
4.39  
3.87  
4.28  
4.82  
3.76  
4.15  
3.86  
4.90  
5.24  
3.98  
4.76  
5.10  
3.94  
4.43  
4.75  
3.92  
4.15  
4.50  
)
21  
21  
21  
24  
24  
24  
28  
28  
28  
32  
32  
32  
36  
36  
36  
36  
36  
36  
40  
40  
40  
48  
48  
48  
54  
54  
54  
21  
48  
60  
21  
48  
60  
21  
48  
60  
21  
48  
60  
21  
48  
60  
21  
48  
60  
21  
48  
60  
21  
48  
60  
21  
48  
60  
4.29  
5.72  
5.72  
4.17  
5.42  
5.42  
3.58  
5.00  
5.00  
3.29  
4.38  
4.38  
3.34  
3.89  
3.89  
2.78  
4.17  
4.17  
2.5  
212  
202  
184  
238  
190  
193  
279  
210  
240  
308  
255  
264  
345  
280  
279  
197  
293  
294  
215  
308  
302  
294  
319  
320  
289  
340  
336  
298  
562  
558  
315  
512  
583  
340  
501  
621  
378  
509  
590  
423  
507  
588  
263  
532  
602  
344  
534  
591  
334  
520  
576  
331  
528  
578  
PI3741-00-LGIZ  
3.75  
3.75  
2.09  
3.13  
3.13  
1.86  
2.78  
2.78  
PI3741-01-LGIZ  
Table 3 — Typical input and output ripple current/voltage with the recommended input and output capacitor  
recommended in Tables 1 and 2.  
Cool-Power® ZVS Switching Regulators  
Page 25 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Thermal Design  
Figure 33 (a) shows a thermal impedance model that can predict the maximum temperature of the highest temperature component for  
a given operating condition. This model assumes that all customer PCB connections are at one temperature, which is PCB equivalent  
Temperature TPCB °C. The model can be simplified as shown in Figure 33 (b).  
Maximum Internal Temperature  
T
INT ( oC )  
Thermal Resistance  
Thermal Resistance  
PCB Pads  
θINT-VIN  
oC / W  
θINT-VS1  
oC / W  
θINT-PGND  
oC / W  
θINT-VS2  
oC / W  
θINT-VOUT  
oC / W  
θINT-SGND  
oC / W  
Top Case  
θINT-TOP oC / W  
SiP Power Dissipaꢀon  
PD ( W )  
Top Case  
Temperature  
TTOP oC  
TVS1  
oC  
TVS2  
oC  
TSGND  
oC  
TVIN  
oC  
TPGND  
oC  
TVOUT  
oC  
PCB Pads  
Temperature  
TTOP oC  
(a)  
Maximum Internal Temperature  
TINT ( oC )  
Thermal Resistance  
PCB_equivalent  
θINT-PCB oC / W  
Thermal Resistance  
Top Case  
θINT-TOP oC / W  
SiP Power Dissipaꢀon  
PD ( W )  
Top Case  
Temperature  
TTOP oC  
PCB equivalent  
Temperature  
TPCB oC  
(b)  
Figure 33 — PI3741-0x SiP Thermal Model (a) and its simplified version (b).  
Cool-Power® ZVS Switching Regulators  
Page 26 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Where the symbol in Figure 33 is defined as the following:  
is defined as the thermal impedance from the hottest component junction inside the SiP to the top side  
of the package.  
θINT-TOP  
θINT-PCB  
θINT-VIN  
is defined as the thermal impedance from the hottest component junction inside the SiP to the circuit board it is  
mounted on, assuming all customer PCB connections at one temperature.  
is defined as the thermal impedance from the hottest component junction inside the SiP to the circuit board it is  
mounted on at the VIN pad.  
is defined as the thermal impedance from the hottest component junction inside the SiP to the circuit board it is  
mounted on at the VS1 pad.  
θINT-VS1  
is defined as the thermal impedance from the hottest component junction inside the SiP to the circuit board it is  
mounted on at the PGND pad.  
θINT-PGND  
θINT-VS2  
θINT-VOUT  
θINT-SGND  
is defined as the thermal impedance from the hottest component junction inside the SiP to the circuit board it is  
mounted on at the VS2 pad.  
is defined as the thermal impedance from the hottest component junction inside the SiP to the circuit board it is  
mounted on at the VOUT pad.  
is defined as the thermal impedance from the hottest component junction inside the SiP to the circuit board it is  
mounted on at the SGND pad.  
The following equation can predict the junction temperature based on the heat load applied to the SiP and the known ambient conditions  
with the simplified thermal circuit model:  
TTOP  
TPCB  
θINT-PCB  
1
PD +  
+
θINT-TOP  
(7)  
TINT  
=
1
+
θINT-TOP  
θINT-PCB  
Thermal Impedance with  
the simplified version  
Thermal Impedance  
Device  
θINT-TOP  
θINT-VIN  
θINT-VS1  
θINT-PGND  
θINT-VS2  
θINT-VOUT  
θINT-SGND  
θINT-TOP  
θINT-PCB  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
175.77  
188.69  
(°C / W)  
(°C / W)  
PI3741-00-LGIZ  
PI3741-01-LGIZ  
62.46  
65.54  
4.95  
5.12  
12.07  
19.71  
23.94  
24.58  
27.45  
11.23  
6.57  
8.76  
62.46  
65.54  
1.92  
2.02  
Table 4 — PI3741-0x SiP Thermal Impedance  
Cool-Power® ZVS Switching Regulators  
Page 27 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Figure 34 (a) shows a thermal impedance model that can predict the maximum hot spot temperature of the inductor for a given operating  
condition. This model assumes that all customer PCB connections are at one temperature, which is PCB equivalent Temperature TPCB ºC.  
If the inductor top and bottom are not mounted to a heat sink, the simplified model is parallel combination of all resistances that connect to  
the PCB. The model can be simplified as shown in Figure 34 (b).  
Maximum Internal Temperature  
T
INT ( oC )  
Thermal Resistance  
Thermal Resistances  
Inductor PCB Pads  
Thermal Resistance  
Inductor Case Top  
θINT-TOP oC / W  
θINT-LEAD2  
oC / W  
θINT-TAB  
oC / W  
θINT-LEAD1  
oC / W  
Inductor Case  
Boꢀom  
θINT-BOT oC / W  
Inductor Case  
Boꢀom  
Inductor Case Top  
Temperature  
TTOP oC  
Inductor PCB Pad  
Temperatures  
Temperature  
TPCB-LEAD2 oC  
TPCB-LEAD1 oC  
TPCB-TAB oC  
TBOT oC  
(a)  
Maximum Internal Temperature  
INT ( oC )  
T
Thermal Resistance  
Thermal Resistance  
Inductor Case Top  
θINT-TOP oC / W  
Thermal Resistance  
PCB_equivalent  
θINT-PCB oC / W  
Inductor Case  
Boꢀom  
θINT-BOT oC / W  
Inductor Case  
Boꢀom  
Inductor Case Top  
Temperature  
TTOP oC  
PCB equivalent  
Temperature  
TPCB oC  
Temperature  
TBOT oC  
(b)  
Figure 34 — PI3741-0x Inductor Thermal Impedance Model  
Where the symbol in Figure 34 is defined as the following:  
θINT-TOP is defined as the thermal impedance from the hot spot to the top surface of the core.  
is defined as the thermal impedance from the hot spot to the circuit board it is mounted on,  
assuming all customer PCB connections are at one temperature.  
θINT-PCB  
θINT-BOT  
is defined as the thermal impedance from the hot spot to the bottom surface of the core.  
θINT-TAB  
is defined as the thermal impedance from the hot spot to the metal mounting tab on the core body.  
is defined as the thermal impedance from the hot spot to one of the mounting leads.  
Since the leads are the same thermal impedance, there is no need to specify by explicit pin number  
θINT-LEAD1  
θINT-LEAD2  
is defined as the thermal impedance from the hot spot to the other mounting lead  
Cool-Power® ZVS Switching Regulators  
Page 28 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
The following equation can predict the junction temperature based on the heat load applied to the inductor and the known ambient  
conditions with the simplified thermal circuit model:  
TTOP  
TPCB  
θINT-PCB  
1
PD +  
+
θINT-TOP  
(8)  
THOT SPOT  
=
1
+
θINT-TOP  
θINT-PCB  
Thermal Impedance with the  
simplified version  
Thermal Impedance  
Device  
θINT-TOP  
(°C / W)  
θINT-BOT  
θINT-TAB  
θINT-LEAD1  
θINT-LEAD2  
(°C / W)  
θINT-TOP  
(°C / W)  
θINT-BOT  
(°C / W)  
θINT-PCB  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
Inductor used with PI3741-00-LGIZ  
Inductor used with PI3741-01-LGIZ  
16.48  
16.09  
21.03  
21.18  
248.8  
245.4  
42.92  
42.92  
43.16  
16.48  
16.09  
21.03  
21.18  
19.75  
43.16  
19.84  
Table 5 — PI3741-0x Inductor Thermal Impedance  
An estimation of SiP power loss to total loss percentage is shown in the following charts.  
Cool-Power® ZVS Switching Regulators  
Page 29 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-00-LGIZ Percentage of SiP Loss to Total Loss  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
60  
70  
65  
20  
30  
40  
50  
60  
20  
30  
40  
50  
60  
VIN (V)  
VIN (V)  
IOUT = 5% – 30% of FL  
IOUT = 5% – 30% of FL  
IOUT < 5% of FL  
IOUT < 5% of FL  
IOUT > 30% of FL  
IOUT > 30% of FL  
Figure 35 — VOUT = 21V  
Figure 38 VOUT = 32V  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
70  
65  
20  
60  
20  
30  
40  
50  
60  
30  
40  
50  
60  
VIN (V)  
VIN (V)  
IOUT = 5% – 30% of FL  
IOUT > 30% of FL  
IOUT = 5% – 30% of FL  
OUT > 30% of FL  
IOUT < 5% of FL  
IOUT < 5% of FL  
I
Figure 36 — VOUT = 24V  
Figure 39 — VOUT = 36V  
100  
95  
90  
85  
80  
75  
70  
65  
20  
30  
40  
50  
60  
VIN (V)  
IOUT = 5% – 30% of FL  
IOUT > 30% of FL  
IOUT < 5% of FL  
Figure 37 — VOUT = 28V  
Cool-Power® ZVS Switching Regulators  
Page 30 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
PI3741-01-LGIZ Percentage of SiP Loss to Total Loss  
100  
95  
100  
95  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
20  
30  
40  
50  
60  
20  
30  
40  
50  
60  
VIN (V)  
VIN (V)  
IOUT = 5% – 30% of FL  
IOUT < 5% of FL  
IOUT = 5% – 30% of FL  
IOUT < 5% of FL  
IOUT > 30% of FL  
IOUT > 30% of FL  
Figure 40 — VOUT = 36V  
Figure 43 VOUT = 48V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
20  
30  
40  
50  
60  
20  
30  
40  
50  
60  
VIN (V)  
VIN (V)  
IOUT = 5% – 30% of FL  
IOUT > 30% of FL  
IOUT = 5% – 30% of FL  
IOUT < 5% of FL  
IOUT < 5% of FL  
I
OUT > 30% of FL  
Figure 41 — VOUT = 40V  
Figure 44 — VOUT = 50V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
20  
30  
40  
50  
60  
20  
30  
40  
50  
60  
VIN (V)  
VIN (V)  
IOUT = 5% – 30% of FL  
IOUT = 5% – 30% of FL  
IOUT < 5% of FL  
IOUT < 5% of FL  
IOUT > 30% of FL  
IOUT > 30% of FL  
Figure 42 — VOUT = 44V  
Figure 45 — VOUT = 54V  
Cool-Power® ZVS Switching Regulators  
Page 31 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Evaluation Board Thermal De-rating  
Thermal de-rating curves are provided that are based on  
component temperature changes versus load current, input  
voltage and no air flow. It is recommended to use these curves as  
a guideline for proper thermal de-rating. These curves represent  
the entire system and are inclusive to both the Vicor SiP and  
the external inductor. Maximum thermal operation is limited  
by either the MOSFETs or inductor depending upon line and  
load conditions.  
4
3
2
1
0
All thermal testing was performed using a 3in. x 3in., four  
2oz. copper layers, FR4 evaluation board platform. Thermal  
measurements were made on the four internal MOSFETS and the  
external inductor.  
25  
35  
45  
55  
65  
75  
85  
95  
105 115  
Ambient Temperature (°C)  
21VIN  
48VIN / 60VIN  
6
5
4
3
2
1
0
Figure 48 — Thermal de-rating for PI3741-00 evaluation board  
at VOUT = 36V, 0LFM  
25  
35  
45  
55  
65  
75  
85  
95  
105 115  
Ambient Temperature (°C)  
21VIN  
48VIN  
60VIN  
Figure 46 — Thermal de-rating for PI3741-00 evaluation board  
at VOUT = 21V, 0LFM  
6
5
4
3
2
1
0
25  
35  
45  
55  
65  
75  
85  
95  
105 115  
Ambient Temperature (°C)  
21VIN  
48VIN  
60VIN  
Figure 47 — Thermal de-rating PI3741-00 evaluation board  
at VOUT = 24V, 0LFM  
Cool-Power® ZVS Switching Regulators  
Page 32 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Evaluation Board Thermal De-rating (Cont.)  
5
4
3
2
1
0
3
2
1
0
25  
35  
45  
55  
65  
75  
85  
95  
105 115  
25  
35  
45  
55  
65  
75  
85  
95  
105 115  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
21VIN  
48VIN  
60VIN  
21VIN  
48VIN  
60VIN  
Figure 49 — Thermal de-rating for PI3741-01 evaluation board  
Figure 51 — Thermal de-rating for PI3741-01 evaluation board  
at VOUT = 36V, 0LFM  
at VOUT = 54V, 0LFM  
4
3
2
1
0
25  
35  
45  
55  
65  
75  
85  
95  
105 115  
Ambient Temperature (°C)  
21VIN  
48VIN  
60VIN  
Figure 50 — Thermal de-rating PI3741-01 evaluation board  
at VOUT = 48V, 0LFM  
Cool-Power® ZVS Switching Regulators  
Page 33 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Parallel Operation  
Synchronization  
PI3741-0x can be connected in parallel to increase the output  
capability of a single output rail. When connecting modules  
in parallel, each EAO, TRK and EN pin should be connected  
together. Current sharing will occur automatically in this manner  
so long as each inductor is the same value. EAIN pins should  
remain separated, each with an REA1 and REA2, to reject  
noise differences between different modules’ SGND pins. Up  
to three modules may be connected in parallel. The modules  
current sharing accuracy is determined by the inductor tolerance  
( 10%) and to a lesser extent, timing variation ( 1.5%). Current  
sharing may be considered independent of synchronization  
and/or interleaving. Modules do not have to be interleaved  
or synchronized to share current. The following equation  
determines the output capability of N modules (up to three)  
to be determined:  
PI3741-0x units may be synchronized to an external clock by  
driving the SYNCI pin. The synchronization frequency must not  
be higher than the programmed maximum value FSW. This is the  
switching frequency during DCM of operation. The minimum  
synchronization frequency is FSW /2. In order to ensure proper  
power delivery during synchronization, the user should refer  
to the switching frequency vs. output current curves for the  
load current, output voltage and input voltage operating point.  
The synchronization frequency should not be lower than that  
determined by the curve or reduced output power will result.  
The power reduction is approximately the ratio between required  
frequency and synchronizing frequency. If the required frequency  
is 1MHz and the sync frequency is 600kHz, the user should  
expect a 40% reduction in output capability.  
Interleaving  
Iarray = Imod + I • (N – 1) • 0.77  
(9)  
(
)
mod  
Interleaving is primarily done to reduce output ripple and the  
required number of output capacitors by introducing phase  
current cancellation. The PI3741-0x has a fixed delay that is  
proportional to the maximum value of FSW shown in the data  
sheet. When connecting two units as showin in Figure 52, they  
will operate at 180 degrees out of phase when the converters  
switching frequency is equal to FSW. If the converter enters CrCM  
and the switching frequency is lower than FSW, the phase delay  
will no longer be 180 degrees and ripple cancellation will begin  
to decay. Interleaving when the switching frequency is reduced  
to lower than 80% of the programmed maximum value is  
not recommended.  
Where:  
Iarray is the maximum output current of the array  
Imod is the maximum output per module  
N
is the number of modules  
L1  
VOUT  
PGND  
VS1  
VS2  
VIN  
CIN_1  
COUT_1  
REA1_1  
REA2_1  
PGND  
ISP  
ISN  
VDR  
IMON  
VSN  
PI3741-0x  
VSP  
PGD  
EN  
VDIFF  
LGH  
EN  
SYNCO  
SYNCI  
TRK  
EAIN  
EAO  
COMP  
CHF_1  
2.5kΩ  
TRK  
SGND  
CCOMP_1  
CTRK_1  
L2  
VOUT  
PGND  
VS1  
VS2  
VIN  
CIN_2  
COUT_2  
REA1_2  
REA2_2  
PGND  
ISP  
ISN  
VDR  
IMON  
VSN  
PI3741-0x  
VSP  
PGD  
EN  
VDIFF  
LGH  
EN  
SYNCO  
SYNCI  
TRK  
EAIN  
EAO  
COMP  
CHF_2  
SGND  
TRK  
CCOMP_2  
CTRK_2  
Figure 52 — PI3741-0x parallel operation  
Cool-Power® ZVS Switching Regulators  
Page 34 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
VDR Bias Regulator  
System Design Considerations  
The VDR internal bias regulator is a ZVS switching regulator that  
resides internal to the PI3741-0x. It is intended strictly for use  
to power the internal controller and driver circuitry. The power  
capability of this regulator is sized only for the PI3741-0x, with  
adequate reserve for the application it was intended for. It may be  
used for as a pull-up source for open collector applications and  
for other very low power use with the following restrictions:  
Inductive Loads  
As with all power electronic applications, consideration must be  
given to driving inductive loads that may be exposed to a fault  
in the system which could result in consequences beyond the  
scope of the power supply primary protection mechanisms. An  
inductive load could be a filter, fan motor or even excessively  
long cables. Consider an instantaneous short circuit through an  
un-damped inductance that occurs when the output capacitors  
are already at an initial condition of fully charged. The only thing  
that limits the current is the inductance of the short circuit and  
any series resistance. Even if the power supply is off at the time  
of the short circuit, the current could ramp up in the external  
inductor and store considerable energy. The release of this  
energy will result in considerable ringing, with the possibility of  
ringing nodes connected to the output voltage below ground.  
The system designer should plan for this by considering the use  
of other external circuit protection such as load switches, fuses,  
and transient voltage protectors. The inductive filters should  
be critically damped to avoid excessive ringing or damaging  
voltages. Adding a high current Schottky diode from the output  
voltage to PGND close to the PI741-0x is recommended for  
these applications.  
nNo direct connection is allowed. Any noise source that can  
disturb the VDR voltage can also affect the internal controller  
operation.  
nAll loads must be locally de-coupled using a 0.1µF ceramic  
capacitor. This capacitor must be connected to the VDR output  
through a series resistor no smaller than 1kΩ which forms a  
loss pass filter and limits the total current to 5mA.  
Low Voltage Operation  
There is no isolation from an SELV (Safety-Extra-Low-Voltage)  
power system. Powering low voltage loads from input voltages  
as high as 60V may require additional consideration to protect  
low voltage circuits from excessive voltage in the event of a  
short circuit from input to output. A fast TVS (transient voltage  
suppressor) gating an external load switch is an example of  
such protection.  
Cool-Power® ZVS Switching Regulators  
Page 35 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Package Drawings  
DETAIL A  
(SECTION VIEW)  
E
PIN 1 INDEX  
M
M
ddd  
eee  
C
C
A B  
D
b
SEE NOTE 2  
L
PAD OPENING (b)  
b
SEE NOTE 2  
aaa  
C
(4)PL  
TOP VIEW  
M
M
ddd  
eee  
C
C
A B  
DETAIL B  
BB 10x14mm SiP  
DIMENSIONAL REFERENCES  
REF.  
A
A1  
A2  
b
MIN.  
2.49  
--  
--  
0.50  
NOM.  
2.56  
--  
--  
0.55  
MAX.  
2.63  
0.04  
2.59  
0.60  
DETAIL A  
E1  
e SEE NOTE 1  
D
E
D1  
E1  
e
14.00 BSC  
10.00 BSC  
13.00 BSC  
9.00 BSC  
1.00 BSC  
0.225  
e
SEE NOTE 1  
14  
13  
12  
11  
10  
9
L
.175  
.275  
BB 10x14mm SiP  
DIMENSIONAL REFERENCES  
TOLERANCE OF FORM AND  
POSITION  
REF.  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.08  
8
D1  
7
6
5
NOTES:  
1. 'e' REPRESENTS THE BASIC TERMINAL PITCH.  
SPECIFIES THE TRUE GEOMETRIC POSITION OF THE TERMINAL AXIS.  
4
2. DIMENSION 'b' APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.00mm AND 0.25mm FROM TERMINAL TIP.  
3
2
3. DIMENSION 'A' INCLUDES PACKAGE WARPAGE  
1
4. EXPOSED METALLIZED PADS ARE Cu PADS WITH SURFACE FINISH  
PROTECTION.  
DETAIL B  
A
B
C
D
E
F
G
H
J
K
PIN 1 INDEX  
5. RoHS COMPLIANT PER CST-0001 LATEST REVISION.  
6. ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE SPECIFIED.  
BOTTOM VIEW  
bbb  
C
A2  
A
SEE NOTE 3  
ccc  
C
SEATING PLANE  
A1  
b
C
Cool-Power® ZVS Switching Regulators  
Page 36 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Receiving PCB Pattern Design Recommendations  
E1  
PIN 1  
e
e
D1  
b
b
PCB LAND PATTERN  
BB 10x14mm SiP  
DIMENSIONAL REFERENCES  
REF.  
b
MIN.  
0.50  
NOM.  
0.55  
MAX.  
0.60  
D1  
E1  
e
13.00 BSC  
9.00 BSC  
1.00 BSC  
Recommended receiving footprint for PI3741-0x 10mm x 14mm package. All pads should have a final copper size of 0.55mm x 0.55mm,  
whether they are solder-mask defined or copper defined, on a 1mm x 1mm grid. All stencil openings are 0.45mm when using either a 5mil  
or 6mil stencil.  
Cool-Power® ZVS Switching Regulators  
Page 37 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Revision History  
Revision  
Date  
Description  
Page Number(s)  
1.0  
1.1  
08/29/16  
08/31/16  
Initial Release  
n/a  
Update package drawings  
6, 35, 36  
Corrections to Typical Application, Figure 30  
Update package outline drawings  
1, 21  
6, 35, 36  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
02/08/17  
03/10/17  
03/31/17  
05/31/17  
06/14/17  
08/24/17  
02/22/18  
Miscellaneous typo corrections  
2, 8, 11  
Correct LGH pin name  
Include additional PCB Pattern information  
6
36  
Update Absolute Maximum Ratings  
Update IMON Output voltage specification  
4
8
Parallel Operation update  
33  
Updated tables 4 and 5, inductor thermal impedance model  
27-28  
Updated output specifications  
Updated figure descriptions  
8, 11  
16, 19  
Please note: Page added in Rev 1.7.  
Cool-Power® ZVS Switching Regulators  
Page 38 of 39  
Rev 1.8  
02/2018  
PI3741-0x  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc_converters_board_mount/cool-power_zvs_buck-boost for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by U.S. Patents. Please see www.vicorpower.com/patents for the latest  
patent information.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2017 – 2018 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
Cool-Power® ZVS Switching Regulators  
Page 39 of 39  
Rev 1.8  
02/2018  

相关型号:

PI3749

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost
VICOR

PI3749-00-LGIZ

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, LGA-108
VICOR

PI3749-20-LGIZ

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost
VICOR

PI3749-X0

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost
VICOR

PI3749-X0_18

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost
VICOR

PI3751-02

Switching Regulator/Controller,
VICOR

PI3A114-A

Low–Voltage, 4:1 Mux/Demux with Low-Swing Control Inputs
PERICOM

PI3A114-AZHE

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC12,
PERICOM

PI3A114-AZHEX

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC12,
PERICOM

PI3A114-AZLE

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC10,
PERICOM

PI3A114-AZLEX

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC10,
PERICOM

PI3A114-AZLEX

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC10,
DIODES