V048F096M025 [VICOR]

VI Chip - VTM Voltage Transformation Module; VI芯片 - VTM电压转换模块
V048F096M025
型号: V048F096M025
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

VI Chip - VTM Voltage Transformation Module
VI芯片 - VTM电压转换模块

文件: 总15页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
VTM  
V048K096T025  
TM  
V•I Chip – VTM  
K indicates BGA configuration. For other  
mounting options see Part Numbering below.  
Voltage Transformation Module  
• 48 V to 9.6 V V•I Chip Converter  
• 25.0 A (37.5 A for 1 ms)  
• High density – 974 W/in3  
• Small footprint – 220 W/in2  
• Low weight – 0.5 oz (14 g)  
• Pick & Place / SMD  
• 125°C operation  
• 1 µs transient response  
• 3.5 million hours MTBF  
Typical efficiency 96%  
• No output filtering required  
©
Vf = 26 - 55 V  
VOUT = 5.20 - 11.0 V  
IOUT = 25.0 A  
K = 1/5  
ROUT = 10.0 mmax  
• Surface mount BGA or J-Lead  
packages  
Actual size  
Product Description  
Absolute Maximum Ratings  
Parameter  
Values  
-1.0 to 60.0  
100  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
A
Notes  
The V048K096T025 V•I Chip Voltage Transformation  
Module (VTM) excels at speed, density and efficiency to  
meet the demands of advanced DSP, FPGA, and ASIC at  
the point of load (POL) while providing isolation from  
input to output. It achieves a response time of less than  
1 µs and delivers up to 25.0 A in a volume of less than  
0.25 in3 with unprecedented efficiency. It may be  
paralleled to deliver hundreds of amps at an output  
voltage settable from 5.20 to 11.0 Vdc.  
+In to -In  
+In to -In  
For 100 ms  
PC to -In  
-0.3 to 7.0  
-0.3 to 19.0  
-0.1 to 16.0  
2,250  
VC to -In  
+Out to -Out  
Isolation voltage  
Output current  
Peak output current  
Output power  
Peak output power  
Case temperature  
Input to Output  
Continuous  
For 1 ms  
25.0  
37.5  
A
The VTM V048K096T025s nominal output voltage is  
9.6 Vdc from a 48 Vdc input Factorized Bus, Vf, and is  
controllable from 5.20 to 11.0 Vdc at no load, and from  
4.95 to 10.8 Vdc at full load, over a Vf input range of  
26 to 55 Vdc. It can be operated either open- or closed-  
loop depending on the output regulation needs of the  
application. Operating open-loop, the output voltage  
tracks its Vf input voltage with a transformation ratio,  
K = 1/5 , for applications requiring a programmable  
output voltage at high current and high efficiency.  
Closing the loop back to an input Pre-Regulation Module  
(PRM) or DC-DC converter enables tight load regulation.  
270  
W
Continuous  
For 1 ms  
405  
W
208  
°C  
During reflow  
-40 to 125  
-55 to 125  
°C  
°C  
T - Grade  
M - Grade  
Operating junction temperature(1)  
-40 to 150  
-65 to 150  
°C  
°C  
T - Grade  
M - Grade  
Storage temperature  
Note:  
(1) The referenced junction is defined as the semiconductor having the highest temperature.  
This temperature is monitored by a shutdown comparator.  
The 9.6 V VTM achieves a power density of 974 W/in3 in  
a V•I Chip package compatible with standard pick-and-  
place and surface mount assembly processes. The  
V•I Chip BGA package supports in-board mounting with  
a low profile of 0.16" (4 mm) over the board. A J-lead  
package option supports on-board surface mounting  
with a profile of only 0.25" (6 mm) over the board. The  
VTMs fast dynamic response and low noise eliminate the  
need for bulk capacitance at the load, substantially  
increasing the POL density while improving reliability and  
decreasing cost.  
Part Numbering  
V
048  
K
096 T  
025  
Voltage  
Transformation  
Module  
Output Voltage  
Designator  
(=VOUT x10)  
Output Current  
Designator  
(=IOUT)  
Input Voltage  
Designator  
Configuration Options  
Product Grade Temperatures (°C)  
Grade  
T
M
Storage Operating  
-40 to150 -40 to125  
-65 to150 -55 to125  
F
= On-board (Figure 15)  
K = In-board (Figure 14)  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 1 of 15  
PRELIMINARY  
Electrical Specifications  
V•I Chip Voltage Transformation Module  
Input Specs (Conditions are at 48 Vin, full load, and 25°C ambient unless otherwise specified)  
Parameter  
Min  
Typ  
Max  
55  
Unit  
Vdc  
V/µs  
Vdc  
Vdc  
Adc  
mA p-p  
W
Note  
Input voltage range  
Input dV/dt  
26  
48  
Operable down to zero V with VC voltage applied  
1
Input overvoltage turn-on  
Input overvoltage turn-off  
Input current  
55.0  
59.5  
5.4  
Input reflected ripple current  
No load power dissipation  
Internal input capacitance  
Internal input inductance  
140  
3.1  
4.0  
20  
Using test circuit in Figure 16; See Figure 1  
4.1  
µF  
nH  
Output Specs (Conditions are at 48 Vin, full load, and 25°C ambient unless otherwise specified)  
Parameter  
Min  
5.20  
4.95  
0
Typ  
Max  
11.0  
10.8  
25.0  
Unit  
Vdc  
Vdc  
Adc  
Note  
No load  
Output voltage  
Full load  
Rated DC current  
26 - 55 VIN  
Max pulse width 1ms, max duty cycle 10%,  
baseline power 50%  
Module will shut down  
See Parallel Operation on Page 10  
Peak repetitive current  
37.5  
A
Short circuit protection set point  
Current share accuracy  
Efficiency  
25.5  
30.5  
5
35.0  
10  
Adc  
%
Half load  
95.5  
95.5  
96.2  
96.2  
1.6  
%
%
See Figure 3  
See Figure 3  
Full load  
Internal output inductance  
Internal output capacitance  
Output overvoltage setpoint  
Output ripple voltage  
No external bypass  
10 µF bypass capacitor  
Effective switching frequency  
Line regulation  
nH  
µF  
55.0  
Effective value  
11.0  
Vdc  
Module will shut down  
176  
17.4  
3.1  
200  
3.4  
mV  
mV  
See Figures 2 and 5  
See Figure 6  
3.0  
MHz  
Fixed, 1.6 MHz per phase  
K
0.1980  
1/5  
8.9  
0.2020  
10.0  
VOUT = K•VIN at no load  
See Figure 19  
Load regulation  
ROUT  
m  
Transient response  
Voltage overshoot  
Response time  
90  
200  
1
mV  
ns  
25.0 A load step with 100 µF CIN; See Figures 7 and 8  
See Figures 7 and 8  
Recovery time  
µs  
See Figures 7 and 8  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 2 of 15  
PRELIMINARY  
Electrical Specifications (continued)  
Waveforms  
Ripple vs. Output Current  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Current (A)  
Figure 1— Input reflected ripple current at full load and 48 Vf.  
Figure 2— Output voltage ripple vs. output current at 9.6 Vout with no  
POL bypass capacitance.  
Power Dissipation  
Efficiency vs. Output Current  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
10  
9
8
7
6
5
4
3
2
1
0
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
20  
22.5  
25  
0
2.5  
5
7.5  
10 12.5 15 17.5 20 22.5 25  
Output Current (A)  
Output Current (A)  
Figure 3— Efficiency vs. output current at 48 Vf.  
Figure 4—Power dissipation as a function of output current at 48 Vf.  
Figure 5— Output voltage ripple at full load and 9.6 Vout; without any  
external bypass capacitor.  
Figure 6—Output voltage ripple at full load and 9.6 Vout with 10 µF  
ceramic external bypass capacitance and 20 nH distribution inductance.  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 3 of 15  
PRELIMINARY  
V•I Chip Voltage Transformation Module  
Electrical Specifications (continued)  
Figure 7— 0-25.0 A step load change with 47 µF input capacitance and no  
Figure 8— 25.0-0 A step load change with 47 µF input capacitance and no  
output capacitance.  
output capacitance.  
General  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
MTBF  
MIL-HDBK-217F  
3.5  
Mhrs  
25°C, GB  
Isolation specifications  
Voltage  
2,250  
10  
Vdc  
pF  
Input to Output  
Capacitance  
Resistance  
3,000  
Input to Output  
MΩ  
Input to Output  
cTÜVus  
UL/CSA 60950, EN 60950  
Low voltage directive  
See Mechanical Drawing, Figures 10 and 12  
Agency approvals (pending)  
CE Mark  
Mechanical parameters  
Weight  
0.5 / 14.0  
oz / g  
Dimensions(BGA version)  
Length  
Width  
Height  
1.26 / 32  
0.85 / 21.5  
0.23 / 5.9  
in / mm  
in / mm  
in / mm  
Auxiliary Pins (Conditions are at 48 Vin, full load, and 25°C ambient unless otherwise specified)  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Primary Control (PC)  
DC voltage  
4.8  
2.4  
5.0  
2.5  
2.5  
2.5  
10  
5.2  
Vdc  
Vdc  
Vdc  
mA  
µs  
Module disable voltage  
Module enable voltage  
Current limit  
2.6  
2.9  
VC voltage must be applied when module is enabled using PC  
2.4  
Source only  
Disable delay time  
PC low to Vout low  
VTM Control (VC)  
External boost voltage  
External boost duration  
12.0  
14.0  
10  
19.0  
Vdc  
ms  
Required for VTM start up without PRM  
Vin > 26 Vdc. VC must be applied continuously  
if Vin < 26 Vdc.  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 4 of 15  
PRELIMINARY  
Electrical Specifications (continued)  
Thermal  
Symbol  
Parameter  
Min  
Typ  
130  
0.61  
1.1  
Max  
Unit  
°C  
Note  
Over temperature shutdown  
Thermal capacity  
125  
135  
Junction temperature  
Ws/°C  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC  
RθJB  
RθJA  
RθJA  
Junction-to-case thermal impedance  
Junction-to-BGA thermal impedance  
Junction-to-ambient(1)  
2.1  
6.5  
Junction-to-ambient(2)  
5.0  
Notes:  
(1) V048K096T025 surface mounted in-board to a 2" x 2" FR4 board, 4 layers 2 oz Cu, 300 LFM.  
(2) V048K096T025 with optional 0.25"H Pin Fins surface mounted on FR4 board, 300 LFM.  
V•I Chip Stress Driven Product Qualification Process  
Test  
Standard  
Environment  
High Temperature Operational Life (HTOL)  
Temperature cycling  
JESD22-A-108-B  
JESD22-A-104B  
JESD22-A-103A  
JESD22-A113-B  
EIA/JESD22-A-101-B  
JESD22-A-102-C  
JESD22-A-110B  
JESD22-B-107-A  
JESD22-B-103-A  
JESD22-B-104-A  
EIA/JESD22-A114-A  
EIA/JESD22-A115-A  
125°C, Vmax, 1,008 hrs  
-55°C to 125°C, 1,000 cycles  
High temperature storage  
150°C, 1,000 hrs  
Moisture resistance  
Moisture sensitivity Level 5  
Temperature Humidity Bias Testing (THB)  
Pressure cooker testing (Autoclave)  
Highly Accelerated Stress Testing (HAST)  
Solvent resistance/marking permanency  
Mechanical vibration  
85°C, 85% RH, Vmax, 1,008 hrs  
121°C, 100% RH, 15 PSIG, 96 hrs  
130°C, 85% RH, Vmax, 96 hrs  
Solvents A, B & C as defined  
20g peak, 20-2,000 Hz, test in X, Y & Z directions  
1,500g peak 0.5 ms pulse duration, 5 pulses in 6 directions  
Meets or exceeds 2,000 Volts  
Mechanical shock  
Electro static discharge testing – human body model  
Electro static discharge testing – machine model  
Meets or exceeds 200 Volts  
Per Vicor Internal  
Test Specification(1)  
Highly Accelerated Life Testing (HALT)  
Operation limits verified, destruct margin determined  
Per Vicor internal  
test specification(1)  
Dynamic cycling  
Constant line, 0-100% load, -20°C to 125°C  
Note:  
(1) For details of the test protocols see Vicors website.  
V•I Chip Ball Grid Array Interconnect Qualification  
Test  
Standard  
IPC-9701  
Environment  
Cycle condition: TC3 (-40 to +125°C)  
Test duration: NTC-B (500 failure free cycles)  
BGA solder fatigue evaluation  
IPC-SM-785  
Solder ball shear test  
IPC-9701  
Failure through bulk solder or copper pad lift-off  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 5 of 15  
PRELIMINARY  
V•I Chip Voltage Transformation Module  
Pin/Control Functions  
+IN/-IN DC Voltage Ports  
The VTM input should not exceed the maximum specified. Be aware of  
this limit in applications where the VTM is being driven above its  
nominal output voltage. If less than 26 Vdc is present at the +In and -In  
ports, a continuous VC voltage must be applied for the VTM to process  
power. Otherwise VC voltage need only be applied for 10 ms after the  
voltage at the +In and -In ports has reached or exceeded 26 Vdc. If the  
input voltage exceeds the overvoltage turn-off, the VTM will shutdown.  
The VTM does not have internal input reverse polarity protection.  
Adding a properly sized diode in series with the positive input or a  
fused reverse-shunt diode will provide reverse polarity protection.  
4
3
2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
+Out  
-Out  
+In  
TM  
VC  
PC  
V
W
Y
V
W
Y
+Out  
-Out  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
-In  
TM – For Factory Use Only  
VC – VTM Control  
Bottom View  
The VC port is multiplexed. It receives the initial VCC voltage from an  
upstream PRM, synchronizing the output rise of the VTM with the  
output rise of the PRM. Additionally, the VC port provides feedback to  
the PRM to compensate for the VTM output resistance. In typical  
applications using VTMs powered from PRMs, the PRMs VC port  
should be connected to the VTM VC port.  
Signal Name  
BGA Designation  
A1-L1, A2-L2  
AA1-AL1, AA2-AL2  
P1, P2  
T1, T2  
V1, V2  
A3-G3, A4-G4,  
U3-AC3, U4-AC4  
J3-R3, J4-R4,  
AE3-AL3, AE4-AL4  
+In  
–In  
TM  
VC  
PC  
In applications where a VTM is being used without a PRM, 14 V must  
be supplied to the VC port for as long as the input voltage is below 26 V  
and for 10 ms after the input voltage has reached or exceeded 26 V. The  
VTM is not designed for extended operation below 26 V. The VC port  
should only be used to provide VCC voltage to the VTM during startup.  
+Out  
–Out  
PC – Primary Control  
Figure 9—VTM BGA configuration  
The Primary Control (PC) port is a multifunction port for controlling the  
VTM as follows:  
Disable – If PC is left floating, the VTM output is enabled. To  
disable the output, the PC port must be pulled lower than 2.4 V,  
referenced to -In. Optocouplers, open collector transistors or relays  
can be used to control the PC port. Once disabled, 14 V must be  
re-applied to the VC port to restart the VTM.  
Primary Auxiliary Supply – The PC port can source up to 2.4 mA  
at 5 Vdc.  
+OUT/-OUT DC Voltage Output Ports  
The output and output return are through two sets of contact  
locations. The respective +Out and –Out groups must be connected in  
parallel with as low an interconnect resistance as possible. Within the  
specified input voltage range, the Level 1 DC behavioral model shown  
in Figure 19 defines the output voltage of the VTM. The current source  
capability of the VTM is shown in the specification table.  
To take full advantage of the VTM, the user should note the low output  
impedance of the device. The low output impedance provides fast  
transient response without the need for bulk POL capacitance. Limited-  
life electrolytic capacitors required with conventional converters can be  
reduced or even eliminated, saving cost and valuable board real estate.  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 6 of 15  
PRELIMINARY  
Mechanical Drawings  
1,00  
0.039  
1,00  
0.039  
18,00  
0.709  
5,9  
0.23  
21,5  
0.85  
9,00  
0.354  
SOLDER BALL  
#A1 INDICATOR  
0.020  
SOLDER BALL  
SOLDER BALL #A1  
(106) X  
Ø
0.51  
1,00  
0.039  
TYP  
30,00  
1.181  
32,0  
1.26  
28,8  
1.13  
C
L
15,00  
0.591  
16,0  
0.63  
C
L
1,6  
0.06  
1,00  
0.039  
TOP VIEW (COMPONENT SIDE)  
BOTTOM VIEW  
3,9  
0.15  
NOTES:  
1- DIMENSIONS ARE  
mm  
inch  
.
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
3- PRODUCT MARKING ON TOP SURFACE  
15,6  
0.62  
SEATING PLANE  
Figure 10VTM BGA mechanical outline; Inboard mounting  
IN-BOARD MOUNTING  
BGA surface mounting requires a  
cutout in the PCB in which to recess the V•I Chip  
1,50  
0.059  
1,00  
0,53  
(
)
ø
PLATED VIA  
0.039  
0.021  
CONNECT TO  
INNER LAYERS  
0,50  
0.020  
0,51  
( ø  
)
0.020  
SOLDER MASK  
DEFINED PADS  
0,50  
0.020  
1,00  
(
)
0.039  
1,00  
0.039  
18,00  
0.709  
1,00  
0.039  
1,00  
0.039  
9,00  
0.354  
SOLDER PAD #A1  
1
6,00  
0.236  
(4) X  
10,00  
0.394  
(2) X  
RECOMMENDED LAND AND VIA PATTERN  
(COMPONENT SIDE SHOWN)  
PCB CUTOUT  
29,26  
1.152  
24,00  
0.945  
20,00  
0.787  
17,00  
0.669  
16,00  
0.630  
NOTES:  
1- DIMENSIONS ARE  
mm  
inch  
15,00  
0.591  
13,00  
0.512  
.
8,00  
0.315  
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
31  
0,37  
0.015  
0,51  
0.020  
SOLDER MASK  
DEFINED PAD  
8,08  
0.318  
(106) X  
ø
1,6  
0.06  
16,16  
0.636  
(4) X R  
Figure 11— VTM BGA PCB land/VIA layout information; Inboard mounting  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 7 of 15  
PRELIMINARY  
V•I Chip Voltage Transformation Module  
Mechanical Drawings (continued)  
6,1  
0.24  
15,99  
0.630  
22,0  
0.87  
3,01  
0.118  
3,01  
0.118  
7,10  
0.280  
(4) PL.  
11,10  
0.437  
(2) PL.  
24,00  
0.945  
32,0  
1.26  
C
20,00  
0.787  
L
16,94  
0.667  
16,00  
0.630  
14,94  
0.588  
15,55  
0.612  
12,94  
0.509  
8,00  
0.315  
C
L
0,45  
0.018  
BOTTOM VIEW  
TOP VIEW (COMPONENT SIDE)  
NOTES:  
1- DIMENSIONS ARE mm/[INCH].  
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
3- PRODUCT MARKING ON TOP SURFACE  
Figure 12VTM J-Lead mechanical outline; Onboard mounting  
3,26  
0.128  
3,26  
0.128  
15,74  
0.620  
0,51  
0.020  
1,38  
0.054  
TYP  
TYP  
7,48  
0.295  
(8) X  
11,48  
0.452  
(4) X  
(2) X  
1,60  
(6) X  
0.063  
20,00  
0.787  
24,00  
0.945  
16,94  
0.667  
(2) X  
(2) X  
(2) X  
16,00  
0.630  
14,94  
0.588  
(2) X  
12,94  
0.509  
8,00  
0.315  
(2) X  
(2) X  
NOTES:  
1- DIMENSIONS ARE mm/[INCH].  
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
RECOMMENDED LAND PATTERN  
(COMPONENT SIDE SHOWN)  
Figure 13— VTM J-Lead PCB land layout information; Onboard mounting  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 8 of 15  
PRELIMINARY  
Configuration Options  
Configuration  
Inboard(1)  
(Figure 14)  
Onboard(1)  
(Figure 15)  
Inboard with 0.25"  
Pin Fins(2)  
Onboard with 0.25"  
Pin Fins(2)  
Effective power density  
1400 W/in3  
2.1 °C/W  
1.1 °C/W  
880 W/in3  
2.4 °C/W  
1.1 °C/W  
550 W/in3  
2.1 °C/W  
N/A  
440 W/in3  
2.4 °C/W  
N/A  
Junction-Board  
thermal resistance  
Junction-Case  
thermal resistance  
Junction-Ambient  
thermal resistance 300LFM  
6.5 °C/W  
6.8 °C/W  
5.0 °C/W  
5.0 °C/W  
Notes:  
(1) Surface mounted to a 2" x 2" FR4 board, 4 layers 2 oz Cu  
(2) Pin Fin heat sink available as a separate item  
21.5  
0.85  
22.0  
0.87  
32.0  
1.26  
32.0  
1.26  
4.0  
0.16  
6.3  
0.25  
mm  
in  
ONBOARD MOUNT  
INBOARD MOUNT  
(V•I Chip recessed into PCB)  
mm  
in  
Figure 14—Inboard mounting – package K  
Figure 15—Onboard mounting – package F  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 9 of 15  
PRELIMINARY  
V•I Chip Voltage Transformation Module  
CONFIGURATION OPTIONS (continued)  
Input reflected ripple  
measurement point  
F1  
+Out  
-Out  
7A  
Fuse  
+In  
+
R3  
10 m  
TM  
VC  
PC  
VTM  
Load  
C1  
C2  
C3  
10 µF  
47 µF  
Al electrolytic  
0.47 µF  
+Out  
-Out  
+
ceramic  
14 V  
K
Ro  
Notes:  
C3 should be placed close  
to the load  
-In  
R3 may be ESR of C3 or a  
seperate damping resistor.  
Figure 16—VTM test circuit  
Application Note  
Parallel Operation  
In applications requiring higher current or redundancy, VTMs can be  
operated in parallel without adding control circuitry or signal lines. To  
maximize current sharing accuracy, it is imperative that the source and  
load impedance on each VTM in a parallel array be equal. If VTMs are  
being fed by an upstream PRM, the VC nodes of all VTMs must be  
connected to the PRM VC.  
At 9.6 Vout and full rated current (25.0A), the VTM dissipates  
approximately 9 W per Figure 4. This results in a temperature rise of  
approximately 43 ºC, allowing operation in an air temperature of  
82 ºC without exceeding the 125 ºC max junction temperature.  
CASE 2 Conduction via the PC board to air  
The low Junction to BGA thermal resistance allows the use  
of the PC board as a means of removing heat from the VTM.  
Convection from the PC board to ambient, or conduction to a cold  
plate, enable flexible thermal management options.  
To achieve matched impedances, dedicated power planes within the PC  
board should be used for the output and output return paths to the  
array of paralleled VTMs. This technique is preferable to using traces of  
varying size and length.  
With a VTM mounted on a 2.0 in2 area of a multi-layer PC board with  
appropriate power planes resulting in 8 oz of effective copper weight,  
the Junction-to-BGA thermal resistance, RθJA, is 6.5 ºC/W in 300 LFM  
of air. With a maximum junction temperature of 125 ºC and 9 W of  
dissipation at full current of 25.0 A, the resulting temperature rise of  
59 ºC allows the VTM to operate at full rated current up to a 66 ºC  
ambient temperature. See thermal resistances on Page 9 for additional  
details on this thermal management option.  
The VTM power train and control architecture allow bi-directional  
power transfer when the VTM is operating within its specified ranges.  
Bi-directional power processing improves transient response in the  
event of an output load dump. The VTM may operate in reverse,  
returning output power back to the input source. It does so efficiently.  
Thermal Management  
The high efficiency of the VTM results in low power dissipation  
minimizing temperature rise, even at full output current. The heat  
generated within the internal semiconductor junctions is coupled  
through very low thermal resistances, RθJC and RθJB (see Figure 17),  
to the PC board allowing flexible thermal management.  
Adding low-profile heat sinks to the PC board can lower the thermal  
resistance of the PC board surrounding the VTM. Additional cooling  
may be added by coupling a cold plate to the PC board with low  
thermal resistance stand offs.  
CASE 3 Combined direct convection to the air and conduction to the  
PC board.  
CASE 1 Convection via optional Pin Fins to air (Pin Fins available as a  
separate item.)  
A combination of cooling techniques that utilize the power planes and  
dissipation to the air will also reduce the total thermal impedance. This  
is the most effective cooling method. To estimate the total effect of the  
combination, treat each cooling branch as one leg of a parallel resistor  
network.  
In an environment with forced convection over the surface of a PCB  
with 0.4" of headroom, a VTM with Pin Fins offers a simple thermal  
management option. The total Junction to Ambient thermal resistance  
of a surface mounted V048K096T025 with pin fins attached is 4.8 ºC/W  
in 300 LFM airflow, (see Figure 18).  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 10 of 15  
PRELIMINARY  
Application Note (continued)  
VTM with optional 0.25'' Pin Fins  
10  
9
8
7
6
5
4
3
0
100  
200  
300  
400  
500  
600  
Airflow (LFM)  
Figure 18—Junction-to-ambient thermal resistance of VTM with 0.25"  
Pin Fins. (Pin Fins are available as a separate item.)  
Figure 17—Thermal resistance  
V•I Chip VTM Level 1 DC Behavioral Model for 48 V to 9.6 V, 25.0 A  
ROUT  
IOUT  
+
+
8.9 mΩ  
V I  
1/5 • Iout  
1/5 • Vin  
+
+
VOUT  
VIN  
Q
I
64 mA  
K
©
Figure 19—This model characterizes the DC operation of the V•I Chip VTM, including the converter transfer function and its losses. The model enables estimates  
or simulations of output voltage as a function of input voltage and output load, as well as total converter power dissipation or heat generation.  
V•I Chip VTM Level 2 Transient Behavioral Model for 48 V to 9.6 V, 25.0 A  
5.5 nH  
LOUT = 1.6 nH  
LIN = 20 nH  
ROUT  
IOUT  
+
+
8.9 mΩ  
R
R
CIN  
COUT  
25 mΩ  
1/5 • Vin  
1.3 mΩ  
V I  
0.2 mΩ  
1/5 • Iout  
+
4.0 µF  
IQ  
64 mA  
+
55.0 µF  
CIN  
COUT  
VOUT  
VIN  
K
©
Figure 20—This model characterizes the AC operation of the V•I Chip VTM including response to output load or input voltage transients or steady state  
modulations. The model enables estimates or simulations of input and output voltages under transient conditions, including response to a stepped load  
with or without external filtering elements.  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 11 of 15  
PRELIMINARY  
V•I Chip Voltage Transformation Module  
Application Note (continued)  
In Figures 21 – 23;  
K = VTM Transformation Ratio  
RO = VTM Output Resistance  
Vf = PRM Output (Factorized Bus Voltage)  
VO = VTM Output  
VL = Desired Load Voltage  
FPA Adaptive Loop  
±
Vo = VL 1.0%  
VH  
SC  
SG  
OS  
NC  
VC  
PC  
TM  
IL  
+Out  
+In  
Factorized  
ROS  
RCD  
L
O
A
D
NC  
-Out  
PR PRM-AL CD  
Bus (Vf)  
TM  
VTM  
VC  
+In  
+Out  
PC  
+Out  
(
)
VL  
K
Io•Ro  
K
Vin  
Vf =  
+
K
Ro  
-In  
–In  
–Out  
-Out  
Figure 21 — The PRM controls the factorized bus voltage, Vf, in proportion to output current to compensate for the output resistance, Ro, of the VTM. The VTM  
output voltage is typically within 1% of the desired load voltage (VL) over all line and load conditions.  
FPA Non-isolated Remote Loop  
Remote  
Loop  
Control  
±
Vo = VL 0.4%  
VH  
SC  
SG  
OS  
NC  
VC  
PC  
TM  
IL  
+Out  
-Out  
+In  
Factorized  
Power Bus  
+S  
L
O
A
D
NC  
PR PRM-AL CD  
TM  
VC  
PC  
VTM  
+In  
+Out  
+Out  
-Out  
Vin  
Vf = f (Vs)  
–S  
K
Ro  
-In  
–In  
–Out  
Figure 22 — An external error amplifier or Point-of-Load IC (POLIC) senses the load voltage and controls the PRM output – the Factorized Bus – as a function of  
output current, compensating for the output resistance of the VTM and for distribution resistance.  
FPA Isolated Remote Loop  
Remote  
Loop  
Control  
±
Vo = VL 0.4%  
VS  
FB  
FG  
NC  
NC  
NC  
VC  
PC  
TM  
IL  
NC  
PR  
+Out  
-Out  
+In  
Factorized  
Power Bus  
+S  
L
O
A
D
TM  
VC  
PC  
PRM-IF  
VTM  
+In  
+Out  
+Out  
-Out  
Vin  
Vf = f (Vs)  
–S  
K
Ro  
-In  
–In  
–Out  
Figure 23—An external error amplifier or Point-of-Load IC (POLIC) senses the load voltage and controls the PRM output – the factorized bus – as a function of  
output current, compensating for the output resistance of the VTM and for distribution resistance. The Factorized Bus voltage (Vf) increases in proportion to load  
current. The remote feedback loop is isolated within the PRM to support galvanic isolation and hipot compliance at the system level.  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 12 of 15  
PRELIMINARY  
Application Note (continued)  
V•I Chip soldering recommendations  
Removal and rework  
V•I Chip modules are intended for reflow soldering processes. The  
following information defines the processing conditions required for  
successful attachment of a V•I Chip to a PCB. Failure to follow the  
recommendations provided can result in aesthetic or functional failure  
of the module.  
V•I Chip modules can be removed from PCBs using special tools such  
as those made by Air-Vac. These tools heat a very localized region of  
the board with a hot gas while applying a tensile force to the  
component (using vacuum). Prior to component heating and removal,  
the entire board should be heated to 80-100ºC to decrease the  
component heating time as well as local PCB warping. If there are  
adjacent moisture-sensitive components, a 125ºC bake should be used  
prior to component removal to prevent popcorning. V•I Chip modules  
should not be expected to survive a removal operation.  
Storage  
V•I Chip modules are currently rated at MSL 5. Exposure to ambient  
conditions for more than 72 hours requires a 24 hour bake at 125ºC to  
remove moisture from the package.  
239  
Solder paste stencil design  
Joint Temperature, 220ºC  
Case Temperature, 208ºC  
Solder paste is recommended for a number of reasons, including  
overcoming minor solder sphere co-planarity issues as well as simpler  
integration into overall SMD process.  
183  
165  
63/37 SnPb, either no-clean or water-washable, solder paste should be  
used. Pb-free development is underway.  
degC  
The recommended stencil thickness is 6 mils. The apertures should be  
20 mils in diameter for the Inboard (BGA) application and 0.9-0.9:1 for  
the Onboard (J-Leaded).  
91  
Pick and place  
16  
Inboard (BGA) modules should be placed as accurately as possible  
to minimize any skewing of the solder joint; a maximum offset of  
10 mils is allowable. Onboard (J-Leaded) modules should be placed  
within 5 mils.  
Soldering Time  
Figure 24—Thermal profile diagram  
To maintain placement position, the modules should not be subjected  
to acceleration greater than 500 in/sec2 prior to reflow.  
Reflow  
There are two temperatures critical to the reflow process; the solder  
joint temperature and the modules case temperature. The solder joints  
temperature should reach at least 220ºC, with a time above liquidus  
(183ºC) of ~30 seconds.  
The modules case temperature must not exceed 208 ºC at anytime  
during reflow.  
Because of the T needed between the pin and the case, a forced-air  
convection oven is preferred for reflow soldering. This reflow method  
generally transfers heat from the PCB to the solder joint. The modules  
large mass also reduces its temperature rise. Care should be taken to  
prevent smaller devices from excessive temperatures. Reflow of  
modules onto a PCB using Air-Vac-type equipment is not recommended  
due to the high temperature the module will experience.  
Figure 25— Properly reflowed V•I Chip J-Lead  
Inspection  
For the BGA-version, a visual examination of the post-reflow solder  
joints should show relatively columnar solder joints with no bridges. An  
inspection using x-ray equipment can be done, but the modules  
materials may make imaging difficult.  
The J-Lead versions solder joints should conform to IPC 12.2  
• Properly wetted fillet must be evident.  
• Heel fillet height must exceed lead thickness plus solder thickness.  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 13 of 15  
PRELIMINARY  
V•I Chip Voltage Transformation Module  
Application Note (continued)  
Input Impedance Recommendations  
Input Fuse Recommendations  
To take full advantage of the VTMs capabilities, the impedance of the  
source (input source plus the PC board impedance) must be low over a  
range from DC to 5 MHz. The input of the VTM (factorized bus) should be  
locally bypassed with a 8 µF low Q aluminum electrolytic capacitor.  
Additional input capacitance may be added to improve transient  
performance or compensate for high source impedance. The VTM has  
extremely wide bandwidth so the source response to transients is usually  
the limiting factor in overall output response of the VTM.  
V•I Chips are not internally fused in order to provide flexibility in  
configuring power systems. However, input line fusing of V•I Chips must  
always be incorporated within the power system. A fast acting fuse is  
required to meet safety agency Conditions of Acceptability. The input line  
fuse should be placed in series with the +In port.  
Anomalies in the response of the source will appear at the output of the  
VTM, multiplied by its K factor of 1/5 . The DC resistance of the source  
should be kept as low as possible to minimize voltage deviations on the  
input to the VTM. If the VTM is going to be operating close to the high  
limit of its input range, make sure input voltage deviations will not trigger  
the input overvoltage turn-off threshold.  
Warranty  
Vicor products are guaranteed for two years from date of shipment against defects in material or workmanship when in normal use and service. This  
warranty does not extend to products subjected to misuse, accident, or improper application or maintenance. Vicor shall not be liable for collateral or  
consequential damage. This warranty is extended to the original purchaser only.  
EXCEPT FOR THE FOREGOING EXPRESS WARRANTY, VICOR MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE  
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
Vicor will repair or replace defective products in accordance with its own best judgement. For service under this warranty, the buyer must contact Vicor  
to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the  
buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective  
within the terms of this warranty.  
Information published by Vicor has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Vicor  
reserves the right to make changes to any products without further notice to improve reliability, function, or design. Vicor does not assume any liability  
arising out of the application or use of any product or circuit; neither does it convey any license under its patent rights nor the rights of others. Vicor  
general policy does not recommend the use of its components in life support applications wherein a failure or malfunction may directly threaten life or  
injury. Per Vicor Terms and Conditions of Sale, the user of Vicor components in life support applications assumes all risks of such use and indemnifies  
Vicor against all damages.  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
Page 14 of 15  
Vicor’s comprehensive line of power solutions includes high density AC-DC  
and DC-DC modules and accessory components, fully configurable AC-DC  
and DC-DC power supplies, and complete custom power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for  
its use. Vicor components are not designed to be used in applications, such as life support systems, wherein a failure or  
malfunction could result in injury or death. All sales are subject to Vicors Terms and Conditions of Sale, which are  
available upon request.  
Specifications are subject to change without notice.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent  
applications) relating to the products described in this data sheet. Interested parties should contact Vicor's  
Intellectual Property Department.  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
email  
Vicor Express: vicorexp@vicr.com  
Technical Support: apps@vicr.com  
vicorpower.com  
800-735-6200  
V•I Chip Voltage Transformation Module  
V048K096T025  
Rev. 1.0  
3/05  

相关型号:

V048F096M030

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096M040

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096M050

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096M060

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096M070

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096M080

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096M100

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096M25

Analog Circuit, ROHS COMPLIANT, SMD
VICOR

V048F096T006

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096T009

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096T012

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F096T015

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX