10-R0126PA025SC-M629F4 [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
10-R0126PA025SC-M629F4
型号: 10-R0126PA025SC-M629F4
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总17页 (文件大小:2244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
flow 90PACK 0  
1200V/25A  
Features  
flow 90PACK 0  
90°PCB mounting for easy heat sink assembly  
Clip-in PCB mounting (optional)  
Open emitter for easy current sensing  
without clips  
Schematic  
with clips  
Target Applications  
Standard Drive  
Servo Drive  
Bookshelf Inverter  
Types  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter Transistor  
Collector-emitter break down voltage  
DC collector current *  
VCE  
IC  
1200  
V
A
Th=80°C  
29  
38  
Tj=Tjmax  
Tc=80°C  
ICpulse  
tp limited by Tjmax  
Pulsed collector current  
75  
50  
A
Turn off safe operating area  
Power dissipation per IGBT *  
Gate-emitter peak voltage  
Short circuit ratings  
VCE 1200V, Tj Top max  
A
Th=80°C  
Tc=80°C  
81  
Ptot  
Tj=Tjmax  
W
V
123  
VGE  
±20  
tSC  
Tj150°C  
10  
µs  
V
VCC  
VGE=15V  
800  
Tjmax  
Maximum Junction Temperature  
* measured with phase-change material  
Inverter Diode  
175  
°C  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current *  
1200  
V
A
Th=80°C  
Tc=80°C  
32  
42  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode *  
50  
A
Th=80°C  
Tc=80°C  
63  
96  
W
°C  
Tjmax  
Maximum Junction Temperature  
175  
* measured with phase-change material  
Copyright by Vincotech  
1
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Vis  
t=2s  
DC voltage  
4000  
min 12,7  
min 10,93  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
Copyright by Vincotech  
2
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
Inverter Transistor  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
2,4  
VGE(th) VCE=VGE  
0,00085  
25  
V
V
1,5  
1,96  
2,28  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0,01  
200  
0
1200  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
66  
67  
42  
Rise time  
43  
ns  
196  
264  
71  
138  
2,13  
3,15  
1,47  
2,48  
td(off)  
tf  
Turn-off delay time  
Rgoff=16  
Rgon=16 ꢀ  
±15  
600  
25  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
1430  
115  
85  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
15  
960  
40  
120  
nC  
Phase-Change  
Material  
RthJH  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to heatsink per chip  
1,17  
1,38  
K/W  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
K/W  
Inverter Diode  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,2  
1,90  
1,83  
13  
2,4  
VF  
IRRM  
trr  
Diode forward voltage  
25  
25  
V
A
Peak reverse recovery current  
Reverse recovery time  
17  
318  
524  
2,22  
4,50  
115  
92  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgon=16 ꢀ  
±15  
600  
µC  
di(rec)max  
/dt  
A/µs  
mWs  
0,86  
1,78  
Erec  
Phase-Change  
Material  
RthJH  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to heatsink per chip  
1,51  
1,77  
K/W  
K/W  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermistor  
Rated resistance  
Deviation of R25  
Power dissipation  
Power dissipation constant  
B-value  
R
R/R  
P
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
4700  
%
-5  
5
200  
2
mW  
mW/K  
K
B(25/50)  
Tol. ±3%  
3500  
3560  
B(25/100)  
B-value  
K
Vincotech NTC Reference  
G
Copyright by Vincotech  
3
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Output Inverter  
Figure 1  
Output inverter IGBT  
Figure 2  
Typical output characteristics  
Output inverter IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
0
0
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
tp =  
250  
25  
s  
250  
150  
s  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
25  
100  
20  
15  
10  
5
80  
60  
40  
20  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
1
2
3
4
VGE (V)  
VF (V)  
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
Copyright by Vincotech  
4
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
10  
6
5
4
3
2
1
0
Eon High T  
Eon High T  
8
Eon Low T  
6
Eon Low T  
Eoff High T  
Eoff High T  
4
Eoff Low T  
Eoff Low T  
2
0
0
15  
30  
45  
60  
75  
0
10  
20  
30  
40  
50  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/150  
25/150  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
600  
±15  
16  
600  
±15  
25  
V
Rgon  
Rgoff  
=
=
16  
Figure 7  
Output inverter FWD  
Figure 8  
Output inverter FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(IC)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
2,5  
2,5  
Erec  
2,0  
2,0  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
Erec  
1,5  
1,0  
0,5  
0,0  
1,5  
Tj = 25°C  
Erec  
1,0  
0,5  
0,0  
Tj = 25°C  
Erec  
0
15  
30  
45  
60  
75  
0
10  
20  
30  
40  
50  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
V
A
=
=
=
=
±15  
V
±15  
Rgon  
=
16  
25  
Copyright by Vincotech  
5
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Output Inverter  
Figure 9  
Output inverter IGBT  
Figure 10  
Output inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
1,00  
0,10  
0,01  
0,00  
tdoff  
tdoff  
tdon  
tf  
tf  
0,10  
tr  
tdon  
tr  
0,01  
0,00  
0
15  
30  
45  
60  
75  
0
10  
20  
30  
40  
50  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
150  
600  
±15  
16  
°C  
V
150  
600  
±15  
25  
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
16  
Figure 11  
Output inverter FWD  
Figure 12  
Output inverter FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(IC)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,8  
0,6  
0,4  
0,2  
0,0  
0,8  
trr  
trr  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
0,6  
0,4  
0,2  
Tj = 25°C  
trr  
trr  
Tj = 25°C  
0,0  
0
15  
30  
45  
60  
75  
0
10  
20  
30  
40  
50  
I C (A)  
R g on ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
A
V
=
VR =  
=
IF =  
±15  
V
25  
Rgon  
=
VGE =  
16  
±15  
Copyright by Vincotech  
6
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Output Inverter  
Figure 13  
Output inverter FWD  
Figure 14  
Output inverter FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
8
5
Tj = Tjmax -25°C  
Qrr  
4
3
2
1
Qrr  
6
Tj = Tjmax -25°C  
4
2
0
Tj = 25°C  
Qrr  
Qrr  
Tj = 25°C  
0
0
15  
30  
45  
60  
75  
0
10  
20  
30  
40  
50  
R g on ( )  
I C (A)  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
°C  
V
25/150  
°C  
V
A
V
=
=
VR =  
600  
±15  
16  
600  
25  
IF =  
V
Rgon  
=
VGE =  
±15  
Figure 15  
Output inverter FWD  
Figure 16  
Output inverter FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
20  
30  
Tj = Tjmax -25°C  
25  
20  
15  
10  
5
15  
Tj = Tjmax - 25°C  
IRRM  
Tj = 25°C  
IRRM  
10  
IRRM  
5
Tj = 25°C  
IRRM  
0
0
0
0
10  
20  
30  
40  
50  
15  
30  
45  
60  
75  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
°C  
V
25/150  
°C  
V
A
V
=
=
VR =  
600  
±15  
16  
600  
25  
IF =  
V
Rgon  
=
VGE =  
±15  
Copyright by Vincotech  
7
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Output Inverter  
Figure 17  
Output inverter FWD  
Figure 18  
Output inverter FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
700  
2500  
dI0/dt  
dI0/dt  
µ
µ
µ
µ
dIrec/dt  
dIrec/dt  
600  
500  
400  
300  
200  
100  
0
2000  
1500  
1000  
500  
0
0
15  
30  
45  
60  
75  
0
10  
20  
30  
40  
50  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
Tj =  
25/150  
°C  
V
25/150  
600  
°C  
V
A
V
=
VR =  
600  
±15  
16  
VGE  
=
IF =  
VGE  
V
25  
Rgon  
=
=
±15  
Figure 19  
Output inverter IGBT  
Figure 20  
Output inverter FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p (s)  
t p (s)  
At  
At  
tp / T  
1,17  
tp / T  
1,51  
D =  
D =  
RthJH  
=
RthJH  
=
RthJH  
=
RthJH =  
K/W  
1,38  
K/W  
K/W  
1,77  
K/W  
IGBT thermal model values  
Thermal grease  
FWD thermal model values  
Thermal grease  
Phase change interface  
Phase change interface  
R (C/W)  
0,10  
Tau (s)  
1,4E+00  
1,8E-01  
5,7E-02  
9,8E-03  
1,3E-03  
R (C/W)  
0,12  
Tau (s)  
R (C/W)  
0,06  
Tau (s)  
2,9E+00  
4,2E-01  
9,2E-02  
2,3E-02  
6,0E-03  
8,7E-04  
R (C/W)  
0,07  
Tau (s)  
1,4E+00  
1,8E-01  
5,7E-02  
9,8E-03  
1,3E-03  
2,9E+00  
4,2E-01  
9,2E-02  
2,3E-02  
6,0E-03  
8,7E-04  
0,44  
0,51  
0,19  
0,22  
0,44  
0,52  
0,59  
0,70  
0,14  
0,17  
0,35  
0,41  
0,05  
0,06  
0,20  
0,24  
0,11  
0,13  
Copyright by Vincotech  
8
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Output Inverter  
Figure 21  
Output inverter IGBT  
Figure 22  
Output inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
150  
125  
100  
75  
50  
40  
30  
20  
10  
0
50  
25  
0
0
50  
100  
150  
200  
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
Output inverter FWD  
Figure 24  
Forward current as a  
Output inverter FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
120  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
0
50  
100  
150  
200  
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
Copyright by Vincotech  
9
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Output Inverter  
Figure 25  
Output inverter IGBT  
Figure 26  
Gate voltage vs Gate charge  
Output inverter IGBT  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
17,5  
)
103  
15  
12,5  
10  
102  
240V  
100uS  
960V  
10mS  
100mS  
1mS  
101  
DC  
7,5  
5
100  
10-1  
2,5  
0
0
25  
50  
75  
100  
125  
150  
100  
103  
101  
102  
VCE (V)  
Q g (nC)  
At  
At  
IC  
=
D =  
Th =  
25  
A
single pulse  
80  
ºC  
V
VGE  
Tj =  
=
±15  
Tjmax  
ºC  
Figure 27  
Output inverter IGBT  
Figure 28  
Output inverter IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
tsc = f(VGE  
)
VGE = f(QGE  
)
17,5  
250  
225  
200  
175  
150  
125  
100  
75  
15  
12,5  
10  
7,5  
5
50  
2,5  
25  
0
0
12  
13  
14  
15  
16  
17  
18  
19  
VGE (V)  
20  
12  
14  
16  
18  
20  
VGE (V)  
At  
At  
VCE  
=
VCE  
Tj =  
600  
175  
V
600  
175  
V
Tj ≤  
ºC  
ºC  
Copyright by Vincotech  
10  
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Figure 29  
IGBT  
Reverse bias safe operating area  
IC = f(VCE  
60  
)
IC MAX  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
V
CE (V)  
At  
Tj =  
Tjmax-25  
ºC  
3 level switching  
Uccminus=Uccplus  
Switching mode :  
Copyright by Vincotech  
11  
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Thermistor  
Figure 1  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
NTC-typical temperature characteristic  
5000  
4000  
3000  
2000  
1000  
0
25  
50  
75  
100  
125  
T (°C)  
Copyright by Vincotech  
12  
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
150 °C  
16  
Rgon  
Rgoff  
16 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
125  
175  
%
%
tdoff  
IC  
VCE  
150  
125  
100  
VGE 90%  
VCE 90%  
VCE  
75  
50  
25  
0
100  
IC  
VGE  
75  
tdon  
tEoff  
50  
25  
IC 1%  
VCE 3%  
VGE  
VGE10%  
IC10%  
0
tEon  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time(us)  
time (us)  
VGE (0%) =  
VGE (0%) =  
-15  
15  
V
-15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
15  
V
600  
25  
V
600  
25  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,26  
0,68  
s  
s  
0,07  
0,37  
s  
s  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
125  
175  
%
%
Ic  
fitted  
VCE  
IC  
150  
125  
100  
IC 90%  
VCE  
75  
50  
25  
0
100  
IC  
IC 90%  
60%  
75  
tr  
IC 40%  
50  
25  
IC10%  
IC  
tf  
10%  
0
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
600  
V
600  
V
25  
A
25  
A
0,14  
s  
0,04  
s  
Copyright by Vincotech  
13  
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
125  
175  
%
Pon  
%
150  
125  
100  
75  
Poff  
Eoff  
100  
75  
50  
Eon  
IC  
1%  
50  
25  
25  
VGE 90%  
VCE  
3%  
VGE 10%  
0
tEoff  
0
tEon  
-25  
-25  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
2,8  
3
3,2  
3,4  
3,6  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
15,00  
2,48  
0,68  
kW  
mJ  
s  
15,00  
3,15  
0,37  
kW  
mJ  
s  
tEoff  
=
tEon =  
Figure 7  
Output inverter IGBT  
Figure 8  
Output inverter FWD  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
150  
%
15  
10  
5
Id  
100  
trr  
50  
Vd  
fitted  
0
0
IRRM 10%  
-5  
-50  
IRRM 90%  
-10  
-15  
-20  
IRRM  
100%  
-100  
-150  
-50  
0
50  
100  
150  
200  
3
3,2  
3,4  
3,6  
3,8  
time(us)  
Qg (nC)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
15  
V
600  
25  
V
V
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
600  
25  
V
-17  
0,52  
A
trr  
=
A
s  
177,97  
nC  
Copyright by Vincotech  
14  
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Switching Definitions Output Inverter  
Figure 9  
Output inverter FWD  
Figure 10  
Output inverter FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
125  
125  
%
%
Id  
Qrr  
100  
75  
Erec  
100  
75  
50  
25  
0
tErec  
tQrr  
50  
25  
0
Prec  
-25  
-50  
-75  
-25  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
25  
A
15,00  
1,78  
1,00  
kW  
mJ  
s  
Qrr (100%) =  
4,50  
1,00  
C  
s  
tQrr  
=
tErec =  
Copyright by Vincotech  
15  
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
without thermal paste ,housing without clips  
without thermal paste ,housing with clips  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
M629F41  
M629F40  
M629F41  
M629F40  
Outline  
without clips  
with clips  
Pinout  
Copyright by Vincotech  
16  
Revision: 2  
10-RZ126PA025SC-M629F41  
10-R0126PA025SC-M629F40  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright by Vincotech  
17  
Revision: 2  

相关型号:

10-R0126PA035SC-M620F4

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-R106PPA020SB01-M934A

Easy paralleling;Low turn-off losses;Positive temperature coefficient;Short tail current
VINCOTECH

10-R1126PA010M7-P707F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R1126PA015M7-P708F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R1126PA035M7-P700F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R1126TA015M7-P708F71

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R1126TA035M7-P700F71

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R112PMA010M7-P639A7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R112PMA015M7-P639A75

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R112PMA025M7-P630A7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R112PNA015M7-P639C75

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-R112PNA025M7-P630C7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH