30-F206NBA200SG-M235L25 [VINCOTECH]

High speed switching;Low EMI;Low turn-off losses;Low collector emitter saturation voltage;
30-F206NBA200SG-M235L25
型号: 30-F206NBA200SG-M235L25
厂家: VINCOTECH    VINCOTECH
描述:

High speed switching;Low EMI;Low turn-off losses;Low collector emitter saturation voltage

文件: 总19页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
30-F206NBA200SG-M235L25  
datasheet  
flow BOOST 2  
600 V / 200 A  
Features  
flow 2 17mm housing  
● High efficiency symmetric boost  
● Ultra fast switching frequency  
● Low Inductance Layout  
Target Applications  
Schematic  
● Solar inverter  
Types  
● 30-F206NBA200SG-M235L25  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Bypass Diode  
Repetitive peak reverse voltage  
Forward current  
V RRM  
I FAV  
I FSM  
1600  
130  
V
A
T s = 80 °C  
DC current  
t p = 10 ms  
T j = T jmax  
Surge (non-repetitive) forward current  
I2t-value  
2000  
13600  
209  
A
I 2  
t
A2s  
W
°C  
P tot  
T s = 80 °C  
Power dissipation  
T jmax  
Maximum Junction Temperature  
150  
Input Boost IGBT  
Collector-emitter breakdown voltage  
DC collector current  
V CE  
I C  
600  
140  
800  
297  
±20  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Repetitive peak collector current  
Power dissipation  
A
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
5
µs  
V
400  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Input Boost Inverse Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
70  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
200  
154  
175  
A
W
°C  
T jmax  
Maximum Junction Temperature  
Input Boost Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
166  
240  
226  
150  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
A
W
°C  
T jmax  
Maximum Junction Temperature  
Thermal Properties  
Storage temperature  
T stg  
T op  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Isolation Properties  
t
t
= 2 s  
DC Test Voltage *  
AC Voltage  
6000  
2500  
V
V is  
Isolation voltage  
= 1 min  
V
Creepage distance  
Clearance  
min 12,7  
min 12,7  
mm  
mm  
* 100% tested in production  
copyright Vincotech  
2
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Bypass Diode  
25  
125  
25  
125  
25  
125  
1,17  
1,11  
0,95  
0,75  
0,002  
0,003  
1,21  
V F  
V to  
r t  
Forward voltage  
200  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
200  
200  
Ω
I r  
1600  
25  
0,1  
mA  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,33  
K/W  
Input Boost IGBT  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
0,0032  
25  
4,2  
5,1  
5,6  
V
V
25  
150  
1,38  
2,10  
2,41  
2,22  
±15  
0
200  
600  
0
25  
25  
0,011  
600  
mA  
nA  
Ω
20  
none  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
53  
50  
46  
Rise time  
47  
ns  
616  
666  
33  
t d(off)  
t f  
Turn-off delay time  
R goff = 4 Ω  
R gon = 4 Ω  
±15  
350  
200  
Fall time  
26  
5,38  
7,28  
4,56  
5,16  
E on  
Turn-on energy loss  
Turn-off energy loss  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oes  
C res  
Q G  
150  
12400  
464  
Output capacitance  
f
= 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
360  
±15  
480  
200  
1260  
nC  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,32  
K/W  
Input Boost Inverse Diode  
25  
125  
1,2  
1,90  
1,84  
1,9  
V F  
Diode forward voltage  
200  
V
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,62  
K/W  
Input Boost Diode  
Forward voltage  
25  
125  
2,27  
1,96  
2,8  
80  
V F  
I rm  
240  
200  
V
µA  
Reverse leakage current  
Peak recovery current  
±15  
±15  
350  
350  
25  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
79  
144  
34  
122  
2,03  
8,32  
0,22  
1,25  
5246  
3886  
I RRM  
A
t rr  
Reverse recovery time  
ns  
Q rr  
R gon = 4 Ω  
Reverse recovery charge  
Reverse recovered energy  
Peak rate of fall of recovery current  
200  
µC  
E rec  
mWs  
A/µs  
( di rf/dt )max  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,42  
K/W  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
Ω
%
R 100 = 1486 Ω  
-12  
+14  
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3998  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
B
copyright Vincotech  
3
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Input BOOST Inverse Diode  
figure 25.  
Boost Inverse Diode  
figure 26.  
Boost Inverse Diode  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
350  
300  
250  
200  
150  
100  
10-1  
D = 0,5  
0,2  
100  
0,1  
Tj = Tjmax-25°C  
0,05  
0,02  
0,01  
0,005  
0,000  
t p (s)  
50  
Tj = 25°C  
0
10-2  
10-5  
0
0,5  
1
1,5  
2
2,5  
3
3,5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
VF (V)  
At  
At  
t p / T  
t p  
=
250  
μs  
D =  
R th(j-s)  
=
0,62  
K/W  
figure 27.  
Power dissipation as a  
Boost Inverse Diode  
figure 28.  
Forward current as a  
Boost Inverse Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T j)  
I F = f(T j)  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T j  
(
o C)  
T j (  
o C)  
At  
T j =  
At  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
4
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
INPUT BOOST  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I D = f(V DS  
)
I D = f(V DS)  
600  
600  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
125  
μs  
°C  
T j =  
T j =  
V GS from  
V GS from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
IGBT  
figure 4.  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I D = f(V GS  
)
250  
600  
500  
400  
300  
200  
200  
150  
100  
50  
Tj = Tjmax-25°C  
100  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = 25°C  
0
0
0
0
0,5  
1
1,5  
2
2,5  
3
3,5  
2
4
6
8
10  
VGS (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
250  
10  
μs  
V
250  
μs  
V DS  
=
copyright Vincotech  
5
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
INPUT BOOST  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I D)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
15  
12  
9
15  
12  
9
Eon High T  
Eon Low T  
Eon High T  
Eoff High T  
Eon Low T  
Eoff Low T  
Eoff High T  
Eoff Low T  
6
6
3
3
0
0
0
2
4
6
8
10  
0
100  
200  
300  
I
C (A)  
400  
R G  
(
)
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
°C  
V
25/125  
350  
°C  
V
V DS  
V GS  
=
V DS  
V GS  
=
350  
15  
4
=
=
V
15  
V
R gon  
R goff  
=
I D =  
Ω
Ω
200  
A
=
4
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector (drain) current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
2
1,6  
1,2  
0,8  
0,4  
0
2
1,6  
1,2  
0,8  
0,4  
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
2
4
6
8
10  
0
100  
200  
300  
400  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
°C  
V
25/125  
350  
°C  
V
V DS  
V GS  
=
V DS  
V GS  
=
350  
15  
4
=
=
V
15  
V
R gon  
R goff  
=
I D =  
Ω
Ω
200  
A
=
4
copyright Vincotech  
6
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
INPUT BOOST  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I D)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
10  
10  
tdoff  
1
1
tdoff  
tr  
0,1  
0,1  
tdon  
tdon  
tf  
tf  
tr  
0,01  
0,01  
0,001  
0,001  
I D (A)  
R G ( )  
0
2
4
6
8
10  
0
100  
200  
300  
400  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
15  
4
°C  
V
125  
350  
15  
°C  
V
V DS  
V GS  
=
V DS  
V GS  
=
=
=
V
V
R gon  
R goff  
=
I C =  
Ω
Ω
200  
A
=
4
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,15  
0,12  
0,09  
0,06  
0,03  
0
0,25  
trr High T  
trr High T  
0,2  
0,15  
0,1  
trr Low T  
0,05  
trr Low T  
0
0
100  
200  
300  
400  
0
2
4
6
8
10  
I C (A)  
R Gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
15  
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V
200  
A
R gon  
=
V GS =  
4
Ω
15  
V
copyright Vincotech  
7
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
INPUT BOOST  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
12  
10  
8
10  
Qrr High T  
Qrr High T  
8
6
4
2
6
4
Qrr Low T  
2
Qrr Low T  
0
0
0
I C (A)  
2
4
6
8
R
Gon ( ) 10  
0
100  
200  
300  
400  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
15  
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
=
V
200  
A
=
4
Ω
V GS  
=
15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
200  
160  
120  
80  
300  
IRRM High T  
250  
200  
150  
100  
50  
IRRM Low T  
IRRM High T  
IRRM Low T  
40  
0
0
0
0
100  
200  
300  
I C (A)  
400  
2
4
6
8
R Gon ( )  
10  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
15  
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
=
V
200  
A
=
V GS =  
4
Ω
15  
V
copyright Vincotech  
8
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
INPUT BOOST  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
8000  
12000  
dI0/dt  
dI0/dt  
dIrec/dt  
7000  
dIrec/dt  
10000  
8000  
6000  
4000  
2000  
0
6000  
5000  
4000  
3000  
2000  
1000  
0
0
100  
200  
300  
400  
I
C (A)  
0
2
4
6
8
R Gon ( )  
10  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
15  
°C  
V
25/125  
°C  
V
V CE  
V GE  
R gon  
=
350  
200  
15  
=
V
A
=
4
Ω
V GS  
=
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT/MOSFET transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,005  
0,000  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,32  
K/W  
0,42  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W)  
3,80E-02  
7,45E-02  
5,88E-02  
6,30E-02  
7,23E-02  
1,31E-02  
Tau (s)  
6,34E+00  
R (K/W)  
2,51E-02  
8,11E-02  
7,23E-02  
8,79E-02  
1,05E-01  
2,58E-02  
Tau (s)  
9,71E+00  
1,65E+00  
3,72E-01  
8,42E-02  
2,60E-02  
3,72E-03  
2,16E+00  
5,30E-01  
1,27E-01  
3,93E-02  
5,33E-03  
copyright Vincotech  
9
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
INPUT BOOST  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T j)  
Collector/Drain current as a  
function of heatsink temperature  
I C = f(T j)  
600  
500  
400  
300  
200  
100  
0
175  
150  
125  
100  
75  
50  
25  
0
0
50  
100  
150  
200  
T j  
(
o C)  
T j (  
o C)  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GS  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T j)  
I F = f(T j)  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T j  
(
o C)  
T j (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
10  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
INPUT BOOST  
figure 25.  
IGBT  
figure 26.  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of drain-source voltage  
I D = f(V DS  
)
V GS = f(Q g)  
16  
103  
14  
12  
10  
8
1mS  
10uS  
120 V  
100uS  
102  
480 V  
10mS  
100mS  
101  
6
DC  
4
100  
2
0
10-1  
100  
0
200  
400  
600  
800  
1000  
1200  
1400  
103  
101  
102  
VDS (V)  
Qg (nC)  
At  
At  
D =  
single pulse  
I D  
=
200  
A
T s =  
80  
ºC  
V GS  
=
15  
V
T jmax  
T j =  
copyright Vincotech  
11  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Bypass Diode  
figure 1.  
Bypass diode  
figure 2.  
Bypass diode  
Typical diode forward current as  
a function of forward voltage  
I F= f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
500  
400  
300  
100  
10-1  
200  
Tj = Tjmax-25°C  
D = 0,5  
0,2  
Tj = 25°C  
0,1  
100  
0,05  
0,02  
0,01  
0,005  
0
0,000  
10-2  
10-5  
0
0,4  
0,8  
1,2  
1,6  
2
t p (s)  
VF (V)  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p  
=
250  
μs  
D =  
R th(j-s)  
=
0,33  
K/W  
figure 3.  
Power dissipation as a  
Bypass diode  
figure 4.  
Forward current as a  
Bypass diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T j)  
I F = f(T j)  
500  
400  
300  
200  
100  
0
140  
120  
100  
80  
60  
40  
20  
0
0
50  
100  
150  
200  
o C)  
T j (  
o C)  
0
50  
100  
150  
200  
T j  
(
At  
At  
T j =  
T j =  
150  
ºC  
150  
ºC  
copyright Vincotech  
12  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
13  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Switching Definitions BOOST IGBT  
General conditions  
T j  
=
=
=
125 °C  
4 Ω  
4 Ω  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
%
200  
%
IC  
125  
tdoff  
150  
100  
VGE 90%  
VCE 90%  
VCE  
100  
75  
IC  
VGE  
VGE  
tdon  
50  
IC 1%  
50  
tEoff  
25  
V CE3%  
VGE 10%  
IC 10%  
VCE  
0
tEon  
0
-25  
-50  
-0,3  
-0,1  
0,1  
0,3  
0,5  
0,7  
time (us)  
0,9  
3,9  
4
4,1  
4,2  
4,3  
4,4  
time(us)  
V GE (0%) =  
0
V
V GE (0%) =  
0
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
350  
199  
0,67  
0,74  
V
350  
199  
0,05  
0,30  
V
A
A
t doff  
=
=
μs  
μs  
t don  
=
=
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
150  
200  
%
%
VCE  
IC  
125  
150  
fitted  
IC  
100  
VCE  
IC 90%  
100  
75  
IC 90%  
IC 60%  
tr  
50  
50  
IC 40%  
25  
IC 10%  
IC10%  
0
0
tf  
-25  
-50  
0,45  
0,5  
0,55  
0,6  
0,65  
0,7  
0,75  
3,9  
4
4,1  
4,2  
4,3  
time(us)  
time (us)  
V C (100%) =  
I C (100%) =  
t f =  
350  
199  
0,03  
V
V C (100%) =  
I C (100%) =  
t r =  
350  
199  
0,05  
V
A
A
μs  
μs  
copyright Vincotech  
14  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Switching Definitions BOOST IGBT  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
%
125  
Pon  
%
IC 1%  
Eoff  
Eon  
100  
75  
50  
25  
0
100  
75  
50  
25  
VGE 90%  
VCE 3%  
VGE 10%  
Poff  
0
tEoff  
tEon  
-25  
-25  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
3,9  
4
4,1  
4,2  
4,3  
4,4  
4,5  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
69,74  
kW  
P on (100%) =  
E on (100%) =  
69,74  
7,28  
0,30  
kW  
mJ  
μs  
5,16  
0,74  
mJ  
μs  
t E off  
=
t E on =  
figure 7.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
120  
Id  
%
80  
trr  
40  
Vd  
fitted  
0
-40  
IRRM 10%  
IRRM 90%  
IRRM 100%  
-80  
-120  
4
4,05  
4,1  
4,15  
4,2  
4,25  
4,3  
time(us)  
V d (100%) =  
I d (100%) =  
350  
V
199  
A
I RRM (100%) =  
t rr  
-144  
0,12  
A
=
μs  
copyright Vincotech  
15  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Switching Definitions BOOST IGBT  
figure 8.  
FWD  
figure 9.  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
%
125  
%
Erec  
Id  
100  
100  
tErec  
75  
50  
25  
0
tQrr  
50  
Qrr  
0
Prec  
-50  
-100  
-25  
4
4,1  
4,2  
4,3  
4,4  
4
4,1  
4,2  
4,3  
4,4  
4,5  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
199  
A
P rec (100%) =  
E rec (100%) =  
69,74  
kW  
mJ  
μs  
8,32  
0,24  
μC  
μs  
1,25  
0,24  
t Q rr  
=
t E rec =  
copyright Vincotech  
16  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
without thermal paste 17 mm housing  
30-F206NBA200SG-M235L25  
Name  
Date code  
UL & VIN  
Lot  
Serial  
Text  
NN-NNNNNNNNNNNNNN  
TTTTTTVV WWYY UL  
VIN LLLLL SSSS  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
WWYY  
UL VIN  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Date code  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
WWYY  
Outline  
Pin table [mm]  
Pin table [mm]  
Pin  
1
Function  
X
Y
Function  
Pin  
X
Y
70,8  
70,8  
68,2  
68,2  
65,6  
65,6  
58,6  
58,6  
21,8  
19,2  
16,6  
14  
2,6  
0
SOL-  
SOL-  
SOL-  
SOL-  
SOL-  
SOL-  
NTC1  
NTC2  
DC-  
DC-  
DC-  
DC-  
DC-  
DC-  
DC-  
DC-  
G6  
29  
30  
0
36,8  
36,8  
36,8  
36,8  
36,8  
36,8  
36,8  
36,8  
DC+  
DC+  
DC+  
DC+  
DC+  
DC+  
DC+  
DC+  
2
6,2  
3
2,6  
0
31  
8,8  
4
32  
11,4  
14  
5
2,6  
0
33  
6
34  
16,6  
19,2  
21,8  
7
2,9  
0
35  
8
36  
9
0
37, 38  
39  
Not assembled  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
0
65,6  
65,6  
68,2  
68,2  
70,8  
70,8  
68,2  
70,8  
68,2  
70,8  
68,2  
70,8  
68,2  
70,8  
68,2  
70,8  
68,2  
70,8  
36,8  
34,2  
36,8  
34,2  
36,8  
34,2  
27,2  
27,2  
24,6  
24,6  
22  
SOL+  
0
40  
SOL+  
SOL+  
0
41  
11,4  
8,8  
6,2  
0
0
42  
SOL+  
0
43  
SOL+  
0
44  
SOL+  
0
45  
BOOST+  
BOOST+  
BOOST+  
BOOST+  
BOOST+  
BOOST+  
BOOST-  
BOOST-  
BOOST-  
BOOST-  
BOOST-  
BOOST-  
19,6  
19,6  
19,6  
0
13,3  
10,4  
7,5  
7
46  
S46  
G4  
47  
48  
GND  
GND  
GND  
GND  
GND  
GND  
G5  
49  
0
19,4  
22  
24,6  
27,2  
29,8  
23,5  
26,4  
29,3  
50  
22  
0
51  
14,8  
14,8  
12,2  
12,2  
9,6  
0
52  
0
53  
0
54  
2,9  
2,9  
2,9  
55  
S35  
G3  
56  
9,6  
57, 58  
Not assembled  
copyright Vincotech  
17  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
D9 , D10  
T1 , T2 , T5 , T6  
D11 , D12 , D13 , D14  
D1 , D3  
FWD  
IGBT  
1600 V  
650 V  
600 V  
600 V  
170 A  
100 A  
Bypass Diode  
Input Boost IGBT  
FWD  
50 A  
Input Boost Inverse Diode  
Input Boost Diode  
Thermistor  
FWD  
240 A  
NTC  
Thermistor  
copyright Vincotech  
18  
15 Feb. 2019 / Revision 5  
30-F206NBA200SG-M235L25  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
36  
Handling instructions for flow 2 packages see vincotech.com website.  
Package data  
Package data for flow 2 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
1,17  
30-F206NBA200SG-M235L25-D5-14  
15 Feb. 2019  
flow2 frame modification  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
19  
15 Feb. 2019 / Revision 5  

相关型号:

30-F206R6A050SB-M442E

IGBT3 technology for low saturation losses
VINCOTECH

30-F206R6A050SB01-M442E10

IGBT3 technology for low saturation losses
VINCOTECH

30-F206R6A075SB-M443E

IGBT3 technology for low saturation losses
VINCOTECH

30-F206R6A075SB01-M443E10

IGBT3 technology for low saturation losses
VINCOTECH

30-F206R6A100SB-M444E

IGBT3 technology for low saturation losses
VINCOTECH

30-F206R6A100SB01-M444E10

IGBT3 technology for low saturation losses
VINCOTECH

30-F206R6A150SB-M445E

IGBT3 technology for low saturation losses
VINCOTECH

30-F206R6A150SB01-M445E10

IGBT3 technology for low saturation losses
VINCOTECH

30-F2126PA075M7-L288F79

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

30-F2126PA075M701-L288F719

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

30-F2126PA075SC-L288F09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

30-F2126PA100M7-L289F79

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH