80-M006PNB006SA01-K614D [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
80-M006PNB006SA01-K614D
型号: 80-M006PNB006SA01-K614D
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总17页 (文件大小:940K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
MiniSKiiP® PIM 0  
Features  
600 V / 6 A  
MiniSKiiP®0 housing  
● Solderless interconnection  
● Trench Fieldstop IGBT's for low saturation losses  
● Optional 2ꢀ and 3ꢀleg rectifier  
Target Applications  
Schematic  
● Industrial Drives  
● Embedded Drives  
Types  
80ꢀM006PNB006SA01ꢀK614D, 2ꢀleg rectifier  
80ꢀM006PNB006SAꢀK614C, 3ꢀleg rectifier  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Rectifier Diode  
Repetitive peak reverse voltage  
DC forward current  
V RRM  
I FAV  
1600  
V
A
T s = 80 °C  
T c = 80 °C  
25  
25  
T j = T jmax  
t p = 10 ms  
T j = T jmax  
I FSM  
Surge (nonꢀrepetitive) forward current  
I2tꢀvalue  
220  
240  
A
T j = 25 °C  
I 2  
t
A2s  
T s = 80 °C  
T c = 80 °C  
46  
70  
P tot  
Power dissipation  
W
T jmax  
Maximum Junction Temperature  
150  
°C  
Inverter Switch  
V CE  
I C  
Collectorꢀemitter break down voltage  
600  
V
A
T s = 80 °C  
T c = 80 °C  
10  
10  
T j = T jmax  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
18  
18  
A
V CE ≤ 1200V, T j T op max  
T j = T jmax  
A
T s = 80 °C  
T c = 80 °C  
40  
60  
P tot  
V GE  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
V
A
T s = 80 °C  
T c = 80 °C  
10  
10  
T j = T jmax  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
22  
A
T s = 80 °C  
T c = 80 °C  
31  
47  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Thermal Properties  
T stg  
T op  
Storage temperature  
ꢀ40…+125  
°C  
°C  
ꢀ40…+(T jmax ꢀ 25)  
Operation temperature under switching condition  
Isolation Properties  
Insulation voltage  
V is  
t p=2s  
DC Voltage  
4000  
min 12,7  
min 12,7  
<200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative Tracking Index  
CTI  
copyright Vincotech  
2
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
I C [A]  
or  
V GE [V]  
or  
or  
V CE [V] I F [A]  
T j [°C]  
Min  
Max  
V GS [V]  
or or  
V DS [V] I D [A]  
Rectifier Diode  
25  
125  
25  
125  
25  
125  
25  
1,43  
1,44  
0,92  
0,79  
20,29  
26,11  
1,64  
0,05  
V F  
V to  
r t  
Forward voltage  
25  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
25  
25  
mꢁ  
mA  
I r  
1500  
125  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
1,5  
K/W  
Inverter Switch  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff current incl. Diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
25  
150  
25  
150  
25  
150  
25  
5
5,8  
6,5  
2,04  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,00009  
V
V
1,24  
1,59  
1,84  
15  
0
6
0,0004  
300  
600  
0
mA  
nA  
20  
150  
none  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
105  
102,4  
21,8  
Rise time  
27,8  
ns  
142,2  
163,6  
102,7  
132,4  
0,15  
0,22  
0,15  
0,19  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 64 ꢁ  
R gon = 64 ꢁ  
±15  
300  
6
Fall time  
E on  
Turnꢀon energy loss  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turnꢀoff energy loss  
150  
Input capacitance  
368  
28  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
11  
15  
480  
6
62  
42  
nC  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
2,4  
K/W  
Inverter Diode  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
1,42  
1,36  
3,92  
5,82  
182,7  
288,1  
0,32  
0,77  
45  
V F  
I RRM  
Diode forward voltage  
6
6
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
Q rr  
R gon = 64 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
300  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
57  
0,06  
0,16  
150  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
3
K/W  
Thermistor  
Rated resistance  
Deviation of R  
R100  
R
25  
1000  
%
R 25 = 1000 ꢁ  
R 100 = 1670 ꢁ  
25  
100  
ꢀ3  
ꢀ2  
3
2
Δ R/R  
R 100  
25  
1670  
0,76  
Temperature coefficient  
Aꢀvalue  
% /K  
1/K  
1/K²  
7,635*10ꢀ3  
1,731*10ꢀ5  
B (25/50)  
25  
25  
B (25/100)  
Bꢀvalue  
Vincotech PTC Reference  
E
copyright Vincotech  
3
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Inverter  
Figure 1  
Typical output characteristics  
IGBT  
Figure 2  
Typical output characteristics  
IGBT  
I C = f(V CE  
)
I C = f(V CE)  
20  
20  
16  
12  
8
16  
12  
8
4
4
0
0
0
0
V
CE (V)  
V
CE (V)  
1
2
3
4
5
1
2
3
4
5
t p  
=
t p =  
250  
25  
ꢂs  
°C  
250  
150  
ꢂs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
6
20  
16  
12  
8
Tj = 25°C  
5
4
3
2
1
4
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
0
VGE (V)  
VF (V)  
2
4
6
8
10  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
t p  
=
t p =  
250  
10  
ꢂs  
V
250  
ꢂs  
V CE  
=
copyright Vincotech  
4
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Inverter  
Figure 5  
IGBT  
Figure 6  
Typical switching energy losses  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
as a function of gate resistor  
E = f(R G)  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0,0  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0,0  
Eon High T  
Eon High T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff Low T  
Eoff High T  
Eoff Low T  
I C (A)  
R G ( )  
0
3
6
9
12  
0
64  
128  
192  
256  
320  
inductive load  
inductive load  
T j =  
T j =  
25/150  
°C  
V
25/150  
°C  
V
300  
±15  
6
V CE  
=
V CE  
V GE  
=
300  
±15  
64  
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
64  
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
0,3  
0,2  
0,2  
0,25  
Erec  
0,20  
Tj = Tjmax -25°C  
0,15  
Tj = Tjmax -25°C  
Erec  
Erec  
0,1  
0,10  
Tj = 25°C  
0,1  
0,05  
0,00  
Erec  
Tj = 25°C  
0,0  
I C (A)  
R G ( )  
0
3
6
9
12  
0
64  
128  
192  
256  
320  
inductive load  
inductive load  
T j =  
T j =  
25/150
300  
°C  
V
25/150
300  
±15  
6
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
±15  
64  
V
V
=
I C =  
A
copyright Vincotech  
5
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Inverter  
Figure 9  
IGBT  
Figure 10  
Typical switching times as a  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
function of gate resistor  
t = f(R G)  
1,00  
1,00  
tdoff  
tdoff  
tf  
tf  
0,10  
0,10  
tdon  
tr  
tr  
tdon  
0,01  
0,01  
0,00  
0,00  
I C (A)  
R G ( )  
0
3
6
9
12  
0
64  
128  
192  
256  
320  
inductive load  
inductive load  
T j =  
T j =  
150  
300  
±15  
64  
°C  
V
150  
300  
±15  
6
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
64  
Figure 11  
FWD  
Figure 12  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I C)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
t rr = f(R gon  
)
0,5  
0,4  
0,3  
0,5  
trr  
0,4  
0,3  
0,2  
trr  
Tj = Tjmax -25°C  
trr  
trr  
Tj = Tjmax -25°C  
0,2  
Tj = 25°C  
0,1  
0,1  
0,0  
Tj = 25°C  
0,0  
I C (A)  
R g on ( )  
320  
0
3
6
9
12  
0
64  
128  
192  
256  
T j =  
T j =  
25/150
300  
°C  
V
25/150
°C  
V
V CE  
V GE  
=
=
V R =  
I F =  
300  
6
±15  
64  
V
A
R gon  
=
V GE =  
±15  
V
copyright Vincotech  
6
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Inverter  
Figure 13  
FWD  
Figure 14  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Q rr = f(R gon  
)
1,2  
1,0  
0,8  
1,2  
Qrr  
1,0  
0,8  
0,6  
Tj = Tjmax -25°C  
Qrr  
0,6  
Tj = Tjmax -25°C  
Qrr  
Tj = 25°C  
0,4  
0,4  
0,2  
0,0  
Qrr  
Tj = 25°C  
0,2  
0,0  
I C (A)  
R g on ( )  
320  
0
3
6
9
12  
0
64  
128  
192  
256  
T j =  
T j =  
V R =  
I F =  
25/150
300  
°C  
V
25/150
°C  
V
V CE  
V GE  
R gon  
=
300  
6
=
±15  
64  
V
A
=
V GE =  
±15  
V
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
8
8
Tj = Tjmax - 25°C  
6
6
4
2
0
IRRM  
Tj = Tjmax -25°C  
IRRM  
IRRM  
4
Tj = 25°C  
Tj = 25°C  
IRRM  
2
0
I C (A)  
R gon ( )  
0
3
6
9
12  
0
64  
128  
192  
256  
320  
T j =  
T j =  
V R =  
I F =  
25/150
300  
°C  
V
25/150
300  
6
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
64  
V
A
=
V GE =  
±15  
V
copyright Vincotech  
7
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Inverter  
Figure 17  
FWD  
Figure 18  
Typical rate of fall of forward  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I C)  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
400  
900  
dI0/dt  
dI0/dt  
µ
µ
µ
µ
dIrec/dt  
dIrec/dt  
750  
320  
240  
160  
80  
dIo/dtLow T  
600  
dIo/dtLow T  
450  
300  
150  
di0/dtHigh T  
dIrec/dtHigh T  
di0/dtHigh T  
dIrec/dtLow T  
dIrec/dtHigh T  
dIrec/dtLow T  
0
0
0
64  
128  
192  
256  
320  
I
C (A)  
R gon ( )  
0
3
6
9
12  
T j =  
T j =  
V R =  
I F =  
25/150
300  
°C  
V
25/150
300  
6
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
64  
V
A
=
V GE =  
±15  
V
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
10-2  
10-5  
10-2  
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p / T  
t p / T  
D =  
R th(j-s)  
D =  
R th(j-s)  
=
=
2,40  
K/W  
1,95  
3
K/W  
2,47  
IGBT thermal model values  
FWD thermal model values  
Thermal grease  
Phase change interface  
Thermal grease  
Phase change interface  
R (K/W) τ (s)  
R (K/W) Tau (s)  
R (K/W) τ (s)  
R (K/W) Tau (s)  
0,08  
0,18  
0,82  
0,59  
0,43  
0,30  
9,7E+00  
0,00  
0,00  
0,00  
0,00  
0,00  
0,00  
0,0E+00  
0,0E+00  
0,0E+00  
0,0E+00  
0,0E+00  
0,0E+00  
0,17  
0,87  
0,95  
0,56  
0,50  
1,2E+00  
0,00  
0,00  
0,00  
0,00  
0,00  
0,0E+00  
0,0E+00  
0,0E+00  
0,0E+00  
0,0E+00  
4,8Eꢀ01  
7,5Eꢀ02  
1,5Eꢀ02  
2,9Eꢀ03  
3,0Eꢀ04  
1,1Eꢀ01  
2,6Eꢀ02  
4,6Eꢀ03  
8,4Eꢀ04  
copyright Vincotech  
8
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Inverter  
Figure 21  
IGBT  
Figure 22  
Collector current as a  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
function of heatsink temperature  
I C = f(T s)  
80  
60  
40  
20  
0
12  
10  
8
6
4
2
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T j =  
T j =  
V GE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
60  
40  
20  
0
12  
10  
8
6
4
2
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T j =  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
9
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Inverter  
Figure 25  
IGBT  
Figure 26  
Gate voltage vs Gate charge  
IGBT  
Safe operating area as a function  
of collectorꢀemitter voltage  
I C = f(V CE  
)
V GE = f(Q G)  
102  
18  
16  
14  
12  
10  
8
10mS  
1mS  
10uS  
100uS  
100mS  
DC  
120V  
101  
100  
10-1  
480V  
6
4
2
0
0
11  
22  
33  
44  
55  
100  
VCE (V)  
103  
101  
102  
Q G (nC)  
D =  
single pulse  
I C  
=
6
A
T s =  
80  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
ºC  
Figure 27  
IGBT  
Figure 28  
IGBT  
Short circuit withstand time as a function of  
gateꢀemitter voltage  
Typical short circuit collector current as a function of  
gateꢀemitter voltage  
t sc = f(V GE  
)
I sc = f(V GE)  
17,5  
1000  
15  
800  
12,5  
600  
10  
7,5  
400  
5
200  
2,5  
0
0
12  
12,6
13,2  
13,8
14,4
15
VGE (V)  
12  
14  
16  
18  
20  
VGE (V)  
V CE  
=
300  
175  
V
V CE  
300  
175  
V
T j ≤  
T j =  
ºC  
ºC  
copyright Vincotech  
10  
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Rectifier Diode  
Figure 1  
Rectifier Diode  
Figure 2  
Rectifier Diode  
Typical diode forward current as  
a function of forward voltage  
I F= f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
101  
100  
10-1  
10-2  
75  
60  
45  
30  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
15  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
3,0  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
VF (V)  
t p (s)  
t p / T  
t p  
=
250  
ꢂs  
D =  
R th(j-s)  
=
1,5  
K/W  
Figure 3  
Power dissipation as a  
Rectifier Diode  
Figure 4  
Forward current as a  
Rectifier Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
120  
90  
60  
30  
0
30  
25  
20  
15  
10  
5
0
T s  
(
o C)  
T s (  
o C)  
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
T j =  
T j =  
150  
ºC  
150  
ºC  
copyright Vincotech  
11  
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Thermistor  
Typical PTC characteristic  
as a function of temperature  
R T = f(T )  
Equation of PTC resistance temperature dependency  
PTC-typical temperature characteristic  
2000  
1800  
1600  
1400  
1200  
1000  
R (T ) = 1000 [1+ A *(T ꢀ25°C) +B *(T ꢀ25°C) 2]  
[]  
25  
45  
65  
85  
105  
125  
T (°C)  
copyright Vincotech  
12  
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Switching Definitions Inverter  
General conditions  
T j  
=
=
=
150 °C  
64 ꢁ  
64 ꢁ  
R gon  
R goff  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
250  
%
140  
%
120  
tdoff  
200  
IC  
VCE  
100  
VGE 90%  
VCE 90%  
150  
80  
60  
40  
20  
0
VCE  
IC  
100  
tdon  
tEoff  
VGE  
50  
IC10%  
VCE 3%  
VGE10%  
IC 1%  
VGE  
0
tEon  
-50  
-20  
2,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
-0,2  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
time (µs)  
time(µs)  
V GE (0%) =  
ꢀ15  
V
V GE (0%) =  
ꢀ15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
300  
6
V
300  
6
V
A
A
t doff  
=
=
0,16  
0,52  
ꢂs  
ꢂs  
t don  
=
=
0,10  
0,27  
ꢂs  
ꢂs  
t E off  
t E on  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
140  
250  
%
%
120  
fitted  
IC  
Ic  
200  
VCE  
100  
IC 90%  
80  
150  
VCE  
100  
IC  
60%  
60  
IC90%  
tr  
40  
20  
0
IC 40%  
50  
IC10%  
IC10%  
0
tf  
-20  
-50  
-0,05  
0
0,05  
0,1  
0,15  
0,2  
0,25  
0,3  
time (µs)  
3
3,05  
3,1  
3,15  
3,2  
3,25  
time(µs)  
V C (100%) =  
I C (100%) =  
t f =  
300  
V
V C (100%) =  
I C (100%) =  
t r =  
300  
6
V
6
A
A
0,13  
ꢂs  
0,03  
ꢂs  
copyright Vincotech  
13  
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
120  
180  
Pon  
%
%
Eoff  
100  
150  
120  
Poff  
80  
60  
40  
20  
Eon  
90  
60  
30  
0
VGE 90%  
IC  
VCE  
1%  
VGE 10%  
3%  
0
tEon  
tEoff  
-20  
-30  
-0,2  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
time (µs)  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time(µs)  
P off (100%) =  
E off (100%) =  
1,80  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
1,80  
0,23  
0,27  
kW  
mJ  
ꢂs  
0,19  
0,52  
t E off  
=
t E on =  
Figure 7  
Output inverter FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
120  
Id  
%
80  
trr  
40  
Vd  
fitted  
IRRM10%  
0
-40  
-80  
IRRM90%  
IRRM100%  
-120  
2,95  
3,1  
3,25  
3,4  
3,55  
3,7  
time(µs)  
V d (100%) =  
I d (100%) =  
300  
6
V
A
A
I RRM (100%) =  
ꢀ6  
t rr  
=
0,29  
ꢂs  
copyright Vincotech  
14  
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Switching Definitions Output Inverter  
Figure 8  
Output inverter FWD  
Figure 9  
Output inverter FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
120  
%
Erec  
%
Qrr  
Id  
100  
100  
tQrr  
80  
tErec  
50  
60  
40  
20  
0
0
-50  
Prec  
-100  
-150  
-20  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
time(µs)  
2,9  
3,1  
3,3  
3,5  
3,7  
3,9  
4,1  
4,3  
time(µs)  
I d (100%) =  
Q rr (100%) =  
6
A
P rec (100%) =  
E rec (100%) =  
1,80  
kW  
mJ  
ꢂs  
0,78  
1,00  
ꢂC  
ꢂs  
0,16  
1,00  
t Q rr  
=
t E rec =  
copyright Vincotech  
15  
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Ordering Code and Marking ꢀ Outline ꢀ Pinout ꢀ Identification  
Ordering Code & Marking  
Version  
Ordering Code  
with 2ꢀleg rectifier, std lid (black V23990ꢀK02ꢀTꢀPM)  
with 2ꢀleg rectifier, std lid (black V23990ꢀK02ꢀTꢀPM) and P12  
with 2ꢀleg rectifier, thin lid (white V23990ꢀK03ꢀTꢀPM)  
with 2ꢀleg rectifier, thin lid (white V23990ꢀK03ꢀTꢀPM) and P12  
with 3ꢀleg rectifier, std lid (black V23990ꢀK02ꢀTꢀPM)  
with 3ꢀleg rectifier, std lid (black V23990ꢀK02ꢀTꢀPM) and P12  
with 3ꢀleg rectifier, thin lid (white V23990ꢀK03ꢀTꢀPM)  
with 3ꢀleg rectifier, thin lid (white V23990ꢀK03ꢀTꢀPM) and P12  
80ꢀM006PNB006SA01ꢀK614Dꢀ/0A/  
80ꢀM006PNB006SA01ꢀK614Dꢀ/1A/  
80ꢀM006PNB006SA01ꢀK614Dꢀ/0B/  
80ꢀM006PNB006SA01ꢀK614Dꢀ/1B/  
80ꢀM006PNB006SAꢀK614Cꢀ/0A/  
80ꢀM006PNB006SAꢀK614Cꢀ/1A/  
80ꢀM006PNB006SAꢀK614Cꢀ/0B/  
80ꢀM006PNB006SAꢀK614Cꢀ/1B/  
Name  
Type&Ver  
Date code  
Vinco&Lot Serial&UL  
Text  
NNꢀNNNNNNNNNNNNNN  
TTTTTTTVV  
WWYY  
Vinco LLLLL  
SSSS UL  
Type&Ver  
Lot number  
Serial  
Date code  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
WWYY  
Outline  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1ꢀT6  
D1ꢀD6  
D7ꢀD12  
PTC  
IGBT  
FWD  
600 V  
600 V  
1600 V  
6 A  
6 A  
25 A  
Inverter Switch  
Inverter Diode  
Rectifier Diode  
Thermistor  
Rectifier Diode  
PTC  
copyright Vincotech  
16  
13 Jan. 2016 / Revision 3  
80ꢀM006PNB006SA*ꢀK614*  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
198  
Handling instructions for MiniSkiiP ® 0 packages see vincotech.com website.  
Package data  
Package data for MiniSkiiP® 0 packages see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
80ꢀM006PNB010SAxꢀK614xꢀD3ꢀ14  
12 Jan. 2016  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in la  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
17  
13 Jan. 2016 / Revision 3  

相关型号:

80-M006PNB010SA-K615

Solderless interconnection
VINCOTECH

80-M006PNB010SA-K615C

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

80-M006PNB010SA-K615C-0A

Solderless interconnection
VINCOTECH

80-M006PNB010SA-K615C-0B

Solderless interconnection
VINCOTECH

80-M006PNB010SA-K615C-1A

Solderless interconnection
VINCOTECH

80-M006PNB010SA-K615C-1B

Solderless interconnection
VINCOTECH

80-M006PNB010SA01-K615D

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

80-M012PNA010M7-K619C71

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

80-M012PNB008SC-K619C41

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

80-M1066PA030SA-K543F1

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

80-M1126PA010M7-K217F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

80-M1126PA015M7-K218F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH