V23990-K203-B10-PM [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
V23990-K203-B10-PM
型号: V23990-K203-B10-PM
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总30页 (文件大小:1423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-K203-B10-PM  
datasheet  
MiniSKiiP® 1 PIM + PFC  
Features  
600 V / 15 A  
MiniSKiiP® 1 housing  
● Solderless interconnection  
● IGBT Trench 3 technology  
Target Applications  
● Industrial drives  
Schematic  
Types  
● V23990-K203-B10-PM  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Rectifier Diode  
Repetitive peak reverse voltage  
DC forward current  
V RRM  
I FAV  
1600  
30  
V
A
T j = T jmax  
t p = 10 ms  
T j = T jmax  
T s = 80 °C  
T j=150°C  
T s = 80 °C  
I FSM  
Surge (non-repetitive) forward current  
I2t-value  
200  
200  
A
I 2  
t
A2s  
P tot  
Power dissipation  
46  
W
T jmax  
Maximum Junction Temperature  
150  
°C  
PFC Switch  
V CE  
I C  
Collector-emitter breakdown voltage  
650  
26  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
90  
60  
A
A
V CE ≤ 650V, T j T op max  
T j = T jmax  
P tot  
V GE  
T s = 80 °C  
Power dissipation  
68  
20  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
5
µs  
V
400  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
PFC Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
650  
37  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
90  
A
67  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Inverter Switch  
V CE  
I C  
Collector-emitter breakdown voltage  
600  
21  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
45  
A
V CE ≤ 600V, T j T op max  
T j = T jmax  
30  
A
P tot  
V GE  
T s = 80 °C  
53  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
175  
°C  
Inverter Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
20  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
40  
A
38  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Thermal Properties  
T stg  
T op  
Storage temperature  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Isolation Properties  
Isolation voltage  
V is  
t
= 2 s  
DC Test Voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
copyright Vincotech  
2
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V CE [V] I F [A]  
V GS [V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Rectifier Diode  
25  
125  
25  
125  
25  
125  
25  
1
1,51  
1,42  
0,86  
0,79  
26  
1,75  
V F  
V to  
r t  
Forward voltage  
25  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
25  
25  
mΩ  
mA  
25  
0,1  
I r  
1600  
125  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
K/W  
R th(j-s)  
Thermal resistance junction to sink  
1,51  
PFC Switch  
25  
125  
25  
125  
25  
125  
25  
4,2  
1
5,1  
5,6  
2,6  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Rise time  
0,00043  
30  
V
V
2,1  
2,3  
15  
0
0,01  
400  
650  
0
mA  
nA  
Ω
20  
125  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
22  
21  
28,2  
27,8  
197  
222  
6
ns  
t d(off)  
t f  
Turn-off delay time  
Fall time  
R goff = 8 Ω  
R gon = 16 Ω  
±15  
300  
15  
37  
0,278  
0,507  
0,15  
0,228  
E on  
Turn-on energy loss  
Turn-off energy loss  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
125  
1630  
108  
50  
Output capacitance  
Reverse transfer capacitance  
Gate charge  
f
= 1 MHz  
0
25  
25  
25  
±15  
480  
30  
167  
nC  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
K/W  
Thermal resistance junction to sink  
1,40  
PFC Diode  
25  
1
2,1  
2,9  
10  
V F  
I rm  
I RRM  
Forward voltage  
30  
V
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
1,83  
Reverse leakage current  
Peak recovery current  
650  
300  
µA  
A
8,06  
14,94  
94,2  
128,9  
0,31  
1,11  
0,05  
0,16  
526  
t rr  
Reverse recovery time  
ns  
Q rr  
R gon = 16 Ω  
Reverse recovery charge  
Reverse recovered energy  
Peak rate of fall of recovery current  
±15  
15  
µC  
E rec  
mWs  
A/µs  
( di rf/dt )max  
125  
195  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
K/W  
Thermal resistance junction to sink  
1,42  
copyright Vincotech  
3
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V CE [V] I F [A]  
V GS [V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Inverter Switch  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
25  
125  
25  
125  
25  
125  
25  
5
5,8  
6,5  
2,2  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,00021  
15  
V
V
1,1  
1,73  
1,87  
15  
0
0,05  
300  
600  
0
mA  
nA  
Ω
20  
125  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
17,8  
17,8  
18,2  
22,5  
135  
155  
100  
103  
0,39  
0,5  
Rise time  
ns  
t d(off)  
t f  
Turn-off delay time  
R goff = 8 Ω  
R gon = 16 Ω  
±15  
300  
15  
Fall time  
E on  
Turn-on energy loss  
mWs  
pF  
0,35  
0,45  
E off  
C ies  
C oss  
C rss  
Q G  
Turn-off energy loss  
125  
Input capacitance  
860  
55  
Output capacitance  
f
= 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
24  
±15  
480  
15  
87  
nC  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
K/W  
Thermal resistance junction to sink  
1,81  
Inverter Diode  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
0,8  
1,8  
1,86  
8,25  
10,6  
217,5  
332,1  
0,81  
1,45  
43  
2,1  
V F  
I RRM  
Diode forward voltage  
20  
15  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
Q rr  
R gon = 16 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
300  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
63  
0,15  
0,29  
125  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
K/W  
Thermal resistance junction to sink  
2,51  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
1000  
Ω
%
R 100 = 1670 Ω  
100  
100  
25  
-3  
3
1670,3125  
Ω
mW/K  
1/K  
1/K²  
7,635*10-3  
1,731*10-5  
B (25/50)  
25  
B (25/100)  
B-value  
25  
Vincotech NTC Reference  
E
copyright Vincotech  
4
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 1.  
Typical output characteristics  
IGBT  
figure 2.  
Typical output characteristics  
I C = f(V CE  
IGBT  
I C = f(V CE  
)
)
60  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
0
1
2
3
4
5
At  
At  
t p  
T j =  
V GE from  
t p  
=
=
250  
25  
μs  
°C  
250  
125  
μs  
°C  
T j =  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
16  
50  
40  
30  
20  
10  
0
12  
8
4
0
0
2
4
6
8
10  
VGE (V)  
VF (V)  
0
0,5  
1
1,5  
2
2,5  
3
At  
At  
T j =  
t p  
25/125  
250  
25/125  
250  
T j =  
°C  
μs  
V
°C  
μs  
t p  
=
=
V CE  
=
10  
copyright Vincotech  
5
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
1,6  
1,2  
0,8  
0,4  
0,0  
1,2  
Eon High T  
1
Eon High T  
Eon Low T  
Eon Low T  
0,8  
0,6  
Eoff High T  
Eoff High T  
Eoff Low T  
Eoff Low T  
0,4  
0,2  
0
0
32  
64  
96  
128  
160  
R G ( )  
0
5
10  
15  
20  
25  
30  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
16  
Ω
Ω
15  
A
=
8
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,4  
0,3  
0,2  
0,1  
0,0  
Erec  
Erec  
Erec  
Erec  
0
5
10  
15  
20  
25  
30  
0
32  
64  
96  
128  
160  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
V
=
I C =  
16  
Ω
15  
A
copyright Vincotech  
6
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
1,00  
tdoff  
tdoff  
tf  
tf  
0,10  
0,10  
0,01  
0,00  
tdon  
tr  
tdon  
0,01  
tr  
0,00  
I
C (A)  
R G ( )  
160  
0
5
10  
15  
20  
25  
30  
0
32  
64  
96  
128  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
300  
15  
°C  
V
125  
300  
15  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
16  
Ω
Ω
15  
A
=
8
figure 11.  
FWD  
figure 12.  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I C)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
t rr = f(R gon  
)
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,5  
trr  
trr  
0,4  
0,3  
0,2  
0,1  
trr  
trr  
0
0
I
C (A)  
R gon ( )  
160  
0
5
10  
15  
20  
25  
30  
32  
64  
96  
128  
At  
T j =  
At  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
R gon  
=
=
V
A
=
V GE =  
16  
Ω
15  
V
copyright Vincotech  
7
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
2,4  
2
1,6  
Qrr  
Qrr  
1,2  
0,8  
0,4  
1,6  
1,2  
0,8  
0,4  
0
Qrr  
Qrr  
0
0
0
5
10  
15  
20  
25  
30  
32  
64  
96  
128  
160  
R gon ( )  
I
C (A)  
At  
At  
T j =  
T j =  
V R =  
I F =  
°C  
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
=
=
V
V
Ω
A
R gon  
=
V GE =  
16  
15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
12  
10  
8
12  
10  
8
IRRM  
IRRM  
IRRM  
IRRM  
6
6
4
4
2
2
0
0
0
0
5
10  
15  
20  
25  
30  
32  
64  
96  
128  
160  
R gon ( )  
I C (A)  
At  
At  
T j =  
T j =  
°C  
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
=
=
V R =  
I F =  
V
V
Ω
A
R gon  
=
V GE =  
16  
15  
V
copyright Vincotech  
8
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I C)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
700  
750  
dI0/dt  
dIrec/dt  
dI0/dt  
µ
µ
µ
µ
dIrec/dt  
600  
500  
400  
300  
200  
100  
0
600  
dIo/dtLow T  
di0/dtHigh T  
450  
300  
150  
0
dIrec/dtHigh T  
dIo/dtLow T  
dIrec/dtLow T  
dIrec/dtHigh T  
dIrec/dtLow T  
di0/dtHigh T  
0
5
10  
15  
20  
25  
30  
0
32  
64  
96  
128  
160  
I C (A)  
R gon ( )  
At  
T j =  
At  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
R gon  
=
=
V
A
=
V GE =  
16  
Ω
15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
t
p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
1,81  
K/W  
2,51  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
4,79E-02 6,42E+00  
2,09E-01 5,50E-01  
7,40E-01 1,07E-01  
5,03E-01 1,63E-02  
1,67E-01 2,67E-03  
1,40E-01 2,31E-04  
R (K/W) Tau (s)  
5,06E-02 9,02E+00  
2,53E-01 6,56E-01  
8,83E-01 1,18E-01  
7,35E-01 2,86E-02  
3,35E-01 4,82E-03  
2,57E-01 6,88E-04  
copyright Vincotech  
9
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
10  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 25.  
IGBT  
figure 26.  
IGBT  
Safe operating area as a function  
of collector-emitter voltage  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
102  
20  
10uS  
17,5  
15  
100uS  
1mS  
101  
100  
10-1  
12,5  
120V  
480V  
10mS  
10  
7,5  
5
100mS  
DC  
2,5  
0
10-2  
100  
0
20  
40  
60  
80  
100  
Q g (nC)  
101  
102  
VCE (V)  
103  
At  
At  
D =  
single pulse  
I C  
=
15  
A
T s =  
80  
ºC  
V
V GE  
=
15  
T jmax  
T j =  
ºC  
figure 27.  
IGBT  
figure 28.  
IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
t sc = f(V GE  
)
I C(sc) = f(V GE)  
14  
250  
225  
200  
175  
150  
125  
100  
75  
12  
10  
8
6
4
50  
2
25  
0
0
10  
11  
12  
13  
14  
15  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VGE (V)  
V GE(V)  
At  
At  
V CE  
=
600  
175  
V
V CE  
600  
175  
V
T j ≤  
T j =  
ºC  
ºC  
copyright Vincotech  
11  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Inverter Characteristics  
figure 29.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
40  
IC MAX  
30  
20  
10  
0
0
200  
400  
600  
800  
VCE (V)  
At  
T j =  
125 °C  
16 Ω  
8 Ω  
R gon  
R goff  
=
=
copyright Vincotech  
12  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
PFC Characteristics  
figure 1.  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
60  
60  
45  
30  
15  
45  
30  
15  
0
0
0
0
VDS (V)  
VDS (V)  
1
2
3
4
5
1
2
3
4
5
6
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
126  
μs  
T j =  
T j =  
°C  
V CE from  
V CE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V CE  
)
30  
90  
75  
60  
45  
30  
15  
0
25  
20  
15  
10  
5
0
0
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
3,0  
3,5  
4,0  
VF (V)  
VGS (V)  
2
4
6
8
10  
At  
At  
t p  
=
T j =  
t p  
=
T j =  
250  
10  
μs  
V
°C  
250  
μs  
°C  
25/125  
25/125  
V CE  
=
copyright Vincotech  
13  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
PFC Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
1,2  
1,2  
Eon  
1
1
Eon  
0,8  
0,6  
0,8  
0,6  
0,4  
0,2  
0
Eon  
Eon  
Eoff  
0,4  
Eoff  
Eoff  
Eoff  
0,2  
0
0
16  
32  
48  
64  
80  
I C (A)  
R G ( )  
0
5
10  
15  
20  
25  
30  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
16  
Ω
Ω
15  
A
=
8
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
0,2  
0,15  
0,1  
0,2  
0,15  
0,1  
Erec  
Erec  
Erec  
0,05  
0,05  
Erec  
0
0
0
16  
32  
48  
64  
80  
R G ( )  
I C (A)  
0
5
10  
15  
20  
25  
30  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
16  
Ω
Ω
15  
A
=
8
copyright Vincotech  
14  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
PFC Characteristics  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdoff  
tf  
0,1  
0,1  
tdon  
tr  
tf  
tdon  
0,01  
0,01  
tr  
0,001  
0,001  
R
G ( )  
80  
I C (A)  
0
5
10  
15  
20  
25  
30  
0
16  
32  
48  
64  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
300  
15  
°C  
V
125  
300  
15  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
16  
Ω
Ω
15  
A
=
8
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,18  
0,16  
0,14  
0,12  
0,10  
0,08  
0,06  
0,04  
0,02  
0,00  
0,24  
trr  
trr  
0,20  
0,16  
0,12  
0,08  
0,04  
trr  
trr  
0,00  
0
10  
20  
30  
40  
50  
60  
70  
R gon ( )  
I C (A)  
0
5
10  
15  
20  
25  
30  
At  
T j =  
At  
T j =  
V R =  
I F =  
°C  
V
°C  
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
R gon  
=
V
A
V
=
V
=
V GS =  
16  
Ω
15  
copyright Vincotech  
15  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
PFC Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
1,5  
1,2  
0,9  
0,6  
0,3  
0,0  
1,5  
Qrr  
1,2  
0,9  
0,6  
0,3  
Qrr  
Qrr  
Qrr  
0,0  
0
I
C (A)  
R
gon ( )  
70  
0
5
10  
15  
20  
25  
30  
10  
20  
30  
40  
50  
60  
At  
At  
T j =  
T j =  
V R =  
I F =  
°C  
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
R gon  
=
V
V
Ω
=
A
=
16  
V GS  
=
15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
16  
14  
12  
10  
8
25  
IRRM  
20  
15  
10  
5
IRRM  
IRRM  
6
IRRM  
4
2
0
0
0
10  
20  
30  
40  
50  
60  
70  
I C (A)  
R gon ( )  
0
5
10  
15  
20  
25  
30  
At  
T j =  
At  
T j =  
°C  
V
°C  
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
R gon  
=
V R =  
I F =  
V
A
V
=
V
=
16  
Ω
V GS  
=
15  
copyright Vincotech  
16  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
PFC Characteristics  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
2000  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
dI0/dt  
dIrec/dt  
dI0/dt  
dIrec/dt  
1750  
1500  
1250  
1000  
750  
500  
250  
0
0
10  
20  
30  
40  
50  
60  
70  
gon ( )  
I C (A)  
R
0
5
10  
15  
20  
25  
30  
At  
At  
T j =  
T j =  
V R =  
°C  
V
°C  
V
25/125  
300  
15  
25/125  
300  
15  
V CE  
V GE  
R gon  
=
=
I F  
=
V
A
=
V GS  
=
16  
Ω
15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,05  
0,1  
0,05  
0,02  
0,01  
0,02  
0,01  
0,005  
0.000  
0,005  
0.000  
10-2  
10-5  
10-2  
10-4  
10-3  
10-2  
10-1  
100  
10110  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
1,40  
K/W  
1,42  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W)  
7,09E-02  
2,04E-01  
6,77E-01  
2,25E-01  
1,65E-01  
5,35E-02  
Tau (s)  
R (K/W)  
2,89E-02  
1,06E-01  
6,58E-01  
3,38E-01  
1,58E-01  
1,27E-01  
Tau (s)  
8,41E+00  
2,80E+00  
4,27E-01  
1,13E-01  
3,41E-02  
8,19E-03  
1,40E-03  
9,99E-01  
1,49E-01  
4,10E-02  
8,96E-03  
1,55E-03  
copyright Vincotech  
17  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
PFC Characteristics  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
150  
120  
90  
60  
30  
0
40  
30  
20  
10  
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
150  
120  
90  
60  
30  
0
50  
40  
30  
20  
10  
0
T s (  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
18  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
PFC Characteristics  
figure 25.  
IGBT  
figure 26.  
IGBT  
Safe operating area as a function  
of collector-emitter voltage  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
102  
17,5  
10uS  
15  
100uS  
101  
12,5  
120 V  
1mS  
10  
7,5  
5
10mS  
480 V  
100  
DC  
100mS  
10-1  
2,5  
0
10-2  
0
25  
50  
75  
100  
125  
150  
175  
Qg (nC)  
200  
100  
102  
103  
101  
VCE (V)  
At  
At  
D =  
single pulse  
I C  
=
15  
A
T s =  
80  
ºC  
V GE  
=
15  
V
T jmax  
T j =  
figure 27.  
IGBT  
figure 28.  
IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
t sc = f(V GE  
)
I C(sc) = f(V GE)  
14  
500  
12  
10  
8
400  
300  
200  
100  
6
4
2
0
0
10  
11  
12  
13  
14  
15  
VGE (V)  
12  
14  
16  
18  
VGE (V) 20  
At  
At  
V CE  
=
600  
175  
V
V CE  
600  
175  
V
T j ≤  
T j =  
ºC  
ºC  
copyright Vincotech  
19  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
figure 29.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
80  
IC MAX  
60  
40  
20  
0
0
200  
400  
600  
800  
VCE (V)  
At  
T j =  
125 °C  
16 Ω  
8 Ω  
R gon  
R goff  
=
=
copyright Vincotech  
20  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Rectifier Diode Characteristics  
figure 1.  
Rectifier Diode  
figure 2.  
Rectifier Diode  
Typical diode forward current as  
a function of forward voltage  
I F= f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
50  
40  
30  
20  
10  
0
101  
100  
10-1  
10-2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
t p (s)  
VF (V)  
0
0,5  
1
1,5  
2
2,5  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
t p / T  
T j =  
°C  
μs  
D =  
R th(j-s) =  
25/125  
250  
t p  
=
1,51  
K/W  
figure 3.  
Power dissipation as a  
Rectifier Diode  
figure 4.  
Forward current as a  
Rectifier Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
T s  
(
o C)  
T s (  
o C)  
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
At  
T j =  
At  
T j =  
150  
ºC  
150  
ºC  
copyright Vincotech  
21  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical PTC characteristic  
as a function of temperature  
R T = f(T )  
PTC-typical temperature characteristic  
2000  
1800  
1600  
1400  
1200  
1000  
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
22  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Switching Definitions Inverter  
General conditions  
T j  
=
=
=
125 °C  
16 Ω  
8 Ω  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
200  
%
IC  
%
125  
tdoff  
VCE  
150  
100  
VGE 90%  
VCE 90%  
VCE  
75  
50  
25  
0
100  
IC  
VGE  
tdon  
tEoff  
50  
IC 1%  
VCE 3%  
VGE10%  
IC10%  
0
-25  
-50  
VGE  
tEon  
-50  
-0,2  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
time (us)  
0,6  
2,7  
2,78  
2,86  
2,94  
3,02  
3,1  
time(us)  
V GE (0%) =  
0
V
V GE (0%) =  
0
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
300  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V
300  
15  
V
A
A
t doff  
=
=
0,15  
0,44  
μs  
μs  
t don  
=
=
0,02  
0,20  
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
140  
175  
%
%
Ic  
120  
fitted  
IC  
150  
VCE  
100  
125  
IC 90%  
VCE  
80  
100  
IC90%  
IC  
60%  
60  
75  
tr  
IC 40%  
40  
50  
20  
25  
IC10%  
IC10%  
0
0
tf  
-20  
-25  
0,05  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
2,8  
2,83  
2,86  
2,89  
2,92  
2,95  
time(us)  
time (us)  
V C (100%) =  
I C (100%) =  
t f =  
300  
15  
V
V C (100%) =  
I C (100%) =  
t r =  
300  
15  
V
A
A
0,10  
μs  
0,02  
μs  
copyright Vincotech  
23  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Switching Definitions Inverter  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
120  
175  
Pon  
%
Poff  
Eoff  
%
150  
125  
100  
75  
100  
80  
60  
40  
20  
0
Eon  
50  
25  
VGE 90%  
VCE  
3%  
IC  
1%  
VGE 10%  
0
tEoff  
tEon  
-25  
-20  
2,7  
2,8  
2,9  
3
3,1  
3,2  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
0,7  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
4,50  
0,45  
0,44  
kW  
P on (100%) =  
E on (100%) =  
4,50  
0,50  
0,20  
kW  
mJ  
μs  
mJ  
μs  
t E off  
=
t E on =  
figure 7.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
0
IRRM10%  
fitted  
-50  
-100  
-150  
IRRM90%  
IRRM100%  
2,7  
2,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time(us)  
V d (100%) =  
I d (100%) =  
300  
V
15  
A
I RRM (100%) =  
t rr  
11  
A
=
0,33  
μs  
copyright Vincotech  
24  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Switching Definitions Inverter  
figure 8.  
FWD  
figure 9.  
Turn-on Switching Waveforms & definition of t Erec  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr  
)
(t Erec= integrating time for E rec)  
150  
125  
%
%
Erec  
Id  
Qrr  
100  
75  
100  
50  
tQrr  
tErec  
50  
0
25  
Prec  
-50  
-100  
0
-25  
2,6  
2,8  
3
3,2  
3,4  
3,6  
3,8  
2,6  
2,8  
3
3,2  
3,4  
3,6  
3,8  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
15  
A
P rec (100%) =  
E rec (100%) =  
4,50  
0,29  
0,71  
kW  
mJ  
μs  
1,45  
0,71  
μC  
μs  
t Q rr  
=
t E rec =  
copyright Vincotech  
25  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Switching Definitions PFC  
General conditions  
T j  
=
=
=
125 °C  
16 Ω  
8 Ω  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
140  
250  
%
%
120  
IC  
tdoff  
200  
150  
100  
VGE  
VCE  
90%  
90%  
80  
60  
IC  
VCE  
100  
40  
tdon  
VGE  
tEoff  
50  
20  
0
IC  
1%  
VCE  
VCE3%  
VGE10%  
IC10%  
0
-20  
VGE  
tEon  
-50  
-40  
2,9  
2,95  
3
3,05  
3,1  
3,15  
3,2  
3,25  
time(us)  
-0,2  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
time (us)  
V GE (0%) =  
0
V
V
V
A
V GE (0%) =  
0
V
V
V
A
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
300  
15  
300  
15  
t doff  
=
=
0,22  
0,33  
μs  
μs  
t don  
=
=
0,02  
0,16  
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
140  
250  
%
%
Ic  
120  
VCE  
fitted  
200  
IC  
100  
Ic 90%  
80  
150  
VCE  
Ic  
60%  
60  
100  
IC90%  
tr  
Ic  
40%  
40  
50  
20  
IC10%  
Ic10%  
0
0
tf  
-20  
-50  
0,1  
0,13  
0,16  
0,19  
0,22  
0,25  
0,28  
0,31  
time (us)  
2,95  
2,99  
3,03  
3,07  
3,11  
3,15  
3,19  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
300  
V
V C (100%) =  
I C (100%) =  
t r =  
300  
15  
V
15  
A
A
0,04  
μs  
0,03  
μs  
copyright Vincotech  
26  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Switching Definitions PFC  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
%
200  
Pon  
%
Poff  
Eoff  
100  
75  
50  
25  
0
150  
Eon  
100  
50  
Uce 3%  
Ic 1%  
U ge90%  
U ge10%  
0
tEon  
tEoff  
0,16  
-25  
-50  
-0,2  
-0,08  
0,04  
0,28  
0,4  
0,52  
2,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
4,52  
0,23  
0,33  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
4,5177  
0,51  
kW  
mJ  
μs  
t E off  
=
t E on  
=
0,16  
figure 7.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Ud  
0
IRRM10%  
fitted  
-50  
IRRM90%  
-100  
IRRM100%  
-150  
2,9  
2,98  
3,06  
3,14  
3,22  
3,3  
3,38  
time(us)  
V d (100%) =  
I d (100%) =  
300  
15  
V
A
I RRM (100%) =  
t rr  
-15  
0,13  
A
=
μs  
copyright Vincotech  
27  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Switching Definitions PFC  
figure 8.  
FWD  
figure 9.  
Turn-on Switching Waveforms & definition of t Erec  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr  
)
(t Erec= integrating time for E rec)  
150  
120  
%
%
Erec  
Id  
Qrr  
100  
100  
50  
80  
60  
40  
20  
0
tErec  
tQint  
0
Prec  
-50  
-100  
-20  
2,9  
3
3,1  
3,2  
3,3  
3,4  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
15  
A
P rec (100%) =  
E rec (100%) =  
4,52  
kW  
mJ  
μs  
1,11  
0,26  
μC  
μs  
0,16  
0,26  
t Qint  
=
t E rec =  
copyright Vincotech  
28  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
with std lid (black V23990-K12-T-PM)  
V23990-K203-B10-/0A/-PM  
V23990-K203-B10-/1A/-PM  
V23990-K203-B10-/0B/-PM  
V23990-K203-B10-/1B/-PM  
with std lid (black V23990-K12-T-PM) and P12  
with thin lid (white V23990-K13-T-PM)  
with thin lid (white V23990-K13-T-PM) and P12  
VIN  
Date code  
Name&Ver  
UL  
Lot  
Serial  
Text  
VIN  
WWYY  
Lot number  
LLLLL  
NNNNNNVV  
UL  
LLLLL  
SSSS  
Type&Ver  
Serial  
Date code  
Datamatrix  
TTTTTTTVV  
SSSS  
WWYY  
Outline  
PCB pad table  
Pad  
X
Y
Function  
1
2
3
4
5
6
15,93  
15,93  
-14,6  
-9,8  
G5  
W
Not assembled  
15,93  
-0,2  
7,62  
12,62  
15,8  
+T  
-T  
15,93  
15,93  
15,93  
PCB pad table  
G6  
Pad  
X
Y
Function  
7
-DC/W  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
-5,47  
-7,17  
-7,17  
5,35  
B
8
Not assembled  
12,62  
12,62  
GB  
-B  
9
8,23  
8,23  
7,73  
7,73  
G4  
-DC/V  
G3  
15,8  
10  
11  
12  
13  
14  
15  
16  
15,8  
Not assembled  
-14,6  
-8,07  
-9,8  
+DC  
-9,8  
V
-15,02  
-15,8  
+RECT  
Not assembled  
Not assembled  
12,62  
Not assembled  
-15,02  
-15,02  
-15,02  
0
L2  
L1  
0,53  
0,53  
G2  
9,8  
15,8  
15,8  
-DC/U  
-RECT  
17  
18  
19  
-0,47  
-0,47  
-5,47  
-14,6  
-9,8  
-5  
G1  
U
Pad positions refers to center point.  
For more informations on pad design  
please see package data  
+B  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1-T6  
T7  
IGBT  
IGBT  
600 V  
15 A  
30 A  
10 A  
30 A  
25 A  
Inverter Switch  
PFC Switch  
650 V  
600 V  
650 V  
1600 V  
D1-D6  
D7  
FWD  
Inverter Diode  
PFC Diode  
FWD  
D8, D9, D10, D12  
PTC1  
Rectifier  
PTC  
Rectifier Diode  
Thermistor  
copyright Vincotech  
29  
19 Jul. 2016 / Revision 4  
V23990-K203-B10-PM  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
198  
Handling instructions for MiniSkiiP® 0 packages see vincotech.com website.  
Package data  
Package data for MiniSkiiP® 0 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
V23990-K203-B10-D4-14  
19 Jul. 2016  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
30  
19 Jul. 2016 / Revision 4  

相关型号:

V23990-K204-A-0A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K204-A-0B-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K204-A-1A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K204-A-1B-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K204-A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K209-A-/0A/-PM

Insulated Gate Bipolar Transistor, 18A I(C), 1200V V(BR)CES, N-Channel
VINCOTECH
VINCOTECH

V23990-K209-A-/1A/-PM

Insulated Gate Bipolar Transistor, 18A I(C), 1200V V(BR)CES, N-Channel
VINCOTECH

V23990-K209-A40-0A-PM

Trench Fieldstop IGBT4 technology
VINCOTECH

V23990-K209-A40-0B-PM

Trench Fieldstop IGBT4 technology
VINCOTECH

V23990-K209-A40-1A-PM

Trench Fieldstop IGBT4 technology
VINCOTECH

V23990-K209-A40-1B-PM

Trench Fieldstop IGBT4 technology
VINCOTECH