V23990-K243-A-0B-PM [VINCOTECH]

IGBT3 technology for low saturation losses;
V23990-K243-A-0B-PM
型号: V23990-K243-A-0B-PM
厂家: VINCOTECH    VINCOTECH
描述:

IGBT3 technology for low saturation losses

双极性晶体管
文件: 总17页 (文件大小:2287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-K243-A-PM  
MiniSKiiP® 3 PIM  
600V/100A  
MiniSkiip® 3 housing  
Features  
IGBT3 technology for low saturation losses  
Solderless spring contact mounting system  
Target Applications  
Schematic  
Industrial motor drives  
Types  
V23990-K243-A-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
D8,D9,D10,D11,D12,D13  
Repetitive peak reverse voltage  
DC forward current  
VRRM  
IFAV  
1600  
V
A
A
Th=80°C  
69  
93  
Tj=Tjmax  
tp=10ms  
Tj=Tjmax  
Tc=80°C  
IFSM  
Surge forward current  
700  
Tj=25°C  
I2t  
A2s  
W
I2t-value  
2450  
Th=80°C  
Tc=80°C  
77  
Ptot  
Power dissipation per Diode  
Maximum Junction Temperature  
117  
Tjmax  
150  
°C  
T1,T2,T3,T4,T5,T6,T7  
Collector-emitter break down voltage  
DC collector current  
VCE  
IC  
600  
V
A
Th=80°C  
Tc=80°C  
85  
85  
Tj=Tjmax  
300  
ICpulse  
tp limited by Tjmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
A
VCE 1200V, Tj Top max  
300  
A
Th=80°C  
Tc=80°C  
154  
224  
Ptot  
Tj=Tjmax  
W
V
VGE  
±20  
tSC  
Tj150°C  
6
µs  
V
VCC  
VGE=15V  
360  
Tjmax  
Maximum Junction Temperature  
175  
°C  
Copyright by Vincotech  
1
Revision: 3.1  
V23990-K243-A-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
D1,D2,D3,D4,D5,D6,D7  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
600  
V
A
Th=80°C  
Tc=80°C  
75  
75  
Tj=Tjmax  
985  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
A
Th=80°C  
Tc=80°C  
119  
181  
W
°C  
Tjmax  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 12,7  
mm  
mm  
Copyright by Vincotech  
2
Revision: 3.1  
V23990-K243-A-PM  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
D8,D9,D10,D11,D12,D13  
Forward voltage  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
0,8  
1,02  
0,94  
0,88  
0,75  
4
1,35  
VF  
Vto  
rt  
35  
35  
35  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
m  
mA  
6
0,1  
2
Ir  
1500  
Thermal grease  
RthJH  
Thermal resistance chip to heatsink per chip  
thickness50um  
λ = 1 W/mK  
0,90  
K/W  
T1,T2,T3,T4,T5,T6,T7  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
1,85  
VGE(th) VCE=VGE  
0,008  
100  
V
V
1,05  
1,58  
1,78  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
0,0052  
1200  
600  
0
mA  
nA  
±25  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
187,2  
187,2  
31,5  
32,8  
222,5  
241,8  
53,3  
86,9  
2,29  
2,92  
2,43  
3,08  
Rise time  
ns  
td(off)  
tf  
Turn-off delay time  
Rgoff=8 ꢀ  
Rgon=8 ꢀ  
±15  
300  
100  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
6280  
400  
186  
620  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
±15  
480  
100  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,6  
K/W  
D1,D2,D3,D4,D5,D6,D7  
Diode forward voltage  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1
1,38  
1,4  
1,9  
VF  
IRRM  
trr  
100  
100  
V
A
92,8  
112,9  
167,5  
247,7  
5,85  
10,5  
3184  
2578  
1,1  
Peak reverse recovery current  
Reverse recovery time  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgoff=8 ꢀ  
300  
µC  
di(rec)max  
/dt  
A/µs  
mWs  
Erec  
2,15  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,8  
K/W  
Thermistor  
Rated resistance  
Deviation of R100  
R100  
R
T=25°C  
T=100°C  
T=100°C  
T=25°C  
T=25°C  
T=25°C  
1000  
%
R/R R100=1670 ꢀ  
-3  
3
P
1670,313  
Power dissipation constant  
A-value  
mW/K  
1/K  
1/K²  
B(25/50) Tol. %  
B(25/100) Tol. %  
7,635*10-3  
1,731*10-5  
B-value  
Vincotech NTC Reference  
E
Copyright by Vincotech  
3
Revision: 3.1  
V23990-K243-A-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 1  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 2  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
tp =  
250  
25  
s  
250  
125  
s  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 4  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
100  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = Tjmax-25°C  
0
0
0
VGE (V)  
VF (V)  
2
4
6
8
10  
12  
0
0,5  
1
1,5  
2
2,5  
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
Copyright by Vincotech  
4
Revision: 3.1  
V23990-K243-A-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 5  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 6  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
10  
10  
Eon High T  
Eon Low T  
8
8
Eon High T  
6
6
Eoff High T  
Eoff Low T  
4
4
Eoff Low T  
Eoff High T  
2
2
Eon Low T  
0
0
I C (A)  
R G ( )  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/125  
25/125  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
300  
±15  
8
300  
±15  
100  
V
Rgon  
Rgoff  
=
=
8
Figure 7  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 8  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(IC)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
3,2  
2,4  
1,6  
0,8  
0
3,2  
2,4  
1,6  
Erec  
Tj = Tjmax -25°C  
Erec  
Tj = Tjmax -25°C  
Erec  
Tj = 25°C  
Tj = 25°C  
0,8  
Erec  
0
I C (A)  
R G ( )  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/125  
300  
±15  
8
°C  
V
25/125  
300  
°C  
V
V
A
=
=
=
=
V
±15  
Rgon  
=
100  
Copyright by Vincotech  
5
Revision: 3.1  
V23990-K243-A-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 9  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 10  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdon  
tdoff  
tdon  
tf  
0,1  
0,1  
tr  
tf  
tr  
0,01  
0,01  
0,001  
0,001  
I C (A)  
R G ( )  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
125  
300  
±15  
8
°C  
V
125  
300  
±15  
100  
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
8
Figure 11  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 12  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(IC)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,5  
0,4  
0,3  
0,2  
0,5  
trr  
0,4  
trr  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
0,3  
0,2  
0,1  
0,0  
trr  
trr  
Tj = 25°C  
0,1  
Tj = 25°C  
0,0  
0
8
16  
24  
32  
40  
I C (A)  
R g on ( )  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VCE  
VGE  
25/125  
300  
±15  
8
°C  
V
25/125  
300  
°C  
V
A
V
=
VR =  
=
IF =  
VGE  
V
100  
Rgon  
=
=
±15  
Copyright by Vincotech  
6
Revision: 3.1  
V23990-K243-A-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 13  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 14  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
20  
16  
12  
8
15  
Qrr  
12  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
Qrr  
9
6
3
0
Qrr  
Tj = 25°C  
Qrr  
4
Tj = 25°C  
0
I C (A)  
R g on ( )  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
At  
At  
Tj =  
Tj =  
VCE  
VGE  
25/125  
300  
±15  
8
°C  
V
25/125  
300  
°C  
V
A
V
=
=
VR =  
IF =  
VGE  
V
100  
Rgon  
=
=
±15  
Figure 15  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 16  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
200  
200  
Tj = Tjmax - 25°C  
150  
100  
150  
Tj = Tjmax -25°C  
100  
Tj = 25°C  
Tj = 25°C  
IRRM  
IRRM  
IRRM  
IRRM  
50  
50  
0
0
I
C (A)  
R gon ( )  
0
8
16  
24  
32  
40  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VCE  
VGE  
25/125  
300  
±15  
8
°C  
V
25/125  
300  
°C  
V
A
V
=
VR =  
=
IF =  
VGE  
V
100  
Rgon  
=
=
±15  
Copyright by Vincotech  
7
Revision: 3.1  
V23990-K243-A-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 17  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 18  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
5000  
7500  
µ
µ
µ
µ
dI0/dt  
dIrec/dtLow T  
dIrec/dt  
4000  
3000  
2000  
1000  
0
6000  
4500  
3000  
1500  
dIrec/dtHigh T  
dIo/dtLow T  
di0/dtHigh T  
dI0/dt  
dIrec/dt  
0
0
I C (A)  
R gon ( )  
0
50  
100  
150  
200  
8
16  
24  
32  
At  
At  
Tj =  
VCE  
VGE  
25/125  
Tj =  
25/125  
300  
°C  
V
°C  
V
A
V
=
=
VR =  
300  
±15  
8
IF =  
VGE  
V
100  
Rgon  
=
=
±15  
Figure 19  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 20  
D1,D2,D3,D4,D5,D6,D7 FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-5  
10-2  
10-4  
10-3  
10-2  
10-1  
100  
101  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
tp / T  
0,62  
tp / T  
0,80  
D =  
D =  
RthJH  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
FWD thermal model values  
Thermal grease  
Thermal grease  
R (C/W)  
0,04  
Tau (s)  
6,5E+00  
R (C/W)  
0,08  
Tau (s)  
2,9E+00  
0,09  
1,0E+00  
2,0E-01  
5,9E-02  
1,2E-02  
2,2E-03  
0,26  
3,2E-01  
8,4E-02  
1,1E-02  
7,9E-04  
0,23  
0,33  
0,15  
0,08  
0,07  
0,05  
0,02  
Copyright by Vincotech  
8
Revision: 3.1  
V23990-K243-A-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 21  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 22  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
300  
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 24  
Forward current as a  
D1,D2,D3,D4,D5,D6,D7 FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
240  
200  
160  
120  
80  
80  
60  
40  
20  
0
40  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
Copyright by Vincotech  
9
Revision: 3.1  
V23990-K243-A-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 25  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 26  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
18  
)
103  
10uS  
1mS  
100uS  
10mS  
100mS  
DC  
15  
12  
9
120V  
102  
101  
100  
480V  
6
3
0
0
10-1  
200  
400  
600  
800  
100  
103  
101  
102  
VCE (V)  
Q g (nC)  
At  
D =  
At  
IC  
=
100  
A
single pulse  
80  
Th =  
VGE  
Tj =  
ºC  
=
±15  
V
Tjmax  
ºC  
Copyright by Vincotech  
10  
Revision: 3.1  
V23990-K243-A-PM  
D8,D9,D10,D11,D12,D13  
Figure 1  
D8,D9,D10,D11,D12,D13 diode  
Figure 2  
D8,D9,D10,D11,D12,D13 diode  
Typical diode forward current as  
a function of forward voltage  
IF= f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
150  
120  
90  
60  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
t p (s)  
30  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0,0  
0,3  
0,6  
0,9  
1,2  
1,5  
VF (V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
tp =  
tp / T  
0,90  
250  
s  
D =  
RthJH  
=
K/W  
Figure 3  
Power dissipation as a  
D8,D9,D10,D11,D12,D13 diode  
Figure 4  
Forward current as a  
D8,D9,D10,D11,D12,D13 diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
180  
150  
120  
90  
150  
120  
90  
60  
30  
0
60  
30  
0
T h  
(
o C)  
T h (  
o C)  
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
Copyright by Vincotech  
11  
Revision: 3.1  
V23990-K243-A-PM  
Thermistor  
Figure 1  
Thermistor  
Typical PTC characteristic  
as a function of temperature  
RT = f(T)  
PTC-typical temperature characteristic  
2000  
1800  
1600  
1400  
1200  
1000  
25  
50  
75  
100  
125  
T (°C)  
Copyright by Vincotech  
12  
Revision: 3.1  
V23990-K243-A-PM  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
125 °C  
8  
Rgon  
Rgoff  
8 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
240  
%
150  
%
IC  
200  
160  
tdoff  
120  
90  
60  
30  
0
VCE  
VGE 90%  
VCE 90%  
120  
VCE  
IC  
80  
tEoff  
tdon  
VGE  
40  
IC 1%  
IC10%  
VGE  
VCE 3%  
VGE10%  
0
tEon  
-30  
-40  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
0,7  
time (us)  
2,45  
2,6  
2,75  
2,9  
3,05  
3,2  
3,35  
time(us)  
3,5  
VGE (0%) =  
V
GE (0%) =  
-15  
15  
V
-15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
15  
V
300  
99  
V
300  
99  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,24  
0,50  
s  
s  
0,19  
0,41  
s  
s  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
120  
fitted  
%
240  
%
VCE  
IC  
Ic  
100  
IC 90%  
80  
200  
160  
120  
IC  
60  
40  
20  
0
60%  
VCE  
IC90%  
IC 40%  
80  
tr  
40  
IC10%  
IC10%  
0
tf  
-40  
-20  
2,9  
2,95  
3
3,05  
3,1  
3,15  
3,2  
3,25  
time(us)  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
time (us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
300  
99  
V
300  
99  
V
A
A
0,09  
s  
0,03  
s  
Copyright by Vincotech  
13  
Revision: 3.1  
V23990-K243-A-PM  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
150  
%
%
Poff  
Eoff  
Pon  
100  
80  
60  
40  
20  
120  
Eon  
90  
60  
30  
VGE 10%  
VCE  
3%  
0
0
VGE 90%  
IC 1%  
tEon  
tEoff  
-30  
-20  
2,7  
2,8  
2,9  
3
3,1  
3,2  
3,3  
time(us)  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
0,7  
time (us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
29,72  
3,08  
0,50  
kW  
29,72  
2,92  
0,41  
kW  
mJ  
s  
mJ  
tEoff  
=
tEon =  
s  
Figure 7  
Output inverter FWD  
Turn-off Switching Waveforms & definition of trr  
120  
%
Id  
80  
trr  
40  
Vd  
fitted  
0
IRRM10%  
-40  
-80  
IRRM90%  
IRRM100%  
-120  
2,8  
2,9  
3
3,1  
3,2  
3,3  
time(us)  
Vd (100%) =  
Id (100%) =  
300  
99  
V
A
IRRM (100%) =  
113  
0,25  
A
trr  
=
s  
Copyright by Vincotech  
14  
Revision: 3.1  
V23990-K243-A-PM  
Switching Definitions Output Inverter  
Figure 8  
Output inverter FWD  
Figure 9  
Output inverter FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
120  
%
Qrr  
%
Erec  
Id  
100  
100  
80  
tErec  
50  
tQrr  
60  
40  
20  
0
0
-50  
Prec  
-100  
-150  
-20  
2,7  
2,9  
3,1  
3,3  
3,5  
3,7  
3,9  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
time(us)  
Id (100%) =  
P
rec (100%) =  
99  
A
29,72  
2,15  
0,30  
kW  
mJ  
s  
Qrr (100%) =  
Erec (100%) =  
tErec  
10,50  
0,30  
C  
s  
tQrr  
=
=
Copyright by Vincotech  
15  
Revision: 3.1  
V23990-K243-A-PM  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
K243A  
in packaging barcode as  
with std lid (black V23990-K32-T-PM)  
V23990-K243-A-/0A/-PM  
K243A-/0A/  
K243A-/1A/  
K243A-/0B/  
K243A-/1B/  
with std lid (black V23990-K32-T-PM) and P12 V23990-K243-A-/1A/-PM  
with thin lid (white V23990-K33-T-PM) V23990-K243-A-/0B/-PM  
with thin lid (white V23990-K33-T-PM) and P12 V23990-K243-A-/1B/-PM  
K243A  
K243A  
K243A  
Outline  
Pinout  
Copyright by Vincotech  
16  
Revision: 3.1  
V23990-K243-A-PM  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright by Vincotech  
17  
Revision: 3.1  

相关型号:

V23990-K243-A-1A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-1B-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K249-A-0A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K249-A-0B-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K249-A-1A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K249-A-1B-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K249-A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K24X-U-D1-14

Standard Power Integrated Module
VINCOTECH

V23990-K359-F40-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-K420-A40-0A-PM

Solderless interconnection
VINCOTECH

V23990-K420-A40-0B-PM

Solderless interconnection
VINCOTECH