V23990-K428-A60-0B-PM [VINCOTECH]

Mitsubishi Generation 6.1 technology;
V23990-K428-A60-0B-PM
型号: V23990-K428-A60-0B-PM
厂家: VINCOTECH    VINCOTECH
描述:

Mitsubishi Generation 6.1 technology

文件: 总18页 (文件大小:2393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-K428-A60-PM  
MiniSKiiP® 3 PIM  
1200V/50A  
MiniSKiiP® 3 housing  
Features  
Solderless interconnection  
Mitsubishi Generation 6.1 technology  
Target Applications  
Schematic  
Industrial Motor Drives  
Types  
V23990-K428-A60-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
D8,D9,D10,D11,D12,D13  
Repetitive peak reverse voltage  
DC forward current  
VRRM  
IFAV  
1600  
V
A
A
Th=80°C  
71  
80  
Tj=Tjmax  
tp=10ms  
Tj=Tjmax  
Tc=80°C  
IFSM  
Surge forward current  
490  
Tj=150°C  
I2t  
A2s  
W
I2t-value  
1200  
Th=80°C  
Tc=80°C  
77  
Ptot  
Power dissipation per Diode  
Maximum Junction Temperature  
117  
Tjmax  
150  
°C  
T1,T2,T3,T4,T5,T6,T7  
Collector-emitter break down voltage  
DC collector current  
VCE  
IC  
1200  
V
A
Th=80°C  
Tc=80°C  
55  
70  
Tj=Tjmax  
ICpulse  
tp limited by Tjmax  
Pulsed collector current  
100  
100  
A
Turn off safe operating area  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
VCE 1200V, Tj Top max  
A
Th=80°C  
Tc=80°C  
127  
193  
Ptot  
Tj=Tjmax  
W
V
VGE  
20  
tSC  
Tj150°C  
10  
µs  
V
VCC  
VGE=15V  
850  
Tjmax  
Maximum Junction Temperature  
175  
°C  
Copyright by Vincotech  
1
Revision: 1.1  
V23990-K428-A60-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
D1,D2,D3,D4,D5,D6,D7  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
1200  
V
A
Th=80°C  
Tc=80°C  
47  
55  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
100  
A
Th=80°C  
Tc=80°C  
102  
154  
W
°C  
Tjmax  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Vis  
t=2s  
DC voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
Copyright by Vincotech  
2
Revision: 1.1  
V23990-K428-A60-PM  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
D8,D9,D10,D11,D12,D13  
Forward voltage  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=°C  
1
1,09  
1,02  
0,90  
0,74  
4,00  
6,00  
1,8  
VF  
Vto  
rt  
50  
50  
50  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
m  
mA  
Tj=25°C  
Tj=145°C  
Ir  
1600  
1,1  
Thermal grease  
RthJH  
Thermal resistance chip to heatsink per chip  
thickness50um  
λ = 1 W/mK  
0,90  
K/W  
T1,T2,T3,T4,T5,T6,T7  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5,4  
1
6
6,6  
2,3  
VGE(th) VCE=VGE  
0,005  
50  
V
V
1,79  
2,12  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
0,25  
500  
1200  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
106  
104  
28  
Rise time  
31  
ns  
157  
205  
58  
td(off)  
tf  
Turn-off delay time  
Rgoff=16 ꢀ  
Rgon=16 ꢀ  
±15  
600  
50  
Fall time  
89  
2,61  
4,39  
2,49  
4,09  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
5000  
1000  
80  
Output capacitance  
f=1MHz  
0
10  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
±15  
600  
50  
117  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,75  
K/W  
D1,D2,D3,D4,D5,D6,D7  
Diode forward voltage  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1
2,73  
2,18  
33  
3,4  
VF  
IRRM  
trr  
50  
50  
V
A
Peak reverse recovery current  
Reverse recovery time  
45  
388  
727  
4,01  
10,81  
1018  
295  
1,84  
5,14  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgon=16 ꢀ  
±15  
600  
µC  
di(rec)max  
/dt  
A/µs  
mWs  
Erec  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,93  
K/W  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R
T=25°C  
T=100°C  
T=100°C  
T=25°C  
T=25°C  
T=25°C  
1000  
1670  
%
R/R R100=1670 ꢀ  
-3  
3
P
mW/K  
1/K  
1/K²  
7,635*10-3  
1,731*10-5  
B(25/50)  
B(25/100)  
B-value  
Vincotech NTC Reference  
E
Copyright by Vincotech  
3
Revision: 1.1  
V23990-K428-A60-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 1  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 2  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
120  
120  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
tp =  
tp =  
250  
25  
s  
250  
151  
s  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 4  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
50  
100  
80  
60  
40  
20  
0
40  
30  
20  
10  
0
0
2
4
6
8
10  
12  
0
1
2
3
4
5
VGE (V)  
VF (V)  
At  
At  
Tj =  
tp =  
Tj =  
tp =  
°C  
°C  
25/150
250  
25/150
250  
s  
s  
VCE  
=
10  
V
Copyright by Vincotech  
4
Revision: 1.1  
V23990-K428-A60-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 5  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 6  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
12  
12  
10  
8
Eon High T  
Eon High T  
9
Eon Low T  
Eon Low T  
6
6
Eoff High T  
Eoff Low T  
Eoff High T  
4
3
Eoff Low T  
2
0
0
0
16  
32  
48  
64  
80  
0
25  
50  
75  
I C (A)  
100  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/150
25/150
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
600  
±15  
16  
600  
±15  
50  
V
Rgon  
Rgoff  
=
=
16  
Figure 7  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 8  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(IC)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
8
6
4
2
0
8
6
4
2
0
Erec  
Erec  
Erec  
Erec  
0
25  
50  
75  
100  
0
16  
32  
48  
64  
80  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/150  
°C  
V
25/150  
°C  
V
V
A
=
=
=
=
600  
±15  
16  
600  
±15  
50  
V
Rgon  
=
Copyright by Vincotech  
5
Revision: 1.1  
V23990-K428-A60-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 9  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 10  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
0,10  
0,01  
0,00  
1,00  
tdoff  
tdoff  
tdon  
tf  
0,10  
tf  
tr  
tdon  
0,01  
tr  
0,00  
0
16  
32  
48  
64  
80  
0
25  
50  
75  
100  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
151  
600  
±15  
16  
°C  
V
151  
600  
±15  
50  
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
16  
Figure 11  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 12  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(IC)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
1,5  
1,2  
0,9  
0,6  
0,3  
0,0  
1,5  
1,2  
0,9  
0,6  
0,3  
trr  
trr  
trr  
trr  
0,0  
0
0
25  
50  
75  
100  
16  
32  
48  
64  
80  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
°C  
V
25/150  
600  
50  
°C  
V
A
V
=
600  
±15  
16  
=
V
Rgon  
=
VGE =  
±15  
Copyright by Vincotech  
6
Revision: 1.1  
V23990-K428-A60-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 13  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 14  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
18  
15  
12  
9
15  
Qrr  
12  
9
Qrr  
6
6
Qrr  
Qrr  
3
3
0
0
0
0
25  
50  
75  
100  
16  
32  
48  
64  
80  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
°C  
V
25/150  
600  
50  
°C  
V
A
V
=
=
600  
±15  
16  
V
Rgon  
=
VGE =  
±15  
Figure 15  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 16  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
125  
100  
75  
50  
25  
0
125  
100  
75  
50  
IRRM  
IRRM  
25  
IRRM  
IRRM  
0
0
16  
32  
48  
64  
80  
0
25  
50  
75  
100  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
°C  
V
25/150  
600  
50  
°C  
V
A
V
=
=
600  
±15  
16  
V
Rgon  
=
VGE =  
±15  
Copyright by Vincotech  
7
Revision: 1.1  
V23990-K428-A60-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 17  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 18  
D1,D2,D3,D4,D5,D6,D7 FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
10000  
10000  
µ
µ
µ
dI0/dt  
µ
dI0/dt  
dIrec/dt  
dIrec/dt  
8000  
6000  
4000  
2000  
0
8000  
6000  
4000  
2000  
0
0
10  
20  
30  
40  
50  
60  
70  
)
0
20  
40  
60  
80  
100  
I C (A)  
R gon  
(
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
°C  
V
25/150  
600  
50  
°C  
V
A
V
=
600  
±15  
16  
=
V
Rgon  
=
VGE =  
±15  
Figure 19  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 20  
D1,D2,D3,D4,D5,D6,D7 FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1010  
1
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
tp / T  
0,75  
tp / T  
0,93  
D =  
D =  
RthJH  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
FWD thermal model values  
Thermal grease  
Thermal grease  
R (C/W)  
0,03  
Tau (s)  
1,6E+01  
R (C/W)  
0,05  
Tau (s)  
3,4E+00  
0,09  
1,2E+00  
2,1E-01  
7,1E-02  
1,5E-02  
0,10  
5,9E-01  
1,2E-01  
3,7E-02  
8,1E-03  
9,0E-04  
0,29  
0,37  
0,24  
0,25  
0,09  
0,13  
0,04  
Copyright by Vincotech  
8
Revision: 1.1  
V23990-K428-A60-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 21  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 22  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
250  
200  
150  
100  
50  
80  
60  
40  
20  
0
0
0
50  
100  
150  
T h  
(
o C)  
200  
T h (  
o C)  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 24  
Forward current as a  
D1,D2,D3,D4,D5,D6,D7 FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
200  
150  
100  
50  
60  
45  
30  
15  
0
0
0
50  
100  
150  
T h  
(
o C)  
200  
T h (  
o C)  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
Copyright by Vincotech  
9
Revision: 1.1  
V23990-K428-A60-PM  
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7  
Figure 25  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 26  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
20  
)
103  
18  
16  
14  
12  
10  
8
102  
101  
100  
10-1  
100uS  
240V  
960V  
1mS  
10mS  
6
100mS  
DC  
4
2
0
0
20  
40  
60  
80  
100  
120  
140  
160  
Q g (nC)  
101  
102  
103  
VCE (V)  
100  
At  
At  
IC  
=
D =  
Th =  
50  
A
single pulse  
80  
ºC  
V
VGE  
Tj =  
=
±15  
Tjmax  
ºC  
Figure 27  
Short circuit safe operating area (SCSOA)  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 28  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Typical short circuit collector current as a function of  
gate-emitter voltage  
Ic = f(VCE  
)
x
x
11  
7
6
5
x
10  
x
9
x
x8  
x
7
6
5
4
x
4
x
x
x
3
2
x
x
x
x3  
x 2  
x 1  
x
x
1
0
x
0
0
200  
400  
600  
800  
1000  
1200  
V
1400  
GE (V)  
13  
14  
15  
16  
17  
VGE (V)  
V
At  
VCE  
VGE  
tSC  
=
VCE  
Tj=  
=
850  
150  
V
±15  
10  
800  
150  
V
Tj ≤  
ºC  
S  
ºC  
Copyright by Vincotech  
10  
Revision: 1.1  
V23990-K428-A60-PM  
Figure 28  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Reverse bias safe operating area  
IC = f(VCE  
120  
)
IC MAX  
100  
80  
60  
40  
20  
0
0
200  
400  
ºC  
600  
800  
1000  
1200 1400  
VCE (V)  
At  
Tj =  
Tjmax-25  
Uccminus=Uccplus  
Switching mode :  
3phase SPWM  
Copyright by Vincotech  
11  
Revision: 1.1  
V23990-K428-A60-PM  
D8,D9,D10,D11,D12,D13  
Figure 1  
D8,D9,D10,D11,D12,D13 diode  
Figure 2  
D8,D9,D10,D11,D12,D13 diode  
Typical diode forward current as  
a function of forward voltage  
IF= f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
150  
120  
90  
60  
30  
0
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,0  
0,5  
1,0  
1,5  
2,0  
t p (s)  
VF (V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1010  
1
At  
At  
Tj =  
tp =  
tp / T  
0,90  
°C  
D =  
25/125
250  
RthJH  
=
s  
K/W  
Figure 3  
Power dissipation as a  
D8,D9,D10,D11,D12,D13 diode  
Figure 4  
Forward current as a  
D8,D9,D10,D11,D12,D13 diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
180  
150  
120  
90  
100  
80  
60  
40  
20  
0
60  
30  
0
o C)  
T h (  
o C)  
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
T h  
(
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
Copyright by Vincotech  
12  
Revision: 1.1  
V23990-K428-A60-PM  
Thermistor  
Figure 1  
Thermistor  
Typical PTC characteristic  
as a function of temperature  
RT = f(T)  
PTC-typical temperature characteristic  
2000  
1800  
1600  
1400  
1200  
1000  
25  
45  
65  
85  
105  
125  
T (°C)  
Copyright by Vincotech  
13  
Revision: 1.1  
V23990-K428-A60-PM  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
150 °C  
16  
Rgon  
Rgoff  
16 Ω  
Figure 1  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 2  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
200  
125  
tdoff  
%
%
VCE  
IC  
100  
150  
VCE 90%  
VGE 90%  
75  
50  
25  
0
VCE  
IC  
100  
VGE  
tdon  
tEoff  
50  
VCE 3%  
IC 1%  
VGE 10%  
IC 10%  
VGE  
0
tEon  
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
2,7  
2,9  
3,1  
3,3  
3,5  
3,7  
time(us)  
time (us)  
VGE (0%) =  
V
GE (0%) =  
-15  
V
V
V
A
-15  
V
V
V
A
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
15  
600  
50  
600  
50  
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,205  
0,715  
s  
s  
0,104  
0,366  
s  
s  
Figure 3  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 4  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
120  
fitted  
%
200  
VCE  
%
Ic  
IC  
100  
150  
100  
50  
IC 90%  
80  
VCE  
60  
IC  
IC 90%  
60%  
tr  
40  
IC 40%  
20  
IC 10%  
IC 10%  
0
0
tf  
-20  
-50  
-0,05  
0,05  
0,15  
0,25  
0,35  
0,45  
time (us)  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
600  
50  
V
600  
50  
V
A
A
0,09  
s  
0,03  
s  
Copyright by Vincotech  
14  
Revision: 1.1  
V23990-K428-A60-PM  
Switching Definitions Output Inverter  
Figure 5  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Figure 6  
T1,T2,T3,T4,T5,T6,T7 IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
200  
%
%
Eoff  
Pon  
Poff  
100  
80  
160  
120  
80  
Eon  
60  
40  
40  
20  
VGE 90%  
VGE 10%  
VCE  
3%  
IC  
1%  
0
0
tEoff  
tEon  
-40  
-20  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
-0,3  
-0,1  
0,1  
0,3  
0,5  
0,7  
0,9  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
30,14  
4,09  
0,72  
kW  
mJ  
s  
30,14  
4,39  
0,37  
kW  
mJ  
s  
tEoff  
=
tEon =  
Figure 7  
D1,D2,D3,D4,D5,D6,D7 FWD  
Turn-off Switching Waveforms & definition of trr  
120  
Id  
%
80  
trr  
40  
Vd  
0
IRRM10%  
-40  
fitted  
IRRM 90%  
IRRM 100%  
-80  
-120  
2,9  
3,1  
3,3  
3,5  
3,7  
3,9  
4,1  
time(us)  
4,3  
Vd (100%) =  
Id (100%) =  
600  
50  
V
A
IRRM (100%) =  
-45  
0,73  
A
trr  
=
s  
Copyright by Vincotech  
15  
Revision: 1.1  
V23990-K428-A60-PM  
Switching Definitions Output Inverter  
Figure 8  
D1,D2,D3,D4,D5,D6,D7 FWD  
Figure 9  
D1,D2,D3,D4,D5,D6,D7 FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
%
120  
%
Erec  
Id  
Qrr  
100  
80  
60  
40  
20  
0
100  
tQrr  
tErec  
50  
0
-50  
Prec  
-100  
-150  
-20  
2,8  
3,1  
3,4  
3,7  
4,0  
4,3  
4,6  
4,9  
5,2 5,5  
time(us)  
2,8  
3,1  
3,4  
3,7  
4
4,3  
4,6  
4,9  
5,2  
time(us)  
5,5  
Id (100%) =  
P
rec (100%) =  
Erec (100%) =  
tErec  
50  
A
30,14  
5,14  
2,00  
kW  
mJ  
s  
Qrr (100%) =  
tQrr  
10,81  
2,00  
C  
s  
=
=
Copyright by Vincotech  
16  
Revision: 1.1  
V23990-K428-A60-PM  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
with std lid (black V23990-K32-T-PM)  
V23990-K428-A60-/0A/-PM  
V23990-K428-A60-/1A/-PM  
V23990-K428-A60-/0B/-PM  
V23990-K428-A60-/1B/-PM  
K428A60  
K428A60  
K428A60  
K428A60  
K428A60-/0A/  
K428A60-/1A/  
K428A60-/0B/  
K428A60-/1B/  
with std lid (black V23990-K32-T-PM) and P12  
with thin lid (white V23990-K33-T-PM)  
with thin lid (white V23990-K33-T-PM) and P12  
Outline  
Pinout  
Copyright by Vincotech  
17  
Revision: 1.1  
V23990-K428-A60-PM  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright by Vincotech  
18  
Revision: 1.1  

相关型号:

V23990-K428-A60-1A-PM

Mitsubishi Generation 6.1 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K428-A60-1B-PM

Mitsubishi Generation 6.1 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K428-A60-PM

Mitsubishi Generation 6.1 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A40-0A-PM

Trench Fieldstop IGBT4 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A40-0B-PM

Trench Fieldstop IGBT4 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A40-1A-PM

Trench Fieldstop IGBT4 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A40-1B-PM

Trench Fieldstop IGBT4 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A40-PM

Trench Fieldstop IGBT4 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A60-0A-PM

Mitsubishi Generation 6.1 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A60-0B-PM

Mitsubishi Generation 6.1 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A60-1A-PM

Mitsubishi Generation 6.1 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-K429-A60-1B-PM

Mitsubishi Generation 6.1 technology

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH