V23990-P544-C28-PM [VINCOTECH]

Industrial drives Embedded drives;
V23990-P544-C28-PM
型号: V23990-P544-C28-PM
厂家: VINCOTECH    VINCOTECH
描述:

Industrial drives Embedded drives

文件: 总23页 (文件大小:920K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-P544-*2*-PM  
flowPIM 0  
600V/15A  
Features  
flowPIM 0 housing  
● Vincotech clip-in housing  
● Trench Fieldstop IGBT's for low saturation losses  
● Optional w/o BRC  
Target Applications  
● Industrial drives  
12mm housing  
17mm housing  
● Embedded drives  
Schematic  
Types  
● V23990-P544-A28-PM  
● V23990-P544-A29-PM  
● V23990-P544-C28-PM  
● V23990-P544-C29-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Input Rectifier Diode  
Repetitive peak reverse voltage  
DC forward current  
VRRM  
IFAV  
1600  
V
A
A
Th=80°C  
28  
37  
Tj=Tjmax  
tp=10ms  
Tc=80°C  
IFSM  
Surge forward current  
200  
200  
Tj=25°C  
50 Hz half sine wave  
I2t  
A2s  
W
I2t-value  
Th=80°C  
Tc=80°C  
33  
50  
Ptot  
Tj=Tjmax  
Power dissipation per Diode  
Maximum Junction Temperature  
Tjmax  
150  
°C  
Inverter Transistor  
VCE  
IC  
Collector-emitter break down voltage  
DC collector current  
600  
V
A
Th=80°C  
Tc=80°C  
20  
25  
Tj=Tjmax  
ICpulse  
tp limited by Tjmax  
VCE ≤ 1200V, Tj ≤ Top max  
Tj=Tjmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
45  
45  
A
A
Th=80°C  
Tc=80°C  
45  
69  
Ptot  
W
V
VGE  
±20  
tSC  
Tj≤150°C  
6
µs  
VCC  
VGE=15V  
360  
V
Tjmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
Revision: 4  
V23990-P544-*2*-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter Diode  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current  
600  
V
A
Th=80°C  
Tc=80°C  
18  
23  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
30  
A
Th=80°C  
Tc=80°C  
35  
52  
W
°C  
Tjmax  
175  
Brake Transistor  
VCE  
IC  
Collector-emitter break down voltage  
DC collector current  
600  
V
A
Th=80°C  
Tc=80°C  
14  
18  
Tj=Tjmax  
ICpuls  
tp limited by Tjmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
30  
30  
A
VCE 1200V, Tj Top max  
A
Th=80°C  
Tc=80°C  
36  
55  
Ptot  
Tj=Tjmax  
W
V
VGE  
±20  
tSC  
Tj150°C  
10  
µs  
V
VCC  
VGE=15V  
360  
Tjmax  
Maximum Junction Temperature  
175  
°C  
Brake Diode  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current  
600  
V
A
Th=80°C  
Tc=80°C  
14  
19  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
20  
A
Th=80°C  
Tc=80°C  
27  
41  
W
°C  
Tjmax  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Vis  
t=2s  
DC voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
copyright Vincotech  
2
Revision: 4  
V23990-P544-*2*-PM  
Characteristic Values  
Conditions  
Value  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Typ  
Max  
VGS [V]  
VDS [V]  
Input Rectifier Diode  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=145°C  
0,8  
1,26  
1,24  
0,92  
0,82  
11  
1,45  
VF  
Vto  
rt  
Forward voltage  
30  
30  
30  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
m  
mA  
14  
Ir  
1500  
1,1  
Thermal grease  
RthJH  
Thermal resistance chip to heatsink per chip  
thickness50µm  
λ = 1 W/mK  
2,10  
K/W  
Inverter Transistor  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
1,9  
VGE(th) VCE=VGE  
0,00021  
15  
V
V
1,1  
1,61  
1,81  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
0,00085  
300  
600  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
14  
13  
11  
Rise time  
13  
ns  
127  
146  
86  
td(off)  
tf  
Turn-off delay time  
Rgoff=8 ꢀ  
Rgon=16 ꢀ  
±15  
300  
15  
Fall time  
86  
0,19  
0,26  
0,31  
0,39  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
860  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
55  
Reverse transfer capacitance  
Gate charge  
24  
±15  
480  
15  
87  
nC  
Thermal grease  
thickness50µm  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
2,10  
K/W  
Inverter Diode  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,25  
1,79  
1,67  
15  
1,95  
VF  
IRRM  
trr  
Diode forward voltage  
15  
15  
V
A
Peak reverse recovery current  
Reverse recovery time  
17  
100  
184  
0,52  
1,01  
1448  
773  
0,10  
0,21  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgon=16 ꢀ  
±15  
300  
µC  
di(rec)max  
/dt  
A/µs  
mWs  
Erec  
Thermal grease  
thickness50µm  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
2,75  
K/W  
copyright Vincotech  
3
Revision: 4  
V23990-P544-*2*-PM  
Characteristic Values  
Conditions  
Value  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Typ  
Max  
VGS [V]  
VDS [V]  
Brake Transistor  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
1,9  
VGE(th)  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
VCE=VGE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,00015  
10  
V
V
1,1  
1,66  
1,87  
15  
0,0006  
300  
0
600  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
15  
15  
11  
Rise time  
14  
ns  
147  
163  
101  
97  
0,16  
0,22  
0,23  
0,27  
td(off)  
tf  
Turn-off delay time  
Rgoff=16 ꢀ  
Rgon=32 ꢀ  
±15  
300  
10  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
551  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
40  
Reverse transfer capacitance  
Gate charge  
17  
±15  
480  
10  
62  
nC  
Thermal grease  
thickness50µm  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
2,61  
K/W  
Brake Diode  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,25  
1,67  
1,61  
1,95  
27  
VF  
Ir  
Diode forward voltage  
10  
10  
V
A  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
Rgon=32 ꢀ  
600  
300  
10  
10  
IRRM  
trr  
A
149  
208  
0,46  
0,46  
620  
340  
0,09  
0,16  
ns  
Rgon=32 ꢀ  
Rgon=32 ꢀ  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
µC  
A/µs  
mWs  
di(rec)max  
/dt  
Erec  
Thermal grease  
thickness50µm  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
3,53  
K/W  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R
Tj=25°C  
Tc=100°C  
Tc=100°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
22000  
%
R/R R100=1486 ꢀ  
-5  
5
P
210  
3,5  
mW  
mW/K  
K
B(25/50)  
Tol. ±3%  
Tol. ±3%  
B(25/100)  
B-value  
4000  
K
Vincotech NTC Reference  
A
copyright Vincotech  
4
Revision: 4  
V23990-P544-*2*-PM  
Output Inverter  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
50  
60  
50  
40  
30  
20  
10  
40  
30  
20  
10  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
tp =  
tp =  
250  
25  
s  
250  
125  
s  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
18  
60  
50  
40  
30  
20  
15  
12  
9
Tj = Tjmax-25°C  
6
Tj = Tjmax-25°C  
10  
3
Tj = 25°C  
Tj = 25°C  
0
0
0
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
3,0  
3,5  
2
4
6
8
10  
12  
VGE (V)  
VF (V)  
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
copyright Vincotech  
5
Revision: 4  
V23990-P544-*2*-PM  
Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
0,8  
0,6  
0,4  
0,2  
0,0  
1,0  
0,8  
0,6  
Eoff High T  
Eon High T  
Eon High T  
Eoff Low T  
Eon Low T  
Eon Low T  
Eoff High T  
0,4  
Eoff Low T  
0,2  
0,0  
0
5
10  
15  
20  
25  
30  
0
30  
60  
90  
120  
150  
I
C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
°C  
V
V
A
25/125  
25/125  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
300  
15  
16  
8
V
V
300  
15  
Rgon  
Rgoff  
=
=
15  
Figure 7  
Output inverter FWD  
Figure 8  
Output inverter FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(IC)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
0,4  
0,4  
0,3  
0,3  
Erec  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
0,2  
0,2  
Erec  
Erec  
Tj = 25°C  
0,1  
0,1  
Tj = 25°C  
Erec  
0,0  
0,0  
0
30  
60  
90  
120  
150  
0
5
10  
15  
20  
25  
30  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
25/125  
300  
15  
Tj =  
°C  
°C  
V
V
A
25/125  
=
=
VCE  
VGE  
IC =  
=
=
V
V
300  
15  
Rgon  
=
16  
15  
copyright Vincotech  
6
Revision: 4  
V23990-P544-*2*-PM  
Output Inverter  
Figure 9  
Output inverter IGBT  
Figure 10  
Output inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
1,00  
tdoff  
tdoff  
0,10  
0,10  
tf  
tf  
tdon  
tr  
tdon  
0,01  
0,01  
tr  
0,00  
0,00  
0
20  
40  
60  
80  
100  
120  
140  
)  
0
5
10  
15  
20  
25  
30  
I
C (A)  
R G  
(
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
125  
300  
15  
°C  
125  
300  
15  
°C  
V
V
A
=
=
=
=
V
V
Rgon  
Rgoff  
=
=
16  
15  
8
Figure 11  
Output inverter FWD  
Figure 12  
Output inverter FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(IC)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,4  
0,3  
0,2  
0,1  
0,0  
0,4  
trr  
0,3  
Tj = Tjmax -25°C  
trr  
Tj = Tjmax -25°C  
0,2  
0,1  
0,0  
trr  
Tj = 25°C  
Tj = 25°C  
trr  
0
30  
60  
90  
120  
150  
0
5
10  
15  
20  
25  
30  
I C (A)  
R g on ( )  
At  
At  
Tj =  
Tj =  
VCE  
VGE  
°C  
°C  
V
A
V
25/125  
300  
15  
25/125  
300  
15  
=
VR =  
V
V
=
IF =  
VGE  
Rgon  
=
=
16  
15  
copyright Vincotech  
7
Revision: 4  
V23990-P544-*2*-PM  
Output Inverter  
Figure 13  
Output inverter FWD  
Figure 14  
Output inverter FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
1,5  
1,2  
0,9  
0,6  
0,3  
0,0  
1,5  
Tj = Tjmax -25°C  
Qrr  
1,2  
0,9  
0,6  
0,3  
Tj = Tjmax -25°C  
Qrr  
Qrr  
Tj = 25°C  
Tj = 25°C  
Qrr  
0,0  
0
30  
60  
90  
120  
150  
0
5
10  
15  
20  
25  
30  
I
C (A)  
R g on ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
°C  
°C  
V
A
V
25/125  
300  
15  
25/125  
300  
15  
=
=
VR =  
V
V
IF =  
Rgon  
=
VGE =  
16  
15  
Figure 15  
Output inverter FWD  
Figure 16  
Output inverter FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
18  
15  
12  
9
25  
Tj = Tjmax -25°C  
IRRM  
IRRM  
20  
15  
10  
5
Tj = 25°C  
IRRM  
IRRM  
Tj = Tjmax - 25°C  
Tj = 25°C  
6
3
0
0
0
30  
60  
90  
120  
150  
0
5
10  
15  
20  
25  
30  
I C (A)  
R gon ( )  
At  
At  
Tj =  
Tj =  
VCE  
VGE  
°C  
°C  
25/125  
300  
15  
25/125  
300  
15  
=
=
VR =  
V
V
V
A
V
IF =  
VGE  
Rgon  
=
=
16  
15  
copyright Vincotech  
8
Revision: 4  
V23990-P544-*2*-PM  
Output Inverter  
Figure 17  
Output inverter FWD  
Figure 18  
Output inverter FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
2000  
2000  
dI0/dt  
µ
µ
µ
µ
dIrec/dt  
dI0/dt  
dIrec/dt  
1600  
1200  
800  
400  
0
1600  
1200  
800  
400  
0
0
30  
60  
90  
120  
150  
0
5
10  
15  
20  
25  
30  
I
C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
°C  
V
°C  
V
A
V
25/125  
300  
15  
25/125  
300  
15  
=
=
VR =  
IF =  
VGE  
V
Rgon  
=
=
16  
15  
Figure 19  
Output inverter IGBT  
Figure 20  
Output inverter FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
10-4  
10-3  
10-2  
10-1  
100  
10110  
t p (s)  
t p (s)  
At  
At  
tp / T  
2,10  
tp / T  
2,75  
D =  
D =  
RthJH  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
Phase change interface  
FWD thermal model values  
Thermal grease Phase change interface  
Thermal grease  
R (C/W)  
0,07  
Tau (s)  
R (C/W)  
0,06  
Tau (s)  
2,8E+00  
3,0E-01  
6,2E-02  
1,1E-02  
2,1E-03  
2,4E-04  
R (C/W)  
0,05  
Tau (s)  
R (C/W)  
0,04  
Tau (s)  
6,6E+00  
6,0E-01  
8,7E-02  
2,5E-02  
4,4E-03  
6,9E-04  
3,4E+00  
3,7E-01  
7,6E-02  
1,4E-02  
2,5E-03  
3,0E-04  
8,2E+00  
7,4E-01  
1,1E-01  
3,1E-02  
5,4E-03  
8,5E-04  
0,25  
0,20  
0,17  
0,14  
0,98  
0,79  
0,78  
0,64  
0,42  
0,34  
0,74  
0,60  
0,19  
0,16  
0,48  
0,39  
0,19  
0,15  
0,24  
0,19  
copyright Vincotech  
9
Revision: 4  
V23990-P544-*2*-PM  
Output Inverter  
Figure 21  
Output inverter IGBT  
Figure 22  
Output inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
Output inverter FWD  
Figure 24  
Forward current as a  
Output inverter FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
copyright Vincotech  
10  
Revision: 4  
V23990-P544-*2*-PM  
Output Inverter  
Figure 25  
Output inverter IGBT  
Figure 26  
Output inverter IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
18  
)
103  
16  
14  
12  
10  
8
102  
120V  
480V  
10uS  
100uS  
1mS  
101  
DC  
100mS  
10mS  
100  
6
4
10-1  
2
0
0
20  
40  
60  
80  
100  
120  
g (nC)  
100  
102  
101  
VCE (V)  
103  
Q
At  
At  
IC  
=
D =  
Th =  
15  
A
single pulse  
80  
ºC  
V
VGE  
Tj =  
=
15  
Tjmax  
ºC  
Figure 27  
Output inverter IGBT  
Figure 28  
Output inverter IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
tsc = f(VGE  
)
VGE = f(QGE  
)
14  
250  
12  
10  
8
200  
150  
100  
50  
6
4
2
0
0
10  
11  
12  
13  
14  
15  
12  
14  
16  
18  
20  
VGE (V)  
VGE (V)  
At  
At  
VCE  
=
VCE  
Tj =  
600  
175  
V
600  
175  
V
Tj ≤  
ºC  
ºC  
copyright Vincotech  
11  
Revision: 4  
V23990-P544-*2*-PM  
Figure 29  
IGBT  
Reverse bias safe operating area  
IC = f(VCE  
50  
)
40  
30  
20  
10  
IC MAX  
0
0
100  
200  
300  
400  
500  
600  
700  
VCE (V)  
At  
Tj =  
Tjmax-25  
ºC  
3 level switching  
Uccminus=Uccplus  
Switching mode :  
copyright Vincotech  
12  
Revision: 4  
V23990-P544-*2*-PM  
Brake  
Figure 1  
Brake IGBT  
Figure 2  
Typical output characteristics  
Brake IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
35  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
tp =  
250  
25  
s  
250  
125  
s  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
Brake IGBT  
Figure 4  
Brake FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
12  
40  
30  
20  
10  
10  
8
6
4
2
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
0
0
1
2
3
4
3
6
9
12  
VGE (V)  
VF (V)  
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
copyright Vincotech  
13  
Revision: 4  
V23990-P544-*2*-PM  
Brake  
Figure 5  
Brake IGBT  
Figure 6  
Brake IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
0,6  
0,5  
0,4  
0,8  
Eon  
Eon  
Eon  
0,6  
Eoff  
Eon  
Eoff  
Eoff  
0,4  
0,2  
0,0  
0,3  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
0,2  
0,1  
0,0  
Eoff  
Tj = 25°C  
Tj = 25°C  
0
50  
100  
150  
200  
250  
300  
R G ( )  
0
5
10  
15  
20  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
VCE  
VGE  
25/125  
300  
15  
°C  
V
°C  
25/125  
VCE  
VGE  
=
=
=
=
300  
15  
V
V
A
V
Rgon  
Rgoff  
=
=
IC =  
32  
10  
16  
Figure 7  
Brake FWD  
Figure 8  
Brake FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(IC)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
0,25  
0,20  
0,15  
Erec  
0,20  
Tj = Tjmax - 25°C  
0,15  
Erec  
Tj = Tjmax -25°C  
0,10  
0,05  
0,00  
Erec  
0,10  
Tj = 25°C  
Tj = 25°C  
Erec  
0,05  
0,00  
0
50  
100  
150  
200  
250  
300  
I C (A)  
R G ( )  
0
5
10  
15  
20  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/125  
25/125  
VCE  
VGE  
=
=
VCE  
VGE  
=
=
300  
15  
300  
15  
V
Rgon  
=
IC =  
32  
10  
copyright Vincotech  
14  
Revision: 4  
V23990-P544-*2*-PM  
Brake  
Figure 9  
Brake IGBT  
Figure 10  
Brake IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
1,00  
tdoff  
tdoff  
tf  
0,10  
0,10  
0,01  
0,00  
tf  
tdon  
tr  
tdon  
0,01  
0,00  
tr  
0
50  
100  
150  
200  
250  
300  
R G ( )  
I
C (A)  
0
5
10  
15  
20  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
25/125  
300  
15  
°C  
V
25/125  
300  
15  
°C  
=
=
=
=
V
V
A
V
Rgon  
Rgoff  
=
=
IC =  
32  
10  
16  
Figure 11  
Brake IGBT  
Figure 12  
Brake FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
D = 0,5  
0,2  
10-1  
10-1  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
At  
Thermal grease  
RthJH  
D =  
tp / T  
At  
Thermal grease  
RthJH  
D =  
tp / T  
Phase change interface  
RthJH  
Phase change interface  
RthJH  
K/W  
=
=
=
=
2,61  
K/W  
0,60  
K/W  
3,53  
K/W  
1,27  
copyright Vincotech  
15  
Revision: 4  
V23990-P544-*2*-PM  
Brake  
Figure 13  
Brake IGBT  
Figure 14  
Brake IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
ºC  
175  
15  
ºC  
V
=
Figure 15  
Power dissipation as a  
Brake FWD  
Figure 16  
Forward current as a  
Brake FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
Th  
(
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
copyright Vincotech  
16  
Revision: 4  
V23990-P544-*2*-PM  
Input Rectifier Bridge  
Figure 1  
Rectifier diode  
Figure 2  
Rectifier diode  
Typical diode forward current as  
a function of forward voltage  
IF= f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
120  
100  
80  
60  
D = 0,5  
0,2  
40  
Tj = Tjmax-25°C  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
t p (s)  
20  
Tj = 25°C  
0
0,0  
0,5  
1,0  
1,5  
2,0  
VF (V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
At  
At  
tp =  
tp / T  
2,1  
250  
s  
D =  
RthJH  
=
K/W  
Figure 3  
Power dissipation as a  
Rectifier diode  
Figure 4  
Forward current as a  
Rectifier diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T h  
(
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
copyright Vincotech  
17  
Revision: 4  
V23990-P544-*2*-PM  
Thermistor  
Figure 1  
Thermistor  
Figure 2  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
Typical NTC resistance values  
1
1
NTC-typical temperature characteristic  
B25/100  
24000  
20000  
16000  
12000  
8000  
4000  
0
R(T) = R25 e  
[]  
T
T25   
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
18  
Revision: 4  
V23990-P544-*2*-PM  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
125 °C  
32  
Rgon  
Rgoff  
16 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
125  
200  
tdoff  
%
%
IC  
100  
160  
VGE 90%  
VCE 90%  
75  
VGE  
IC  
120  
VCE  
50  
tEoff  
80  
VGE  
25  
tdon  
VCE  
IC 1%  
40  
0
VCE 3%  
VGE 10%  
IC 10%  
0
-25  
tEon  
-50  
-40  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
2,9  
3
3,1  
3,2  
3,3  
time (us)  
time(us)  
VGE (0%) =  
VGE (0%) =  
0
V
0
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
15  
V
300  
15  
V
300  
15  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,21  
0,44  
s  
s  
0,02  
0,20  
s  
s  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
150  
200  
%
%
fitted  
VCE  
150  
IC  
100  
IC 90%  
VCE  
100  
50  
0
IC 90%  
IC  
60%  
50  
tr  
IC 40%  
IC10%  
tf  
0
Ic  
IC 10%  
-50  
-50  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
3
3,05  
3,1  
3,15  
3,2  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
300  
15  
V
300  
15  
V
A
A
0,09  
s  
0,02  
s  
copyright Vincotech  
19  
Revision: 4  
V23990-P544-*2*-PM  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
125  
200  
%
%
IC  
1%  
Poff  
Pon  
100  
150  
Eoff  
75  
50  
Eon  
100  
50  
25  
VGE 10%  
VGE 90%  
VCE  
3%  
0
0
tEon  
tEoff  
-25  
-50  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
2,9  
3
3,1  
3,2  
3,3  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
4,47  
0,40  
0,44  
kW  
mJ  
s  
4,47  
0,34  
0,20  
kW  
mJ  
s  
tEoff  
=
tEon =  
Figure 7  
Output inverter FWD  
Figure 8  
Output inverter IGBT  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
120  
Id  
80  
15  
10  
5
trr  
40  
%
Vd  
fitted  
0
IRRM 10%  
-40  
0
-80  
IRRM 90%  
IRRM 100%  
-5  
-120  
-40  
-20  
0
20  
40  
60  
80  
100  
Qg (nC)  
120  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
0
V
300  
V
15  
300  
15  
V
15  
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
V
14  
A
trr  
=
A
0,21  
s  
105,74  
nC  
copyright Vincotech  
20  
Revision: 4  
V23990-P544-*2*-PM  
Switching Definitions Output Inverter  
Figure 9  
Output inverter FWD  
Figure 10  
Output inverter FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
125  
150  
%
%
Erec  
Id  
100  
100  
tErec  
75  
50  
25  
0
tQrr  
50  
Qrr  
0
Prec  
-50  
-25  
-100  
2,9  
3,1  
3,3  
3,5  
3,7  
2,9  
3,1  
3,3  
3,5  
3,7  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
15  
A
4,47  
0,20  
0,49  
kW  
mJ  
s  
Qrr (100%) =  
1,01  
0,49  
C  
s  
tQrr  
=
tErec =  
copyright Vincotech  
21  
Revision: 4  
V23990-P544-*2*-PM  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
P544-A28  
in packaging barcode as  
without thermal paste 12mm 2 clips housing  
without thermal paste 17mm 2 clips housing  
without thermal paste 12mm 2 clips housing  
without thermal paste 17mm 2 clips housing  
V23990-P544-A28-PM  
V23990-P544-A29-PM  
V23990-P544-C28-PM  
V23990-P544-C29-PM  
P544-A28  
P544-A29  
P544-C28  
P544-C29  
P544-A29  
P544-C28  
P544-C29  
7
10.8  
8.1  
5.4  
2.7  
0
0
8
0
9
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
0
0
0
19.8  
22.5  
19.8  
22.5  
19.8  
22.5  
22.5  
22.5  
22.5  
15  
0
7.5  
7.5  
15  
15  
22.8  
25.5  
33.5  
33.5  
33.5  
33.5  
7.5  
0
Pinout  
copyright Vincotech  
22  
Revision: 4  
V23990-P544-*2*-PM  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
23  
Revision: 4  

相关型号:

V23990-P544-C29-PM

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P544-C38-PM

Industrial drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P544-C39-PM

Industrial drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P544-X2X-D4-14

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P544-X3X-D4-14

Industrial drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P545-A28-PM

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P545-A29-PM

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P545-A38-PM

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P545-A39-PM

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P545-C21-PM

Insulated Gate Bipolar Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P545-C28-PMw/oBRC

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH

V23990-P545-C29-PMw/oBRC

Industrial drives Embedded drives

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VINCOTECH