V23990-P840-C49-PM [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
V23990-P840-C49-PM
型号: V23990-P840-C49-PM
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总24页 (文件大小:1272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-P840-*4*-PM  
datasheet  
flow PIM 0 3rd gen  
Features  
1200 V / 15 A  
flow 0 housing  
● 2 Clips housing in 12 and 17mm height  
● Trench Fieldstop Technology IGBT4  
● Optional w/o BRC  
12mm housing  
17mm housing  
Target Applications  
● Industrial Drives  
Schematic  
● Embedded Generation  
Types  
● V23990-P840-A48-PM  
● V23990-P840-A49-PM  
● V23990-P840-C48-PM  
● V23990-P840-C49-PM  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Rectifier Diode  
Repetitive peak reverse voltage  
DC forward current  
V RRM  
I FAV  
I FSM  
1600  
V
A
T s = 80°C  
T c = 80°C  
27  
30  
T j = T jmax  
t p = 10 ms  
T j = T jmax  
Surge forward current  
I2t-value  
220  
200  
A
I 2  
t
A2s  
W
°C  
T s = 80°C  
T c = 80°C  
33  
50  
P tot  
Power dissipation  
T jmax  
Maximum Junction Temperature  
150  
Inverter IGBT  
V CE  
I C  
Collector-emitter break down voltage  
1200  
V
A
T s = 80°C  
T c = 80°C  
18  
24  
T j = T jmax  
DC collector current  
I CRM  
t p limited by T jmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation  
45  
30  
A
V CE ≤ 1200 V, T j T op max  
T j = T jmax  
A
T s = 80°C  
T c = 80°C  
52  
79  
P tot  
V GE  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter FWD  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
V
A
T s = 80°C  
T c = 80°C  
20  
25  
T j = T jmax  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
30  
A
T s = 80°C  
T c = 80°C  
38  
57  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Brake IGBT  
V CE  
I C  
Collector-emitter break down voltage  
1200  
V
A
T s = 80°C  
T c = 80°C  
12  
15  
T j = T jmax  
DC collector current  
I CRM  
t p limited by T jmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation  
24  
16  
A
V CE ≤ 1200 V, T j T op max  
T j = T jmax  
A
T s = 80°C  
T c = 80°C  
40  
61  
P tot  
V GE  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
Brake FWD  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
V
A
T s = 80°C  
T c = 80°C  
10  
10  
T j = T jmax  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
15  
A
T s = 80°C  
T c = 80°C  
22  
34  
W
°C  
T jmax  
Maximum Junction Temperature  
150  
Thermal Properties  
Storage temperature  
T stg  
T op  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Isolation Properties  
Isolation voltage  
V is  
t = 2 s  
DC voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
copyright Vincotech  
2
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
or V CE  
[V] or  
I C [A]  
or I F  
[A] or  
V GE [V]  
or V GS  
[V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Rectifier Diode  
25  
125  
25  
125  
25  
125  
25  
1,17  
1,13  
0,93  
0,79  
9,78  
13,37  
1,9  
V F  
V to  
r t  
Forward voltage  
25  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
25  
25  
mΩ  
mA  
0,05  
1,1  
I r  
1600  
145  
phase-change  
material  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
1,61  
λ = 3,4 W/mK  
Inverter IGBT  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0005  
25  
5
5,8  
6,5  
V
V
25  
125  
1,58  
1,94  
2,26  
2,07  
15  
0
1200  
0
25  
25  
0,002  
120  
mA  
nA  
20  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
60  
60  
15  
Rise time  
19  
ns  
197  
239  
79  
106  
0,88  
1,25  
0,88  
1,24  
t d(off)  
t f  
Turn-off delay time  
R goff = 16 Ω  
R gon = 16 Ω  
±15  
600  
15  
Fall time  
E on  
Turn-on energy loss  
mWs  
E off  
Turn-off energy loss  
125  
C ies  
Input capacitance  
1000  
100  
56  
C oss  
C rss  
Output capacitance  
f = 1 MHz  
0
25  
25  
pF  
Reverse transfer capacitance  
phase-change  
material  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
1,35  
λ = 3,4 W/mK  
Inverter FWD  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
1,35  
1,90  
1,91  
13  
2,05  
V F  
I RRM  
Diode forward voltage  
10  
15  
V
A
Peak reverse recovery current  
Reverse recovery time  
16  
282  
433  
1,59  
2,75  
129  
109  
0,65  
1,16  
t rr  
ns  
Q rr  
R gon = 16 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
600  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
125  
phase-change  
material  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
1,83  
λ = 3,4 W/mK  
copyright Vincotech  
3
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
or V CE  
[V] or  
I C [A]  
or I F  
[A] or  
V GE [V]  
or V GS  
[V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Brake IGBT  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,0003  
25  
5
5,8  
6,3  
V
V
25  
125  
1,58  
1,87  
2,22  
2,07  
8
0
1200  
0
25  
25  
0,001  
120  
mA  
nA  
20  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
71  
72  
20  
Rise time  
24  
ns  
181  
228  
78  
104  
0,50  
0,71  
0,43  
0,62  
t d(off)  
t f  
Turn-off delay time  
R goff = 32 Ω  
R gon = 32 Ω  
±15  
600  
8
Fall time  
E on  
Turn-on energy loss  
mWs  
E off  
Turn-off energy loss  
125  
C ies  
Input capacitance  
490  
50  
C oss  
C rss  
Output capacitance  
f = 1 MHz  
0
25  
25  
pF  
Reverse transfer capacitance  
30  
phase-change  
material  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
1,57  
λ = 3,4 W/mK  
Brake FWD  
25  
125  
1,67  
1,61  
V F  
Diode forward voltage  
7,5  
V
ꢀA  
I r  
I RRM  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
600  
25  
250  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
9
10  
A
258  
427  
0,90  
0,90  
78  
73  
0,35  
0,69  
t rr  
ns  
R gon = 32 Ω  
R gon = 32 Ω  
Q rr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
8
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
phase-change  
material  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
2,20  
λ = 3,4 W/mK  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
%
R 100 = 1484 Ω  
-5  
5
5
mW  
mW/K  
K
1,5  
B (25/50)  
Tol. ±1%  
Tol. ±1%  
3962  
4000  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
I
copyright Vincotech  
4
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 1  
Typical output characteristics  
Inverter IGBT  
Figure 2  
Typical output characteristics  
Inverter IGBT  
I C = f(V CE  
)
I C = f(V CE)  
50  
50  
40  
30  
20  
10  
40  
30  
20  
10  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V CE (V)  
V CE (V)  
At  
At  
t p  
=
t p =  
250  
25  
ꢀs  
°C  
250  
125  
ꢀs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
Inverter IGBT  
Figure 4  
Inverter FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
6
Tj = Tjmax-25°C  
4
Tj = Tjmax-25°C  
5
Tj = 25°C  
2
Tj = 25°C  
0
0
0
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
3,0  
2
4
6
8
10  
12  
V GE (V)  
V F (V)  
At  
At  
t p  
=
t p  
=
250  
10  
ꢀs  
V
250  
ꢀs  
V CE  
=
copyright Vincotech  
5
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 5  
Inverter IGBT  
Figure 6  
Inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
3
2,5  
2
2,5  
Eon High T  
Eon High T  
2
Eoff High T  
Eon Low T  
Eoff High T  
Eon Low T  
Eoff Low T  
1,5  
1
1,5  
1
Eoff Low T  
0,5  
0
0,5  
0
0
5
10  
15  
20  
25  
30  
0
20  
40  
60  
80  
I C (A)  
R G (Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
2255//112255  
600  
±15  
16  
2255//112255  
600  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
15  
V
=
I C =  
A
=
16  
Figure 7  
Inverter FWD  
Figure 8  
Inverter FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
1,4  
1,2  
Erec  
Erec  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
1,2  
1
1
0,8  
0,6  
0,4  
0,2  
0
Erec  
0,8  
0,6  
0,4  
0,2  
0
Tj = 25°C  
Erec  
Tj = 25°C  
0
5
10  
15  
20  
25  
30  
0
20  
40  
60  
80  
I C (A)  
R G (Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
2255//112255  
600  
°C  
V
2255//112255  
600  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
±15  
16  
V
±15  
15  
V
=
I C =  
A
copyright Vincotech  
6
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 9  
Inverter IGBT  
Figure 10  
Inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
0,10  
0,01  
0,00  
1,00  
0,10  
0,01  
0,00  
tdoff  
tdoff  
tdon  
tf  
tf  
tdon  
tr  
tr  
0
5
10  
15  
20  
25  
30  
0
20  
40  
60  
80  
R G (Ω)  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
600  
±15  
16  
°C  
V
125  
600  
±15  
15  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
16  
Figure 11  
Inverter FWD  
Figure 12  
Inverter FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I C)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
t rr = f(R gon  
)
0,6  
0,8  
trr  
Tj = Tjmax -25°C  
trr  
Tj = Tjmax -25°C  
0,5  
0,4  
0,3  
0,2  
0,1  
0,0  
0,6  
0,4  
0,2  
trr  
Tj = 25°C  
trr  
Tj = 25°C  
0,0  
0
10  
20  
30  
40  
50  
60  
R gon (Ω)  
70  
0
5
10  
15  
20  
25  
30  
I C (A)  
At  
T j =  
At  
25/125  
T j =  
V R =  
I F =  
25/125  
25/125  
°C  
25/125  
°C  
V CE  
V GE  
R gon  
=
600  
±15  
16  
V
V
600  
15  
V
A
V
=
=
V GE =  
±15  
copyright Vincotech  
7
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 13  
Inverter FWD  
Figure 14  
Inverter FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
4
3
2
1
0
3
Qrr  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
Qrr  
2,5  
2
Qrr  
Tj = 25°C  
1,5  
1
Qrr  
Tj = 25°C  
0,5  
0
0
0
5
10  
15  
20  
25  
30  
20  
40  
60  
80  
I C (A)  
R gon (Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
2255//112255  
600  
°C  
V
2255//112255  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
16  
V
15  
A
=
V GE =  
±15  
V
Figure 15  
Inverter FWD  
Figure 16  
Inverter FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
18  
50  
Tj = Tjmax -25°C  
16  
14  
12  
10  
8
IRRM  
40  
30  
20  
Tj = 25°C  
IRRM  
Tj = Tjmax - 25°C  
6
Tj = 25°C  
4
10  
0
IRRM  
IRRM  
2
0
0
5
10  
15  
20  
25  
30  
0
20  
40  
60  
80  
I C (A)  
R gon (Ω)  
At  
T j =  
At  
T j =  
V R =  
I F =  
2255//112255  
600  
°C  
2255//112255  
600  
°C  
V
V CE  
V GE  
R gon  
=
V
V
=
±15  
16  
15  
A
=
V GE =  
±15  
V
copyright Vincotech  
8
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 17  
Inverter FWD  
Figure 18  
Inverter FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I C)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
6000  
dI0/dt  
dI0/dt  
dIrec/dt  
dIrec/dt  
5000  
4000  
3000  
2000  
1000  
0
0
5
10  
15  
20  
25  
30  
0
10  
20  
30  
40  
50  
60  
70  
R gon ()  
80  
I C (A)  
At  
At  
T j =  
T j =  
V R =  
I F =  
2255//112255  
600  
°C  
V
2255//112255  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
16  
V
15  
A
=
V GE =  
±15  
V
Figure 19  
Inverter IGBT  
Figure 20  
Inverter FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
10-4  
10-3  
10-2  
10-1  
100  
10  
t p (s)  
t p (s)  
At  
At  
t
p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
1,35  
K/W  
1,83  
K/W  
IGBT thermal model values  
R (K/W) Tau (s)  
FWD thermal model values  
R (K/W) Tau (s)  
0,04  
0,21  
0,57  
0,31  
0,14  
0,08  
5,6E+00  
8,7E-01  
1,7E-01  
3,4E-02  
6,2E-03  
5,5E-04  
0,03  
0,19  
0,75  
0,50  
0,20  
0,16  
9,6E+00  
8,2E-01  
1,2E-01  
2,6E-02  
3,4E-03  
3,8E-04  
copyright Vincotech  
9
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 21  
Inverter IGBT  
Figure 22  
Inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
150  
125  
100  
75  
30  
25  
20  
15  
10  
5
50  
25  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s (oC)  
T s (oC)  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
Figure 23  
Power dissipation as a  
Inverter FWD  
Figure 24  
Forward current as a  
Inverter FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s(oC)  
T s (oC)  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
10  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 25  
Inverter IGBT  
Figure 26  
Inverter IGBT  
Safe operating area as a function  
of collector-emitter voltage  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
103  
20  
17,5  
15  
240 V  
102  
101  
100  
100uS  
960 V  
12,5  
10  
1mS  
7,5  
5
10mS  
100mS  
DC  
2,5  
0
10-1  
100  
103  
104  
101  
102  
0
25  
50  
75  
100  
125  
V CE (V)  
Q g (nC)  
At  
At  
D =  
single pulse  
I C  
=
15  
A
T s =  
80  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
ºC  
Figure 27  
Inverter IGBT  
Figure 28  
Inverter IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
t sc = f(V GE  
)
I sc = f(V GE)  
17,5  
150  
15  
12,5  
10  
125  
100  
75  
7,5  
5
50  
25  
2,5  
0
0
12  
13  
14  
15  
16  
17  
12  
14  
16  
18  
20  
V GE (V)  
V GE (V)  
At  
At  
V CE  
=
1200  
175  
V
V CE  
1200  
175  
V
T j ≤  
T j =  
ºC  
ºC  
copyright Vincotech  
11  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Charateristics  
Figure 29  
Inverter IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
35  
IC MAX  
30  
25  
20  
15  
10  
5
0
0
200  
400  
600  
800  
1000  
1200  
1400  
V CE (V)  
At  
T j =  
T jmax-25  
ºC  
copyright Vincotech  
12  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Brake Charateristics  
Figure 1  
Brake IGBT  
Figure 2  
Typical output characteristics  
Brake IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
250  
25  
ꢀs  
°C  
250  
125  
ꢀs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
Brake IGBT  
Figure 4  
Brake FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
9
30  
25  
20  
15  
10  
7,5  
6
4,5  
3
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
5
1,5  
Tj = 25°C  
Tj = 25°C  
0
0
0
0
0,5  
1
1,5  
2
2,5  
3
2
4
6
8
10  
12  
VGE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
250  
10  
ꢀs  
V
250  
ꢀs  
V CE  
=
copyright Vincotech  
13  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Brake Charateristics  
Figure 5  
Brake IGBT  
Figure 6  
Brake IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
1,4  
1,4  
Eon  
Eon  
1,2  
1,2  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
Eoff  
Eon  
1
0,8  
0,6  
0,4  
0,2  
0
1,0  
0,8  
0,6  
0,4  
0,2  
0,0  
Eon  
Eoff  
Eoff  
Eoff  
Tj = 25°C  
Tj = 25°C  
0
20  
40  
60  
80  
100  
120  
R G  
140  
)  
0
2
4
6
8
10  
12  
14  
16  
I C (A)  
(
With an inductive load at  
With an inductive load at  
T j =  
T j =  
2255//112255  
600  
±15  
32  
°C  
V
2255//112255  
600  
±15  
8
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
32  
Figure 7  
Brake FWD  
Figure 8  
Brake FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
0,7  
1
Erec  
Erec  
Tj = Tjmax -25°C  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,8  
Tj = Tjmax - 25°C  
0,6  
Tj = 25°C  
Erec  
Erec  
Tj = 25°C  
0,4  
0,2  
0
0
20  
40  
60  
80  
100  
120  
140  
0
2
4
6
8
10  
12  
14  
16  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
2255//112255  
600  
°C  
V
2255//112255  
600  
±15  
8
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
±15  
32  
V
V
=
I C =  
A
copyright Vincotech  
14  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Brake Charateristics  
Figure 9  
Brake IGBT  
Figure 10  
Brake IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
0,10  
0,01  
0,00  
1,00  
0,10  
0,01  
0,00  
tdoff  
tdon  
tdoff  
tf  
tf  
tr  
tdon  
tr  
0
2
4
6
8
10  
12  
14  
16  
0
20  
40  
60  
80  
100  
120  
140  
R
G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
600  
±15  
32  
°C  
V
125  
600  
±15  
8
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
32  
Figure 11  
Brake IGBT  
Figure 12  
Brake FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
10-1  
10-1  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-2  
10-2  
t p (s)  
t p (s)  
101 10  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
t
p / T  
t p / T  
At  
R th(j-s)  
D =  
At  
R th(j-s)  
D =  
=
=
1,57  
K/W  
2,20  
K/W  
copyright Vincotech  
15  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Brake Charateristics  
Figure 13  
Brake IGBT  
Figure 14  
Brake IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
125  
100  
75  
50  
25  
0
25  
20  
15  
10  
5
0
200  
T s  
(
o C)  
200  
T s (  
o C)  
0
50  
100  
150  
0
50  
100  
150  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
Figure 15  
Power dissipation as a  
Brake FWD  
Figure 16  
Forward current as a  
Brake FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
70  
60  
50  
40  
30  
20  
10  
0
12  
10  
8
6
4
2
0
o
0
25  
50  
75  
100  
125  
150  
C)  
Ts (  
o C)  
150  
Ts  
(
0
25  
50  
75  
100  
125  
At  
At  
T j =  
T j =  
150  
ºC  
150  
ºC  
copyright Vincotech  
16  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Rectifier Diode  
Figure 1  
Rectifier Diode  
Figure 2  
Rectifier Diode  
Typical diode forward current as  
a function of forward voltage  
I F= f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
100  
101  
100  
10-1  
10-2  
80  
60  
40  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
20  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0,0  
0,5  
1,0  
1,5  
2,0  
t p (s)  
V
F
(V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
t
p / T  
At  
At  
D =  
t p  
=
250  
ꢀs  
t p / T  
D =  
R th(j-s)  
=
1,61  
K/W  
Figure 3  
Power dissipation as a  
Rectifier Diode  
Figure 4  
Forward current as a  
Rectifier Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
100  
80  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
o C)  
T h  
(
o C)  
T h  
(
At  
T j =  
At  
T j =  
150  
ºC  
150  
ºC  
copyright Vincotech  
17  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
NTC-typical temperature characteristic  
25000  
20000  
15000  
10000  
5000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
18  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Switching Definitions  
General conditions  
T j  
=
=
=
125 °C  
16 ꢀ  
16 ꢀ  
R gon  
R goff  
Inverter IGBT  
Figure 2  
Inverter IGBT  
Figure 1  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
125  
250  
tdoff  
%
%
VCE  
IC  
200  
150  
100  
VCE 90%  
VGE 90%  
75  
IC  
VGE  
VCE  
100  
50  
VGE  
tEoff  
tdon  
50  
25  
0
IC 1%  
VCE 3%  
VGE10%  
IC10%  
0
tEon  
-50  
-25  
2,9  
3
3,1  
3,2  
3,3  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time(us)  
time (us)  
V GE (0%) =  
-15  
15  
V
V GE (0%) =  
-15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
600  
15  
V
600  
15  
V
A
A
t doff  
=
=
0,24  
0,56  
ꢀs  
ꢀs  
t don  
=
=
0,06  
0,25  
ꢀs  
ꢀs  
t E off  
t E on  
Figure 3  
Inverter IGBT  
Figure 4  
Inverter IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
125  
250  
VCE  
fitted  
%
%
IC  
Ic  
100  
200  
IC 90%  
75  
50  
25  
0
150  
IC  
60%  
VCE  
100  
IC 40%  
IC90%  
tr  
50  
IC10%  
IC10%  
0
tf  
-25  
-50  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
2,9  
3
3,1  
3,2  
3,3  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
600  
15  
V
V C (100%) =  
I C (100%) =  
t r =  
600  
15  
V
A
A
0,11  
ꢀs  
0,02  
ꢀs  
copyright Vincotech  
19  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Switching Definitions  
Figure 5  
Inverter IGBT  
Figure 6  
Inverter IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
200  
%
%
Eoff  
Pon  
100  
Poff  
150  
75  
50  
25  
Eon  
100  
50  
VCE  
VGE 10%  
3%  
IC  
1%  
VGE 90%  
0
tEon  
0
tEoff  
-50  
-25  
2,9  
3
3,1  
3,2  
3,3  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
9,00  
1,24  
0,56  
kW  
mJ  
ꢀs  
P on (100%) =  
E on (100%) =  
9,00  
1,25  
0,25  
kW  
mJ  
ꢀs  
t E off  
=
t E on =  
Figure 7  
Inverter FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
IRRM 10%  
0
-50  
-100  
-150  
IRRM 90%  
IRRM 100%  
2,8  
3
3,2  
3,4  
3,6  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
15  
V
A
-16  
0,43  
A
t rr  
=
ꢀs  
copyright Vincotech  
20  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Inverter Switching Definitions  
Figure 8  
Inverter FWD  
Figure 9  
Inverter FWD  
Turn-on Switching Waveforms & definition of t Qrr  
Turn-on Switching Waveforms & definition of t Erec  
(t Q rr = integrating time for Q rr  
)
(t Erec= integrating time for E rec)  
150  
120  
%
Erec  
%
Id  
Qrr  
100  
100  
tQrr  
80  
tErec  
50  
0
60  
40  
Prec  
-50  
-100  
-150  
20  
0
-20  
2,8  
3
3,2  
3,4  
3,6  
3,8  
4
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
time(us)  
time(us)  
I D (100%) =  
Q rr (100%) =  
15  
A
P rec (100%) =  
E rec (100%) =  
9,00  
1,16  
0,90  
kW  
mJ  
ꢀs  
2,75  
0,90  
ꢀC  
ꢀs  
t Q rr  
=
t E rec =  
copyright Vincotech  
21  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
V23990-P840-A48-PM  
V23990-P840-C48-PM  
V23990-P840-A49-PM  
V23990-P840-C49-PM  
with brake without thermal paste 12mm housing  
without brake without thermal paste 12mm housing  
with brake without thermal pastee 17mm housing  
without brake without thermal paste 17mm housing  
Name  
Date code  
UL & VIN  
Lot  
Serial  
VIN WWYY  
NNNNNNNVV UL  
Text  
NNNNNNNNNVV  
WWYY  
UL VIN  
LLLLL  
SSSS  
LLLLL SSSS  
Type&VerLot number Serial  
Date code  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
WWYY  
Outline  
Pin table  
Pinout variation  
Pin  
X
Y
Function  
Modul subtype  
Not assembled pins  
P840-A4*  
P840-C4*  
-
1
2
25,5  
25,5  
2,7  
0
NTC1  
NTC2  
4,5,20  
3
4
22,8  
20,1  
16,2  
13,5  
10,8  
8,1  
5,4  
2,7  
0
0
0
-DC  
BRCG  
BRCE  
G6  
5
0
6
0
7
0
E6  
8
0
G5  
9
0
E5  
10  
11  
12  
13  
14  
15  
16  
17  
0
G4  
0
E4  
0
19,8  
22,5  
19,8  
22,5  
19,8  
22,5  
22,5  
22,5  
22,5  
15  
G1  
0
U
7,5  
7,5  
15  
G2  
V
G3  
15  
W
18 22,8  
19 25,5  
20 33,5  
21 33,5  
22 33,5  
23 33,5  
+INV  
+DC  
BRC+  
L1  
7,5  
0
L2  
L3  
copyright Vincotech  
22  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Pinout  
Identification  
Current  
ID  
Component  
IGBT  
Voltage  
1200 V  
1200 V  
1200 V  
1200 V  
Function  
Inverter Switch  
Inverter Diode  
Brake Switch  
Brake Diode  
Comment  
T1, T2, T3, T4, T5, T6  
15 A  
D1, D2, D3, D4, D5, D6  
FWD  
15 A  
T7  
IGBT  
8 A  
D7  
FWD  
7,5 A  
D8, D9, D10,  
D11, D12, D13  
NTC  
Diode  
NTC  
1600 V  
25 A  
Rectifier  
Thermistor  
copyright Vincotech  
23  
19 Mar. 2016 / Revision 7  
V23990-P840-*4*-PM  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
135  
Handling instructions for flow 0 packages see vincotech.com website.  
Package data  
Package data for flow 0 packages see vincotech.com website.  
Document No.:  
Date:  
Modification:  
New style, NTC changed  
Pages  
All  
V23990-P840-*4*-PM-D7-14  
19 Mar. 2016  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
24  
19 Mar. 2016 / Revision 7  

相关型号:

V23990-P840-C4X-PM

Output Inverter Application
VINCOTECH

V23990-P840-C58-PM

Industrial Drives Embedded Generation
VINCOTECH

V23990-P840-C59-PM

Industrial Drives Embedded Generation
VINCOTECH

V23990-P840-PM

2 Clips housing in 12 and 17mm height
VINCOTECH

V23990-P840-X4X-P1-19

Output Inverter Application
VINCOTECH

V23990-P840-X4X-P2-14

2 Clips housing in 12 and 17mm height
VINCOTECH

V23990-P840-X5X-P2-14

Industrial Drives Embedded Generation
VINCOTECH

V23990-P840-X5X-P2-19

Output Inverter Application
VINCOTECH

V23990-P848-A48-PM

Industrial Drives Embedded Generation
VINCOTECH

V23990-P848-A49-PM

Industrial Drives Embedded Generation
VINCOTECH

V23990-P848-A58-PM

Industrial Drives Embedded Generation
VINCOTECH

V23990-P848-A59-PM

Industrial Drives Embedded Generation
VINCOTECH