V23990-P849-A59Y-PM [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
V23990-P849-A59Y-PM
型号: V23990-P849-A59Y-PM
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总20页 (文件大小:1393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
flowPIM0 3rd Gen  
1200V/8A  
Features  
flow0 Housing  
2 Clips housing in 12 and 17mm height  
Trench Fieldstop Technology IGBT4  
Enhenced Rectifier  
Optional w/o BRC  
Target Applications  
Industrial Drives  
Schematics  
Embedded Generation  
Types  
V23990-P849-A58-PM 12mm height  
V23990-P849-A59-PM 17mm height  
● V23990ꢀP849ꢀC58ꢀPM 12mm height; w/o BRC  
● V23990ꢀP849ꢀC59ꢀPM 17mm height; w/o BRC  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Input Rectifier Doide  
Repetitive peak reverse voltage  
Forward current per diode  
Surge forward current  
VRRM  
IFAV  
1600  
36  
V
A
A
Th=80°C  
Tc=80°C  
DC current  
tp=10ms  
IFSM  
370  
Tj=25°C  
I2t  
A2s  
W
I2t-value  
680  
43  
Th=80°C  
Tc=80°C  
Ptot  
Tj=Tjmax  
Power dissipation per Diode  
Maximum Junction Temperature  
Tjmax  
150  
°C  
Transistor Inverter  
Collector-emitter voltage  
DC collector current  
VCE  
IC  
1200  
13  
V
A
Th=80°C  
Tc=80°C  
Tj=Tjmax  
Tj150°C  
Tj=Tjmax  
ICpuls  
Ptot  
VGE  
Repetitive peak collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
24  
44  
A
Th=80°C  
Tc=80°C  
W
V
±20  
tSC  
Tj150°C  
10  
s  
VCC  
VGE=15V  
800  
V
Tjmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Diode Inverter  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
1200  
16  
V
A
Th=80°C  
Tc=80°C  
Tj=Tjmax  
IFRM  
Ptot  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
20  
36  
A
Th=80°C  
Tc=80°C  
W
°C  
Tjmax  
175  
Transistor BRC  
VCE  
IC  
Collector-emitter voltage  
DC collector current  
1200  
8
V
A
Th=80°C  
Tc=80°C  
Tj=Tjmax  
Icpuls  
Ptot  
VGE  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
12  
32  
A
Th=80°C  
Tc=80°C  
W
V
±20  
tSC  
Tj150°C  
10  
s  
VCC  
VGE=15V  
800  
V
Tjmax  
Maximum Junction Temperature  
175  
°C  
Diode BRC  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
1200  
7
V
A
Th=80°C  
Tc=80°C  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
6
A
W
°C  
Th=80°C  
Tc=80°C  
18  
Tjmax  
150  
Thermal properties  
Storage temperature  
Operation temperature  
Tstg  
Tjop  
-40…+125  
-40…+125  
°C  
°C  
Insulation properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 12,7  
mm  
mm  
copyright Vincotech  
2
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr(V) or  
VGE(V) or  
IC(A) or IF(A)  
or ID(A)  
VCE(V) or  
T(°C)  
Min  
Max  
VGS(V)  
VDS(V)  
Input Rectifier Diode  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=150°C  
1
1,15  
1,11  
0,91  
0,77  
0,008  
0,011  
1,6  
VF  
Vto  
rt  
Forward voltage  
30  
30  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
0,1  
Ir  
1600  
mA  
Thermal grease  
RthJH  
Thermal resistance chip to heatsink per chip  
thickness50um  
λ = 1 W/mK  
1,66  
K/W  
Transistor Inverter  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
5
5,8  
6,5  
2,35  
0,05  
200  
VGE(th)  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
VCE=VGE  
0,0003  
8
V
V
1,6  
1,87  
2,20  
0
1200  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
ns  
71  
23  
Rise time  
ns  
td(off)  
tf  
Turn-off delay time  
ns  
Rgon=32Ohm  
Rgoff=32Ohm  
236  
108  
0,75  
15  
600  
8
Fall time  
ns  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
mWs  
pF  
Eoff  
0,62  
490  
Cies  
Coss  
Crss  
QGate  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
50  
30  
53  
pF  
Reverse transfer capacitance  
Gate charge  
pF  
Vcc=600V  
±15  
8
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
2,16  
K/W  
Diode Inverter  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1,35  
1,70  
1,66  
2,7  
2,2  
VF  
Irm  
Diode forward voltage  
10  
V
mA  
A
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
600  
IRRM  
trr  
10  
383  
1,57  
69  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgon=32Ohm  
15  
10  
uC  
di(rec)max  
/dt  
A/ms  
mWs  
Erec  
0,63  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
2,68  
K/W  
copyright Vincotech  
3
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr(V) or  
VGE(V) or  
IC(A) or IF(A)  
or ID(A)  
VCE(V) or  
T(°C)  
Min  
Max  
VGS(V)  
VDS(V)  
Transistor BRC  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
5
5,8  
6,5  
VGE(th)  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
VCE=VGE  
0,00015  
4
V
V
1,96  
2,17  
15  
0,05  
200  
0
1200  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
ns  
90  
24  
Rise time  
ns  
td(off)  
tf  
Turn-off delay time  
ns  
Rgon=64Ohm  
Rgoff=64Ohm  
226  
99  
15  
600  
4
Fall time  
ns  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
mWs  
pF  
0,34  
Eoff  
0,30  
250  
Cies  
Coss  
Crss  
QGate  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
25  
15  
25  
pF  
Reverse transfer capacitance  
Gate charge  
pF  
15  
960  
4
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
2,93  
K/W  
Diode BRC  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1
1,91  
1,84  
2,35  
250  
VF  
Ir  
Diode forward voltage  
4
4
V
mA  
A
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
15  
15  
600  
600  
IRRM  
trr  
5
ns  
446  
0,76  
40  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
Rgon=64Ohm  
4
uC  
di(rec)max  
/dt  
A/ms  
mWs  
Erec  
0,32  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
3,98  
K/W  
Thermistor  
R25  
Tol. ±13%  
Tol. ±5%  
Tj=25°C  
19,1  
22  
24,9  
k ꢂ  
Rated resistance  
R100  
Tj=100°C  
Tj=25°C  
1411  
1486  
210  
1560  
Power dissipation given Epcos-Typ  
B-value  
P
mW  
K
Tj=25°C  
4000  
B(25/100)  
Tol. ±3%  
copyright Vincotech  
4
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Output Inverter  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
At  
At  
tp =  
Tj =  
tp =  
Tj =  
250  
25  
s  
250  
125  
s  
°C  
°C  
VGE from 7 V to 17 V in steps of 1 V  
VGE from 7 V to 17 V in steps of 1 V  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter FRED  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
Ic = f(VGE  
)
125 oC  
25 oC  
25 oC  
125 oC  
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
copyright Vincotech  
5
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(Ic)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
125  
600  
±15  
32  
°C  
V
125  
600  
±15  
8
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
32  
Figure 7  
Output inverter IGBT  
Figure 8  
Output inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
125  
600  
±15  
32  
°C  
V
125  
600  
±15  
8
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
32  
copyright Vincotech  
6
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Output Inverter  
Figure 9  
Output inverter FRED diode  
Figure 10  
Output inverter FRED diode  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
IRRM = f(Rgon)  
At  
At  
Tj =  
Tj =  
125  
600  
8
°C  
V
A
V
125  
°C  
V
A
V
VR  
=
VR =  
600  
8
IF =  
IF =  
VGE  
=
VGE =  
±15  
±15  
Figure 11  
Output inverter FRED diode  
Figure 12  
Typical rate of fall of forward  
Output inverter FRED diode  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
and reverse recovery current as a  
Qrr = f(Rgon  
)
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
At  
At  
Tj =  
Tj =  
125  
600  
8
°C  
V
A
V
125  
600  
8
°C  
V
A
V
VR  
=
VR =  
IF =  
IF =  
VGE  
VGE  
=
=
±15  
±15  
copyright Vincotech  
7
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Output Inverter  
Figure 13  
Figure 14  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FRED transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-4  
10-3  
10-2  
10-1  
100  
101  
With  
D =  
With  
tp / T  
2,16  
D =  
tp / T  
2,68  
RthJH  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
FRED thermal model values  
R (C/W)  
0,05  
Tau (s)  
R (C/W)  
0,05  
Tau (s)  
4,1E+00  
5,5E-01  
1,0E-01  
1,9E-02  
3,3E-03  
4,0E-04  
7,9E+00  
7,3E-01  
1,3E-01  
2,5E-02  
3,6E-03  
4,3E-04  
0,25  
0,27  
0,99  
1,07  
0,45  
0,69  
0,24  
0,36  
0,18  
0,25  
copyright Vincotech  
8
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Output Inverter  
Figure 15  
Output inverter IGBT  
Figure 16  
Output inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
At  
At  
Tj =  
Tj =  
VGE =  
175  
°C  
175  
15  
°C  
V
Figure 17  
Power dissipation as a  
Output inverter FRED  
Figure 18  
Forward current as a  
Output inverter FRED  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
copyright Vincotech  
9
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Brake  
Figure 1  
Brake IGBT  
Figure 2  
Typical output characteristics  
IC = f(VCE  
Brake IGBT  
Typical output characteristics  
IC = f(VCE  
)
)
At  
At  
tp =  
Tj =  
tp =  
Tj =  
250  
25  
s  
250  
125  
s  
°C  
°C  
VGE from 7 V to 17 V in steps of 1 V  
VGE from 7 V to 17 V in steps of 1 V  
Figure 3  
Brake IGBT  
Figure 4  
Brake FRED  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
125 o  
C
25 o  
C
25 o  
C
125 o  
C
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
copyright Vincotech  
10  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Brake  
Figure 5  
Brake IGBT  
Figure 6  
Typical switching energy losses  
Brake IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
as a function of gate resistor  
E = f(RG)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
125  
600  
±15  
64  
°C  
V
125  
600  
±15  
4
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
IC =  
64  
Figure 7  
Brake IGBT  
Figure 8  
Brake IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
125  
600  
±15  
64  
°C  
V
125  
600  
±15  
4
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
IC =  
64  
copyright Vincotech  
11  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Brake  
Figure 9  
Figure 10  
IGBT transient thermal impedance  
FRED transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
tp (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
tp (s)  
With  
With  
D =  
D =  
tp / T  
2,93  
tp / T  
3,98  
RthJH  
=
RthJH  
=
K/W  
K/W  
copyright Vincotech  
12  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Brake  
Figure 11  
Brake IGBT  
Figure 12  
Collector current as a  
Brake IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
function of heatsink temperature  
IC = f(Th)  
At  
At  
Tj =  
Tj =  
VGE  
175  
ºC  
175  
15  
ºC  
V
=
Figure 13  
Power dissipation as a  
Brake FRED  
Figure 14  
Forward current as a  
Brake FRED  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
copyright Vincotech  
13  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Input Rectifier Bridge  
Figure 1  
Rectifier diode  
Figure 2  
Rectifier diode  
Typical diode forward current as  
a function of forward voltage  
IF= f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
25°C  
125°C  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1012  
tp (s)  
At  
With  
tp =  
250  
s  
D =  
tp / T  
1,66  
RthJH  
=
K/W  
Figure 3  
Power dissipation as a  
Rectifier diode  
Figure 4  
Forward current as a  
Rectifier diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
copyright Vincotech  
14  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Thermistor  
Figure 1  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f (T)  
copyright Vincotech  
15  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
125,3 °C  
32  
Rgon  
Rgoff  
36 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
Ic  
tdoff  
Uce  
Uce  
Ic  
Uge  
tEoff  
Uge  
tEon  
VGE (0%) =  
VGE (0%) =  
-15  
15  
V
-15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
15  
V
600  
8
V
600  
8
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,24  
0,50  
s  
s  
0,07  
0,275  
s  
s  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
Ic  
Uce  
Ic  
Uce  
tr  
tf  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
600  
V
600  
8
V
8
A
A
0,108  
s  
0,023  
s  
copyright Vincotech  
16  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
Pon  
Eoff  
Poff  
Eon  
tEoff  
tEon  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
4,93  
0,62  
0,50  
kW  
mJ  
s  
4,932  
0,75  
kW  
mJ  
s  
tEoff  
=
tEon =  
0,275  
Figure 7  
Output inverter IGBT  
Figure 8  
Output inverter FRED  
Gate voltage vs Gate charge  
Turn-off Switching Waveforms & definition of trr  
Id  
fitted  
Ud  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
15  
600  
8
V
600  
8
V
V
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
V
-10  
0,383  
A
trr  
=
A
s  
61,714  
nC  
copyright Vincotech  
17  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Switching Definitions Output Inverter  
Figure 9  
Output inverter FRED  
Figure 10  
Output inverter FRED  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
Erec  
Id  
Qrr  
tErec  
Prec  
8
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
A
4,932  
kW  
mJ  
s  
Qrr (100%) =  
1,569  
C  
s  
0,634  
0,80  
tQint  
=
tErec =  
0,80  
10-12 10-0-1212 -5 --55  
-4 --44  
-2 --22  
--11  
10-11100  
00  
-201  
1
11  
01-01-212101-21 --55  
110010110010-5  
0
-3-3  
0-2--22  
--11-1  
0000  
2111  
110010-3  
T
1=0130 C  
1010101100  
1010  
10-130-3  
101100  
1010100  
101100  
10o1-40-4  
1010  
111000  
10  
111000  
1100  
111000  
10  
copyright Vincotech  
18  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
Package Outline and Pinout  
Outline  
Pinout  
copyright Vincotech  
19  
Revision: 2  
V23990-P849-A58/A59/C58/C59-PM  
preliminary datasheet  
PRODUCT STATUS DEFINITIONS  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice. The data contained is exclusively  
intended for technically trained staff.  
Target  
Formative or In Design  
First Production  
This datasheet contains preliminary data, and  
supplementary data may be published at a later date.  
Vincotech reserves the right to make changes at any time  
without notice in order to improve design. The data  
contained is exclusively intended for technically trained  
staff.  
Preliminary  
This datasheet contains final specifications. Vincotech  
reserves the right to make changes at any time without  
notice in order to improve design. The data contained is  
exclusively intended for technically trained staff.  
Final  
Full Production  
DISCLAIMER  
Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design.  
Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it  
convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
20  
Revision: 2  

相关型号:

V23990-P849-C48-PM

Output Inverter Application
VINCOTECH

V23990-P849-C49-PM

Output Inverter Application
VINCOTECH

V23990-P849-C58-PM

Insulated Gate Bipolar Transistor
VINCOTECH

V23990-P849-C59-PM

Insulated Gate Bipolar Transistor
VINCOTECH

V23990-P849-X4X-P2-14

Industrial Drives Embedded Generation
VINCOTECH

V23990-P849-X4X-P2-19

Output Inverter Application
VINCOTECH

V23990-P849-X5X-P2-14

Industrial Drives Embedded Generation
VINCOTECH

V23990-P849-X5X-P2-19

Output Inverter Application
VINCOTECH

V23990-P860-F48-PM

2 clip housing in 12mm and 17mm height
VINCOTECH

V23990-P860-F49-PM

2 clip housing in 12mm and 17mm height
VINCOTECH

V23990-P861-F49-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P862-F49-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH