593D1071016E2 [VISHAY]

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR; 固体钽表面贴装片式电容器TANTAMOUNT ,塑壳,低ESR
593D1071016E2
型号: 593D1071016E2
厂家: VISHAY    VISHAY
描述:

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
固体钽表面贴装片式电容器TANTAMOUNT ,塑壳,低ESR

电容器
文件: 总18页 (文件大小:377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
593D  
Vishay Sprague  
www.vishay.com  
Solid Tantalum Surface Mount Chip Capacitors  
®
TANTAMOUNT , Molded Case, Low ESR  
FEATURES  
• Low ESR  
• Molded case available in five case codes  
Available  
Available  
• Terminations: 100 ꢀ matte tin, standard,  
tin/lead available  
• High ripple current carrying capability  
• Compatible with “High Volume” automatic pick and place  
equipment  
• Moisture sensitivity level 1  
• Compliant terminations  
Effective September 2005, new capacitor ratings will not be  
added to the 593D series. All new ratings are available in the  
TR3 series. The TR3 series offers state-of-the-art low ESR  
for switch mode power supplies and DC/DC converters.  
• Meets IEC specification QC300801/US0001 and  
EIA535BAAC mechanical and performance requirements  
• Material categorization: For definitions of compliance  
please see www.vishay.com/doc?99912  
Note  
PERFORMANCE CHARACTERISTICS  
www.vishay.com/doc?40088  
*
This datasheet provides information about parts that are  
RoHS-compliant and/or parts that are non-RoHS-compliant. For  
example, parts with lead (Pb) terminations are not RoHS-compliant.  
Please see the information/tables in this datasheet for details.  
Operating Temperature: - 55 °C to + 125 °C  
(above + 85 °C voltage derating is required)  
Capacitance Range: 0.47 μF to 680 μF  
APPLICATIONS  
• Industrial  
Capacitance Tolerance: 5 ꢀ, 10 ꢀ, 20 ꢀ  
100 % Surge Current Tested (C, D and E Case Sizes)  
Voltage Rating: 4 VDC to 50 VDC  
• Telecom infrastructure  
• General purpose  
ORDERING INFORMATION  
593D  
107  
X9  
010  
D
2WE3  
TYPE  
CAPACITANCE  
CAPACITANCE  
TOLERANCE  
DC VOLTAGE RATING  
AT + 85 °C  
CASE CODE  
TERMINATION AND PACKAGING  
This is expressed in  
picofarads. The first  
two digits are the  
significant figures.  
The third is the number  
of zeros to follow  
X0 = 20 ꢀ  
X9 = 10 ꢀ  
X5 = 5 ꢀ  
This is expressed in volts.  
To complete the three-digit Case Codes table 2WE3: Matte tin, 13" (330 mm) reel  
block, zeros precede the  
voltage rating. A decimal  
point is indicated by an “R”  
(6R3 = 6.3 V)  
See Ratings and  
2TE3: Matte tin, 7" (178 mm) reel  
8T: Tin/lead, 7" (178 mm) reel  
8W: Tin/lead, 13" (330 mm) reel  
(special order)  
Notes  
We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size.  
Voltage substitutions will be marked with the higher voltage rating.  
Effective July 15, 2008, part numbers with solderable termination codes 2T and 2W may have either matte or tin/lead terminations.  
Codes 2TE3 and 2WE3 specify only matte tin terminations. Codes 8T and 8W specify only tin/lead terminations.  
Low ESR solid tantalum chip capacitors allow delta ESR of 1.25 times the datasheet limits after mounting.  
Dry pack is available per request, contact regional marketing.  
Revision: 04-Jul-13  
Document Number: 40005  
1
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
593D  
Vishay Sprague  
www.vishay.com  
DIMENSIONS in inches [millimeters]  
L
W
TW  
H
Glue Pad  
T
H (MIN.)  
P
Glue Pad  
CASE CODE  
EIA SIZE  
L
W
H
P
TW  
TH (MIN.)  
0.126 0.008  
[3.2 0.20]  
0.063 0.008  
[1.6 0.20]  
0.063 0.008  
[1.6 0.20]  
0.031 0.012  
[0.80 0.30]  
0.047 0.004  
[1.2 0.10]  
0.028  
[0.70]  
A
3216-18  
3528-21  
6032-28  
7343-31  
7343-43  
0.138 0.008  
[3.5 0.20]  
0.110 0.008  
[2.8 0.20]  
0.075 0.008  
[1.9 0.20]  
0.031 0.012  
[0.80 0.30]  
0.087 0.004  
[2.2 0.10]  
0.028  
[0.70]  
B
C
D
E
0.236 0.012  
[6.0 0.30]  
0.126 0.012  
[3.2 0.30]  
0.098 0.012  
[2.5 0.30]  
0.051 0.012  
[1.3 0.30]  
0.087 0.004  
[2.2 0.10]  
0.039  
[1.0]  
0.287 0.012  
[7.3 0.30]  
0.169 0.012  
[4.3 0.30]  
0.110 0.012  
[2.8 0.30]  
0.051 0.012  
[1.3 0.30]  
0.094 0.004  
[2.4 0.10]  
0.039  
[1.0]  
0.287 0.012  
[7.3 0.30]  
0.169 0.012  
[4.3 0.30]  
0.157 0.012  
[4.0 0.30]  
0.051 0.012  
[1.3 0.30]  
0.094 0.004  
[2.4 0.10]  
0.039  
[1.0]  
Note  
Glue pad (non-conductive, part of molded case) is dedicated for glue attachment (as user option).  
RATINGS AND CASE CODES  
μF  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10  
4 V  
6.3 V  
10 V  
16 V  
20 V  
25 V  
35 V  
A
50 V  
A
A
A
A
A
A/B  
B/C  
B/C  
C
B/C  
B/C  
C/D  
C/D  
D/E  
D/E  
D/E  
A
A/B  
B
A
A/B  
A
A
A
A
A/B  
B
B/C  
C
C
C/D  
C/D  
D/E  
D/E  
A
A
A
A/B/C  
B/C  
B/C  
B/C/D  
C/D  
D
B/C  
B/C  
C/D  
C/D  
D/E  
D/E  
E
C
15  
A
A
A/B  
A/B/C  
B/C  
B/C/D  
C/D  
C/D  
D/E  
D/E  
E
C/D  
D
22  
A/B  
A/B  
B/C  
B/C  
B/C/D  
C/D/E  
D/E  
D/E  
E
33  
A/B  
A/B  
B/C  
B/C  
B/C/D  
C/D  
D
D/E  
E
47  
68  
100  
150  
220  
330  
470  
680  
D/E  
E
D/E  
E
Revision: 04-Jul-13  
Document Number: 40005  
2
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
593D  
Vishay Sprague  
www.vishay.com  
MARKING  
“A” CASE VOLTAGE CODE  
Voltage  
Capacitance  
VOLTS  
4.0  
6.3  
10  
CODE  
Indicates  
Lead (Pb)-free  
Capacitance Code, pF  
Indicates Lead (Pb)-free  
G
J
μF  
22 10L  
A
C
D
E
V
T
V
104L  
Polarity Band  
2
XX  
16  
20  
Voltage Code  
Vishay  
Sprague Logo  
Polarity Band  
Data Code  
25  
A Case  
35  
B, C, D, E Cases  
50  
Marking  
Capacitor marking includes an anode (+) polarity band, capacitance in microfarads and the voltage rating. “A” Case capacitors use a letter  
code for the voltage and EIA capacitance code.  
The Vishay Sprague® trademark is included if space permits. Capacitors rated at 6.3 V are marked 6 V.  
A manufacturing date code is marked on all capacitors.  
Capacitors may bear a different marking scheme if a part with more extensive screening is substituted. These would include, for example,  
“R” for low ESR series (TR3) or “P” for professional series (TP3).  
Call the factory for further explanation.  
STANDARD RATINGS  
MAX. DF  
AT + 25 °C  
120 Hz  
MAX. ESR  
AT + 25 °C  
100 kHz  
()  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT + 25 °C  
(μA)  
CAPACITANCE  
(μF)  
CASE CODE  
PART NUMBER  
(%)  
(A)  
4 VDC AT + 85 °C; 2.7 VDC AT + 125 °C  
593D156(1)004A(2)  
15  
22  
A
A
A
B
A
B
B
C
B
C
B
C
D
C
D
D
D
E
0.6  
0.9  
1.3  
1.3  
1.9  
1.9  
2.7  
2.7  
4.0  
4.0  
6.0  
6.0  
6.0  
8.8  
8.8  
13.2  
18.8  
18.8  
27.2  
6
6
1.500  
1.500  
1.500  
0.500  
0.800  
0.500  
0.500  
0.275  
0.450  
0.225  
0.500  
0.250  
0.150  
0.200  
0.150  
0.150  
0.125  
0.100  
0.100  
0.22  
0.22  
0.22  
0.41  
0.31  
0.41  
0.41  
0.63  
0.43  
0.66  
0.41  
0.66  
1.00  
0.74  
1.00  
1.00  
1.10  
1.28  
1.28  
593D226(1)004A(2)  
593D336(1)004A(2)  
593D336(1)004B(2)  
593D476(1)004A(2)  
593D476(1)004B(2)  
593D686(1)004B(2)  
593D686(1)004C(2)  
593D107(1)004B(2)  
593D107(1)004C(2)  
593D157(1)004B(2)  
593D157(1)004C(2)  
593D157(1)004D(2)  
593D227(1)004C(2)  
593D227(1)004D(2)  
593D337(1)004D(2)  
593D477(1)004D(2)  
593D477(1)004E(2)  
593D687(1)004E(2)  
33  
6
33  
6
47  
14  
6
47  
68  
6
68  
6
100  
100  
150  
150  
150  
220  
220  
330  
470  
470  
680  
8
6
14  
12  
8
8
8
8
10  
10  
12  
E
6.3 VDC AT + 85 °C; 4 VDC AT 125 °C  
10  
A
A
A
B
A
593D106(1)6R3A(2)  
0.6  
0.9  
1.3  
1.3  
2.0  
6
6
2.000  
2.000  
2.000  
0.600  
0.800  
0.19  
0.19  
0.19  
0.38  
0.31  
15  
593D156(1)6R3A(2)  
593D226(1)6R3A(2)  
593D226(1)6R3B(2)  
593D336(1)6R3A(2)  
22  
22  
6
6
33  
14  
Note  
Part number definitions:  
(1) Tolerance: X0, X9, X5  
(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W  
Revision: 04-Jul-13  
Document Number: 40005  
3
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
593D  
Vishay Sprague  
www.vishay.com  
STANDARD RATINGS  
MAX. DF  
AT + 25 °C  
120 Hz  
MAX. ESR  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT + 25 °C  
(μA)  
CAPACITANCE  
(μF)  
AT + 25 °C  
100 kHz  
()  
CASE CODE  
PART NUMBER  
(%)  
(A)  
6.3 VDC AT + 85 °C; 4 VDC AT 125 °C  
33  
47  
B
B
C
B
C
B
C
D
C
D
E
593D336(1)6R3B(2)  
2.0  
2.8  
6
6
0.600  
0.550  
0.300  
0.550  
0.275  
0.500  
0.250  
0.140  
0.200  
0.125  
0.100  
0.100  
0.100  
0.125  
0.100  
0.100  
0.38  
0.39  
0.61  
0.39  
0.63  
0.41  
0.66  
1.04  
0.74  
1.10  
1.28  
1.22  
1.28  
1.10  
1.28  
1.28  
593D476(1)6R3B(2)  
593D476(1)6R3C(2)  
593D686(1)6R3B(2)  
593D686(1)6R3C(2)  
593D107(1)6R3B(2)  
593D107(1)6R3C(2)  
593D107(1)6R3D(2)  
593D157(1)6R3C(2)  
593D157(1)6R3D(2)  
593D157(1)6R3E(2)  
593D227(1)6R3D(2)  
593D227(1)6R3E(2)  
593D337(1)6R3D(2)  
593D337(1)6R3E(2)  
593D477(1)6R3E(2)  
47  
2.8  
6
68  
4.1  
6
68  
4.1  
6
100  
100  
100  
150  
150  
150  
220  
220  
330  
330  
470  
6.0  
15  
6
6.0  
6.0  
6
9.0  
8
9.0  
8
9.0  
8
D
E
13.2  
13.2  
19.8  
19.8  
28.2  
8
8
D
E
8
8
E
10  
10 VDC AT + 85 °C; 7 VDC AT 125 °C  
4.7  
6.8  
10  
A
A
A
A
B
A
B
C
B
C
B
C
D
C
D
C
D
D
E
593D475(1)010A(2)  
0.5  
0.7  
6
6
6
6
6
8
6
6
6
6
6
6
6
6
6
8
6
8
8
8
8
10  
3.000  
3.000  
2.000  
2.000  
0.700  
1.500  
0.700  
0.345  
0.600  
0.300  
0.600  
0.300  
0.200  
0.275  
0.150  
0.200  
0.100  
0.100  
0.100  
0.125  
0.100  
0.100  
0.16  
0.16  
0.19  
0.19  
0.35  
0.22  
0.35  
0.56  
0.38  
0.61  
0.38  
0.61  
0.87  
0.63  
1.00  
0.74  
1.22  
1.22  
1.28  
1.10  
1.28  
1.28  
593D685(1)010A(2)  
593D106(1)010A(2)  
593D156(1)010A(2)  
593D156(1)010B(2)  
593D226(1)010A(2)  
593D226(1)010B(2)  
593D226(1)010C(2)  
593D336(1)010B(2)  
593D336(1)010C(2)  
593D476(1)010B(2)  
593D476(1)010C(2)  
593D476(1)010D(2)  
593D686(1)010C(2)  
593D686(1)010D(2)  
593D107(1)010C(2)  
593D107(1)010D(2)  
593D157(1)010D(2)  
593D157(1)010E(2)  
593D227(1)010D(2)  
593D227(1)010E(2)  
593D337(1)010E(2)  
1.0  
15  
1.5  
15  
1.5  
22  
2.2  
22  
2.2  
22  
2.2  
33  
3.3  
33  
3.3  
47  
4.7  
47  
4.7  
47  
4.7  
68  
6.8  
68  
6.8  
100  
100  
150  
150  
220  
220  
330  
Note  
10.0  
10.0  
15.0  
15.0  
22.0  
22.0  
33.0  
D
E
E
Part number definitions:  
(1) Tolerance: X0, X9, X5  
(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W  
Revision: 04-Jul-13  
Document Number: 40005  
4
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
593D  
Vishay Sprague  
www.vishay.com  
STANDARD RATINGS  
MAX. DF  
AT + 25 °C  
120 Hz  
MAX. ESR  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT + 25 °C  
(μA)  
CAPACITANCE  
(μF)  
AT + 25 °C  
100 kHz  
()  
CASE CODE  
PART NUMBER  
(%)  
(A)  
16 VDC AT + 85 °C; 10 VDC AT + 125 °C  
593D105(1)016A(2)  
1.0  
3.3  
4.7  
4.7  
6.8  
10  
A
A
A
B
A
A
B
C
B
C
B
C
B
C
D
C
D
D
D
E
0.5  
0.5  
0.8  
0.8  
1.1  
1.6  
1.6  
1.6  
2.4  
2.4  
3.5  
3.5  
5.3  
5.3  
4.2  
7.5  
7.5  
10.9  
16.0  
16.0  
24.0  
4
6
6
6
6
6
6
6
6
6
6
6
6
6
4
6
6
6
8
8
8
5.500  
3.500  
2.500  
1.500  
3.000  
1.700  
0.800  
0.450  
0.800  
0.400  
0.700  
0.350  
0.700  
0.300  
0.225  
0.300  
0.150  
0.150  
0.125  
0.100  
0.100  
0.12  
0.15  
0.17  
0.24  
0.16  
0.21  
0.33  
0.49  
0.33  
0.52  
0.35  
0.56  
0.35  
0.61  
0.82  
0.61  
1.00  
1.00  
1.10  
1.28  
1.28  
593D335(1)016A(2)  
593D475(1)016A(2)  
593D475(1)016B(2)  
593D685(1)016A(2)  
593D106(1)016A(2)  
593D106(1)016B(2)  
593D106(1)016C(2)  
593D156(1)016B(2)  
593D156(1)016C(2)  
593D226(1)016B(2)  
593D226(1)016C(2)  
593D336(1)016B(2)  
593D336(1)016C(2)  
593D336(1)016D(2)  
593D476(1)016C(2)  
593D476(1)016D(2)  
593D686(1)016D(2)  
593D107(1)016D(2)  
593D107(1)016E(2)  
593D157(1)016E(2)  
10  
10  
15  
15  
22  
22  
33  
33  
33  
47  
47  
68  
100  
100  
150  
E
20 VDC AT + 85 °C; 13 VDC AT + 125 °C  
593D105(1)020A(2)  
1.0  
2.2  
3.3  
4.7  
4.7  
6.8  
10  
A
A
A
A
B
B
B
C
B
C
C
D
C
D
D
E
0.5  
0.5  
0.7  
0.9  
0.9  
1.4  
2.0  
2.0  
3.0  
3.0  
4.4  
3.5  
6.6  
6.6  
9.4  
7.5  
13.6  
13.6  
20.0  
4
6
6
6
6
6
6
6
6
6
6
4
6
6
6
4
6
6
8
5.500  
4.000  
4.000  
3.500  
1.000  
1.000  
1.000  
0.450  
1.000  
0.400  
0.375  
0.225  
0.350  
0.200  
0.200  
0.150  
0.175  
0.150  
0.150  
0.12  
0.14  
0.14  
0.15  
0.29  
0.29  
0.29  
0.49  
0.29  
0.52  
0.54  
0.82  
0.56  
0.87  
0.87  
1.05  
0.93  
1.05  
1.05  
593D225(1)020A(2)  
593D335(1)020A(2)  
593D475(1)020A(2)  
593D475(1)020B(2)  
593D685(1)020B(2)  
593D106(1)020B(2)  
593D106(1)020C(2)  
593D156(1)020B(2)  
593D156(1)020C(2)  
593D226(1)020C(2)  
593D226(1)020D(2)  
593D336(1)020C(2)  
593D336(1)020D(2)  
593D476(1)020D(2)  
593D476(1)020E(2)  
593D686(1)020D(2)  
593D686(1)020E(2)  
593D107(1)020E(2)  
10  
15  
15  
22  
22  
33  
33  
47  
47  
68  
D
E
68  
100  
Note  
E
Part number definitions:  
(1) Tolerance: X0, X9, X5  
(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W  
Revision: 04-Jul-13  
Document Number: 40005  
5
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
593D  
Vishay Sprague  
www.vishay.com  
STANDARD RATINGS  
MAX. DF  
AT + 25 °C  
120 Hz  
MAX. ESR  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT + 25 °C  
(μA)  
CAPACITANCE  
(μF)  
AT + 25 °C  
100 kHz  
()  
CASE CODE  
PART NUMBER  
(%)  
(A)  
25 VDC AT + 85 °C; 17 VDC AT + 125 °C  
1.0  
1.5  
2.2  
2.2  
3.3  
4.7  
4.7  
6.8  
10  
15  
15  
22  
33  
A
A
A
B
B
B
C
C
C
C
D
D
D
E
593D105(1)025A(2)  
0.5  
0.5  
0.6  
0.6  
0.8  
1.2  
1.2  
1.7  
2.5  
3.8  
3.8  
5.5  
8.3  
8.3  
11.8  
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4.000  
4.000  
4.000  
1.500  
1.500  
1.500  
0.525  
0.500  
0.450  
0.425  
0.250  
0.200  
0.200  
0.200  
0.200  
0.14  
0.14  
0.14  
0.24  
0.24  
0.24  
0.46  
0.47  
0.49  
0.51  
0.77  
0.87  
0.87  
0.91  
0.91  
593D155(1)025A(2)  
593D225(1)025A(2)  
593D225(1)025B(2)  
593D335(1)025B(2)  
593D475(1)025B(2)  
593D475(1)025C(2)  
593D685(1)025C(2)  
593D106(1)025C(2)  
593D156(1)025C(2)  
593D156(1)025D(2)  
593D226(1)025D(2)  
593D336(1)025D(2)  
593D336(1)025E(2)  
593D476(1)025E(2)  
33  
47  
E
35 VDC AT + 85 °C; 23 VDC AT + 125 °C  
593D474(1)035A(2)  
0.47  
0.68  
1.0  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
4.7  
6.8  
6.8  
10  
A
A
A
B
B
C
B
C
C
C
C
D
C
D
D
E
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.2  
1.6  
2.4  
2.4  
3.5  
3.5  
5.3  
5.3  
7.7  
7.7  
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4.000  
4.000  
4.000  
2.000  
2.000  
0.900  
2.000  
0.900  
0.700  
0.500  
0.475  
0.300  
0.450  
0.300  
0.300  
0.300  
0.300  
0.275  
0.14  
0.14  
0.14  
0.21  
0.21  
0.35  
0.21  
0.40  
0.45  
0.47  
0.48  
0.71  
0.49  
0.71  
0.71  
0.74  
0.71  
0.77  
593D684(1)035A(2)  
593D105(1)035A(2)  
593D105(1)035B(2)  
593D155(1)035B(2)  
593D155(1)035C(2)  
593D225(1)035B(2)  
593D225(1)035C(2)  
593D335(1)035C(2)  
593D475(1)035C(2)  
593D685(1)035C(2)  
593D685(1)035D(2)  
593D106(1)035C(2)  
593D106(1)035D(2)  
593D156(1)035D(2)  
593D156(1)035E(2)  
593D226(1)035D(2)  
593D226(1)035E(2)  
10  
15  
15  
22  
D
E
22  
50 VDC AT + 85 °C; 33 VDC AT + 125 °C  
1.0  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
6.8  
10  
B
C
B
C
C
D
C
D
D
E
593D105(1)050B(2)  
0.5  
0.5  
0.8  
0.8  
1.1  
1.1  
1.7  
1.7  
2.4  
1.9  
3.4  
3.4  
5.0  
5.0  
4
4
6
6
6
6
6
6
6
6
6
6
6
6
2.000  
1.600  
2.000  
1.500  
1.500  
0.800  
1.500  
0.800  
0.600  
0.600  
0.600  
0.550  
0.550  
0.550  
0.21  
0.26  
0.21  
0.27  
0.27  
0.43  
0.27  
0.43  
0.50  
0.50  
0.50  
0.55  
0.52  
0.55  
593D105(1)050C(2)  
593D155(1)050B(2)  
593D155(1)050C(2)  
593D225(1)050C(2)  
593D225(1)050D(2)  
593D335(1)050C(2)  
593D335(1)050D(2)  
593D475(1)050D(2)  
593D475(1)050E(2)  
593D685(1)050D(2)  
593D685(1)050E(2)  
593D106(1)050D(2)  
593D106(1)050E(2)  
D
E
D
E
10  
Note  
Part number definitions:  
(1) Tolerance: X0, X9, X5  
(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W  
Revision: 04-Jul-13  
Document Number: 40005  
6
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
593D  
Vishay Sprague  
www.vishay.com  
RECOMMENDED VOLTAGE DERATING GUIDELINES (for temperatures below + 85 °C)  
STANDARD CONDITIONS. FOR EXAMPLE: OUTPUT FILTERS  
Capacitor Voltage Rating  
Operating Voltage  
4.0  
2.5  
3.6  
6.0  
10  
12  
15  
24  
28  
6.3  
10  
16  
20  
25  
35  
50  
SEVERE CONDITIONS. FOR EXAMPLE: INPUT FILTERS  
Capacitor Voltage Rating  
Operating Voltage  
4.0  
6.3  
10  
16  
20  
25  
35  
50  
2.5  
3.3  
5.0  
8.0  
10  
12  
15  
24  
POWER DISSIPATION  
CASE CODE  
MAXIMUM PERMISSIBLE POWER DISSIPATION AT + 25 °C (W) IN FREE AIR  
A
B
C
D
E
0.075  
0.085  
0.110  
0.150  
0.165  
STANDARD PACKAGING QUANTITY  
UNITS PER REEL  
CASE CODE  
7" REEL  
2000  
2000  
500  
13" REEL  
9000  
A
B
C
D
E
8000  
3000  
500  
2500  
400  
1500  
PRODUCT INFORMATION  
Guide for Molded Tantalum Capacitors  
Pad Dimensions  
www.vishay.com/doc?40074  
www.vishay.com/doc?40135  
Packaging Dimensions  
Moisture Sensitivity  
SELECTOR GUIDES  
Solid Tantalum Selector Guide  
Solid Tantalum Chip Capacitors  
FAQ  
www.vishay.com/doc?49053  
www.vishay.com/doc?40091  
Frequently Asked Questions  
www.vishay.com/doc?40110  
Revision: 04-Jul-13  
Document Number: 40005  
7
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
Guide for Molded Tantalum Capacitors  
Rating for rating, tantalum capacitors tend to have as much  
as three times better capacitance/volume efficiency than  
aluminum electrolytic capacitors. An approximation of the  
capacitance/volume efficiency of other types of capacitors  
may be inferred from the following table, which shows the  
dielectric constant ranges of the various materials used in  
each type. Note that tantalum pentoxide has a dielectric  
constant of 26, some three times greater than that of  
aluminum oxide. This, in addition to the fact that extremely  
thin films can be deposited during the electrolytic process  
mentioned earlier, makes the tantalum capacitor extremely  
efficient with respect to the number of microfarads available  
per unit volume. The capacitance of any capacitor is  
determined by the surface area of the two conducting  
plates, the distance between the plates, and the dielectric  
constant of the insulating material between the plates.  
INTRODUCTION  
Tantalum electrolytic capacitors are the preferred choice in  
applications where volumetric efficiency, stable electrical  
parameters, high reliability, and long service life are primary  
considerations. The stability and resistance to elevated  
temperatures of the tantalum/tantalum oxide/manganese  
dioxide system make solid tantalum capacitors an  
appropriate choice for today's surface mount assembly  
technology.  
Vishay Sprague has been a pioneer and leader in this field,  
producing a large variety of tantalum capacitor types for  
consumer, industrial, automotive, military, and aerospace  
electronic applications.  
Tantalum is not found in its pure state. Rather, it is  
commonly found in a number of oxide minerals, often in  
combination with Columbium ore. This combination is  
known as “tantalite” when its contents are more than  
one-half tantalum. Important sources of tantalite include  
Australia, Brazil, Canada, China, and several African  
countries. Synthetic tantalite concentrates produced from  
tin slags in Thailand, Malaysia, and Brazil are also a  
significant raw material for tantalum production.  
Electronic applications, and particularly capacitors,  
consume the largest share of world tantalum production.  
Other important applications for tantalum include cutting  
tools (tantalum carbide), high temperature super alloys,  
chemical processing equipment, medical implants, and  
military ordnance.  
COMPARISON OF CAPACITOR  
DIELECTRIC CONSTANTS  
e
DIELECTRIC  
DIELECTRIC CONSTANT  
Air or Vacuum  
Paper  
1.0  
2.0 to 6.0  
2.1 to 6.0  
2.2 to 2.3  
2.7 to 2.8  
3.8 to 4.4  
4.8 to 8.0  
5.1 to 5.9  
5.4 to 8.7  
8.4  
Plastic  
Mineral Oil  
Silicone Oil  
Quartz  
Glass  
Vishay Sprague is a major user of tantalum materials in the  
form of powder and wire for capacitor elements and rod and  
sheet for high temperature vacuum processing.  
Porcelain  
Mica  
Aluminum Oxide  
Tantalum Pentoxide  
Ceramic  
THE BASICS OF TANTALUM CAPACITORS  
26  
Most metals form crystalline oxides which are  
non-protecting, such as rust on iron or black oxide on  
copper. A few metals form dense, stable, tightly adhering,  
electrically insulating oxides. These are the so-called  
“valve“metals and include titanium, zirconium, niobium,  
tantalum, hafnium, and aluminum. Only a few of these  
permit the accurate control of oxide thickness by  
electrochemical means. Of these, the most valuable for the  
electronics industry are aluminum and tantalum.  
Capacitors are basic to all kinds of electrical equipment,  
from radios and television sets to missile controls and  
automobile ignitions. Their function is to store an electrical  
charge for later use.  
12 to 400K  
In the tantalum electrolytic capacitor, the distance between  
the plates is very small since it is only the thickness of the  
tantalum pentoxide film. As the dielectric constant of the  
tantalum pentoxide is high, the capacitance of a tantalum  
capacitor is high if the area of the plates is large:  
eA  
t
------  
C =  
where  
C = Capacitance  
Capacitors consist of two conducting surfaces, usually  
metal plates, whose function is to conduct electricity. They  
are separated by an insulating material or dielectric. The  
dielectric used in all tantalum electrolytic capacitors is  
tantalum pentoxide.  
Tantalum pentoxide compound possesses high-dielectric  
strength and a high-dielectric constant. As capacitors are  
being manufactured, a film of tantalum pentoxide is applied  
to their electrodes by means of an electrolytic process. The  
film is applied in various thicknesses and at various voltages  
and although transparent to begin with, it takes on different  
colors as light refracts through it. This coloring occurs on the  
tantalum electrodes of all types of tantalum capacitors.  
e = Dielectric constant  
A = Surface area of the dielectric  
t = Thickness of the dielectric  
Tantalum capacitors contain either liquid or solid  
electrolytes. In solid electrolyte capacitors, a dry material  
(manganese dioxide) forms the cathode plate. A tantalum  
lead is embedded in or welded to the pellet, which is in turn  
connected to a termination or lead wire. The drawings show  
the construction details of the surface mount types of  
tantalum capacitors shown in this catalog.  
Revision: 27-Jun-12  
Document Number: 40074  
29  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
SOLID ELECTROLYTE TANTALUM CAPACITORS  
TANTALUM CAPACITORS FOR ALL DESIGN  
CONSIDERATIONS  
Solid electrolyte capacitors contain manganese dioxide,  
which is formed on the tantalum pentoxide dielectric layer  
by impregnating the pellet with a solution of manganous  
nitrate. The pellet is then heated in an oven, and the  
manganous nitrate is converted to manganese dioxide.  
Solid electrolyte designs are the least expensive for a given  
rating and are used in many applications where their very  
small size for a given unit of capacitance is of importance.  
They will typically withstand up to about 10 % of the rated  
DC working voltage in a reverse direction. Also important  
are their good low temperature performance characteristics  
and freedom from corrosive electrolytes.  
The pellet is next coated with graphite, followed by a layer  
of metallic silver, which provides a conductive surface  
between the pellet and the Leadframe.  
Vishay Sprague patented the original solid electrolyte  
capacitors and was the first to market them in 1956. Vishay  
Sprague has the broadest line of tantalum capacitors and  
has continued its position of leadership in this field. Data  
sheets covering the various types and styles of Vishay  
Sprague capacitors for consumer and entertainment  
electronics, industry, and military applications are available  
where detailed performance characteristics must be  
specified.  
Molded Chip tantalum capacitor encases the element in  
plastic resins, such as epoxy materials. After assembly, the  
capacitors are tested and inspected to assure long life and  
reliability. It offers excellent reliability and high stability for  
consumer and commercial electronics with the added  
feature of low cost  
Surface mount designs of “Solid Tantalum” capacitors use  
lead frames or lead frameless designs as shown in the  
accompanying drawings.  
MOLDED CHIP CAPACITOR, ALL TYPES EXCEPT 893D/TF3/T86  
Epoxy  
Encapsulation  
Silver  
Adhesive  
Anode  
Polarity Bar  
MnO2/Carbon/  
Silver Coating  
Solderable Anode  
Solderable  
Cathode  
Leadframe  
Termination  
Sintered  
Tantalum  
Termination  
MOLDED CHIP CAPACITOR WITH BUILT-IN FUSE, TYPES 893D/TF3/T86  
Epoxy Encapsulation  
Silver Adhesive  
Anode Polarity Bar  
Solderable Cathode  
Termination  
MnO2/Carbon/Silver  
Coating  
Sintered Tantalum  
Fusible  
Pellet  
Wire  
Solderable  
Anode Termination  
Lead Frame  
Revision: 27-Jun-12  
Document Number: 40074  
30  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
COMMERCIAL PRODUCTS  
SOLID TANTALUM CAPACITORS - MOLDED CASE  
793DE-793DX-  
CTC3-CTC4  
SERIES  
293D  
593D  
TR3  
TP3  
TL3  
PRODUCT IMAGE  
®
TYPE  
Surface mount TANTAMOUNT , molded case  
Standard  
industrial grade  
High performance,  
automotive grade  
FEATURES  
CECC approved  
Low ESR  
Low ESR  
Very low DCL  
TEMPERATURE  
RANGE  
- 55 °C to + 125 °C  
CAPACITANCE  
RANGE  
0.1 μF to 1000 μF 0.1 μF to 100 μF 1 μF to 470 μF  
0.47 μF to 1000 μF  
4 V to 63 V  
0.1 μF to 470 μF 0.1 μF to 470 μF  
VOLTAGE RANGE  
4 V to 63 V  
4 V to 50 V  
4 V to 50 V  
4 V to 50 V  
4 V to 50 V  
CAPACITANCE  
TOLERANCE  
10 %, 20 %  
0.005 CV or  
0.25 ꢀA,  
whichever is  
greater  
LEAKAGE  
CURRENT  
0.01 CV or 0.5 ꢀA, whichever is greater  
DISSIPATION  
FACTOR  
4 % to 30 %  
4 % to 6 %  
A, B, C, D  
4 % to 15 %  
A, B, C, D, E  
4 % to 30 %  
A, B, C, D, E, V, W  
4 % to 15 %  
A, B, C, D, E  
4 % to 15 %  
A, B, C, D, E  
CASE CODES  
TERMINATION  
A, B, C, D, E, V  
100 % matte tin standard, tin/lead available  
SOLID TANTALUM CAPACITORS - MOLDED CASE  
SERIES  
TH3  
TH4  
TH5  
893D  
TF3  
PRODUCT IMAGE  
®
TYPE  
Surface mount TANTAMOUNT , molded case  
High temperature  
+ 150 °C,  
automotive grade  
High temperature  
+ 175 °C,  
automotive grade  
Very high temperature  
+ 200 °C  
Built-in fuse,  
low ESR  
FEATURES  
Built-in fuse  
TEMPERATURE  
RANGE  
- 55 °C to + 150 °C  
- 55 °C to + 175 °C  
- 55 °C to + 200 °C  
- 55 °C to + 125 °C  
CAPACITANCE  
RANGE  
VOLTAGE RANGE  
0.33 μF to 220 μF  
6.3 V to 50 V  
10 μF to 47 μF  
6.3 V to 16 V  
10 μF  
0.47 μF to 680 μF  
4 V to 50 V  
0.47 μF to 470 μF  
4 V to 50 V  
21 V  
CAPACITANCE  
TOLERANCE  
10 %, 20 %  
LEAKAGE  
CURRENT  
0.01 CV or 0.5 ꢀA, whichever is greater  
DISSIPATION  
FACTOR  
4 % to 8 %  
A, B, C, D, E  
4.5 % to 6 %  
6 %  
E
6 % to 15 %  
C, D, E  
6 % to 15 %  
C, D, E  
CASE CODES  
B, C  
100 % matte tin  
standard, tin/lead and  
gold plated available  
TERMINATION  
100 % matte tin  
Gold plated  
100 % matte tin standard, tin/lead available  
Revision: 27-Jun-12  
Document Number: 40074  
31  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
HIGH RELIABILITY PRODUCTS  
SOLID TANTALUM CAPACITORS - MOLDED CASE  
SERIES  
T83  
T86  
CWR11  
04053  
95158  
PRODUCT IMAGE  
®
®
TANTAMOUNT , molded case,  
Hi-Rel. COTS  
TANTAMOUNT , molded case,  
DLA approved  
TYPE  
High reliability,  
High reliability,  
built-in fuse,  
MIL-PRF-55365/8  
qualified  
FEATURES  
standard and  
Built-in fuse  
Low ESR  
standard and  
low ESR  
low ESR  
TEMPERATURE  
RANGE  
- 55 °C to + 125 °C  
CAPACITANCE  
RANGE  
0.1 μF to 470 μF 0.47 μF to 330 μF  
4 V to 63 V  
0.1 μF to 100 μF  
0.47 μF to 470 μF  
4 V to 50 V  
4.7 μF to 220 μF  
10 %, 20 %  
VOLTAGE RANGE  
CAPACITANCE  
TOLERANCE  
5 %, 10 %,  
20 %  
10 %, 20 %  
20 %  
LEAKAGE CURRENT  
DISSIPATION FACTOR  
CASE CODES  
0.01 CV or 0.5 ꢀA, whichever is greater  
4 % to 15 %  
A, B, C, D, E  
6 % to 16 %  
C, D, E  
4 % to 6 %  
A, B, C, D  
4 % to 8 %  
4 % to 12 %  
C, D, E  
C, D, E  
Tin/lead  
solder plated;  
gold plated  
100 % matte tin; tin/lead;  
tin/lead solder fused  
Tin/lead;  
tin/lead solder fused  
Tin/lead  
solder plated  
TERMINATION  
Revision: 27-Jun-12  
Document Number: 40074  
32  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
PLASTIC TAPE AND REEL PACKAGING in inches [millimeters]  
0.157 0.004  
[4.0 0.10]  
10 pitches cumulative  
tolerance on tape  
0.008 [0.200]  
Tape thickness  
0.014  
[0.35]  
MAX.  
Deformation  
between  
embossments  
0.059 + 0.004 - 0.0  
[1.5 + 0.10 - 0.0]  
0.069 0.004  
[1.75 0.10]  
0.079 0.002  
Embossment  
[2.0 0.05]  
Top  
cover  
tape  
A0  
20°  
0.030 [0.75]  
MIN. (Note 3)  
F
W
Maximum  
component  
rotation  
B1 MAX.  
(Note 6)  
K0  
B0  
Top  
0.030 [0.75]  
cover  
tape  
MIN. (Note 4)  
(Side or front sectional view)  
0.004 [0.1]  
MAX.  
Center lines  
of cavity  
P1  
For tape feeder  
reference only  
including draft.  
Concentric around B  
(Note 5)  
D
1 MIN. for components  
0.079 x 0.047 [2.0 x 1.2] and larger.  
(Note 5)  
USER DIRECTION OF FEED  
Maximum  
cavity size  
(Note 1)  
0
Cathode (-)  
Anode (+)  
Direction of Feed  
Tape and Reel Specifications: All case sizes are available  
on plastic embossed tape per EIA-481. Standard reel  
diameter is 7" [178 mm], 13" [330 mm] reels are available and  
recommended as the most cost effective packaging method.  
3.937 [100.0]  
0.039 [1.0]  
MAX.  
20° maximum  
component rotation  
Typical  
component  
cavity  
Tape  
B0  
0.039 [1.0]  
MAX.  
The most efficient packaging quantities are full reel  
increments on a given reel diameter. The quantities shown  
allow for the sealed empty pockets required to be in  
conformance with EIA-481. Reel size and packaging  
orientation must be specified in the Vishay Sprague part  
number.  
center line  
0.9843 [250.0]  
Typical  
component  
center line  
Camber  
(top view)  
A0  
Allowable camber to be 0.039/3.937 [1/100]  
non-cumulative over 9.843 [250.0]  
(Top view)  
Notes  
(1)  
Metric dimensions will govern. Dimensions in inches are rounded and for reference only.  
A0, B0, K0, are determined by the maximum dimensions to the ends of the terminals extending from the component body and/or the body  
dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the  
cavity (A0, B0, K0) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent  
rotation of the component within the cavity of not more than 20°.  
(2)  
(3)  
(4)  
(5)  
(6)  
Tape with components shall pass around radius “R” without damage. The minimum trailer length may require additional length to provide  
“R” minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum.  
This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed  
cavities or to the edge of the cavity whichever is less.  
This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier  
tape between the embossed cavity or to the edge of the cavity whichever is less.  
The embossed hole location shall be measured from the sprocket hole controlling the location of the embossement. Dimensions of  
embossement location shall be applied independent of each other.  
B1 dimension is a reference dimension tape feeder clearance only.  
CASE  
CODE  
TAPE  
SIZE  
B1  
(MAX.)  
D1  
(MIN.)  
K0  
(MAX.)  
F
P1  
W
293D - 593D - 893D - TR3 - TH3 - TF3 - TP3 - 793DE/793DX/CTC3/CTC4  
A
B
C
D
E
0.165  
[4.2]  
0.039  
[1.0]  
0.138 0.002  
[3.5 0.05]  
0.094  
[2.4]  
0.157 0.004  
[4.0 1.0]  
0.315 0.012  
[8.0 0.30]  
8 mm  
0.32  
[8.2]  
0.059  
[1.5]  
0.217 0.00  
[5.5 0.05]  
0.177  
[4.5]  
0.315 0.004  
[8.0 1.0]  
0.472 0.012  
[12.0 0.30]  
12 mm  
V
W
Revision: 27-Jun-12  
Document Number: 40074  
33  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
RECOMMENDED REFLOW PROFILES  
Capacitors should withstand Reflow profile as per J-STD-020 standard  
Tp  
TC = 5 °C  
tp  
Max. ramp-up rate = 3 °C/s  
Max. ramp-down rate = 6 °C/s  
TL  
tL  
Ts max.  
Preheat area  
Ts min.  
ts  
25  
Time 25 °C to peak  
TIME (s)  
PROFILE FEATURE  
Preheat/soak  
SnPb EUTECTIC ASSEMBLY  
LEAD (Pb)-FREE ASSEMBLY  
Temperature min. (Ts min.  
)
100 °C  
150 °C  
150 °C  
200 °C  
Temperature max. (Ts max.  
)
Time (ts) from (Ts min. to Ts max.  
Ramp-up  
)
60 s to 120 s  
60 s to 120 s  
Ramp-up rate (TL to Tp)  
Liquidous temperature (TL)  
Time (tL) maintained above TL  
3 °C/s max.  
183 °C  
3 °C/s max.  
217 °C  
60 s to 150 s  
60 s to 150 s  
Peak package body temperature (Tp)  
Depends on case size - see table below  
Time (tp) within 5 °C of the specified  
classification temperature (TC)  
20 s  
30 s  
Time 25 °C to peak temperature  
Ramp-down  
6 min max.  
8 min max.  
Ramp-down rate (Tp to TL)  
6 °C/s max.  
6 °C/s max.  
PEAK PACKAGE BODY TEMPERATURE (Tp)  
PEAK PACKAGE BODY TEMPERATURE (Tp)  
CASE CODE  
SnPb EUTECTIC PROCESS  
235 °C  
220 °C  
LEAD (Pb)-FREE PROCESS  
260 °C  
250 °C  
A, B, C, V  
D, E, W  
PAD DIMENSIONS in inches [millimeters]  
D
C
B
A
A
B
C
D
CASE CODE  
(MIN.)  
(NOM.)  
(NOM.)  
(NOM.)  
293D - 593D - 893D - TR3 - TL3 - TH3 - TH4 - TH5 - TF3 - TP3 - 793DE/793DX/CTC3/CTC4 - T83 - T86 - CWR11 - 95158 - 04053  
A
B
C
D
E
0.071 [1.80]  
0.118 [3.00]  
0.118 [3.00]  
0.157 [4.00]  
0.157 [4.00]  
0.157 [4.00]  
0.185 [4.70]  
0.067 [1.70]  
0.071 [1.80]  
0.094 [2.40]  
0.098 [2.50]  
0.098 [2.50]  
0.098 [2.50]  
0.098 [2.50]  
0.053 [1.35]  
0.065 [1.65]  
0.118 [3.00]  
0.150 [3.80]  
0.150 [3.80]  
0.150 [3.80]  
0.150 [3.80]  
0.187 [4.75]  
0.207 [5.25]  
0.307 [7.80]  
0.346 [8.80]  
0.346 [8.80]  
0.346 [8.80]  
0.346 [8.80]  
V
W
Revision: 27-Jun-12  
Document Number: 40074  
34  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
GUIDE TO APPLICATION  
1.  
AC Ripple Current: The maximum allowable ripple  
6.  
Printed Circuit Board Materials: Molded capacitors  
are compatible with commonly used printed circuit  
board materials (alumina substrates, FR4, FR5, G10,  
PTFE-fluorocarbon and porcelanized steel).  
current shall be determined from the formula:  
P
IRMS  
=
------------  
RESR  
7.  
Attachment:  
where,  
P =  
7.1  
Solder Paste: The recommended thickness of the  
solder paste after application is 0.007"  
Power dissipation in W at + 25 °C as given in  
the tables in the product datasheets (Power  
Dissipation).  
0.001"  
[0.178 mm 0.025 mm]. Care should be exercised in  
selecting the solder paste. The metal purity should be  
as high as practical. The flux (in the paste) must be  
active enough to remove the oxides formed on the  
metallization prior to the exposure to soldering heat. In  
practice this can be aided by extending the solder  
preheat time at temperatures below the liquidous  
state of the solder.  
RESR = The capacitor equivalent series resistance at  
the specified frequency  
2.  
AC Ripple Voltage: The maximum allowable ripple  
voltage shall be determined from the formula:  
VRMS = IRMS x Z  
7.2  
Soldering: Capacitors can be attached by  
conventional soldering techniques; vapor phase,  
convection reflow, infrared reflow, wave soldering,  
and hot plate methods. The soldering profile charts  
show recommended time/temperature conditions for  
soldering. Preheating is recommended. The  
recommended maximum ramp rate is 2 °C per s.  
or, from the formula:  
P
RESR  
VRMS = Z ------------  
where,  
P =  
Power dissipation in W at + 25 °C as given in  
the tables in the product datasheets (Power  
Dissipation).  
Attachment with  
a
soldering iron is not  
recommended due to the difficulty of controlling  
temperature and time at temperature. The soldering  
iron must never come in contact with the capacitor.  
RESR = The capacitor equivalent series resistance at  
the specified frequency  
7.2.1 Backward and Forward Compatibility: Capacitors  
with SnPb or 100 % tin termination finishes can be  
soldered using SnPb or lead (Pb)-free soldering  
processes.  
Z =  
The capacitor impedance at the specified  
frequency  
2.1  
2.2  
The sum of the peak AC voltage plus the applied DC  
voltage shall not exceed the DC voltage rating of the  
capacitor.  
8.  
Cleaning (Flux Removal) After Soldering: Molded  
capacitors are compatible with all commonly used  
solvents such as TES, TMS, Prelete, Chlorethane,  
Terpene and aqueous cleaning media. However,  
CFC/ODS products are not used in the production of  
these devices and are not recommended. Solvents  
containing methylene chloride or other epoxy  
solvents should be avoided since these will attack  
the epoxy encapsulation material.  
The sum of the negative peak AC voltage plus the  
applied DC voltage shall not allow a voltage reversal  
exceeding 10 % of the DC working voltage at  
+ 25 °C.  
Reverse Voltage: Solid tantalum capacitors are not  
intended for use with reverse voltage applied.  
However, they have been shown to be capable of  
withstanding momentary reverse voltage peaks of up  
to 10 % of the DC rating at 25 °C and 5 % of the DC  
rating at + 85 °C.  
3.  
4.  
8.1  
9.  
When using ultrasonic cleaning, the board may  
resonate if the output power is too high. This  
vibration can cause cracking or a decrease in the  
adherence of the termination. DO NOT EXCEED 9W/l  
at 40 kHz for 2 min.  
Temperature Derating: If these capacitors are to be  
operated at temperatures above + 25 °C, the  
permissible RMS ripple current or voltage shall be  
calculated using the derating factors as shown:  
Recommended Mounting Pad Geometries: Proper  
mounting pad geometries are essential for  
successful solder connections. These dimensions  
are highly process sensitive and should be designed  
to minimize component rework due to unacceptable  
solder joints. The dimensional configurations shown  
are the recommended pad geometries for both wave  
and reflow soldering techniques. These dimensions  
are intended to be a starting point for circuit board  
designers and may be fine tuned if necessary based  
upon the peculiarities of the soldering process  
and/or circuit board design.  
TEMPERATURE  
+ 25 °C  
DERATING FACTOR  
1.0  
0.9  
0.4  
+ 85 °C  
+ 125 °C  
5.  
Power Dissipation: Power dissipation will be  
affected by the heat sinking capability of the  
mounting surface. Non-sinusoidal ripple current may  
produce heating effects which differ from those  
shown. It is important that the equivalent IRMS value  
be established when calculating permissible  
operating levels. (Power dissipation calculated using  
+ 25 °C temperature rise).  
Revision: 27-Jun-12  
Document Number: 40074  
35  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Typical Performance Characteristics  
www.vishay.com  
Vishay Sprague  
Typical Performance Characteristics Tantalum Capacitors  
CAPACITOR ELECTRICAL PERFORMANCE CHARACTERISTICS  
ITEM  
PERFORMANCE CHARACTERISTICS  
Category temperature range  
Capacitance tolerance  
Dissipation factor  
ESR  
- 55 °C to + 85 °C (to + 125 °C with voltage derating)  
20 %, 10 % (at 120 Hꢀ) 2 VRMS (max.) at + 25 °C using a capacitance bridge  
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hꢀ  
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHꢀ  
Leakage current  
After application of rated voltage applied to capacitors for 5 min using a steady source of power with  
1 kresistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or  
0.5 μA, whichever is greater. Note that the leakage current varies with temperature and applied voltage.  
See graph below for the appropriate adjustment factor.  
Capacitance change by  
temperature  
For capacitance value > 300 μF  
+ 12 % max. (at + 125 °C)  
+ 10 % max. (at + 85 °C)  
- 10 % max. (at - 55 °C)  
+ 20 % max. (at + 125 °C)  
+ 15 % max. (at + 85 °C)  
- 15 % max. (at - 55 °C)  
Reverse voltage  
Capacitors are capable of withstanding peak voltages in the reverse direction equal to:  
10 % of the DC rating at + 25 °C  
5 % of the DC rating at + 85 °C  
Vishay does not recommend intentional or repetitive application of reverse voltage  
Temperature derating  
If capacitors are to be used at temperatures above + 25 °C, the permissible RMS ripple current or voltage  
shall be calculated using the derating factors:  
1.0 at + 25 °C  
0.9 at + 85 °C  
0.4 at + 125 °C  
Operating temperature  
+ 85 °C  
+ 125 °C  
SURGE VOLTAGE  
RATED VOLTAGE  
(V)  
SURGE VOLTAGE  
(V)  
RATED VOLTAGE  
(V)  
(V)  
3.4  
5
4
6.3  
10  
5.2  
8
2.7  
4
13  
20  
26  
32  
46  
65  
60  
76  
7
8
16  
10  
13  
17  
23  
33  
33  
42  
12  
16  
20  
28  
40  
40  
50  
20  
25  
35  
50  
50 (1)  
63  
Notes  
(1)  
All information presented in this document reflects typical performance characteristics  
Capacitance values 15 μF and higher  
Revision: 27-Feb-13  
Document Number: 40088  
21  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Typical Performance Characteristics  
www.vishay.com  
Vishay Sprague  
TYPICAL LEAKAGE CURRENT FACTOR RANGE  
100  
+ 125 °C  
+ 150 °C  
+ 85 °C  
+ 55 °C  
10  
+ 25 °C  
0 °C  
1.0  
0.1  
- 55 °C  
0.01  
0.001  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Percent of Rated Voltage  
Notes  
At + 25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.  
At + 85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.  
At + 125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.  
CAPACITOR PERFORMANCE CHARACTERISTICS  
ITEM  
PERFORMANCE CHARACTERISTICS  
Surge voltage  
Post application of surge voltage (as specified in the table above) in series with a 33 resistor at the rate of 30 s  
ON, 30 s OFF, for 1000 successive test cycles at 85 °C, capacitors meet the characteristics requirements listed  
below.  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
Surge current  
After subjecting parts in series with a 1 resistor at the rate of 3 s CHARGE, 3 s DISCHARGE, and a cap bank of  
100K μF for 3 successive test cycles at 25 °C, capacitors meet the characteristics requirements listed below.  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
Life test at + 85 °C  
Life test at + 125 °C  
Capacitors meet the characteristic requirements listed below. After 2000 h application of rated voltage at 85 °C.  
Capacitance change  
Leakage current  
Within 10 % of initial value  
Shall not exceed 125 % of initial value  
Capacitors meet the characteristic requirements listed below. After 1000 h application 2/3 of rated voltage at 125 °C.  
Capacitance change  
for parts with cap. 600 μF  
for parts with cap. > 600 μF  
Leakage current  
Within 10 % of initial value  
Within 20 % of initial value  
Shall not exceed 125 % of initial value  
Revision: 27-Feb-13  
Document Number: 40088  
22  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Typical Performance Characteristics  
www.vishay.com  
Vishay Sprague  
CAPACITOR ENVIRONMENTAL CHARACTERISTICS  
ITEM  
CONDITION  
ENVIRONMENTAL CHARACTERISTICS  
Humidity tests  
At 40 °C/90 % RH 1000 h, no voltage applied.  
Capacitance change  
Cap. 600 μF  
Cap. > 600 μF  
Dissipation factor  
Within 10 % of initial value  
Within 20 % of initial value  
Not to exceed 150 % of initial  
+ 25 °C requirement  
Temperature cycles  
Moisture resistance  
Thermal shock  
At - 55 °C/+ 125 °C, 30 min each, for 5 cycles.  
Capacitance change  
Cap. 600 μF  
Within 10 % of initial value  
Within 20 % of initial value  
Initial specified value or less  
Initial specified value or less  
Cap. > 600 μF  
Dissipation factor  
Leakage current  
MIL-STD-202, method 106 at rated voltage,  
42 cycles.  
Capacitance change  
Cap. 600 μF  
Cap. > 600 μF  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Within 20 % of initial value  
Initial specified value or less  
Initial specified value or less  
Capacitors are subjected to 5 cycles of the  
following:  
- 55 °C (+ 0 °C, - 5 °C) for 30 min, then  
+ 25 °C (+ 10 °C, - 5 °C) for 5 min, then  
+ 125 °C (+ 3 °C, - 0 °C) for 30 min, then  
+ 25 °C (+ 10 °C, - 5 °C) for 5 min  
Capacitance change  
Cap. 600 μF  
Cap. > 600 μF  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Within 20 % of initial value  
Initial specified value or less  
Initial specified value or less  
MECHANICAL PERFORMANCE CHARACTERISTICS  
TEST CONDITION  
CONDITION  
POST TEST PERFORMANCE  
Shear test  
Apply a pressure load of 5 N for 10 s  
horiꢀontally to the center of capacitor side body.  
1 s  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Substrate bend  
Vibration  
With parts soldered onto substrate test board,  
apply force to the test board for a deflection  
of 3 mm, for a total of 3 bends at a rate of 1 mm/s.  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
MIL-STD-202, method 204, condition D, 10 Hꢀ to  
2000 Hꢀ, 20 g peak  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Shock  
MIL-STD-202, method 213B shock (specified  
pulse), condition I, 100 g peak  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Resistance to solder heat  
Solderability  
Recommended reflow profiles temperatures  
and durations are located within the Capacitor  
Series Guides  
Pb-free and lead-bearing series caps are  
backward and forward compatible  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
MIL-STD-2002, method 208, ANSI/J-STD-002,  
test B. Applies only to solder and tin plated  
terminations.  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
Does not apply to gold terminations.  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Resistance to solvents  
MIL-STD-202, method 215  
Capacitance change  
Dissipation factor  
Leakage current  
Within 10 % of initial value  
Initial specified value or less  
Initial specified value or less  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Flammability  
Encapsulent materials meet UL 94 V-0 with an  
oxygen index of 32 %.  
Revision: 27-Feb-13  
Document Number: 40088  
23  
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please  
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Material Category Policy  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the  
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council  
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment  
(EEE) - recast, unless otherwise specified as non-compliant.  
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that  
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free  
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference  
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21  
conform to JEDEC JS709A standards.  
Revision: 02-Oct-12  
Document Number: 91000  
1

相关型号:

593D1071020E2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D10716R3B2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D10716R3C2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D10716R3D2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D107X0010A2TE3

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY

593D107X0010A2WE3

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY

593D107X0010A8T

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY

593D107X0010A8W

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY

593D107X0010B2TE3

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY

593D107X0010B2WE3

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY

593D107X0010B8T

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY

593D107X0010B8W

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® , Molded Case, Low ESR
VISHAY