5962-906021MRC [VISHAY]

4-/8-Channel Wideband Video Multiplexers; 4- / 8通道宽带视频多路复用器
5962-906021MRC
型号: 5962-906021MRC
厂家: VISHAY    VISHAY
描述:

4-/8-Channel Wideband Video Multiplexers
4- / 8通道宽带视频多路复用器

复用器 开关 复用器或开关 信号电路 CD
文件: 总16页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DG534A/538A  
Vishay Siliconix  
4-/8-Channel Wideband Video Multiplexers  
FEATURES  
BENEFITS  
APPLICATIONS  
D Wide Bandwidth: 500 MHz  
D Improved System Bandwidth  
D Improved Channel Off-Isolation  
D Wideband Signal Routing and  
Multiplexing  
D Very Low Crosstalk: –97 dB @ 5 MHz  
D Video Switchers  
D ATE Systems  
D On-Board TTL-Compatible Latches with D Simplified Logic Interfacing  
Readback  
D High-Speed Readback  
D Optional Negative Supply  
D Infrared Imaging  
D Allows Bipolar Signal Swings  
D Reduced Insertion Loss  
D Ultrasound Imaging  
D Low rDS(on): 45  
D Single-Ended or Differential Operation  
D Latch-up Proof  
D Allows Differential Signal Switching  
DESCRIPTION  
The DG534A is a digitally selectable 4-channel or dual  
2-channel multiplexer. The DG538A is an 8-channel or dual  
4-channel multiplexer. On-chip TTL-compatible address  
decoding logic and latches with data readback are included to  
simplify the interface to a microprocessor data bus. The low  
on-resistance and low capacitance of the these devices make  
them ideal for wideband data multiplexing and video and audio  
signal routing in channel selectors and crosspoint arrays. An  
optional negative supply pin allows the handling of bipolar  
signals without dc biasing.  
The DG534A/DG538A are built on a D/CMOS process that  
combines n-channel DMOS switching FETs with low-power  
CMOS control logic, drivers and latches. The low-capacitance  
DMOS FETs are connected in a “T” configuration to achieve  
extremely high levels of off isolation. Crosstalk is reduced to  
–97 dB at 5 MHz by including a ground line between adjacent  
signal paths. An epitaxial layer prevents latch-up.  
For more information refer to Vishay Siliconix applications  
note AN502.  
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION  
DG534ADJ  
Dual-In-Line  
DG534ADN  
PLCC  
GND  
NC  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
D
A
D
B
3
2
1
20 19  
V+  
V–  
3
S
4
5
6
7
8
18  
17  
16  
15  
14  
S
B1  
A1  
S
A1  
S
B1  
4
GND  
GND  
GND  
GND  
5
S
A2  
S
B2  
V
L
S
A2  
S
B2  
6
4/2  
RS  
4/2  
RS  
V
L
7
NC  
Latch/Drivers  
I/O  
EN  
8
Latches/Drivers  
Top View  
WR  
9
9
10 11 12 13  
A
1
A
0
10  
Top View  
Document Number: 70069  
S-05734—Rev. G, 29-Jan-02  
www.vishay.com  
1
DG534A/538A  
Vishay Siliconix  
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION  
DG538ADJ  
Dual-In-Line  
DG538ADN  
PLCC  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
D
B
D
A
V–  
3
V+  
S
B1  
4
3
2
1 28 27 26  
4
S
A1  
GND  
5
GND  
S
B2  
5
6
25  
24  
23  
22  
21  
20  
19  
GND  
GND  
6
S
A2  
S
B2  
S
A2  
GND  
7
GND  
GND  
7
GND  
S
B3  
8
S
A3  
S
B3  
8
S
A3  
GND  
9
GND  
GND  
9
GND  
S
B4  
V
L
10  
11  
S
A4  
S
V
B4  
10  
11  
12  
13  
14  
S
A4  
8/4  
L
Latch/Drivers  
8/4  
RS  
I/O  
EN  
12 13 14 15 16 17 18  
Latch/Drivers  
Top View  
WR  
A
0
1
A
2
A
Top View  
TRUTH TABLE Ċ DG534A  
I/O  
A1  
A0  
EN  
WR  
RS  
4/2a  
On Switch  
X
X
X
0
0
0
0
0
0
1
X
X
X
0
X
X
X
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
Maintains previous state  
X
X
0
0
0
0
0
0
0
1
X
None (latches cleared)  
None  
X
X
0
0
S
A1  
S
A2  
S
B1  
S
B2  
S
A1  
S
A2  
0
1
0
D
and D may be  
B
A
connected externally  
1
0
0
Latches Transparent  
1
1
0
X
X
0
1
1
1
and S  
and S  
B1  
B2  
Note b  
Note c  
Logic 0= V v 0.8 V  
AL  
Logic 1= V w 2.4 V  
AH  
X = Dont Care  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
2
DG534A/538A  
Vishay Siliconix  
TRUTH TABLE Ċ DG538A  
I/O  
A2  
A1  
A0  
EN  
WR  
RS  
8/4a  
On Switch  
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
X
X
X
0
0
0
0
1
1
1
1
X
X
X
X
X
X
X
0
0
1
1
0
0
1
1
0
0
1
1
X
X
X
0
1
0
1
0
1
0
1
0
1
0
1
X
X
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Maintains previous state  
None (latches cleared)  
None  
X
0
0
0
0
0
0
0
0
0
0
0
0
0
1
X
X
0
S
A1  
S
A2  
S
A3  
S
A4  
S
B1  
S
B2  
S
B3  
S
B4  
S
A1  
S
A2  
S
A3  
S
A4  
0
0
0
D
and D should be  
B
A
connected externally  
0
0
Latches Transparent  
0
0
1
and S  
and S  
and S  
and S  
B1  
B2  
B3  
B4  
1
1
1
Note b  
Note c  
Logic 0= V v 0.8 V  
AL  
Logic 1= V w 2 V  
AH  
X = Dont Care  
Notes:  
a. Connect D and D together externally for single-ended operation.  
A
B
b. With I/O high, A and EN pins become outputs and reflect latch contents. See timing diagrams for more detail.  
n
c. 8/4 can be either 1or 0but should not change during these operations.  
ORDERING INFORMATION  
Temperature Range  
DG534A  
Package  
Part Number  
20-Pin Plastic DIP  
20-Pin PLCC  
DG534ADJ  
40 to 85_C  
DG534ADN  
55 to 125_C  
20-Pin Sidebraze  
DG534AAP/883, 5962-906021MRC  
DG538A  
28-Pin Plastic DIP  
28-Pin PLCC  
DG538ADJ  
40 to 85_C  
DG538ADN  
55 to 125_C  
28-Pin Sidebraze  
DG538AAP/883, 5962-8976001MXA  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
3
DG534A/538A  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
V+ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +21 V  
V+ to V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +21 V  
Vto GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V to +0.3 V  
Storage Temperature  
(A Suffix) . . . . . . . . . . . . . . . . . . . 65 to 150_C  
(D Suffix) . . . . . . . . . . . . . . . . . . . 65 to 125_C  
a
Power Dissipation (Package)  
b
Plastic DIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 mW  
V
L
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to (V+) + 0.3 V  
c
PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (V) 0.3 V to (V ) + 0.3 V  
L
d
Sidebraze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200 mW  
or 20 mA, whichever occurs first  
Notes:  
V , V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (V) 0.3 V to (V) + 14 V  
S
D
a. All leads soldered or welded to PC board.  
b. Derate 8.3 mW/_C above 75_C.  
c. Derate 6 mW/_C above 75_C.  
d. Derate 16 mW/_C above 75_C.  
or 20 mA, whichever occurs first  
Current (any terminal) Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Current(S or D) Pulsed l ms 10% Duty . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
A Suffix  
55 to 125_C  
Mind Maxd Mind Maxd Unit  
D Suffix  
40 to 85_C  
V+ = 15 V, V= 3 V, V = 5 V  
L
Parameter  
Symbol  
Tempb Typc  
WR = 0.8 V, RS, EN= 2 V  
Analog Switch  
g
Analog Signal Range  
V
V= 5 V  
Full  
5  
8
5  
8
V
ANALOG  
Drain-Source  
On-Resistance  
Room  
Full  
45  
90  
120  
90  
120  
r
DS(on)  
I
V
= 10 mA, V = 0 V  
S
S
= 0.8 V, V  
= 2 V  
AIL  
AIH  
Resistance Match  
Between Channels  
Sequence Each Switch On  
r
Room  
9
9
DS(on)  
Source Off  
Leakage Current  
Room  
Full  
0.05  
0.1  
5  
50  
5
50  
5  
50  
5
50  
I
I
V
S
V
S
= 8 V, V = 0 V, EN = 0.8 V  
D
S(off)  
Drain Off  
Leakage Current  
Room  
Full  
20  
500  
20  
500  
20  
100  
20  
100  
= 0 V, V = 8 V, EN = 0.8 V  
D
nA  
D(off)  
Drain On  
Leakage Current  
Room  
Full  
0.1  
20  
1000  
20  
1000  
20  
200  
20  
200  
I
V = V = 8 V  
S D  
D(on)  
Digital Control  
Input Voltage High  
Input Voltage Low  
V
Full  
Full  
2
2
AIH  
V
V
0.8  
0.8  
AIL  
Room  
Full  
0.1  
1  
10  
1
10  
1  
10  
1
10  
Address Input Current  
Address Output Current  
I
V
AI  
= 0 V, or 2 V or 5 V  
A
AI  
V
= 2.7 V  
= 0.4 V  
Room  
Room  
21  
2.5  
2.5  
AO  
I
mA  
AO  
V
3.5  
2.5  
2.5  
AO  
Dynamic Characteristics  
PLCC  
DIP  
Room  
Room  
Room  
Room  
Room  
Room  
28  
31  
3
40  
45  
5
40  
45  
4
On State Input  
Capacitance  
C
S(on)  
C
S(off)  
C
D(off)  
See Figure 11  
See Figure 12  
g
PLCC  
DIP  
Off State Input  
pF  
g
Capacitance  
4
5
PLCC  
DIP  
6
10  
8
Off State Output  
g
Capacitance  
8
10  
Room  
Full  
160  
300  
500  
300  
500  
Transition Time  
t
TRANS  
See Figure 4  
Break-Before-Make  
Interval  
Room  
Full  
80  
50  
25  
50  
25  
t
OPEN  
ns  
Room  
Full  
150  
105  
70  
300  
500  
300  
500  
EN, WR Turn On Time  
t
See Figure 2 and 3  
ON  
Room  
Full  
175  
300  
175  
300  
EN, Turn Off Time  
Charge Injection  
t
See Figure 2  
See Figure 5  
OFF  
Qi  
Room  
pC  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
4
DG534A/538A  
Vishay Siliconix  
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
A Suffix  
55 to 125_C  
D Suffix  
40 to 85_C  
V+ = 15 V, V= 3 V, V = 5 V  
L
Parameter  
Symbol  
Tempb Typc  
Mind Maxd Mind Maxd Unit  
WR = 0.8 V, RS, EN= 2 V  
Dynamic Characteristics (Cont’d)  
R
L
= 75 ꢀ ꢃ f = 5 MHz  
EN = 0.8 V  
See Figure 8  
PLCC  
DIP  
Room  
Room  
75  
65  
f
Chip Disabled Crosstalk  
X
TALK(CD)  
R
= 10 ꢀ  
= 10 kꢀ  
IN  
PLCC  
DIP  
Room  
Room  
97  
87  
R
L
f = 5 MHz  
SeeFigure 9  
f
Adjacent Input Crosstalk  
X
TALK(AI)  
R
R
= 75 , R = 75 ꢀ  
f = 5 MHz  
See Figure 7  
PLCC  
DIP  
Room  
Room  
80  
70  
IN  
L
R
IN  
= 10 ꢀ  
dB  
PLCC  
DIP  
Room  
Room  
77  
72  
R
L
= 10 kꢀ  
f = 5 MHz  
See Figure 7  
All Hostile Crosstalk  
Differential Crosstalk  
X
TALK(AH)  
= 75 , R = 75 ꢀ  
PLCC  
DIP  
Room  
Room  
77  
72  
IN  
L
f = 5 MHz  
See Figure 7  
R
IN  
= 10 , R = 10 kꢀ  
L
Room  
84  
f = 5 MHz, See Figure 10  
X
TALK(DIFF)  
R
IN  
= R = 75 ꢀ  
L
Room  
Room  
84  
f = 5 MHz, See Figure 10  
Bandwidth  
BW  
R
L
= 50 , See Figure 6  
500  
MHz  
Power Supplies  
Positive Supply Current  
Room  
Full  
0.6  
0.6  
2
5
2
5
I+  
Any One Channel Selected with Ad-  
dress Inputs at GND or 5 V  
mA  
Room  
Full  
1.8  
2  
1.8  
2  
Negative Supply Current  
I–  
V+ to V–  
Vto GND  
V+ to GND  
Full  
Full  
Full  
Full  
10  
5.5  
10  
21  
0
10  
5.5  
10  
21  
0
Functional Check of  
Maximum Operating  
Supply Voltage Range  
Functional Test Only  
V
21  
500  
21  
500  
Logic Supply Current  
Timing  
I
L
150  
A
Room  
Full  
22  
60  
Reset to Write  
t
RW  
50  
200  
100  
50  
50  
200  
100  
50  
WR, RS  
Minimum Pulse Width  
Room  
Full  
t
MPW  
A , A , EN  
Room  
Full  
20  
0
1
t
t
DW  
WD  
Data Valid to Strobe  
See Figure 1  
ns  
A , A , EN  
Room  
Full  
20  
0
1
Data Valid after Strobe  
e
Address Bus Tri-State  
Address Bus Output  
Address Bus Input  
t
Room  
Room  
Room  
25  
95  
AZ  
t
AO  
t
110  
AI  
Notes:  
a. Refer to PROCESS OPTION FLOWCHART.  
b. Room = 25_C, Full = as determined by the operating temperature suffix.  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.  
e. Defined by system bus requirements.  
f.  
Each individual pin shown as GND must be grounded.  
g. Guaranteed by design, not subject to production test.  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
5
DG534A/538A  
Vishay Siliconix  
CONTROL CIRCUITRY  
S
A1  
S
A2  
S
A3  
S
A4  
D
A
D
B
S
B1  
S
B2  
S
B3  
S
B4  
S
A1  
S
B1  
S  
S  
A4  
B4  
V–  
D , D  
A
B
V–  
Decode  
A
0
A
0
A
1
A
1
A
2
A
2
EN  
V–  
Latch  
V
REF  
8/4  
I/O  
Decode  
Tri-State  
Buffer  
V
L
V–  
V
REF  
V
*
V
REF  
V
REF  
V
REF  
V
REF  
V
REF  
REF  
V
L
*
V+  
I/O  
V–  
EN  
A
0
A
1
A
2
RS  
WR  
V
L
*Typical all Readback (A , EN) pins  
X
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
6
DG534A/538A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
Supply Currents vs. Temperature  
Leakage vs. Temperature  
1 A  
1.4  
V+ = 15 V  
V= 3 V  
V+ = 15 V  
V= 3 V  
= 5 V  
1.0  
I+  
V
L
= 5 V  
100 nA  
10 nA  
V
L
0.6  
0.2  
I
L
I
D(on)  
1 nA  
I
D(off)  
0.2  
0.6  
1.0  
1.4  
100 pA  
10 pA  
1 pA  
I–  
I
S(off)  
40  
20  
0
20  
40  
60  
80 100 120  
40  
20  
0
20  
40  
60  
80 100 120  
Temperature (_C)  
Temperature (_C)  
Address, EN Output Current vs. Temperature  
r
vs. V, V+  
DS(on)  
8
0
70  
V
V
I
= 0 V  
= 5 V  
= 10 mA  
D
L
S
(Source)  
V
AO  
= 0.4 V  
V+ = 10 V  
60  
8  
V+ = 12 V  
50  
40  
16  
V
= 2.7 V  
AO  
V+ = 15 V  
(Sink)  
V+ = 15 V  
V= 3 V  
24  
32  
V
= 5 V  
L
30  
40 20  
0
20  
40  
60  
80 100 120  
6  
5  
4  
3  
2  
1  
0
Temperature (_C)  
V– – Negative Supply (V)  
r
vs. V and Temperature  
Adjacent Input Crosstalk vs. Frequency  
DS(on)  
D
200  
180  
160  
100  
80  
V+ = 15 V  
V= 3 V  
V+ = 15 V  
V= 3 V  
DIP  
V
I
= 5 V  
= 10 mA  
V
L
= 5 V  
L
S
R
R
= 10 ꢀ  
= 10 kꢀ  
IN  
L
140  
120  
PLCC  
25_C  
60  
100  
80  
125_C  
40  
20  
60  
40  
20  
55_C  
2  
0
2
4
6
8
10  
1
10  
f Frequency (MHz)  
100  
V
D
Drain Voltage (V)  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
7
DG534A/538A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
Adjacent Input Crosstalk vs. Frequency  
Adjacent Input Crosstalk vs. Frequency  
100  
100  
80  
V+ = 15 V  
V= 3 V  
V
L
= 5 V  
PLCC  
80  
60  
R
IN  
= R = 75 ꢀ  
L
DIP  
PLCC  
60  
DIP  
V+ = 15 V  
V= 3 V  
40  
20  
40  
20  
V
L
= 5 V  
R
R
= 10 ꢀ  
= 10 kꢀ  
IN  
L
1
10  
f Frequency (MHz)  
100  
1
10  
100  
f Frequency (MHz)  
All Hostile Crosstalk vs. Frequency  
All Hostile Crosstalk vs. Frequency  
100  
80  
100  
80  
PLCC  
PLCC  
DIP  
DIP  
60  
60  
V+ = 15 V  
V= 3 V  
V+ = 15 V  
V= 3 V  
40  
20  
40  
20  
V
L
= 5 V  
V
L
= 5 V  
R
R
= 10 ꢀ  
= 10 kꢀ  
IN  
R
IN  
= R = 75 ꢀ  
L
L
1
10  
100  
1
10  
100  
f Frequency (MHz)  
f Frequency (MHz)  
Differential Crosstalk vs. Frequency  
Differential Crosstalk vs. Frequency  
100  
80  
100  
80  
PLCC  
PLCC  
DIP  
60  
60  
DIP  
V+ = 15 V  
V= 3 V  
V+ = 15 V  
V= 3 V  
40  
20  
40  
20  
V
L
= 5 V  
V
L
= 5 V  
R
R
= 10 ꢀ  
= 10 kꢀ  
R
R
= 75 ꢀ  
= 75 ꢀ  
IN  
IN  
L
L
1
10  
100  
1
10  
100  
f Frequency (MHz)  
f Frequency (MHz)  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
8
DG534A/538A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
Switching Times vs. Temperature  
Transition Time vs. Temperature  
225  
250  
225  
200  
175  
150  
125  
200  
175  
t
ON  
t
TRANS  
150  
125  
100  
75  
t
OFF  
t
BBM  
100  
75  
50  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (_C)  
Temperature (_C)  
OUTPUT TIMING REQUIREMENTS  
t
MPW  
3 V  
0 V  
WR  
t
WD  
t
DW  
3 V  
0 V  
A , A , A , EN  
Dont Care  
Write Data  
Dont Care  
0
1
2
Writing Data to Device  
3 V  
WR  
0 V  
3 V  
A , A , A , EN  
0
1
2
Dont Care  
New Data  
Dont Care  
0 V  
3 V  
0 V  
RS  
t
t
RW  
MPW  
Delay Time Required after Reset before Write  
3 V  
0 V  
WR  
3 V  
A , A , A , EN  
Hi Z  
Hi Z  
Driven Bus  
Device Data* Out  
Driven Bus  
0
1
2
0 V  
3 V  
I/O  
0 V  
t
t
AZ  
AO  
t
AI  
Reading Data From Device  
FIGURE 1.  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
9
DG534A/538A  
Vishay Siliconix  
TEST CIRCUITS  
+15 V  
+
Logic Input  
t <20 ns  
10 F  
100 nF  
r
t <20 ns  
f
3 V  
0 V  
+5 V  
50%  
EN  
V+  
V
L
S
Bn  
+1 V  
A
0
S S  
A1 Bn-1  
A , A  
1
8/4, 4/2  
WR  
2
V
OUT  
90%  
RS  
EN  
D
D
A
Switch  
Output  
V
O
B
I/O  
GND V–  
0 V  
1 kꢀ  
45 pF  
t
t
OFF  
ON  
+
10 F  
100 nF  
3 V  
FIGURE 2. EN, CS, CS, Turn On/Off Time  
+15 V  
+
Logic Input  
10 F  
100 nF  
+1 V  
t <20 ns  
t <20 ns  
f
r
+5 V  
WR  
+3 V  
0 V  
V+  
EN, V , RS  
S
A1  
L
A
0
A , A  
S S  
A2 Bn  
1
2
+3 V  
0 V  
8/4, 4/2  
I/O  
t
(WR)  
ON  
V
OUT  
90%  
Address  
Logic  
A
0
D
A
V
O
WR  
GND  
D
B
V–  
1 kꢀ  
45 pF  
+
Logic  
Input  
10 F  
100 nF  
3 V  
FIGURE 3. WR, Turn On Time  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
10  
DG534A/538A  
Vishay Siliconix  
TEST CIRCUITS  
+15 V  
+
Logic Input  
t <20 ns  
10 F  
100 nF  
r
t <20 ns  
f
+5 V  
+1 V  
A , A , A  
3 V  
0 V  
0
1
2
V+  
50%  
EN  
S
S
A1  
V
OUT  
V
L
90%  
B1  
Bn  
S
S  
A2  
RS  
S
1
S
16  
A , A , A  
0
1
2
Turning Off  
Turning On  
D
A
BBM Interval  
8/4  
or  
4/2  
V
O
D
B
Transition Time  
WR  
I/O  
GND  
V–  
(t  
)
Logic  
Input  
TRANS  
1 kꢀ  
45 pF  
+
10 F  
100 nF  
3 V  
FIGURE 4. Transition Time and Break-Before-Make Interval  
+15 V  
+
+5 V  
10 F  
100 nF  
V+  
V
L
EN  
A , A , A , RS  
0
1
2
S
Bn  
D
B
V
O
V  
OUT  
EN  
C
L
= 1000 pF  
V
OUT  
D
A
8/4  
or  
V
is the measured voltage error due to  
OUT  
4/2  
WR I/O  
GND  
V–  
charge injection. The charge injection in Cou-  
lombs is Q = C x V  
L
OUT  
+
10 F  
100 nF  
3 V  
FIGURE 5. Charge Injection  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
11  
DG534A/538A  
Vishay Siliconix  
TEST CIRCUITS  
+5 V  
+15 V  
+
10 F  
100 nF  
V
L
V+  
EN  
S
A2  
S  
Bn  
8/4, 4/2  
RS  
V
O
D
A
50 ꢀ  
S
A1  
V
IN  
A
to  
0
I/O  
A
2
WR  
GND  
V–  
+
10 F  
100 nF  
3 V  
FIGURE 6. Bandwidth  
8/4 or 4/2 = Logic 0”  
S
A1  
All Channels Off  
D
A
S
A1  
D
A
S
An  
R
IN  
S
An  
V
OUT  
V
OUT  
R
L
S
S
B1  
R
75 ꢀ  
L
S
B1  
Bn  
D
B
S
Bn  
D
B
V
OUT  
V
X
+ 20 log  
10  
V
TALK(AH)  
OUT  
V
X
+ 20 log  
10  
Note: S on or any other one channel on.  
A1  
TALK(CD)  
FIGURE 7. All Hostile Crosstalk  
FIGURE 8. Chip Disabled Crosstalk  
R
IN  
10 W  
Channels S and S On  
4/2 = Logic 1”  
A1  
B1  
V
Sn1  
S
A1  
S
S
S
n1  
D
A
V
OUT  
S
R
IN  
An  
V
Sn  
R
L
n
S
D
B
B1  
Bn  
V
V
Sn+1  
S
n+1  
R
10 ꢀ  
R
10 kꢀ  
R
L
IN  
L
Signal  
Generator  
V
V
V
Sn ) 1  
OUT  
V
Sn 1  
X
+ 20 log  
TALK(DIFF)  
10  
X
+ 20 log  
or 20 log  
10  
TALK(AI)  
10  
V
V
Sn  
Sn  
FIGURE 9. Adjacent Input Crosstalk  
FIGURE 10. Differential Crosstalk  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
12  
DG534A/538A  
Vishay Siliconix  
TEST CIRCUITS  
+15 V  
V+  
+15 V  
+5 V  
+5 V  
D
A
D
S
V+  
B
V
L
S
S
V
L
A1  
RS  
RS  
EN  
A2  
A1  
An  
B1  
Bn  
Meter  
Meter  
8/4 or 4/2  
D
S
S
S
A
HP4192A  
Impedance  
Analyzer  
HP4192A  
Impedance  
Analyzer  
D
B
A
0
or Equivalent  
or Equivalent  
S
A
1
B1  
B2  
S
A
2
8/4  
or  
4/2  
I/O WR EN  
GND  
V–  
I/O WR  
GND  
V–  
3 V  
3 V  
FIGURE 11. On State Input Capacitance  
FIGURE 12. Off State Input/Output Capacitance  
OPERATING VOLTAGE RANGE  
22  
21  
20  
19  
18  
17  
16  
15  
Positive Supply Voltage  
Allowable Operating Voltage  
14  
V+ (Volts)  
Area  
13  
12  
11  
10  
(Note b)  
0
5  
4  
3  
2  
1  
5.5  
Negative Supply Voltage  
V(Volts)  
Notes:  
a. Both V+ and Vmust have decoupling capacitors mounted as close as possible to the device pins. Typical decoup-  
ling capacitors would be 10-F tantalum bead in parallel with 100-nF ceramic disc.  
b. Production tested with V+ = 15 V and V= 3 V.  
a. For V = 5 V "10%, 0.8- or 2-V TTL compatibility is maintained over the entire operating voltage range.  
L
FIGURE 13.  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
13  
DG534A/538A  
Vishay Siliconix  
PIN DESCRIPTION  
Pin Number  
DG534ADJ DG538A  
Symbol  
Description  
D
A
2
2
Analog Output/Input  
V+  
3
3
Positive Supply Voltage  
Analog Input/Output  
Analog Input/Output  
Analog Input/Output  
Analog Input/Output  
4 x 1 or 2 x 2 Select  
8 x 1 or 4 x 2 Select  
Reset  
S
4
4
A1  
A2  
A3  
A4  
S
S
S
6
6
8
10  
4/2  
8/4  
RS  
WR  
7
11  
8
9
12  
13  
Write command that latches A, EN  
A , A , A  
11, 10, –  
16, 15, 14  
Binary address inputs that determine which channel(s) is/are connected to the out-  
put(s)  
0
1
2
EN  
I/O  
12  
13  
17  
Enable. Input/Output, if EN = 0, all channels are open  
Input/Output control. Used to write to or read from the address latches  
Logic Supply Voltage, usually +5 V  
Analog Input/Output  
18  
V
L
14  
19  
S
B4  
S
B3  
S
B2  
S
B1  
20  
22  
Analog Input/Output  
15  
24  
Analog Input/Output  
17  
26  
Analog Input/Output  
V–  
18  
27  
28  
Negative Supply Voltage  
D
B
19  
Analog Output/Input  
GND  
1, 5, 16  
1, 5, 7, 9, 21, 23, 25  
Analog and Digital Grounds. All grounds should be connected externally to optimize  
dynamic performance  
APPLICATIONS  
Device Description  
The DG534A/DG538A are improved pin-compatible  
replacements for the non-A versions. Improvements include:  
higher current readback drivers, readback of the EN bit,  
latchup protection  
The DG534A/538A D/CMOS wideband multiplexers offer  
single-ended or differential functions. A 8/4 or 4/2 logic input  
pin selects the single-ended or differential mode.  
Frequency Response  
To meet the high dynamic performance demands of video,  
high definition TV, digital data routing (in excess of 100 Mbps),  
etc., the DG534A/538A are fabricated with DMOS transistors  
configured in Tarrangements with second level L’  
configurations (see Functional Block Diagram).  
A single multiplexer on-channel exhibits both resistance  
[rDS(on)] and capacitance [CS(on)]. This RC combination  
causes a frequency dependent attenuation of the analog  
signal. The 3-dB bandwidth of the DG534A/538A is typically  
500 MHz (into 50 ). This figure of 500 MHz illustrates that the  
switch-channel cannot be represented by a simple RC  
combination. The on capacitance of the channel is distributed  
along the on-resistance, and hence becomes a more complex  
multi-stage network of Rs and Cs making up the total rDS(on)  
Use of DMOS technology yields devices with very low  
capacitance and low rDS(on). This directly relates to improved  
high frequency signal handling and higher switching speeds,  
while maintaining low insertion loss figures. The Tand L’  
switch configurations further improve dynamic performance  
by greatly reducing crosstalk and output node capacitances.  
and CS(on)  
.
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
14  
DG534A/538A  
Vishay Siliconix  
APPLICATIONS (CONT'D)  
Power Supplies and Decoupling  
a. Use extensive ground planes on double sided PCB  
separating adjacent signal paths. Multilayer PCB is even  
better.  
A useful feature of the DG534A/538A is its power supply  
flexibility. It can be operated from unipolar supplies (V–  
connected to 0 V) if required. Allowable operating voltage  
ranges are shown in Figure 13.  
b. Keep signal paths as short as practically possible with all  
channel paths of near equal length.  
c. Use strip-line layout techniques.  
Note that the analog signal must not go below Vby more than  
0.3 V (see absolute maximum ratings). However, the addition  
of a Vpin has a number of advantages:  
Improvements in performance can be obtained by using PLCC  
parts instead of DIPs. The stray effects of the quad PLCC  
package are lower than those of the dual-in-line packages.  
Sockets for the PLCC packages usually increase crosstalk.  
a. It allows flexibility in analog signal handling, i.e. with V=  
5 V and V+ = 15 V, up to "5 V ac signals can be  
accepted.  
+5 V  
51 W  
+15 V  
b. The value of on capacitance (CS(on)) may be reduced by  
increasing the reverse bias across the internal FET body to  
51 ꢀ  
source junction. V+ has no effect on CS(on)  
.
+
+
It is useful to note that tests indicate that optimum video  
differential phase and gain occur when Vis 3 V.  
C
2
C
C
1
C
2
1
c. Veliminates the need to bias an ac analog signal using  
V
L
V+  
S
A1  
D
A
potential dividers and large decoupling capacitors.  
S
S
A2  
It is established rf design practice to incorporate sufficient  
bypass capacitors in the circuit to decouple the power supplies  
to all active devices in the circuit. The dynamic performance  
of the DG534/538 is adversely affected by poor decoupling of  
power supply pins. Also, since the substrate of the device is  
connected to the negative supply, proper decoupling of this pin  
is essential.  
D
B
DG534A  
B1  
S
B2  
GND V–  
C
1
C
2
+
Rules:  
51 ꢀ  
a. Decoupling capacitors should be incorporated on all  
power supply pins (V+, V, VL).  
C
1
C
2
= 1 F Tantalum  
= 100 nF Polyester  
b. They should be mounted as close as possible to the  
device pins.  
3 V  
c. Capacitors should have good frequency characteristics -  
tantalum bead and/or ceramic disc types are suitable.  
Recommended decoupling capacitors are 1- to 10-F  
tantalum bead, in parallel with 100-nF ceramic or  
polyester.  
FIGURE 14. DG534A Power Supply Decoupling  
Interfacing  
d. Additional high frequency protection may be provided by  
51-carbon film resistors connected in series with the  
power supply pins (see Figure 14).  
Logic interfacing is easily accomplished. Comprehensive  
addressing and control functions are incorporated in the  
design.  
Board Layout  
The VL pin permits interface to various logic types. The device  
is primarily designed to be TTL or CMOS logic compatible with  
+5 V applied to VL. The actual logic threshold can be raised  
simply by increasing VL.  
PCB layout rules for good high frequency performance must  
also be observed to achieve the performance boasted by the  
DG534A/538A. Some tips for minimizing stray effects are:  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
15  
DG534A/538A  
Vishay Siliconix  
APPLICATIONS (CONT'D)  
A typical switching threshold versus VL is shown in Figure 15.  
Channel address data can only be entered during WR low,  
when the address latches are transparent and I/O is low.  
Similarly, address readback is only operational when WR and  
I/O are high.  
These devices feature an address readback (Tally) facility,  
whereby the last address written to the device may be output  
to the system. This allows improved status monitoring and  
hand shaking without additional external components.  
The Siliconix CLC410 Video amplifier is recommended as an  
output buffer to reduce insertion loss and to drive coaxial  
cables. For low power video routing applications or for unity  
gain input buffers CLC111/CLC114 are recommended.  
This function is controlled by the I/O pin, which directly  
addresses the tri-state buffers connected to the EN and  
address pins. EN and address pins can be assigned to accept  
data (when I/O = 0; WR = 0; RS = 1), or output data (when I/O =  
1; WR = 1; RS = 1), or to reflect a high impedance and latched  
state (when I/O = 0; WR = 1; RS = 1).  
8
7
6
5
When I/O is high, the address output can sink or source  
current. Note that VL is the logic high output condition. This  
point must be respected if VL is varied for input logic threshold  
shifting.  
V
(V)  
th  
4
3
2
1
0
Further control pins facilitate easy microprocessor interface.  
On chip address, data latches are activated by WR, which  
serves as a strobe type function eliminating the need for  
peripheral latch or memory I/O port devices. Also, for ease of  
interface, a direct reset function (RS) allows all latches to be  
cleared and switches opened. Reset should be used during  
power up, etc., to avoid spurious switch action. See Figure 16.  
0
2
4
6
8
10 12 14 16 18  
(V)  
V
L
FIGURE 15. Switching Threshold Voltage vs. V  
L
DG534A  
S
S
CLC410  
A1  
75 ꢀ  
B2  
D
A
B
A , A  
0
1
A
V
= 2  
EN  
CLC410  
D
RS  
75 ꢀ  
Data Bus  
WR  
Reset  
WR  
Address Bus  
DG534A  
S
S
A1  
CLC410  
CLC410  
75 ꢀ  
B2  
D
A
B
A , A  
0
1
Address  
Decoder  
EN  
I/O  
RS  
D
WR  
75 ꢀ  
Video  
Bus  
Data  
Bus  
FIGURE 16. DG534A in a Video Matrix  
Document Number: 70069  
S-05734Rev. G, 29-Jan-02  
www.vishay.com  
16  

相关型号:

5962-90603012A

Voltage Reference
ETC

5962-9060301GA

Voltage Reference
ETC

5962-9060301PA

Voltage Reference
ETC

5962-90604012X

Voltage-Feedback Operational Amplifier
ETC

5962-9060401CX

Voltage-Feedback Operational Amplifier
ETC

5962-9060401DX

Voltage-Feedback Operational Amplifier
ETC

5962-90604022X

Voltage-Feedback Operational Amplifier
ETC

5962-9060402CX

Voltage-Feedback Operational Amplifier
ETC

5962-9060402DX

Voltage-Feedback Operational Amplifier
ETC

5962-90604032X

Voltage-Feedback Operational Amplifier
ETC

5962-9060403CX

Voltage-Feedback Operational Amplifier
ETC

5962-9060403DX

Voltage-Feedback Operational Amplifier
ETC