CWR06JC155M [VISHAY]

Solid Tantalum Chip Capacitors MIDGET Military, MIL-PRF-55365/4 Qualified; 固体钽电容器芯片MIDGET军用MIL- PRF -四分之五万五千三百六十五合格
CWR06JC155M
型号: CWR06JC155M
厂家: VISHAY    VISHAY
描述:

Solid Tantalum Chip Capacitors MIDGET Military, MIL-PRF-55365/4 Qualified
固体钽电容器芯片MIDGET军用MIL- PRF -四分之五万五千三百六十五合格

电容器 钽电容器
文件: 总7页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CWR06  
Vishay Sprague  
Solid Tantalum Chip Capacitors  
®
MIDGET Military, MIL-PRF-55365/4 Qualified  
FEATURES  
Weibull Failure Rates B, C; Exponential M, P, R, S.  
Tape and Reel available per EIA 481-1 and-2.  
Termination finishes available; Gold Plate, 50µ inch  
minimum (standard), Solder Plated Hot Solder Dipped.  
PERFORMANCE CHARACTERISTICS  
Capacitance Tolerance: ± 10%, ± 20% standard. ± 5%  
available as special.  
Operating Temperature: - 55°C to + 85°C. (To + 125°C  
with voltage derating.)  
Capacitance Range: 0.10µF-100µF  
Voltage Rating: 4WVDC to 50WVDC.  
ORDERING INFORMATION  
K
B
OPTIONAL  
D
B
155  
CWR06  
CAPACITANCE  
TOLERANCE  
FAILURE RATE  
%/1000 HOURS  
SURGE CURRENT  
OPTIONS  
VOLTAGE  
TERMINATION  
FINISH  
CAPACITANCE  
TYPE  
C= 4 V  
A = Commercial  
M = 1.0  
A = 10 Cycles at  
+ 25°C  
This is expressed  
in picofarads. The  
first two digits are  
the significant  
figures. The third  
is the number of  
zeros to follow.  
K = ± 10%  
M = ± 20%  
J = ± 5%  
B = Gold. Standard.  
H = Solder Plate.  
C = Solder Dipped  
D= 6 V  
B = 10 Cycles at  
-55°C and  
F = 10V  
H= 15 V  
J = 20 V  
K = 25 V  
M= 35 V  
N= 50 V  
P = 0.1  
R = 0.01  
S = 0.001  
B = 0.1  
+ 85°C.  
C = 10 Cycles at  
-55°C and  
+ 85°C  
C = 0.01  
(Before Weibull  
Grading).  
DIMENSIONS in inches [millimeters]  
-
+
-
+
Weld and  
Dimple  
Projection  
Identifies  
Anode (+)  
Terminal  
W
W
H
L
L
H
T1  
T1  
P
P
T2 Max.  
T2 Max.  
P
P
CASE  
CODE  
T2 (Max.)  
W
L
H
P
T1  
0.015  
[0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
A
B
C
D
E
F
0.100 ± 0.015  
[2.54 ± 0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
0.030 ± 0.005  
[0.76 ± 0.13]  
0.005  
[0.13]  
0.015  
[0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
0.150 ± 0.015  
[3.81 ± 0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
0.030 ± 0.005  
[0.76 ± 0.13]  
0.005  
[0.13]  
0.015  
[0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
0.200 ± 0.015  
[5.08 ± 0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
0.030 ± 0.005  
[0.76 ± 0.13]  
0.005  
[0.13]  
0.015  
[0.38]  
0.100 ± 0.015  
[2.54 ± 0.38]  
0.150 ± 0.015  
[3.81 ± 0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
0.030 ± 0.005  
[0.76 ± 0.13]  
0.005  
[0.13]  
0.015  
[0.38]  
0.100 ± 0.015  
[2.54 ± 0.38]  
0.200 ± 0.015  
[5.08 ± 0.38]  
0.050 ± 0.015  
[1.27 ± 0.38]  
0.030 ± 0.005  
[0.76 ± 0.13]  
0.005  
[0.13]  
0.015  
[0.38]  
0.135 ± 0.015  
[3.43 ± 0.38]  
0.220 ± 0.015  
[5.59 ± 0.38]  
0.070 ± 0.015  
[1.78 ± 0.38]  
0.030 ± 0.005  
[0.76 ± 0.13]  
0.005  
[0.13]  
0.015  
[0.38]  
0.110 ± 0.015  
[2.79 ± 0.38]  
G
H
0.265 ± 0.015  
[6.73 ± 0.38]  
0.110 ± 0.015  
[2.79 ± 0.38]  
0.050 ± 0.005  
[1.27 ± 0.13]  
0.005  
[0.13]  
0.015  
[0.38]  
0.150 ± 0.015  
[3.81 ± 0.38]  
0.285 ± 0.015  
[7.24 ± 0.38]  
0.110 ± 0.015  
[2.79 ± 0.38]  
0.050 ± 0.005  
[1.27 ± 0.13]  
0.005  
[0.13]  
Note: When solder coated terminations are required, add .015" [0.38mm] to termination dimension tolerances.  
www.vishay.com  
133  
Document Number 40009  
Revision 16-Nov-04  
For technical questions, contact tantalum@vishay.com  
CWR06  
Vishay Sprague  
RATINGS AND CASE CODES  
µF  
4 V  
6 V  
10 V  
15 V  
20 V  
25 V  
35 V  
50 V  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10  
A
A
B
B
C
D
E
F
A
A
A
B
B
C
D
E
B
C
D
E
A
B
C
D
E
A
A
B
C
D
E
A
B
C
D
E
F
B
C
D
E
F
G
H
G
H
B
C
D
E
F
G
G
H
F
F
15  
F
G
H
22  
F
G
H
33  
F
G
H
47  
G
H
68  
G
H
100  
STANDARD RATINGS  
Max. ESR  
@ + 25°C  
100kHz  
Max. DF (%) @  
Max. DCL (µA) @  
CAPACITANCE  
CASE  
CODE  
+ 85°C  
PART NUMBER*  
(µF)  
- 55°C  
+ 25°C  
+ 85°C  
+ 125°C  
+ 25°C  
+ 125°C  
(Ohms)  
4 WVDC @ + 85°C, SURGE = 5 V . . . 2.7 WVDC @ + 125°C, SURGE = 3.4 V  
12  
12  
12  
12  
12  
24  
36  
48  
8
8
8
10  
12  
12  
12  
12  
2.2  
4.7  
6.8  
10  
15  
33  
A
B
C
D
E
F
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
10  
10  
10  
10  
10  
20  
30  
40  
8.0  
8.0  
5.5  
4.0  
3.5  
2.2  
1.1  
0.9  
6
6
6
8
8
8
10  
10  
8
8
8
CWR06C@225#*  
CWR06C@475#*  
CWR06C@685#*  
CWR06C@106#*  
CWR06C@156#*  
CWR06C@336#*  
CWR06C@686#*  
CWR06C@107#*  
8
10  
10  
12  
12  
68  
100  
G
H
6 WVDC @ + 85°C, SURGE = 8 V . . . 4 WVDC @ + 125°C, SURGE = 5 V  
1.5  
3.3  
4.7  
6.8  
10  
22  
47  
68  
A
B
C
D
E
F
CWR06D@155#*  
CWR06D@335#*  
CWR06D@475#*  
CWR06D@685#*  
CWR06D@106#*  
CWR06D@226#*  
CWR06D@476#*  
CWR06D@686#*  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
10  
10  
10  
10  
10  
20  
30  
40  
12  
12  
12  
12  
12  
24  
36  
48  
8.0  
8.0  
5.5  
4.5  
3.5  
2.2  
1.1  
0.9  
6
6
6
6
8
8
10  
10  
8
8
8
8
8
8
8
8
12  
12  
12  
12  
10  
10  
12  
12  
G
H
10 WVDC @ + 85°C, SURGE = 13 V . . . 7 WVDC @ + 125°C, SURGE = 9 V  
1.0  
2.2  
3.3  
4.7  
6.8  
15  
A
B
C
D
E
F
CWR06F@105#*  
CWR06F@225#*  
CWR06F@335#*  
CWR06F@475#*  
CWR06F@685#*  
CWR06F@156#*  
CWR06F@336#*  
CWR06F@476#*  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
5.0  
10  
10  
12  
12  
12  
12  
12  
24  
36  
60  
8
8
8
8
8
8
12  
12  
12.0  
8.0  
5.5  
4.5  
3.5  
2.5  
1.1  
0.9  
6
6
6
6
6
8
10  
10  
8
8
8
8
8
10  
12  
12  
10  
10  
10  
20  
30  
50  
33  
47  
G
H
@ = Termination Finish: B = Gold (standard), H = solder Plated, C = Hot solder dipped  
= Cap.Tolerance: J = 5%, K = 10%, M = 20%.  
* = Failure Rate B, C Weibull  
M, P, R, S Exponential  
#
www.vishay.com  
134  
For technical questions, contact tantalum@vishay.com  
Document Number 40009  
Revision 16-Nov-04  
CWR06  
Vishay Sprague  
STANDARD RATINGS  
Max. ESR  
@ + 25°C  
100kHz  
Max. DF (%) @  
Max. DCL (µA) @  
+ 125°C  
CAPACITANCE  
+ 85°C  
CASE  
CODE  
(µF)  
PART NUMBER*  
+ 25°C  
+ 85°C  
+ 25°C  
+ 125°C  
- 55°C  
(Ohms)  
15 WVDC @ + 85°C, SURGE = 20 V . . . 10 WVDC @ + 125°C, SURGE = 12 V  
12  
12.0  
8
8.0  
8
5.5  
8
5.0  
8
4.0  
8
2.5  
8
1.1  
10  
0.9  
10  
0.68  
1.5  
2.2  
3.3  
4.7  
10  
CWR06H@684#*  
CWR06H@155#*  
CWR06H@225#*  
CWR06H@335#*  
CWR06H@475#*  
CWR06H@106#*  
CWR06H@226#*  
CWR06H@336#*  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
4.0  
5.0  
10  
10  
10  
10  
10  
20  
40  
50  
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
A
B
C
D
E
F
12  
12  
12  
12  
24  
48  
60  
22  
33  
G
H
20 WVDC @ + 85°C, SURGE = 26 V . . . 13 WVDC @ + 125°C, SURGE = 16 V  
12  
12  
12  
12  
12  
12  
24  
36  
48  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
8
8
8
8
8
8
8
8
8
16.0  
14.0  
12.0  
6.0  
5.0  
4.0  
2.4  
1.1  
0.9  
8
8
8
8
8
8
8
8
8
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
6.8  
15  
10  
10  
10  
10  
10  
10  
20  
30  
40  
CWR06J@474#*  
CWR06J@684#*  
CWR06J@105#*  
CWR06J@155#*  
CWR06J@225#*  
CWR06J@335#*  
CWR06J@685#*  
CWR06J@156#*  
CWR06J@226#*  
6
6
6
6
6
6
6
6
6
A
B
B
C
D
E
F
G
H
22  
25 WVDC @ + 85°C, SURGE = 32 V . . . 17 WVDC @ + 125°C, SURGE = 20 V  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
2.0  
3.0  
4.0  
10  
10  
10  
10  
10  
20  
20  
30  
40  
8
8
8
8
8
8
8
8
8
0.33  
0.68  
1.0  
1.5  
2.2  
4.7  
6.8  
10  
A
B
C
D
E
F
G
G
H
CWR06K@334#*  
CWR06K@684#*  
CWR06K@105#*  
CWR06K@155#*  
CWR06K@225#*  
CWR06K@475#*  
CWR06K@685#*  
CWR06K@106#*  
CWR06K@156#*  
12  
12  
12  
12  
12  
24  
24  
36  
48  
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
15.0  
10.0  
6.5  
6.5  
3.5  
2.5  
1.2  
1.4  
1.0  
15  
35 WVDC @ + 85°C, SURGE = 46 V . . . 23 WVDC @ + 125°C, SURGE = 28 V  
CWR06M@224#*  
CWR06M@474#*  
CWR06M@684#*  
CWR06M@105#*  
CWR06M@155#*  
CWR06M@335#*  
CWR06M@475#*  
CWR06M@685#*  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
10  
10  
10  
10  
10  
10  
20  
30  
12  
12  
12  
12  
12  
12  
24  
36  
6
6
6
6
6
6
6
6
0.22  
0.47  
0.68  
1.0  
1.5  
3.3  
A
B
C
D
E
F
8
8
8
8
8
8
8
8
24.0  
17.0  
10.0  
6.5  
4.5  
2.5  
8
8
8
8
8
8
8
8
4.7  
6.8  
G
H
1.5  
1.3  
50 WVDC @ + 85°C, SURGE = 65 V . . . 33 WVDC @ + 125°C, SURGE = 38 V  
12  
12  
12  
12  
12  
12  
12  
12  
24  
24  
36  
CWR06N@104#*  
CWR06N@154#*  
CWR06N@224#*  
CWR06N@334#*  
CWR06N@474#*  
CWR06N@684#*  
CWR06N@105#*  
CWR06N@155#*  
CWR06N@225#*  
CWR06N@335#*  
CWR06N@475#*  
10  
10  
10  
10  
10  
10  
10  
10  
20  
20  
30  
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
8
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
2.0  
3.0  
8
75.0  
25.0  
17.0  
12.0  
8.0  
7.0  
6.0  
4.0  
2.5  
A
A
B
B
C
D
E
F
8
8
8
8
8
8
8
8
8
8
F
G
H
2.0  
1.5  
@ = Termination Finish: B = Gold (standard), H = solder Plated, C = Hot solder dipped  
= Cap.Tolerance: J = 5%, K = 10%, M = 20%.  
* = Failure Rate B, C Weibull  
M, P, R, S Exponential  
#
www.vishay.com  
135  
Document Number 40009  
Revision 16-Nov-04  
For technical questions, contact tantalum@vishay.com  
CWR06  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS  
- 55°C  
- 10%  
+ 85°C  
+ 10%  
+ 125°C  
+ 15%  
1.  
Operating Temperature: Capacitors are designed to  
operate over the temperature range - 55°C to + 85°C.  
1.1  
Capacitors may be operated to + 125°C with  
voltage derating to two-thirds the + 85°C rating.  
6.  
Dissipation Factor: The dissipation factor,  
determined from the expression 2πfRC, shall not  
exceed values listed in the Standard Ratings Table.  
+ 85°C Rating  
+ 125°C Rating  
6.1  
7.  
Measurements shall be made by the bridge method  
at, or referred to, a frequency of 120 Hz and a  
temperature of + 25°C.  
Working  
Surge  
Voltage  
(V)  
Working  
Surge  
Voltage  
(V)  
Voltage  
(V)  
Voltage  
(V)  
4
6
5
8
2.7  
4
7
10  
13  
17  
23  
33  
3.4  
5
9
12  
16  
20  
28  
38  
Leakage Current: Measurements shall be made at  
rated working voltage with an application of a  
steady source of power, such as a regulated power  
supply. A 1000 ohm resistor to limit the charging  
current shall be connected in series with each  
capacitor under test. Rated working voltage shall be  
applied to capacitors for 5 minutes before making  
leakage curent measurements. Units must be  
stabilized at the rated temperature for 30 minutes prior  
to application of voltage.  
10  
15  
20  
25  
35  
50  
13  
20  
26  
32  
46  
65  
2.  
3.  
DC Working Voltage: The DC working voltage is the  
maximum operating voltage for continuous duty at the  
rated temperature.  
Surge Voltage: The surge DC rating is the maximum  
voltage to which the capacitors may be subjected  
under any conditions, including transients and peak  
ripple at the highest line voltage.  
Note that the leakage current varies with temperature  
and applied voltage. See graph below for the  
appropriate adjustment factor.  
3.1  
3.2  
Surge Voltage Test: Capacitors shall withstand  
the surge voltage applied in series with a 33 ohm  
± 5% resistor at the rate of one-half minute on,  
one-half minute off, at + 85°C, for 1000 successive  
test cycles.  
TYPICAL LEAKAGE CURRENT FACTOR RANGE  
100  
+ 125°C  
+ 85°C  
Following the surge voltage test, the dissipation  
factor and the leakage current shall meet the initial  
requirements;thecapacitanceshallnothavechanged  
more than ± 10%.  
10  
+ 55°C  
+ 25°C  
4.  
Capacitance Tolerance: The capacitance of all  
capacitors shall be within the specified tolerance  
limits of the normal rating.  
1.0  
0°C  
4.1  
Capacitance measurements shall be made by means  
of polarized capacitance bridge. The polarizing  
voltage shall be of such magnitude that there shall be  
no reversal of polarity due to the AC component. The  
maximum voltage applied to capacitors during  
measurement shall be 2 volts rms at 120 Hz at +25°C.  
If the AC voltage applied is less than one-half volt rms,  
no DC bias is required. Accuracy of the bridge shall  
be within ± 2%.  
0.1  
- 55°C  
0.01  
5.  
Capacitance Change With Temperature: The  
capacitancechangewithtemperatureshallnotexceed  
thefollowingpercentageofthecapacitancemeasured  
at + 25°C:  
0.001  
0
10 20  
30 40  
50 60 70 80  
90 100  
Percent of Rated Voltage  
www.vishay.com  
136  
For technical questions, contact tantalum@vishay.com  
Document Number 40009  
Revision 16-Nov-04  
CWR06  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS (Continued)  
intital value; the dissipation factor shall meet the initial  
requirements; the leakage current shall not be more  
than the original requirements.  
7.1  
At + 25°C, when measured at + 25˚C ± 5˚C, the  
leakage current for any capaitor shall not exceed  
the maximum value listed in the Standard Ratings  
Table  
9.  
Reflow Soldering: It is recommended that these  
capacitors be reflow soldered at a temperature of not  
greater than + 250˚C for a period of not more than 30  
seconds.  
7.2  
7.3  
8.  
At + 85°C, when measured at + 85˚C ± 5˚C, the  
leakage current for any capacitor shall not exceed the  
maximum value listed in the Standard Ratings Table.  
10.  
Marking: The small body area of these capacitors  
does not permit elaborate marking schemes.  
At + 125°C, when measured at + 125˚C ± 5˚C, the  
leakage current for any capacitor shall not exceed the  
maximum value listed in the Standard Ratings Table.  
Required information will be distinctly marked on the  
carton or packages in which the units are shipped.  
Capacitors may be ordered with color coding at  
additional cost. Color coding shall be as mutually  
agreed upon by Vishay Sprague® and the customer.  
Life Test: Capacitors shall be capable of withstanding  
a 2000 hour life test at the + 85˚C rated DC working  
voltage or a 2000 hour life test at the + 125˚C derated  
working voltage.  
10.1 Polarity: The anode terminal of each capacitor is  
identified by the weld and dimple projection on the  
anode cap (see Dimensional Configurations).  
8.1  
Following the life test, the capacitors shall meet the  
following requirements: the capacitance at + 25˚C  
shall not have changed by more than ± 10% from the  
2.1  
2.2  
3.  
The sum of the peak AC voltage plus the DC voltage  
shall not exceed the DC voltage rating of the  
capacitor.  
GUIDE TO APPLICATION  
1.  
A-C Ripple Current: The maximum allowable ripple  
current shall be determined from the formula:  
The sum of the negative peak AC voltage plus the  
applied DC voltage shall not allow a voltage  
reversal exceeding 10% of the DC rating at + 25°C.  
P
RESR  
Irms  
=
where,  
Reverse Voltage: These capacitors are capable of  
withstanding peak voltages in the reverse direction  
equal to 10% of the DC rating at + 25°C, 5% of the  
DC rating at + 85°C and 1% of the DC rating at  
+125°C.  
P
=
Power Dissipation in Watts @ + 25°C as  
given in the table in Paragraph Number 5  
(Power Dissipation).  
R
ESR = The capacitor Equivalent Series Resistance  
at the specified frequency.  
4.  
Temperature Derating: If these capacitors are to be  
operated at temperatures above + 25°C, the  
permissible rms ripple current or voltage shall be  
calculated using the derating factors as shown:  
2.  
A-C Ripple Voltage: The maximum allowable ripple  
voltage shall be determined from the formula:  
Derating Factor  
Temperature  
+ 25°C  
+ 55˚C  
+ 85°C  
+ 125°C  
1.0  
0.9  
0.8  
0.4  
P
Vrms = Z  
RESR  
or, from the formula:  
Vrms = Irms x Z  
where,  
5.  
Power Dissipation: Power dissipation will be  
affected by the heat sinking capability of the mounting  
surface. Non-sinusoidal ripple current may produce  
heating effects which differ from those shown. It  
is important that the equivalent Irms value be  
established when calculating permissible operating  
levels. (Power Dissipation calculated using + 25°C  
temperature rise.)  
P
=
Power Dissipation in Watts @ + 25°C  
as given in the table in Paragraph Number 5  
(Power Dissipation).  
RESR = The capacitor Equivalent Series Resistance  
at the specified frequency.  
Z
= The capacitor impedance at the specified  
frequency.  
www.vishay.com  
137  
Document Number 40009  
Revision 16-Nov-04  
For technical questions, contact tantalum@vishay.com  
CWR06  
Vishay Sprague  
GUIDE TO APPLICATION (Continued)  
REFLOW SOLDER PADS*  
Maximum Permissible  
Case Code  
Power Dissipation  
in inches [millimetres]  
@ + 25°C (Watts) in free air  
A
B
C
D
E
F
0.060  
0.075  
0.075  
0.085  
0.095  
0.110  
0.120  
0.150  
A
G
H
B
C
B
6.  
Printed Circuit Board Materials: The CWR06 is  
compatible with commonly used printed circuit board  
materials (alumina substrates, FR4, FR5, G10, PTFE-  
fluorocarbon and porcelainized steel). If you desire  
other board materials, contact the factory for  
availability.  
PAD  
CASE  
CODE  
WIDTH  
(A)  
METALIZATION SEPARATION  
7.  
Attachment:  
(B)  
(C)  
7.1  
Solder Paste: The recommended thickness of the  
solder paste after application is .007" ± .001"  
[.178mm ± .025mm]. Care should be exercised in  
selecting the solder paste. The metal purity should  
be as high as practical. The flux (in the paste) must  
be active enough to remove the oxides formed on the  
metallization prior to the exposure to soldering heat. In  
practice this can be aided by extending the solder  
preheat time at temperatures below the liquidous state  
of the solder.  
A
B
C
D
E
F
0.65  
(1.6)  
0.050  
(1.3)  
0.040  
(1.0)  
0.065  
(1.6)  
0.070  
(1.8)  
0.055  
(1.4)  
0.065  
(1.6)  
0.070  
(1.8)  
0.120  
(0.3)  
0.115  
(2.9)  
0.070  
(1.8)  
0.070  
(1.8)  
0.115  
(2.9)  
0.070  
(1.8)  
0.120  
(3.0)  
7.2  
Soldering: Capacitors can be attached by  
conventional soldering techniques - vapor phase,  
infrared reflow, wave soldering and hot plate methods.  
The Soldering Profile chart shows maximum  
recomended time/temperature conditions for solder-  
ing. Attachment with a soldering iron is not recom-  
mended due to the difficulty of controlling temperature  
and time at temperature.  
0.150  
(3.8)  
0.070  
(1.8)  
0.140  
(3.6)  
G
H
0.125  
(3.2)  
0.070  
(1.8)  
0.170  
(4.3)  
0.165  
(4.2)  
0.090  
(2.3)  
0.170  
(4.3)  
8.  
Cleaning (Flux Removal) After Soldering: The  
CWR06iscompatiblewithallcommonlyusedsolvents  
such as TES, TMS, Prelete, Chlorethane, Terpene  
and aqueous cleaning media. However, CFC/ODS  
products are not used in the production of these  
devices and are not recommended. Solvents  
containing methylene chloride or other epoxy solvents  
should be avoided since these attack the epoxy  
encapsulation material.  
RECOMMENDED REFLOW SOLDERING PROFILE  
250  
200  
150  
100  
50  
9
Recommended Mounting Pad Geometries: The  
area under the tantalum wire nib should not be  
metallized on the PC board. The width dimension  
indicated is the same as the maximum width of the  
capacitor. This is to minimize lateral movement.  
0
50  
100  
150  
200  
250  
300  
350  
TIME (SECONDS)  
www.vishay.com  
138  
For technical questions, contact tantalum@vishay.com  
Document Number 40009  
Revision 16-Nov-04  
CWR06  
Vishay Sprague  
TAPE AND REEL PACKAGING  
Tape and Reel Specifications: All case codes are available on  
plastic embossed tape per EIA-481-1 and EIA-481-2. Tape reeling  
per IEC 286-3 is also available. Standard reel diameter is 7"  
[178mm]. 13" [330mm] reels are available and recommended as  
the most cost effective packaging method. The most efficient  
packaging quantities are full reel increments on a given reel  
diameter. The quantities shown allow for the sealed empty pockets  
required to be in conformance with EIA-481-1 and EIA-481-2. Reel  
size and packaging orientation must be specified in the Vishay  
Sprague part number.  
Standard orientation is with the cathode  
(-) nearest to the sprocket holes  
per EIA-481-1 and IEC 286-3.  
Top Cover  
Tape  
Thickness  
R
Min.  
Carrier  
Bending Radius  
(Note 1)  
Embossment  
R Minimum:  
8mm 1/2 Pitch and 8mm = .984" [25mm]  
12mm, 12mm Double Pitch and 16mm =1.181" [30mm].  
Notes:  
1. 12mm and 16mm embossed tape with  
components shall pass around radius "R"  
without damage. The minimum trailer length  
may require additional length to provide R  
minimum for reels with hub diameters  
approaching N minimum.  
Units Per Reel  
Case  
Code  
Tape  
Component  
Quantity per Full  
7" [178 mm] Reel  
Quantity per Half  
7" [178 mm] Reel  
Width  
Pitch  
2500  
2500  
2500  
2500  
2500  
1000  
600  
1250  
A
B
C
D
E
F
8mm  
12mm  
12mm  
12mm  
12mm  
12mm  
16mm  
16mm  
4mm  
4mm  
4mm  
4mm  
4mm  
8mm  
8mm  
8mm  
1250  
1250  
1250  
1250  
500  
G
H
300  
600  
300  
www.vishay.com  
139  
Document Number 40009  
Revision 16-Nov-04  
For technical questions, contact tantalum@vishay.com  

相关型号:

CWR06JC155MB

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MBA

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MBB

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MBC

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MC

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MCA

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MCB

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MCC

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MCC/PR

CAPACITOR, TANTALUM, SOLID, POLARIZED, 20 V, 1.5 uF, SURFACE MOUNT, 2005, CHIP
VISHAY

CWR06JC155MD

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MDA

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY

CWR06JC155MDB

Solid Tantalum Surface Mount Capacitors TANTAMOUNT® Conformal Coated, Military MIL-PRF-55365/4 Qualified
VISHAY