DG9262_11 [VISHAY]

Low-Voltage Dual SPST Analog Switch; 低电压双通道SPST模拟开关
DG9262_11
型号: DG9262_11
厂家: VISHAY    VISHAY
描述:

Low-Voltage Dual SPST Analog Switch
低电压双通道SPST模拟开关

开关
文件: 总12页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DG9262, DG9263  
Vishay Siliconix  
Low-Voltage Dual SPST Analog Switch  
FEATURES  
DESCRIPTION  
The DG9262, DG9263 is  
monolithic CMOS analog device designed for high  
performance switching of analog signals. Combining low  
power, high speed (tON: 35 ns, tOFF  
on-resistance (RDS(on): 40 ) and small physical size, the  
DG9262, DG9263 is ideal for portable and battery powered  
applications requiring high performance and efficient use of  
board space.  
The DG9262, DG9263 is built on Vishay Siliconix’s low  
voltage BCD-15 process. Minimum ESD protection, per  
Method 3015.7 is 2000 V. An epitaxial layer prevents  
latchup. Break-before make is guaranteed for DG9262,  
DG9263.  
Halogen-free According to IEC 61249-2-21  
Definition  
a
single-pole/single-throw  
Low Voltage Operation (- 2.7 V to 5 V)  
Low On-Resistance - RDS(on): 40   
Fast Switching - tON: 35 ns, tOFF: 20 ns  
Low Leakage - ICOM(on): 200-pA max.  
Low Charge Injection - QINJ: 1 pC  
Low Power Consumption  
: 20 ns), low  
TTL/CMOS Compatible  
ESD Protection > 2000 V (Method 3015.7)  
Available in MSOP-8 and SOIC-8  
Compliant to RoHS Directive 2002/95/EC  
Each switch conducts equally well in both directions when  
on, and blocks up to the power supply level when off.  
APPLICATIONS  
Battery Operated Systems  
Portable Test Equipment  
Sample and Hold Circuits  
Cellular Phones  
Communication Systems  
Military Radio  
BENEFITS  
Reduced Power Consumption  
Simple Logic Interface  
High Accuracy  
Reduce Board Space  
PBX, PABX Guidance and Control Systems  
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION  
NO  
COM  
IN  
V+  
IN  
NC  
COM  
IN  
V+  
IN  
1
1
2
1
1
2
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
1
COM  
COM  
2
2
GND  
NO  
2
GND  
NC  
2
Top View  
Top View  
TRUTH TABLE - DG9263  
TRUTH TABLE - DG9262  
Logic  
Switch  
Off  
Logic  
Switch  
On  
0
1
0
1
On  
Off  
Logic “0” 0.8 V  
Logic “1” 2.4 V  
Logic “0” 0.8 V  
Logic “1” 2.4 V  
ORDERING INFORMATION  
Temp Range  
Package  
Part Number  
DG9262DY-E3  
DG9262DY-T1  
DG9262DY-T1-E3  
SOIC-8  
DG9263DY-E3  
DG9263DY-T1  
- 40 °C to 85 °C  
DG9263DY-T1-E3  
DG9262DQ-T1-E3  
DG9263DQ-T1-E3  
MSOP-8  
* Pb containing terminations are not RoHS compliant, exemptions may apply  
Document Number: 70862  
S11-1229–Rev. D, 20-Jun-11  
www.vishay.com  
1
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
DG9262, DG9263  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Limit  
Unit  
- 0.3 to + 13  
Reference V+ to GND  
IN, COM, NC, NOa  
V
- 0.3 to (V+ + 0.3)  
20  
40  
Continuous Current (Any Terminal)  
Peak Current (Pulsed at 1 ms, 10 % duty cycle)  
ESD (Method 3015.7)  
mA  
> 2000  
- 65 to 125  
400  
V
Storage Temperature (D Suffix)  
Power Dissipation (Packages)b  
°C  
8-Pin Narrow Body SOICc  
mW  
Notes:  
a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.  
b. All leads welded or soldered to PC Board.  
c. Derate 6.5 mW/°C above 75 °C.  
SPECIFICATIONS (V+ = 3 V)  
D Suffix  
Test Conditions  
- 40 °C to 85 °C  
Unless Otherwise Specified  
V+ = 3 V, 10 %, VIN = 0.8 V or 2.4 Ve  
Parameter  
Symbol  
Temp.a Min.b  
Typ.c  
Max.b Unit  
Analog Switch  
Analog Signal Ranged  
VANALOG  
RDS(on)  
Full  
0
3
V
VNO or VNC = 1.5 V, V+ = 2.7 V  
ICOM = 5 mA  
Room  
Full  
50  
80  
140  
Drain-Source On-Resistance  
RDS(on)Matchd  
RDS(on)  
VNO or VNC = 1.5 V  
Room  
Room  
0.4  
4
2
8
RDS(on)  
Flatness  
DS(on) Flatnessd  
VNO or VNC = 1 and 2 V  
R
NO or NC Off Leakage  
Currentg  
Room  
Full  
- 100  
- 5000  
5
100  
5000  
INO/NC(off)  
VNO or VNC = 1 V/2 V, VCOM = 2 V/1 V  
Room  
Full  
- 100  
5
100  
COM Off Leakage Currentg  
pA  
ICOM(off)  
ICOM(on)  
VCOM = 1 V/2 V, VNO or VNC = 2 V/1 V  
VCOM = VNO or VNC = 1 V/2 V  
- 5000  
5000  
Room  
Full  
- 200  
- 10 000  
10  
200  
10 000  
Channel-On Leakage Currentg  
Digital Control  
IINL or IINH  
Input Current  
Full  
1
µA  
ns  
Dynamic Characteristics  
Room  
Full  
50  
20  
120  
200  
tON  
Turn-On Time  
Turn-Off Time  
VNO or VNC = 1.5 V  
Room  
Full  
50  
120  
tOFF  
QINJ  
Charge Injectiond  
Off-Isolation  
Crosstalk  
CL = 1 nF, VGEN = 0 V, RGEN = 0   
RL = 50 , CL = 5 pF, f = 1 MHz  
Room  
Room  
Room  
Room  
Room  
Room  
1
- 74  
- 90  
7
5
pC  
dB  
OIRR  
XTALK  
C(off)  
NC and NO Capacitance  
Channel-On Capacitance  
CCOM(on)  
CCOM(off)  
f = 1 MHz  
20  
pF  
COM-Off Capacitance  
Power Supply  
13  
Power Supply Range  
Power Supply Current  
V+  
I+  
2.7  
12  
1
V
V+ = 3.3 V, VIN = 0 V or 3.3 V  
µA  
Notes:  
a. Room = 25 °C, full = as determined by the operating suffix.  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.  
c. Typical values are for design aid only, not guaranteed nor subject to production testing.  
d. Guarantee by design, nor subjected to production test.  
e. VIN = input voltage to perform proper function.  
f. Difference of min and max values.  
g. Guraranteed by 5 V leakage testing, not production tested.  
www.vishay.com  
2
Document Number: 70862  
S11-1229–Rev. D, 20-Jun-11  
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
DG9262, DG9263  
Vishay Siliconix  
SPECIFICATIONS (V+ = 5 V)  
D Suffix  
Test Conditions  
- 40 °C to 85 °C  
Unless Otherwise Specified  
V+ = 5 V, 10 %, VIN = 0.8 V or 2.4 Ve  
Parameter  
Symbol  
Temp.a  
Min.b  
Typ.c  
Max.b  
Unit  
Analog Switch  
Analog Signal Ranged  
VANALOG  
RDS(on)  
Full  
0
5
V
VNO or VNC = 3.5 V, V+ = 4.5 V  
ICOM = 5 mA  
Room  
Full  
30  
60  
75  
Drain-Source On-Resistance  
RDS(on)Matchd  
RDS(on)  
VNO or VNC = 3.5 V  
Room  
Room  
0.4  
2
6
RDS(on)  
Flatness  
DS(on) Flatnessf  
VNO or VNC = 1, 2 and 3 V  
2
R
Room  
Full  
- 100  
10  
100  
INO/NC(off)  
ICOM(off)  
ICOM(on)  
VNO or VNC = 1 V/4 V, VCOM = 4 V/1 V  
VCOM = 1 V/4 V, VNO or VNC = 4 V/1 V  
VCOM = VNO or VNC = 1 V/4 V  
NO or NC Off Leakage Current  
COM Off Leakage Current  
Channel-On Leakage Current  
- 5000  
5000  
Room  
Full  
- 100  
- 5000  
10  
100  
5000  
pA  
Room  
Full  
- 200  
- 10 000  
200  
10 000  
Digital Control  
IINL or IINH  
Input Current  
Full  
1
µA  
ns  
Dynamic Characteristics  
Room  
Full  
35  
20  
75  
tON  
Turn-On Time  
Turn-Off Time  
150  
VNO or VNC = 3 V  
Room  
Full  
50  
100  
tOFF  
QINJ  
Charge Injectiond  
Off-Isolation  
Crosstalk  
CL = 1 nF, VGEN = 0 V, RGEN = 0   
RL = 50 , CL = 5 pF, f = 1 MHz  
Room  
Room  
Room  
Room  
Room  
Room  
2
- 74  
- 90  
7
5
pC  
dB  
OIRR  
XTALK  
C(off)  
CD(on)  
NC and NO Capacitance  
Channel-On Capacitance  
f = 1 MHz  
20  
pF  
CCOM(off)  
COM-Off Capacitance  
Power Supply  
13  
Power Supply Range  
Power Supply Current  
V+  
I+  
2.7  
12  
1
V
V+ = 5.5 V, VIN = 0 V or 5.5 V  
µA  
Notes:  
a. Room = 25 °C, full = as determined by the operating suffix.  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.  
c. Typical values are for design aid only, not guaranteed nor subject to production testing.  
d. Guarantee by design, nor subjected to production test.  
e. VIN = input voltage to perform proper function.  
f. Difference of min and max values.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Document Number: 70862  
S11-1229–Rev. D, 20-Jun-11  
www.vishay.com  
3
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
DG9262, DG9263  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25°C, unless otherwise noted)  
2.0  
1.5  
3000  
2500  
2000  
1500  
1000  
500  
V+ = 3 V  
1.0  
0.5  
0.0  
V+ = 5 V  
- 0.5  
- 1.0  
- 1.5  
- 2.0  
0
V+ = 3 V  
- 500  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
125  
5
0
1
2
3
4
5
V
V
IN  
COM  
Charge Injection  
Supply Current vs. VIN  
10 nA  
1 nA  
- 40  
- 60  
100 pA  
- 80  
I
COM(off)  
10 pA  
1 pA  
I
COM(on)  
- 100  
- 120  
- 140  
0.1 pA  
25  
45  
65  
85  
105  
0.001 M  
0.01 M  
0.1 M  
1 M  
10 M  
Temperature (°C)  
Frequency (Hz)  
Leakage Current vs. Temperature  
Off-Isolation vs. Frequency  
80  
60  
40  
20  
2.5  
2.0  
V+ = 5 V  
1.5  
V+ = 3 V  
1.0  
I
COM  
0.5  
0.0  
V+ = 5 V  
- 0.5  
- 1.0  
- 1.5  
- 2.0  
- 2.5  
I
NO/NC  
0
0
0
1
2
3
4
1
2
3
4
5
V
V
COM  
COM  
Off-Leakage vs. Voltage at 25 °C  
RDS vs. VCOM  
www.vishay.com  
4
Document Number: 70862  
S11-1229–Rev. D, 20-Jun-11  
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
DG9262, DG9263  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25°C, unless otherwise noted)  
80  
60  
40  
20  
0
70  
V+ = 3 V  
60  
50  
40  
30  
20  
10  
0
t
ON  
85 °C  
25 °C  
40 °C  
t
OFF  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
- 60  
- 30  
0
30  
60  
90  
120  
V
COM  
Temperature (°C)  
RDS vs. VCOM  
Switching Time vs. Temperature  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
120  
100  
80  
60  
40  
20  
0
t
ON  
t
OFF  
2
3
4
5
6
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
V+  
V+  
tON/tOFF vs. Power Supply Voltage  
Input Switching Point vs. Power Supply Voltage  
Document Number: 70862  
S11-1229–Rev. D, 20-Jun-11  
www.vishay.com  
5
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
DG9262, DG9263  
Vishay Siliconix  
TEST CIRCUITS  
V+  
V+  
+ 3 V  
0 V  
Logic  
Input  
t < 20 ns  
f
50 %  
r
t < 20 ns  
Switch Output  
NO or NC  
COM  
Switch  
Input  
V
OUT  
0.9 x V  
OUT  
IN  
Switch  
Output  
R
L
C
L
300  
35 pF  
0 V  
GND  
Logic  
Input  
t
t
OFF  
ON  
0 V  
Logic "1" = Switch On  
Logic input waveforms inverted for switches that have  
the opposite logic sense.  
C
L
(includes fixture and stray capacitance)  
R
L
+ R  
V
= V  
COM  
OUT  
R
L
ON  
Figure 1. Switching Time  
V+  
Logic  
Input  
3 V  
0 V  
t < 5 ns  
r
t < 5 ns  
f
V+  
COM  
COM  
NO or NC  
NO or NC  
1
V
V
1
2
2
V
= V  
NO  
NC  
R
300   
C
L
35 pF  
L
V
90 %  
O
GND  
Switch  
Output  
0 V  
t
D
t
D
C
L
(includes fixture and stray capacitance)  
Figure 2. Break-Before-Make Interval  
V+  
V+  
V  
OUT  
R
gen  
V
OUT  
NC or NO  
IN  
COM  
V
OUT  
+
IN  
V
gen  
C
L
On  
On  
Off  
Q = V  
3 V  
GND  
x C  
OUT  
L
IN depends on switch configuration: input polarity  
determined by sense of switch.  
Figure 3. Charge Injection  
www.vishay.com  
6
Document Number: 70862  
S11-1229–Rev. D, 20-Jun-11  
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
DG9262, DG9263  
Vishay Siliconix  
TEST CIRCUITS  
V+  
V+  
10 nF  
COM  
0 V, 2.4 V  
IN  
COM  
NC or NO  
V
NC/NO  
Off Isolation = 20 log  
R
L
V
COM  
GND  
Analyzer  
Figure 4. Off-Isolation  
V+  
10 nF  
V+  
COM  
Meter  
IN  
HP4192A  
Impedance  
Analyzer  
0 V, 2.4 V  
or Equivalent  
NC or NO  
GND  
f = 1 MHz  
Figure 5. Channel Off/On Capacitance  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Tech-  
nology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability  
data, see www.vishay.com/ppg?70862.  
Document Number: 70862  
S11-1229–Rev. D, 20-Jun-11  
www.vishay.com  
7
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
Vishay Siliconix  
SOIC (NARROW): 8-LEAD  
JEDEC Part Number: MS-012  
8
6
7
2
5
4
E
H
1
3
S
h x 45  
D
C
0.25 mm (Gage Plane)  
A
All Leads  
0.101 mm  
q
e
B
A
1
L
0.004"  
MILLIMETERS  
Max  
INCHES  
DIM  
A
Min  
Min  
Max  
1.35  
0.10  
0.35  
0.19  
4.80  
3.80  
1.75  
0.20  
0.51  
0.25  
5.00  
4.00  
0.053  
0.004  
0.014  
0.0075  
0.189  
0.150  
0.069  
0.008  
0.020  
0.010  
0.196  
0.157  
A1  
B
C
D
E
e
1.27 BSC  
0.050 BSC  
H
h
5.80  
0.25  
0.50  
0°  
6.20  
0.50  
0.93  
8°  
0.228  
0.010  
0.020  
0°  
0.244  
0.020  
0.037  
8°  
L
q
S
0.44  
0.64  
0.018  
0.026  
ECN: C-06527-Rev. I, 11-Sep-06  
DWG: 5498  
Document Number: 71192  
11-Sep-06  
www.vishay.com  
1
Package Information  
Vishay Siliconix  
MSOP: 8−LEADS  
JEDEC Part Number: MO-187, (Variation AA and BA)  
(N/2) Tips)  
2X  
5
A
B C 0.20  
N N-1  
0.48 Max  
Detail “B”  
(Scale: 30/1)  
Dambar Protrusion  
E
1
2
N/2  
0.50  
0.60  
M
S
S
A
0.08  
C
B
7
b
Top View  
e1  
b
1
With Plating  
e
A
See Detail “B”  
c
c
1
0.10  
C
6
Section “C-C”  
Scale: 100/1  
(See Note 8)  
-H-  
A
1
Seating Plane  
Base Metal  
D
-A-  
3
See Detail “A”  
Side View  
0.25  
BSC  
C
C
Parting Line  
0.07 R. Min  
2 Places  
ς
S
A
2
0.05  
Seating Plane  
E
1
-B-  
L
4
-C-  
T
3
0.95  
End View  
Detail “A”  
(Scale: 30/1)  
NOTES:  
N = 8L  
1. Die thickness allowable is 0.203"0.0127.  
MILLIMETERS  
2. Dimensioning and tolerances per ANSI.Y14.5M-1994.  
Dim  
Min  
Nom  
Max  
Note  
3. Dimensions “D” and “E ” do not include mold flash or protrusions, and are  
1
-
-
0.10  
1.10  
0.15  
0.95  
0.38  
0.33  
0.23  
0.18  
A
A1  
A2  
b
b1  
c
c1  
D
E
E1  
e
e1  
L
measured at Datum plane -H- , mold flash or protrusions shall not exceed  
0.15 mm per side.  
0.05  
0.75  
0.25  
0.25  
0.13  
0.13  
0.85  
4. Dimension is the length of terminal for soldering to a substrate.  
5. Terminal positions are shown for reference only.  
-
8
8
0.30  
-
6. Formed leads shall be planar with respect to one another within 0.10 mm at  
seating plane.  
0.15  
7. The lead width dimension does not include Dambar protrusion. Allowable  
Dambar protrusion shall be 0.08 mm total in excess of the lead width  
dimension at maximum material condition. Dambar cannot be located on the  
lower radius or the lead foot. Minimum space between protrusions and an  
adjacent lead to be 0.14 mm. See detail “B” and Section “C-C”.  
3.00 BSC  
4.90 BSC  
3.00  
3
3
2.90  
3.10  
0.65 BSC  
1.95 BSC  
0.55  
8. Section “C-C” to be determined at 0.10 mm to 0.25 mm from the lead tip.  
9. Controlling dimension: millimeters.  
0.40  
0.70  
4
5
8
N
T
10. This part is compliant with JEDEC registration MO-187, variation AA and BA.  
11. Datums -A- and -B- to be determined Datum plane -H- .  
12. Exposed pad area in bottom side is the same as teh leadframe pad size.  
0_  
4_  
6_  
ECN: T-02080—Rev. C, 15-Jul-02  
DWG: 5867  
Document Number: 71244  
12-Jul-02  
www.vishay.com  
1
VISHAY SILICONIX  
TrenchFET® Power MOSFETs  
Application Note 808  
Mounting LITTLE FOOT®, SO-8 Power MOSFETs  
Wharton McDaniel  
0.288  
7.3  
Surface-mounted LITTLE FOOT power MOSFETs use  
integrated circuit and small-signal packages which have  
0.050  
1.27  
0.088  
2.25  
been been modified to provide the heat transfer capabilities  
required by power devices. Leadframe materials and  
design, molding compounds, and die attach materials have  
been changed, while the footprint of the packages remains  
the same.  
0.088  
2.25  
0.027  
0.69  
0.078  
1.98  
0.2  
5.07  
See Application Note 826, Recommended Minimum Pad  
Patterns With Outline Drawing Access for Vishay Siliconix  
MOSFETs, (http://www.vishay.com/ppg?72286), for the  
basis of the pad design for a LITTLE FOOT SO-8 power  
MOSFET. In converting this recommended minimum pad  
to the pad set for a power MOSFET, designers must make  
two connections: an electrical connection and a thermal  
connection, to draw heat away from the package.  
Figure 2. Dual MOSFET SO-8 Pad Pattern  
With Copper Spreading  
The minimum recommended pad patterns for the  
single-MOSFET SO-8 with copper spreading (Figure 1) and  
dual-MOSFET SO-8 with copper spreading (Figure 2) show  
the starting point for utilizing the board area available for the  
heat-spreading copper. To create this pattern, a plane of  
copper overlies the drain pins. The copper plane connects  
the drain pins electrically, but more importantly provides  
planar copper to draw heat from the drain leads and start the  
process of spreading the heat so it can be dissipated into the  
ambient air. These patterns use all the available area  
underneath the body for this purpose.  
In the case of the SO-8 package, the thermal connections  
are very simple. Pins 5, 6, 7, and 8 are the drain of the  
MOSFET for a single MOSFET package and are connected  
together. In a dual package, pins 5 and 6 are one drain, and  
pins 7 and 8 are the other drain. For a small-signal device or  
integrated circuit, typical connections would be made with  
traces that are 0.020 inches wide. Since the drain pins serve  
the additional function of providing the thermal connection  
to the package, this level of connection is inadequate. The  
total cross section of the copper may be adequate to carry  
the current required for the application, but it presents a  
large thermal impedance. Also, heat spreads in a circular  
fashion from the heat source. In this case the drain pins are  
the heat sources when looking at heat spread on the PC  
board.  
Since surface-mounted packages are small, and reflow  
soldering is the most common way in which these are  
affixed to the PC board, “thermal” connections from the  
planar copper to the pads have not been used. Even if  
additional planar copper area is used, there should be no  
problems in the soldering process. The actual solder  
connections are defined by the solder mask openings. By  
combining the basic footprint with the copper plane on the  
drain pins, the solder mask generation occurs automatically.  
0.288  
7.3  
0.050  
1.27  
0.196  
5.0  
A final item to keep in mind is the width of the power traces.  
The absolute minimum power trace width must be  
determined by the amount of current it has to carry. For  
thermal reasons, this minimum width should be at least  
0.020 inches. The use of wide traces connected to the drain  
plane provides a low impedance path for heat to move away  
from the device.  
0.027  
0.69  
0.078  
1.98  
0.2  
5.07  
Figure 1. Single MOSFET SO-8 Pad  
Pattern With Copper Spreading  
Document Number: 70740  
Revision: 18-Jun-07  
www.vishay.com  
1
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR SO-8  
0.172  
(4.369)  
0.028  
(0.711)  
0.022  
0.050  
(0.559)  
(1.270)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
22  
Document Number: 72606  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

DG9263

Low-Voltage Dual SPST Analog Switch
VISHAY

DG9263DQ

Low-Voltage Dual SPST Analog Switch
VISHAY

DG9263DQ-E3

IC DUAL 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO8, MSOP-8, Multiplexer or Switch
VISHAY

DG9263DQ-T1-E3

Low-Voltage Dual SPST Analog Switch
VISHAY

DG9263DY

Low-Voltage Dual SPST Analog Switch
VISHAY

DG9263DY-E3

Low-Voltage Dual SPST Analog Switch
VISHAY

DG9263DY-T1

Low-Voltage Dual SPST Analog Switch
VISHAY

DG9263DY-T1-E3

Low-Voltage Dual SPST Analog Switch
VISHAY

DG9408

Precision 8-Ch/Dual 4-Ch Low Voltage Analog Multiplexers
VISHAY

DG9408DN

Precision 8-Ch/Dual 4-Ch Low Voltage Analog Multiplexers
VISHAY

DG9408DN-E3

IC 8-CHANNEL, SGL ENDED MULTIPLEXER, CQCC16, 4 X 4 MM, QFN-16, Multiplexer or Switch
VISHAY

DG9408DN-E4

DPDT, 1 Func, 8 Channel, BICMOS, CQCC16
VISHAY