IL300-E-X016 [VISHAY]

Optoelectronic Device:Other, SPECIALTY OPTOELECTRONIC DEVICE, 0.400 INCH, ROHS COMPLIANT, DIP-8;
IL300-E-X016
型号: IL300-E-X016
厂家: VISHAY    VISHAY
描述:

Optoelectronic Device:Other, SPECIALTY OPTOELECTRONIC DEVICE, 0.400 INCH, ROHS COMPLIANT, DIP-8

文件: 总15页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IL300  
Vishay Semiconductors  
Linear Optocoupler, High Gain Stability, Wide Bandwidth  
Features  
• Couples AC and DC signals  
• 0.01 % Servo Linearity  
8
7
6
5
C
A
C
A
1
2
3
4
NC  
NC  
C
• Wide Bandwidth, > 200 kHz  
• High Gain Stability, 0.05 %/ °C  
• Low Input-Output Capacitance  
• Low Power Consumption, < 15 mW  
• Isolation Test Voltage, 5300 VRMS, 1.0 sec.  
• Internal Insulation Distance, > 0.4 mm for VDE  
K1 K2  
A
i179026  
• Component in accordance to RoHS 2002/95/EC  
and WEEE 2002/96/EC  
Agency Approvals  
• UL File #E52744  
• DIN EN 60747-5-2 (VDE0884)  
DIN EN 60747-5-5 pending  
Available with Option 1, Add -X001 Suffix  
Order Information  
Applications  
Power Supply Feedback Voltage/Current  
Medical Sensor Isolation  
Audio Signal Interfacing  
Isolated Process Control Transducers  
Digital Telephone Isolation  
Part  
Remarks  
IL300  
K3 = 0.557 - 1.618, DIP-8  
IL300-DEFG  
IL300-EF  
IL300-E  
K3 = 0.765 - 1.181, DIP-8  
K3 = 0.851 - 1.061, DIP-8  
K3 = 0.851 - 0.955, DIP-8  
IL300-F  
K3 = 0.945 - 1.061, DIP-8  
IL300-X006  
IL300-X007  
IL300-X009  
K3 = 0.557 - 1.618, DIP-8 400mil (option 6)  
K3 = 0.557 - 1.618, SMD-8 (option 7)  
K3 = 0.557 - 1.618, SMD-8 (option 9)  
Description  
The IL300 Linear Optocoupler consists of an AlGaAs  
IRLED irradiating an isolated feedback and an output  
PIN photodiode in a bifurcated arrangement. The  
feedback photodiode captures a percentage of the  
LED’s flux and generates a control signal (IP1) that  
can be used to servo the LED drive current. This tech-  
nique compensates for the LED’s non-linear, time,  
and temperature characteristics. The output PIN pho-  
todiode produces an output signal (IP2) that is linearly  
related to the servo optical flux created by the LED.  
IL300-DEFG-X006 K3 = 0.765 - 1.181, DIP-8 400 mil (option 6)  
IL300-DEFG-X007 K3 = 0.765 - 1.181, SMD-8 (option 7)  
IL300-DEFG-X009 K3 = 0.765 - 1.181, SMD-8 (option 9)  
IL300-EF-X006  
IL300-EF-X007  
IL300-EF-X009  
IL300-E-X006  
IL300-E-X007  
IL300-E-X009  
IL300-F-X006  
IL300-F-X007  
IL300-F-X009  
K3 = 0.851 - 1.061, DIP-8 400 mil (option 6)  
K3 = 0.851 - 1.061, SMD-8 (option 7)  
K3 = 0.851 - 1.061, SMD-8 (option 9)  
K3 = 0.851 - 0.955, DIP-8 400 mil (option 6)  
K3 = 0.851 - 0.955, SMD-8 (option 7)  
K3 = 0.851 - 0.955, SMD-8 (option 9)  
K3 = 0.945 - 1.061, DIP-8 400 mil (option 6)  
K3 = 0.945 - 1.061, SMD-8 (option 7)  
K3 = 0.945 - 1.061, SMD-8 (option 9)  
The time and temperature stability of the input-output  
coupler gain (K3) is insured by using matched PIN  
photodiodes that accurately track the output flux of  
the LED.  
For additional information on the available options refer to  
Option Information.  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
www.vishay.com  
1
IL300  
Vishay Semiconductors  
VISHAY  
Operation Description  
K3-Transfer Gain Linearity  
A typical application circuit (Figure 1) uses an opera- The percent deviation of the Transfer Gain, as a func-  
tional amplifier at the circuit input to drive the LED. tion of LED or temperature from a specific Transfer  
The feedback photodiode sources current to R1 con- Gain at a fixed  
nected to the inverting input of U1. The photocurrent, LED current and temperature.  
IP1, will be of a magnitude to satisfy the relationship of  
(IP1 = VIN/R1).  
Photodiode  
The magnitude of this current is directly proportional  
to the feedback transfer gain (K1) times the LED drive  
current ( VIN/R1 = K1 • IF). The op-amp will supply  
LED current to force sufficient photocurrent to keep  
the node voltage (Vb) equal to Va.  
A silicon diode operating as a current source. The out-  
put current is proportional to the incident optical flux  
supplied by the LED emitter. The diode is operated in  
the photovoltaic or photoconductive mode. In the pho-  
tovoltaic mode the diode functions as a current  
source in parallel with a forward biased silicon diode.  
The magnitude of the output current and voltage is  
dependent upon the load resistor and the incident  
LED optical flux. When operated in the photoconduc-  
tive mode the diode is connected to a bias supply  
which reverse biases the silicon diode. The magni-  
tude of the output current is directly proportional to the  
LED incident optical flux.  
The output photodiode is connected to a non-invert-  
ing voltage follower amplifier. The photodiode load  
resistor, R2, performs the current to voltage conver-  
sion. The output amplifier voltage is the product of the  
output forward gain (K2) times the LED current and  
photodiode load, R2 ( VO = IF • K2 • R2).  
Therefore, the overall transfer gain (VO/VIN) becomes  
the ratio of the product of the output forward gain (K2)  
times the photodiode load resistor (R2) to the product  
of the feedback transfer gain (K1) times the input  
resistor (R1). This reduces to  
LED (Light Emitting Diode)  
An infrared emitter constructed of AlGaAs that emits  
at 890 nm operates efficiently with drive current from  
500 µA to 40 mA. Best linearity can be obtained at  
drive currents between 5.0 mA to 20 mA. Its output  
flux typically changes by - 0.5 % /°C over the above  
operational current range.  
VO/VIN=(K2 • R2)/(K1 • R1).  
The overall transfer gain is completely independent of  
the LED forward current. The IL300 transfer gain (K3)  
is expressed as the ratio of the output gain (K2) to the  
feedback gain (K1). This shows that the circuit gain  
becomes the product of the IL300 transfer gain times  
the ratio of the output to input resistors  
Application Circuit  
VO/VIN = K3 (R2/R1).  
K1-Servo Gain  
The ratio of the input photodiode current (IP1) to the  
LED current (IF) i.e., K1 = IP1/IF.  
V
CC  
IL300  
K2  
8
7
1
2
Va  
Vb  
+
-
+
K2-Forward Gain  
The ratio of the output photodiode current (IP2) to the  
LED current (IF), i.e., K2 = IP2/IF.  
U1  
Vin  
V
CC  
K1  
I
F
-
V
3
4
V
6
CC  
1
CC  
V
V
U2  
out  
c
K3-Transfer Gain  
The Transfer Gain is the ratio of the Forward Gain to  
the Servo gain, i.e., K3 = K2/K1.  
+
5
lp  
R2  
lp 2  
R1  
iil300_01  
Figure 1. Typical Application Circuit  
www.vishay.com  
2
Document Number 83622  
Rev. 1.5, 24-Mar-05  
IL300  
Vishay Semiconductors  
VISHAY  
Absolute Maximum Ratings  
T
= 25 °C, unless otherwise specified  
amb  
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is  
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute  
Maximum Rating for extended periods of the time can adversely affect reliability.  
Input  
Parameter  
Test condition  
Symbol  
Value  
160  
Unit  
mW  
Power dissipation  
P
diss  
Derate linearly from 25 °C  
Forward current  
2.13  
60  
mW/°C  
mA  
I
F
Surge current (pulse width < 10 µs)  
Reverse voltage  
I
250  
5.0  
mA  
V
PK  
V
R
Thermal resistance  
R
470  
100  
K/W  
°C  
th  
Junction temperature  
T
j
Output  
Parameter  
Test condition  
Symbol  
Value  
50  
Unit  
mA  
Power dissipation  
P
diss  
Derate linearly from 25 °C  
Reverse voltage  
0.65  
50  
mW/°C  
V
V
R
Junction temperature  
Thermal resistance  
T
100  
°C  
j
R
1500  
K/W  
th  
Coupler  
Parameter  
Test condition  
Symbol  
Value  
210  
Unit  
mW  
Total package dissipation at  
25 °C  
P
tot  
Derate linearly from 25 °C  
Storage temperature  
2.8  
mW/°C  
°C  
T
- 55 to + 150  
stg  
Operating temperature  
Isolation test voltage  
T
- 55 to + 100  
> 5300  
°C  
amb  
V
RMS  
12  
Isolation resistance  
V
V
= 500 V, T  
= 500 V, T  
= 25 °C  
R
IO  
IO  
amb  
amb  
IO  
IO  
> 10  
11  
= 100 °C  
R
> 10  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
www.vishay.com  
3
IL300  
Vishay Semiconductors  
VISHAY  
Electrical Characteristics  
T
= 25 °C, unless otherwise specified  
amb  
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering  
evaluation. Typical values are for information only and are not part of the testing requirements.  
Input  
LED Emitter  
Parameter  
Forward voltage  
Temperature coefficient  
Test condition  
= 10 mA  
Symbol  
Min  
Typ.  
1.25  
Max  
1.50  
Unit  
V
I
V
F
F
V
V /°C  
- 2.2  
1.0  
15  
mV/°C  
µA  
F
F
Reverse current  
V
V
= 5 V  
I
R
F
R
Junction capacitance  
Dynamic resistance  
= 0 V, f = 1.0 MHz  
C
pF  
j
I
= 10 mA  
V /I  
F
6.0  
F
F
Output  
Parameter  
Test condition  
= -15 V, I = 0 µs  
Symbol  
Min  
Typ.  
1.0  
Max  
25  
Unit  
nA  
Dark current  
V
I
det  
F
D
Open circuit voltage  
Short circuit current  
Junction capacitance  
Noise equivalent power  
I
I
= 10 mA  
V
500  
70  
mV  
µA  
F
F
D
= 10 mA  
I
SC  
V
V
= 0, f = 1.0 MHz  
C
12  
pF  
F
j
14  
= 15 V  
NEP  
W/Hz  
det  
4 x 10  
www.vishay.com  
4
Document Number 83622  
Rev. 1.5, 24-Mar-05  
IL300  
Vishay Semiconductors  
VISHAY  
Coupler  
Parameter  
Input- output capacitance  
K1, Servo gain (I /I )  
Test condition  
Symbol  
K1  
Min  
Typ.  
1.0  
Max  
Unit  
pF  
V
= 0 V, f = 1.0 MHz  
F
I = 10 mA, V = - 15 V  
0.0050  
0.007  
70  
0.011  
P1  
F
F
det  
Servo current, see Note 1,2  
K2, Forward gain (I /I )  
I = 10 mA, V = - 15 V  
I
µA  
F
det  
P1  
I = 10 mA, V = - 15 V  
K2  
0.0036  
0.56  
0.007  
70  
0.011  
1.65  
P2  
F
F
det  
Forward current  
I = 10 mA, V = - 15 V  
I
µA  
F
det  
P2  
K3, Transfer gain (K2/K1) see  
Note 1,2  
I = 10 mA, V = - 15 V  
K3  
1.00  
K2/K1  
F
det  
Transfer gain linearity  
I = 1.0 to 10 mA  
K3  
0.25  
0.5  
%
%
F
I = 1.0 to 10 mA,  
F
T
= 0 °C to 75 °C  
amb  
Photoconductive Operation  
Frequency response  
I
= 10 mA, MOD = 4.0 mA,  
BW (-3 db)  
200  
-45  
KHz  
Fq  
R = 50 Ω  
L
Phase response at 200 kHz  
1. Bin Sorting:  
V
= - 15 V  
Deg.  
det  
K3 (transfer gain) is sorted into bins that are 6 % , as follows:  
Bin A = 0.557 - 0.626  
Bin B = 0.620 - 0.696  
Bin C = 0.690 - 0.773  
Bin D = 0.765 - 0.859  
Bin E = 0.851 - 0.955  
Bin F = 0.945 - 1.061  
Bin G = 1.051 - 1.181  
Bin H = 1.169 - 1.311  
Bin I = 1.297 - 1.456  
Bin J = 1.442 - 1.618  
K3 = K2/K1. K3 is tested at I = 10 mA, V = - 15 V.  
F
det  
2. Bin Categories: All IL300s are sorted into a K3 bin, indicated by an alpha character that is marked on the part. The bins range from "A"  
through "J".  
The IL300 is shipped in tubes of 50 each. Each tube contains only one category of K3. The category of the parts in the tube is marked on  
the tube label as well as on each individual part.  
3. Category Options: Standard IL300 orders will be shipped from the categories that are available at the time of the order. Any of the ten  
categories may be shipped. For customers requiring a narrower selection of bins, four different bin option parts are offered.  
IL300-DEFG: Order this part number to receive categories D,E,F,G only.  
IL300-EF: Order this part number to receive categories E, F only.  
IL300-E: Order this part number to receive category E only.  
Switching Characteristics  
Parameter  
Test condition  
Symbol  
Min  
Typ.  
1.0  
Max  
Unit  
Switching time  
I = 2.0 mA, I = 10 mA  
t
µs  
F
Fq  
r
t
1.0  
µs  
µs  
µs  
f
Rise time  
Fall time  
t
1.75  
1.75  
r
t
f
Document Number 83622  
Rev. 1.5, 24-Mar-05  
www.vishay.com  
5
IL300  
Vishay Semiconductors  
VISHAY  
Common Mode Transient Immunity  
Parameter  
Test condition  
Symbol  
Min  
Typ.  
0.5  
Max  
Unit  
pF  
Common mode capacitance  
V
= 0, f = 1. MHz  
C
CM  
F
Common mode rejection ratio  
f = 60 Hz, R = 2.2 KΩ  
CMRR  
130  
dB  
L
Typical Characteristics (Tamb = 25 °C unless otherwise specified)  
300  
250  
200  
150  
100  
50  
35  
30  
25  
20  
15  
10  
V
= 15 V  
D
0°C  
25°C  
50°C  
75°C  
5
0
0
.1  
1
10  
100  
1.0  
1.1  
1.2  
1.3  
1.4  
I
- LED Current - mA  
F
VF - LED Forward Voltage - V  
iil300_02  
iil300_04  
Figure 2. LED Forward Current vs.Forward Voltage  
Figure 4. Servo Photocurrent vs. LED Current and Temperature  
100  
1000  
V
= –15 V  
D
0°C  
25°C  
50°C  
75°C  
100  
10  
1
10  
1
.1  
1
10  
100  
.1  
1.0  
1.1  
1.2  
1.3  
1.4  
I
- LED Current - mA  
F
VF - LED Forward Voltage - V  
iil300_03  
iil300_05  
Figure 3. LED Forward Current vs.Forward Voltage  
Figure 5. Servo Photocurrent vs. LED Current and Temperature  
www.vishay.com  
6
Document Number 83622  
Rev. 1.5, 24-Mar-05  
IL300  
Vishay Semiconductors  
VISHAY  
3.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0°C  
Normalized to: IP1@ I =10 mA,  
F
A
25°C  
50°C  
75°C  
100°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T
V
=25°C  
=–15 V  
0°C  
25°C  
50°C  
75°C  
D
Normalized to:  
I
= 10 mA,T = 25°C  
A
F
0
5
10  
15  
20  
25  
.1  
1
10  
100  
I
- LED Current - mA  
I
- LED Current - mA  
F
F
iil300_06  
iil300_09  
Figure 6. Normalized Servo Photocurrent vs. LED Current and  
Temperature  
Figure 9. Normalized Servo Gain vs. LED Current and  
Temperature  
10  
1.010  
Normalized to: IP1@ I =10 mA,  
F
0°C  
T
V
=25°C  
A
0°C  
=–15 V  
1.005  
D
25°C  
50°C  
75°C  
25°C  
1
.1  
1.000  
0.995  
0.990  
50°C  
75°C  
.01  
0
5
10  
15  
20  
25  
.1  
1
F
10  
- LED Current - mA  
100  
I
- LED Current - mA  
F
I
iil300_07  
iil300_10  
Figure 7. Normalized Servo Photocurrent vs. LED Current and  
Temperature  
Figure 10. Transfer Gain vs. LED Current and Temperature  
1.2  
1.010  
0°C  
25°C  
50°C  
Normalized to:  
0°C  
1.0  
I
= 10 mA,  
T = 25°C  
A
F
1.005  
1.000  
0.995  
0.990  
0.8  
75°C  
25°C  
85°C  
0.6  
50°C  
75°C  
0.4  
0.2  
0.0  
.1  
1
F
10  
100  
0
5
10  
15  
20  
25  
I
- LED Current - mA  
I
- LED Current - mA  
F
iil300_08  
iil300_11  
Figure 8. Servo Gain vs. LED Current and Temperature  
Figure 11. Normalized Transfer Gain vs. LED Current and  
Temperature  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
www.vishay.com  
7
IL300  
Vishay Semiconductors  
VISHAY  
5
14  
12  
10  
8
I
=10 mA, Mod = 2.0 mA (peak)  
F
0
-5  
R =1.0 Kˇ  
L
6
-10  
-15  
-20  
R
=10 Kˇ  
4
L
2
0
0
2
4
6
8
10  
4
5
6
10  
10  
10  
F - Frequency - Hz  
Voltage - V  
det  
iil300_12  
iil300_15  
Figure 12. Amplitude Response vs. Frequency  
Figure 15. Photodiode Junction Capacitance vs. Reverse Voltage  
Application Considerations  
5
0
45  
dB  
In applications such as monitoring the output voltage  
from a line powered switch mode power supply, mea-  
suring bioelectric signals, interfacing to industrial  
transducers, or making floating current measure-  
ments, a galvanically isolated, DC coupled interface  
is often essential. The IL300 can be used to construct  
an amplifier that will meet these needs.  
PHASE  
0
-5  
-45  
-90  
-10  
-15  
-20  
I
=10 mA  
Fq  
Mod= 4.0 mA  
=25°C  
The IL300 eliminates the problems of gain nonlinear-  
ity and drift induced by time and temperature, by mon-  
itoring LED output flux.  
-135  
-180  
T
A
L
R =50   
3
4
5
6
7
10  
10  
10  
10  
10  
A PIN photodiode on the input side is optically cou-  
pled to the LED and produces a current directly pro-  
portional to flux falling on it. This photocurrent, when  
coupled to an amplifier, provides the servo signal that  
controls the LED drive current.  
iil300_13  
F - Frequency - Hz  
Figure 13. Amplitude and Phase Response vs. Frequency  
The LED flux is also coupled to an output PIN photo-  
diode. The output photodiode current can be directly  
or amplified to satisfy the needs of succeeding cir-  
cuits.  
-60  
-70  
-80  
-90  
Isolated Feedback Amplifier  
-100  
-110  
-120  
-130  
The IL300 was designed to be the central element of  
DC coupled isolation amplifiers. Designing the IL300  
into an amplifier that provides a feedback control sig-  
nal for a line powered switch mode power is quite sim-  
ple, as the following example will illustrate.  
10  
100  
1000  
10000 100000 1000000  
F - Frequency - Hz  
See Figure 17 for the basic structure of the switch  
mode supply using the Infineon TDA4918 Push-Pull  
Switched Power Supply Control Chip. Line isolation  
and insulation is provided by the high frequency  
transformer. The voltage monitor isolation will be pro-  
vided by the IL300.  
iil300_14  
Figure 14. Common-Mode Rejection  
www.vishay.com  
8
Document Number 83622  
Rev. 1.5, 24-Mar-05  
IL300  
Vishay Semiconductors  
VISHAY  
The isolated amplifier provides the PWM control sig- The value of R5 depends upon the IL300 Transfer  
nal which is derived from the output supply voltage. Gain (K3). K3 is targeted to be a unit gain device,  
Figure 16 more closely shows the basic function of however to minimize the part to part Transfer Gain  
the amplifier.  
variation, Infineon offers K3 graded into 5 % bins.  
R5 can determined using the following equation,  
The control amplifier consists of a voltage divider and  
a non-inverting unity gain stage. The TDA4918 data  
sheet indicates that an input to the control amplifier is  
a high quality operational amplifier that typically  
requires a +3.0 V signal. Given this information, the  
amplifier circuit topology shown in Figure 18 is  
selected.  
V
R3(R1 + R2)  
R2K3  
OUT  
R5 =  
V
MONITOR  
17166  
Or if a unity gain amplifier is being designed (VMON-  
ITOR = VOUT, R1 = 0), the equation simplifies to:  
The power supply voltage is scaled by R1 and R2 so  
that there is + 3.0 V at the non-inverting input (Va) of  
U1. This voltage is offset by the voltage developed by  
photocurrent flowing through R3. This photocurrent is  
developed by the optical flux  
R3  
R5 =  
K3  
17190  
created by current flowing through the LED. Thus as  
the scaled monitor voltage (Va) varies it will cause a  
change in the LED current necessary to satisfy the dif-  
ferential voltage needed across R3 at the inverting  
input.  
The first step in the design procedure is to select the  
value of R3 given the LED quiescent current (IFq) and  
the servo gain (K1). For this design, IFq = 12 mA. Fig-  
ure 4 shows the servo photocurrent at IFq is found to  
be 100 µA. With this data R3 can be calculated.  
V
I
3 V  
b
=
R3 =  
= 30 K  
100 µA  
17164  
PI  
R1  
ISO  
To Control  
Input  
Voltage  
Monitor  
AMP  
+1  
R2  
iil300_16  
Figure 16. Isolated Control Amplifier  
For best input offset compensation at U1, R2 will  
equal R3. The value of R1 can easily be calculated  
from the following.  
V
V
MONITOR  
R1 = R2  
(
1)  
-
a
17165  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
www.vishay.com  
9
IL300  
Vishay Semiconductors  
VISHAY  
DC OUTPUT  
1 1 0 /  
AC/DC  
220  
AC/DC  
RECTIFIER  
SWITCH  
XFORMER  
CONTROL  
RECTIFIER  
MAIN  
SWITCH  
MODE  
REGULATOR  
TDA4918  
ISOLATED  
FEEDBACK  
iil300_17  
Figure 17. Switching Mode Power Supply  
R1  
IL300  
1
2
3
4
8
7
6
5
20 KW  
7
3
2
R4  
100 W  
V
V
+
U1  
monitor  
CC  
Va  
Vb  
6
LM201  
K2  
R2  
30 KW  
1
K1  
-
8
V
V
CC  
CC  
4
100 pF  
V
To  
control  
input  
out  
R3  
30 KW  
R5  
30 KW  
iil300_18  
Figure 18. DC Coupled Power Supply Feedback Amplifier  
Table 1. gives the value of R5 given the production K3  
bins.  
R5 Selection  
Table 1.  
Bins  
Min.  
Max.  
3
R5 Resistor  
1%  
Typ.  
KΩ  
KΩ  
A
B
C
D
E
F
G
H
I
0.560  
0.623  
0.693  
0.769  
0.855  
0.950  
1.056  
1.175  
1.304  
1.449  
0.623  
0.693  
0.769  
0.855  
0.950  
1.056  
1.175  
1.304  
1.449  
1.610  
0.59  
0.66  
0.73  
0.81  
0.93  
1.00  
1.11  
1.24  
1.37  
1.53  
50.85  
45.45  
41.1  
51.1  
45.3  
41.2  
37.4  
32.4  
30.0  
27.0  
24.0  
22.0  
19.4  
37.04  
32.26  
30.00  
27.03  
24.19  
21.90  
19.61  
J
www.vishay.com  
10  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
IL300  
Vishay Semiconductors  
VISHAY  
The last step in the design is selecting the LED cur-  
rent limiting resistor (R4). The output of the opera-  
tional amplifier is targeted to be 50 % of the VCC, or  
2.5 V. With an LED quiescent current of 12 mA the  
typical LED (VF) is 1.3 V. Given this and the opera-  
tional output voltage, R4 can be calculated.  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
-0.015  
LM201  
V
- V  
2.5 V - 1.3 V  
12 mA  
opamp  
F
= 100  
R4 =  
=
I
17096  
Fq  
The circuit was constructed with an LM201 differential  
operational amplifier using the resistors selected. The  
amplifier was compensated with a 100 pF capacitor  
connected between pins 1 and 8.  
4.0  
4.5  
5.0  
5.5  
6.0  
Vin - Input Voltage - V  
iil300_20  
The DC transfer characteristics are shown in Figure  
19. The amplifier was designed to have a gain of 0.6  
and was measured to be 0.6036. Greater accuracy  
can be achieved by adding a balancing circuit, and  
potentiometer in the input divider, or at R5. The circuit  
shows exceptionally good gain linearity with an RMS  
error of only 0.0133 % over the input voltage range of  
4.0 V - 6.0 V in a servo mode; see Figure 20.  
Figure 20. Linearity Error vs. Input Voltage  
The AC characteristics are also quite impressive  
offering a - 3.0 dB bandwidth of 100 kHz, with a -45 °  
phase shift at 80 kHz as shown in Figure 21.  
2
0
45  
dB  
PHASE  
0
3.75  
Vout = 14.4 mV + 0.6036 x Vin  
LM 201 Ta = 25°C  
3.50  
-2  
-4  
-6  
-8  
-45  
-90  
-135  
-180  
3.25  
3.00  
2.75  
2.50  
2.25  
3
4
5
6
10  
10  
10  
10  
iil300_21  
F - Frequency - Hz  
4.0  
4.5  
5.0  
5.5  
6.0  
Figure 21. Amplitude and Phase Power Supply Control  
iil300_19  
The same procedure can be used to design isolation  
amplifiers that accept bipolar signals referenced to  
ground. These amplifiers circuit configurations are  
shown in Figure 22. In order for the amplifier to  
respond to a signal that swings above and below  
ground, the LED must be pre biased from a separate  
source by using a voltage reference source (Vref1). In  
these designs, R3 can be determined by the following  
equation.  
Figure 19. Transfer Gain  
V
V
ref1  
ref1  
=
R3 =  
I
P1  
K1I  
Fq  
17098  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
www.vishay.com  
11  
IL300  
Vishay Semiconductors  
VISHAY  
Non-Inverting Input  
–Vcc  
Non-Inverting Output  
+Vref2  
R5  
Vin  
R1  
7
IL 300  
3
+
1
2
3
4
8
Vcc  
R6  
100  
6
2
7
+
7
6
5
R2  
2
Vcc  
6
Vcc  
–Vcc  
20pF  
+Vcc  
Vo  
4
3
–Vcc  
4
R3  
–Vref1  
R4  
Inverting Output  
Inverting Input  
Vin  
R1  
7
3
+
Vcc  
+Vref2  
100 Ω  
6
IL 300  
1
2
3
4
8
R2  
2
+Vcc  
Vcc  
7
3
2
+
7
6
5
Vcc  
4
6
Vcc  
20pF  
–Vcc  
Vout  
–Vcc  
4
R3  
+Vref1  
R4  
iil300_22  
Figure 22. Non-inverting and Inverting Amplifiers  
Table 2. Optolinear amplifiers  
Amplifier  
Input  
Output  
Gain  
Offset  
V
V
R4 K3  
ref1  
K3 R4 R2  
OUT  
=
=
=
=
=
V
Inverting  
Inverting  
ref2  
V
R3  
IN  
R3 (R1 + R2)  
Non-Inverting  
V
- V  
R4 (R5 + R6) K3  
K3 R4 R2 (R5 + R6)  
R3 R5 (R1 + R2)  
ref1  
OUT  
Non-Inverting  
Inverting  
V
Non-Inverting  
Non-Inverting  
Inverting  
ref2  
V
R3 R6  
IN  
V
V
R4 (R5 + R6) K3  
- K3 R4 R2 (R5 + R6)  
R3 R5 (R1 + R2)  
OUT  
ref1  
=
=
V
ref2  
V
R3 R6  
R4 K3  
ref1  
IN  
Inverting  
- V  
V
V
-
K3 R4 R2  
OUT  
IN  
Non-Inverting  
=
V
ref2  
R3  
R3 (R1 + R2)  
17189  
These amplifiers provide either an inverting or non- age output for a zero voltage input. The non-inverting  
inverting transfer gain based upon the type of input input amplifier requires the use of a bipolar supply,  
and output amplifier. Table 2 shows the various con- while the inverting input stage can be implemented  
figurations along with the specific transfer gain equa- with single supply operational amplifiers that permit  
tions. The offset column refers to the calculation of the operation close to ground.  
output offset or Vref2 necessary to provide a zero volt-  
www.vishay.com  
12  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
IL300  
Vishay Semiconductors  
VISHAY  
For best results, place a buffer transistor between the influenced by the magnitude of the closed loop gain of  
LED and output of the operational amplifier when a the input and output amplifiers. Best bandwidths  
CMOS opamp is used or the LED IFq drive is targeted result when the amplifier gain is designed for unity.  
to operate beyond 15 mA. Finally the bandwidth is  
Package Dimensions in Inches (mm)  
Pin 1 ID.  
.240 (6.096)  
.260 (6.604)  
.130 (3.302)  
.150 (3.810)  
.021 (0.527)  
.035 (0.889)  
.100 (2.540)  
1
2
3
4
8
7
6
5
4°  
)
)
(.406  
(.508  
.016  
.020  
.040 (1.016)  
.050 (1.270 )  
.050 (1.270)  
.010 (0.254) REF.  
.380 (9.652)  
.400 (10.16)  
.280 (7.112)  
.330 (8.382)  
.300 Typ.  
(7.62) Typ.  
.020 (0.508) REF.  
.010 (0.254) REF.  
ISO Method A  
3°  
9
10°  
.008 (0.203)  
.012 (0.305)  
.110 (2.794)  
.130 (3.302)  
i178010  
Option 7  
Option 6  
Option 9  
.300 (7.62)  
TYP.  
.407 (10.36)  
.391 (9.96)  
.375 (9.53)  
.395 (10.03)  
.307 (7.8)  
.291 (7.4)  
.300 (7.62)  
ref.  
.028 (0.7)  
MIN.  
.180 (4.6)  
.160 (4.1)  
.0040 (.102)  
.0098 (.249)  
.012 (.30) typ.  
.315 (8.0)  
MIN.  
.020 (.51)  
.040 (1.02)  
.014 (0.35)  
.010 (0.25)  
.400 (10.16)  
.430 (10.92)  
.331 (8.4)  
MIN.  
15° max.  
18450  
.315 (8.00)  
min.  
.406 (10.3)  
MAX.  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
www.vishay.com  
13  
IL300  
Vishay Semiconductors  
VISHAY  
Ozone Depleting Substances Policy Statement  
It is the policy of Vishay Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating  
systems with respect to their impact on the health and safety of our employees and the public, as well as  
their impact on the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are  
known as ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs  
and forbid their use within the next ten years. Various national and international initiatives are pressing for an  
earlier ban on these substances.  
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use  
of ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments  
respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
We reserve the right to make changes to improve technical design  
and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each  
customer application by the customer. Should the buyer use Vishay Semiconductors products for any  
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all  
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal  
damage, injury or death associated with such unintended or unauthorized use.  
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
www.vishay.com  
14  
Document Number 83622  
Rev. 1.5, 24-Mar-05  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

IL300-E-X017

Optoelectronic Device:Other, SPECIALTY OPTOELECTRONIC DEVICE, ROHS COMPLIANT, SMD, 8 PIN
VISHAY

IL300-E-X019

Optoelectronic Device:Other, SPECIALTY OPTOELECTRONIC DEVICE, ROHS COMPLIANT, SMD, 8 PIN
VISHAY

IL300-EF

Linear Optocoupler, High Gain Stability, Wide Bandwidth
VISHAY

IL300-EF-X001

Optoelectronic Device, ROHS COMPLIANT, SMD, 8 PIN
VISHAY

IL300-EF-X006

Linear Optocoupler, High Gain Stability, Wide Bandwidth
VISHAY

IL300-EF-X007

Linear Optocoupler, High Gain Stability, Wide Bandwidth
VISHAY

IL300-EF-X007T

Optocoupler DC-IN 1-CH Linear Photovoltaic DC-OUT 8-Pin PDIP-8A SMD T/R
VISHAY

IL300-EF-X009

Linear Optocoupler, High Gain Stability, Wide Bandwidth
VISHAY

IL300-EF-X009T

Optocoupler DC-IN 1-CH Linear Photovoltaic DC-OUT 8-Pin PDIP-8A SMD T/R
VISHAY

IL300-EF-X016

Linear Optocoupler, High Gain Stability, Wide Bandwidth
VISHAY

IL300-EF-X017T

IL300 Linear Optocoupler, High Gain Stability, Wide Bandwidth
VISHAY

IL300-EF-X019

Optoelectronic Device:Other, SPECIALTY OPTOELECTRONIC DEVICE, ROHS COMPLIANT, SMD, 8 PIN
VISHAY