IL4117-X007 [VISHAY]

Optocoupler, Phototriac Output, Zero Crossing, High dV/dt, Very Low Input Current; 光电耦合器,光敏可控硅输出,零交叉,高dv / dt ,极低的输入电流
IL4117-X007
型号: IL4117-X007
厂家: VISHAY    VISHAY
描述:

Optocoupler, Phototriac Output, Zero Crossing, High dV/dt, Very Low Input Current
光电耦合器,光敏可控硅输出,零交叉,高dv / dt ,极低的输入电流

可控硅 光电
文件: 总8页 (文件大小:128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IL4116/IL4117/IL4118  
Vishay Semiconductors  
Optocoupler, Phototriac Output,  
Zero Crossing, High dV/dt, Very Low Input Current  
FEATURES  
• High input sensitivity: IFT = 1.3 mA, PF = 1.0;  
IFT = 3.5 mA, typical PF < 1.0  
A
C
MT2  
6
5
4
1
2
3
• Zero voltage crossing  
NC  
• 600/700/800 V blocking voltage  
• 300 mA on-state current  
• High dV/dt 10000 V/µs  
ZCC  
MT1  
NC  
• Inverse parallel SCRs provide commutating  
dV/dt > 10 kV/µs  
18099  
DESCRIPTION  
• Isolation test voltage 5300 VRMS  
• Very low leakage < 10 µA  
• Lead (Pb)-free component  
The IL4116/IL4117/IL4118 consists of an AlGaAs IRLED  
optically coupled to a photosensitive zero crossing TRIAC  
network. The TRIAC consists of two inverse parallel  
connected monolithic SCRs. These three semiconductors  
devices are assembled in a six pin 300 mil dual in-line  
package.  
High input sensitivity is achieved by using an emitter follower  
phototransistor and a cascaded SCR predriver resulting in  
an LED trigger current of less than 1.3 mA (DC).  
• Component in accordance to RoHS 2002/95/EC and  
WEEE 2002/96/EC  
APPLICATIONS  
• Solid state relay  
• Lighting controls  
The IL4116/IL4117/IL4118 uses zero cross line voltage  
detection circuit witch consists of two enhancement  
MOSFETs and a photodiode. The inhibit voltage of the  
network is determined by the enhancement voltage of the  
N-channel FET. The P-channel FET is enabled by a  
photocurrent source that permits the FET to conduct the  
main voltage to gate on the N-channel FET. Once the main  
voltage can enable the N-channel, it clamps the base of the  
phototransistor, disabling the first stage SCR predriver.  
The blocking voltage of up to 800 V permits control of off-line  
voltages up to 240 VAC, with a safety factor of more than  
two, and is sufficient for as much as 380 VAC. Current  
handling capability is up to 300 mA RMS continuous  
at 25 °C.  
• Temperature controls  
• Solenoid/valte controls  
• AC motor drives/starters  
AGENCY APPROVALS  
• UL1577, file no. E52744 system code H or J, double  
protection  
• CSA 93751  
• BSI IEC 60950 IEC 60065  
• DIN EN 60747-5-2 (VDE 0884)/DIN EN 60747-5-5 pending  
available with option 1  
• FIMKO  
The IL4116/IL4117/IL4118 isolates low-voltage logic from  
120, 240, and 380 VAC lines to control resistive, inductive, or  
capacitive loads including motors, solenoids, high current  
thyristors or TRIAC and relays.  
Applications include solid-state relays, industrial controls,  
office equipment, and consumer appliances.  
ORDER INFORMATION  
PART  
REMARKS  
IL4116  
600 V VDRM, DIP-6  
700 V VDRM, DIP-6  
IL4117  
IL4118  
800 V VDRM, DIP-6  
IL4116-X006  
IL4116-X007  
IL4116-X009  
IL4117-X007  
IL4118-X006  
600 V VDRM, DIP-6 400 mil (option 6)  
600 V VDRM, SMD-6 (option 7)  
600 V VDRM, SMD-6(option 9)  
700 V VDRM, SMD-6 (option 7)  
800 V VDRM, DIP-6 400 mil (option 6)  
Document Number: 83628  
Rev. 1.6, 09-Jan-08  
For technical questions, contact: optocoupler.answers@vishay.com  
www.vishay.com  
1
IL4116/IL4117/IL4118  
Optocoupler, Phototriac Output,  
Zero Crossing, High dV/dt, Very Low  
Input Current  
Vishay Semiconductors  
ORDER INFORMATION  
PART  
REMARKS  
IL4118-X007  
800 V VDRM, SMD-6 (option 7)  
800 V VDRM, SMD-6 (option 9)  
IL4118-X009  
Note  
For additional information on the available options refer to option information.  
ABSOLUTE MAXIMUM RATINGS (1)  
PARAMETER  
TEST CONDITION  
PART  
SYMBOL  
VALUE  
UNIT  
INPUT  
Reverse voltage  
Forward current  
Surge current  
VR  
IF  
6.0  
60  
V
mA  
IFSM  
Pdiss  
2.5  
A
Power dissipation  
Derate linearly from 25 °C  
Thermal resistance  
OUTPUT  
100  
1.33  
750  
mW  
mW/°C  
°C/W  
Rth  
IL4116  
IL4117  
IL4118  
VDRM  
VDRM  
VDRM  
IDRM  
600  
700  
800  
300  
3.0  
V
V
Peak off-state voltage  
V
RMS on-state current  
Single cycle surge  
Power dissipation  
mA  
A
Pdiss  
Rth  
500  
6.6  
mW  
mW/°C  
°C/W  
Derate linearly from 25 °C  
Thermal resistance  
COUPLER  
150  
Creepage distance  
Clearance distance  
Storage temperature  
Operating temperature  
Isolation test voltage  
7.0  
7.0  
mm  
mm  
°C  
Tstg  
Tamb  
VIO  
- 55 to + 150  
- 55 to + 100  
5300  
°C  
VRMS  
Ω
V
IO = 500 V, Tamb = 25 °C  
RIO  
RIO  
Tsld  
1012  
1011  
Isolation resistance  
VIO = 500 V, Tamb = 100 °C  
5 s  
Ω
Lead soldering temperature (2)  
260  
°C  
Notes  
(1)  
Tamb = 25 °C, unless otherwise specified  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not  
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum  
ratings for extended periods of the time can adversely affect reliability.  
Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through  
hole devices (DIP).  
(2)  
www.vishay.com  
2
For technical questions, contact: optocoupler.answers@vishay.com  
Document Number: 83628  
Rev. 1.6, 09-Jan-08  
IL4116/IL4117/IL4118  
Optocoupler, Phototriac Output,  
Zero Crossing, High dV/dt, Very Low  
Input Current  
Vishay Semiconductors  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
TEST CONDITION  
PART  
SYMBOL  
MIN.  
TYP.  
MAX.  
1.5  
UNIT  
INPUT  
Forward voltage  
Breakdown voltage  
Reverse current  
Capacitance  
IF = 20 mA  
IR = 10 µA  
VF  
VBR  
IR  
1.3  
30  
V
V
6.0  
VR = 6.0 V  
0.1  
40  
10  
µA  
VF = 0 V, f = 1.0 MHz  
CO  
RthjI  
pF  
Thermal resistance, junction to lead  
OUTPUT  
750  
°C/W  
IL4116  
IL4117  
IL4118  
IL4116  
IL4117  
IL4118  
VDRM  
VDRM  
VDRM  
VD(RMS)  
VD(RMS)  
VD(RMS)  
ID(RMS)  
VTM  
600  
700  
800  
424  
494  
565  
650  
750  
850  
460  
536  
613  
10  
V
V
Repetitive peak off-state voltage  
Off-state voltage  
IDRM = 100 µA  
V
V
I
D(RMS) =70 µA  
V
V
Off-state current  
VD = 600, Tamb = 100 °C  
IT = 300 mA  
100  
3.0  
µA  
V
On-state voltage  
1.7  
On-state current  
PF = 1.0, VT(RMS) = 1.7 V  
f = 50 Hz  
ITM  
300  
3.0  
mA  
A
Surge (non-repetitive, on-state current)  
Holding current  
ITSM  
VT = 3.0 V  
IH  
65  
5.0  
0.7  
15  
200  
µA  
mA  
mA  
V
Latching current  
VT = 2.2 V  
IL  
LED trigger current  
Zero cross inhibit voltage  
VAK = 5.0 V  
IFT  
1.3  
25  
IF = rated IFT  
VIH  
VRM, VDM = 400 VAC  
VRM, VDM = 400 VAC,  
dV(MT)/dt  
10000  
V/µs  
Critical rate of rise off-state voltage  
Commutating voltage  
dV(MT)/dt  
2000  
V/µs  
V/µs  
V/µs  
Tamb = 80 °C  
VRM, VDM = 400 VAC  
VRM, VDM = 400 VAC,  
dV(COM)/dt 10000  
dV(COM)/dt  
2000  
Tamb = 80 °C  
Commutating current  
Thermal resistance, junction to lead  
COUPLER  
IT = 300 mA  
dI/dt  
RthjI  
100  
150  
A/ms  
°C/W  
Critical state of rise of coupler  
input-output voltage  
IT = 0 A, VRM = VDM = 424 VAC  
f = 1.0 MHz, VIO = 0 V  
dV(IO)/dt  
10000  
V/µs  
Capacitance (input to output)  
CIO  
0.8  
pF  
pF  
Common mode coupling capacitance  
CCM  
0.01  
Note  
amb = 25 °C, unless otherwise specified  
T
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering  
evaluation. Typical values are for information only and are not part of the testing requirements.  
SWITCHING CHARACTERISTICS  
PARAMETER  
TEST CONDITION  
VRM = VDM = 424 VAC  
PF = 1.0, IT = 300 mA  
PART  
SYMBOL  
MIN.  
TYP.  
35  
MAX.  
UNIT  
µs  
Turn-on time  
Turn-off time  
ton  
toff  
50  
µs  
Document Number: 83628  
Rev. 1.6, 09-Jan-08  
For technical questions, contact: optocoupler.answers@vishay.com  
www.vishay.com  
3
IL4116/IL4117/IL4118  
Optocoupler, Phototriac Output,  
Zero Crossing, High dV/dt, Very Low  
Input Current  
Vishay Semiconductors  
TYPICAL CHARACTERISTICS  
Tamb = 25 °C, unless otherwise specified  
150  
100  
35  
30  
25  
20  
15  
10  
50  
0
5
0
- 60 - 40 - 20  
0
20  
40  
60  
80  
100  
1.0  
1.1  
1.2  
1.3  
1.4  
TA - Ambient Temperature (°C)  
VF - LED Forward Voltage (V)  
iil4116_01  
iil4116 04  
Fig. 4 - Maximum LED Power Dissipation  
Fig. 1 - LED Forward Current vs. Forward Voltage  
500  
400  
300  
200  
1.4  
1.3  
T
= - 55 °C  
= 25 °C  
A
1.2  
1.1  
1.0  
0.9  
100  
T
A
0
- 100  
- 200  
- 300  
- 400  
- 500  
T
= 100 °C  
A
0.8  
0.7  
- 3  
- 2  
- 1  
0
1
2
3
VT - On-State Voltage - V(RMS)  
0.1  
1
10  
100  
iil4116_05  
IF - Forward Current (mA)  
iil4116_02  
Fig. 5 - On-State Terminal Voltage vs. Terminal Current  
Fig. 2 - Forward Voltage vs. Forward Current  
300  
250  
200  
150  
100  
50  
10000  
1000  
τ
Duty Factor  
0.005  
0.01  
0.02  
t
0.05  
τ
0.1  
0.2  
0.5  
DF = /t  
100  
10  
0
- 60 - 40 - 20  
0
20  
40  
60  
80 100  
iil4116_06  
TA - Ambient Temperature (°C)  
10- 6 10- 5 10- 4  
10- 3 10- 2 10- 1 100  
101  
Fig. 6 - Maximum Output Power Dissipation  
iil4116_03  
t - LED Pulse Duration (s)  
Fig. 3 - Peak LED Current vs. Duty Factor, τ  
www.vishay.com  
4
For technical questions, contact: optocoupler.answers@vishay.com  
Document Number: 83628  
Rev. 1.6, 09-Jan-08  
IL4116/IL4117/IL4118  
Optocoupler, Phototriac Output,  
Zero Crossing, High dV/dt, Very Low  
Input Current  
Vishay Semiconductors  
Power Factor Considerations  
2.0  
1.8  
1.6  
A snubber isn’t needed to eliminate false operation of the  
TRIAC driver because of the IL4116/IL4117/IL4118 high  
static and commutating dV/dt with loads between 1 and 0.8  
power factors. When inductive loads with power factors less  
than 0.8 are being driven, include an RC snubber or a single  
capacitor directly across the device to damp the peak  
commutating dV/dt spike. Normally a commutating dV/dt  
causes a turning-off device to stay on due to the stored  
energy remaining in the turn-off device.  
But in the case of a zero voltage crossing optotriac, the  
commutating dV/dt spikes can inhibit one half of the TRIAC  
from turning on. If the spike potential exceeds the inhibit  
voltage of the zero cross detection circuit, half of the TRIAC  
will be held-off and not turn-on. This hold-off condition can be  
eliminated by using a snubber or capacitor placed directly  
across the optotriac as shown in Figure 7. Note that the value  
of the capacitor increases as a function of the load current.  
The hold-off condition also can be eliminated by providing a  
higher level of LED drive current. The higher LED drive  
1.4  
1.2  
1.0  
0.8  
IFth Normalized to IFth at PF = 1.0  
0
0.2  
0.4  
PF - Power Factor  
Fig. 8 - Normalized LED Trigger Current  
0.6  
0.8  
1.0  
1.2  
iil4116_08  
provides  
a
larger photocurrent which causes. The  
phototransistor to turn-on before the commutating spike has  
activated the zero cross network. Figure 8 shows the  
relationship of the LED drive for power factors of less than  
1.0. The curve shows that if a device requires 1.5 mA for a  
resistive load, then 1.8 times (2.7 mA) that amount would be  
required to control an inductive load whose power factor is  
less than 0.3.  
1
CS (µF) = 0.0032 (µF) x 10 ^ (0.0066 IL(mA))  
0.1  
0.01  
PF = 0.3  
IF = 2.0 mA  
0.001  
0
50 100 150 200 250 300 350 400  
IL- Load Current (mA)  
iil4116_07  
Fig. 7 - Shunt Capacitance vs. Load Current vs. Power Factor  
Document Number: 83628  
Rev. 1.6, 09-Jan-08  
For technical questions, contact: optocoupler.answers@vishay.com  
www.vishay.com  
5
IL4116/IL4117/IL4118  
Optocoupler, Phototriac Output,  
Zero Crossing, High dV/dt, Very Low  
Input Current  
Vishay Semiconductors  
PACKAGE DIMENSIONS in inches (millimeters)  
Pin one ID  
2
1
3
0.248 (6.30)  
0.256 (6.50)  
ISO method A  
4
5
6
0.335 (8.50)  
0.343 (8.70)  
0.300 (7.62)  
typ.  
(0.45)  
0.048  
0.039  
(1.00)  
min.  
0.022 (0.55)  
0.130 (3.30)  
0.150 (3.81)  
18 °  
4°  
typ.  
0.114 (2.90)  
0.130 (3.0)  
0.031 (0.80) min.  
0.010 (0.25)  
0.031 (0.80)  
typ.  
3° to 9°  
0.018 (0.45)  
0.035 (0.90)  
0.300 to 0.347  
0.022 (0.55)  
0.100 (2.54) typ.  
(7.62 to 8.81)  
i178004  
Option 6  
Option 9  
Option 7  
0.375 (9.53)  
0.395 (10.03 )  
0.300(7.62)  
typ.  
0.407(10.36)  
0.391(9.96)  
0.307(7.8)  
0.291(7.4)  
0.300 (7.62)  
ref.  
0.028 (0.7)  
min.  
0.180(4.6)  
0.160(4.1)  
0.0040 (0.102)  
0.012 (0.30 ) typ.  
0.0098 (0.249)  
0.315(8.0)  
min.  
0.020 (0.51)  
0.040 (1.02)  
0.014(0.35)  
0.010(0.25)  
0.331(8.4)  
15° max.  
min.  
0.315 (8.00)  
0.400(10.16)  
0.430(10.92)  
min.  
0.406(10.3)  
max.  
18450  
www.vishay.com  
6
For technical questions, contact: optocoupler.answers@vishay.com  
Document Number: 83628  
Rev. 1.6, 09-Jan-08  
IL4116/IL4117/IL4118  
Optocoupler, Phototriac Output,  
Zero Crossing, High dV/dt, Very Low  
Vishay Semiconductors  
Input Current  
OZONE DEPLETING SUBSTANCES POLICY STATEMENT  
It is the policy of Vishay Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with  
respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone  
depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use  
within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.  
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in  
the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency  
(EPA) in the USA.  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do  
not contain such substances.  
We reserve the right to make changes to improve technical design  
and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer application by the  
customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall  
indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any  
claim of personal damage, injury or death associated with such unintended or unauthorized use.  
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Document Number: 83628  
Rev. 1.6, 09-Jan-08  
For technical questions, contact: optocoupler.answers@vishay.com  
www.vishay.com  
7
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

IL4117-X017

Optocoupler - Trigger Device Output, 1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, ROHS COMPLIANT, SMD, 6 PIN
VISHAY

IL4118

ZERO VOLTAGE CROSSING TRIAC DRIVER OPTOCOUPLER
INFINEON

IL4118

Optocoupler, Phototriac Output, Zero Crossing, High dV/dt, Very Low Input Current
VISHAY

IL4118-X001

OPTOISOLATOR 5.3KV TRIAC 6DIP
VISHAY

IL4118-X006

Optocoupler, Phototriac Output, Zero Crossing, High dV/dt, Very Low Input Current
VISHAY

IL4118-X007

Optocoupler, Phototriac Output, Zero Crossing, High dV/dt, Very Low Input Current
VISHAY

IL4118-X007T

Optocoupler Triac AC-OUT 1-CH 800VDRM 6-Pin PDIP SMD T/R
VISHAY

IL4118-X009

Optocoupler, Phototriac Output, Zero Crossing, High dV/dt, Very Low Input Current
VISHAY

IL4118-X009T

OPTOISOLATOR 5.3KV TRIAC
VISHAY

IL4118-X016

OPTOISOLATOR 5.3KV TRIAC 6DIP
VISHAY

IL4118-X017

OPTOISOLATOR 5.3KV TRIAC
VISHAY

IL4118-X017T

OPTOISOLATOR 5.3KV TRIAC
VISHAY