IRFS9N60APBF [VISHAY]

Power MOSFET; 功率MOSFET
IRFS9N60APBF
型号: IRFS9N60APBF
厂家: VISHAY    VISHAY
描述:

Power MOSFET
功率MOSFET

文件: 总8页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFS9N60A, SiHFS9N60A  
Vishay Siliconix  
Power MOSFET  
FEATURES  
• Low Gate Charge Qg results in Simple Drive  
Requirement  
PRODUCT SUMMARY  
VDS (V)  
600  
Available  
RDS(on) (Ω)  
VGS = 10 V  
0.75  
RoHS*  
• Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
COMPLIANT  
Qg (Max.) (nC)  
49  
13  
20  
Q
Q
gs (nC)  
gd (nC)  
• Fully Characterized Capacitance and Avalanche Voltage  
and Current  
• Lead (Pb)-free Available  
Configuration  
Single  
D
APPLICATIONS  
D2PAK (TO-263)  
• Switch Mode Power Supply (SMPS)  
• Uninterruptible Power Supply  
• High Speed Power Switching  
G
APPLICABLE OFF LINE SMPS TOPOLOGIES  
• Active Clamped Forward  
D
G
S
N-Channel MOSFET  
S
• Main Switch  
ORDERING INFORMATION  
Package  
D2PAK (TO-263)  
IRFS9N60APbF  
D2PAK (TO-263)  
D2PAK (TO-263)  
IRFS9N60ATRRPbFa  
SiHFS9N60ATR-E3a  
IRFS9N60ATRRa  
SiHFS9N60ATRa  
IRFS9N60ATRLPbFa  
SiHFS9N60ATL-E3a  
IRFS9N60ATRLa  
SiHFS9N60ATLa  
Lead (Pb)-free  
SiHFS9N60A-E3  
IRFS9N60A  
SnPb  
SiHFS9N60A  
Note  
a. See device orientation.  
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted  
PARAMETER  
SYMBOL  
LIMIT  
UNIT  
Drain-Source Voltage  
Gate-Source Voltage  
VDS  
600  
V
VGS  
30  
9.2  
TC = 25 °C  
TC =100°C  
Continuous Drain Current  
VGS at 10 V  
ID  
5.8  
A
Pulsed Drain Currenta  
IDM  
37  
Linear Derating Factor  
1.3  
W/°C  
mJ  
A
Single Pulse Avalanche Energyb  
Repetitive Avalanche Currenta  
Repetitive Avalanche Energya  
EAS  
IAR  
290  
9.2  
EAR  
17  
mJ  
W
Maximum Power Dissipation  
TC = 25 °C  
PD  
170  
Peak Diode Recovery dV/dtc  
dV/dt  
TJ, Tstg  
5.0  
V/ns  
Operating Junction and Storage Temperature Range  
Soldering Recommendations (Peak Temperature)  
- 55 to + 150  
300d  
°C  
for 10 s  
Notes  
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).  
b. Starting TJ = 25 °C, L = 6.8 mH, RG = 25 Ω, IAS = 9.2 A (see fig. 12).  
c. ISD 9.2 A, dI/dt 50 A/µs, VDD VDS, TJ 150 °C.  
d. 1.6 mm from case.  
* Pb containing terminations are not RoHS compliant, exemptions may apply  
Document Number: 91287  
S-Pending-Rev. A, 22-Jul-08  
www.vishay.com  
1
WORK-IN-PROGRESS  
IRFS9N60A, SiHFS9N60A  
Vishay Siliconix  
THERMAL RESISTANCE RATINGS  
PARAMETER  
SYMBOL  
TYP.  
MAX.  
40  
UNIT  
Maximum Junction-to-Ambient  
Maximum Junction-to-Case (Drain)  
RthJA  
RthJC  
-
-
°C/W  
0.75  
SPECIFICATIONS TJ = 25 °C, unless otherwise noted  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Static  
Drain-Source Breakdown Voltage  
VDS  
ΔVDS/TJ  
VGS(th)  
IGSS  
VGS = 0 V, ID = 250 µA  
Reference to 25 °C, ID = 1 mA  
VDS = VGS, ID = 250 µA  
600  
-
-
-
V
V/°C  
-
0.66  
V
DS Temperature Coefficient  
Gate-Source Threshold Voltage  
Gate-Source Leakage  
2.0  
-
-
-
-
-
-
4.0  
100  
25  
250  
0.75  
-
V
VGS  
VDS = 600 V, VGS = 0 V  
DS = 480 V, VGS = 0 V, TJ = 125 °C  
VGS = 10 V  
ID = 5.5 Ab  
VDS = 25 V, ID = 3.1 A  
=
30 V  
-
nA  
-
-
Zero Gate Voltage Drain Current  
IDSS  
µA  
V
Drain-Source On-State Resistance  
Forward Transconductance  
Dynamic  
RDS(on)  
gfs  
-
Ω
5.5  
S
Input Capacitance  
Ciss  
Coss  
Crss  
-
-
-
-
-
-
-
-
-
-
-
-
-
1400  
180  
7.1  
1957  
49  
96  
-
-
-
VGS = 0 V,  
DS = 25 V,  
f = 1.0 MHz, see fig. 5  
Output Capacitance  
V
Reverse Transfer Capacitance  
-
pF  
V
DS = 1.0 V, f = 1.0 MHz  
-
Output Capacitance  
Coss  
V
GS = 0 V  
VDS = 480 V, f = 1.0 MHz  
VDS = 0 V to 480 Vc  
-
Effective Output Capacitance  
Total Gate Charge  
C
oss eff.  
Qg  
-
49  
13  
20  
-
ID = 9.2 A, VDS = 400 V  
see fig. 6 and 13b  
Gate-Source Charge  
Gate-Drain Charge  
Qgs  
Qgd  
td(on)  
tr  
V
GS = 10 V  
-
nC  
ns  
-
Turn-On Delay Time  
Rise Time  
13  
25  
30  
22  
-
V
R
DD = 300 V, ID = 9.2 A  
G = 9.1 Ω, RD = 35.5 Ω,  
see fig. 10b  
Turn-Off Delay Time  
Fall Time  
td(off)  
tf  
-
-
Drain-Source Body Diode Characteristics  
MOSFET symbol  
showing the  
integral reverse  
p - n junction diode  
D
Continuous Source-Drain Diode Current  
Pulsed Diode Forward Currenta  
IS  
-
-
-
-
9.2  
37  
A
G
ISM  
S
Body Diode Voltage  
VSD  
trr  
TJ = 25 °C, IS = 9.2 A, VGS = 0 Vb  
-
-
-
-
1.5  
800  
4.4  
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Forward Turn-On Time  
530  
3.0  
ns  
µC  
TJ = 25 °C, IF = 9.2 A, dI/dt = 100 A/µsb  
Qrr  
ton  
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)  
Notes  
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).  
b. Pulse width 300 µs; duty cycle 2 %.  
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS  
.
www.vishay.com  
2
Document Number: 91287  
S-Pending-Rev. A, 22-Jul-08  
IRFS9N60A, SiHFS9N60A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
100  
10  
1
100  
VGS  
15V  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
°
T = 150 C  
BOTTOM 4.7V  
J
10  
°
T = 25 C  
J
1
4.7V  
20µs PULSE WIDTH  
V
= 50V  
DS  
20µs PULSE WIDTH  
°
T = 25 C  
J
0.1  
0.1  
0.1  
4.0  
1
10  
100  
5.0  
6.0  
7.0  
8.0 9.0  
10.0  
V
, Drain-to-Source Voltage (V)  
V
, Gate-to-Source Voltage (V)  
DS  
GS  
Fig. 1 - Typical Output Characteristics  
Fig. 3 - Typical Transfer Characteristics  
100  
10  
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VGS  
9.2A  
=
I
D
TOP  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM 4.7V  
4.7V  
20µs PULSE WIDTH  
V
=10V  
°
T = 150 C  
GS  
J
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
°
1
10  
100  
T , Junction Temperature ( C)  
V
, Drain-to-Source Voltage (V)  
J
DS  
Fig. 2 - Typical Output Characteristics  
Fig. 4 - Normalized On-Resistance vs. Temperature  
Document Number: 91287  
S-Pending-Rev. A, 22-Jul-08  
www.vishay.com  
3
IRFS9N60A, SiHFS9N60A  
Vishay Siliconix  
100  
10  
1
2400  
V
C
C
C
= 0V,  
f = 1MHz  
GS  
iss  
rss  
oss  
= C + C  
,
C
SHORTED  
gs  
gd  
gd  
ds  
= C  
2000  
1600  
1200  
800  
400  
0
= C + C  
ds  
gd  
iss  
°
oss  
T = 150 C  
J
°
T = 25 C  
J
rss  
V
V
= 0 V  
GS  
0.1  
0.2  
A
0.5  
0.7  
1.0  
1.2  
1
10  
100  
1000  
V
,Source-to-Drain Voltage (V)  
SD  
, Drain-to-Source Voltage (V)  
DS  
Fig. 7 - Typical Source-Drain Diode Forward Voltage  
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage  
20  
I
D
= 9.2A  
1000  
OPERATION IN THIS AREA LIMITED  
V
V
V
=
= 300V  
= 120V  
BY R  
DS  
DS  
DS  
DS(on)  
16  
12  
8
100  
10us  
10  
100us  
1ms  
1
4
10ms  
°
T = 25 C  
C
FOR TEST CIRCUIT  
SEE FIGURE 13  
°
T = 150 C  
Single Pulse  
J
0
0.1  
0
10  
20  
30  
40  
50  
10  
100  
1000  
10000  
Q , Total Gate Charge (nC)  
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig. 8 - Maximum Safe Operating Area  
www.vishay.com  
4
Document Number: 91287  
S-Pending-Rev. A, 22-Jul-08  
IRFS9N60A, SiHFS9N60A  
Vishay Siliconix  
RD  
VDS  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
VGS  
D.U.T.  
RG  
+
V
-
DD  
10 V  
Pulse width 1 µs  
Duty factor 0.1 %  
Fig. 10a - Switching Time Test Circuit  
VDS  
90 %  
10 %  
VGS  
25  
50  
75  
100  
125  
°
150  
T , Case Temperature ( C)  
C
td(on) tr  
td(off) tf  
Fig. 9 - Maximum Drain Current vs. Case Temperature  
Fig. 10b - Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.10  
P
2
DM  
0.05  
t
1
0.02  
t
2
SINGLE PULSE  
(THERMAL RESPONSE)  
0.01  
Notes:  
1. Duty factor D =  
t / t  
1
2. Peak T =P  
x Z  
+ T  
C
J
DM  
thJC  
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case  
VDS  
15 V  
tp  
Driver  
L
VDS  
D.U.T  
IAS  
RG  
+
-
V
A
DD  
IAS  
20 V  
0.01 Ω  
tp  
Fig. 12a - Unclamped Inductive Test Circuit  
Fig. 12b - Unclamped Inductive Waveforms  
Document Number: 91287  
S-Pending-Rev. A, 22-Jul-08  
www.vishay.com  
5
IRFS9N60A, SiHFS9N60A  
Vishay Siliconix  
600  
500  
400  
300  
200  
100  
I
D
TOP  
4.1A  
5.8A  
BOTTOM 9.2A  
0
25  
50  
75  
100  
125  
150  
°
Starting T , Junction Temperature ( C)  
J
Fig. 12c - Maximum Avalanche Energy vs. Drain Current  
Current regulator  
Same type as D.U.T.  
50 kΩ  
QG  
10 V  
12 V  
0.2 µF  
0.3 µF  
QGS  
QGD  
+
-
VDS  
D.U.T.  
VG  
VGS  
3 mA  
Charge  
IG  
ID  
Current sampling resistors  
Fig. 13a - Basic Gate Charge Waveform  
Fig. 13b - Gate Charge Test Circuit  
www.vishay.com  
6
Document Number: 91287  
S-Pending-Rev. A, 22-Jul-08  
IRFS9N60A, SiHFS9N60A  
Vishay Siliconix  
Peak Diode Recovery dV/dt Test Circuit  
+
Circuit layout considerations  
Low stray inductance  
Ground plane  
D.U.T  
Low leakage inductance  
current transformer  
-
+
-
-
+
RG  
dV/dt controlled by RG  
+
-
Driver same type as D.U.T.  
ISD controlled by duty factor "D"  
D.U.T. - device under test  
VDD  
Driver gate drive  
P.W.  
P.W.  
Period  
Period  
D =  
V
= 10 V*  
GS  
D.U.T. I waveform  
SD  
Reverse  
recovery  
current  
Body diode forward  
current  
dI/dt  
D.U.T. V waveform  
DS  
Diode recovery  
dV/dt  
V
DD  
Re-applied  
voltage  
Body diode  
forward drop  
Inductor current  
I
SD  
Ripple 5 %  
* VGS = 5 V for logic level devices  
Fig. 14 - For N-Channel  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see http://www.vishay.com/ppg?91287.  
Document Number: 91287  
S-Pending-Rev. A, 22-Jul-08  
www.vishay.com  
7
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

IRFS9N60ATRL

Power MOSFET
VISHAY

IRFS9N60ATRLPBF

Power MOSFET
VISHAY

IRFS9N60ATRR

Power MOSFET
VISHAY

IRFS9N60ATRRPBF

Power MOSFET
VISHAY

IRFS9Z30

Power Field-Effect Transistor, 12A I(D), 50V, 0.14ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRFS9Z34

Power Field-Effect Transistor, 12A I(D), 60V, 0.14ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRFSL11N50A

HEXFET Power MOSFET
INFINEON

IRFSL11N50APBF

HEXFET Power MOSFET
INFINEON

IRFSL17N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.17ohm, Id=16A)
INFINEON

IRFSL17N20DPBF

HEXFET Power MOSFET
INFINEON

IRFSL23N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.090ohm, Id=23A)
INFINEON