LW020BC [VISHAY]

LW020 Single-Output-Series Power Modules 36 Vdc to 75 Vdc inputs 20W; LW020单路输出系列电源模块36 VDC至75 VDC输入20W
LW020BC
型号: LW020BC
厂家: VISHAY    VISHAY
描述:

LW020 Single-Output-Series Power Modules 36 Vdc to 75 Vdc inputs 20W
LW020单路输出系列电源模块36 VDC至75 VDC输入20W

电源电路
文件: 总16页 (文件大小:426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
April 2008  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Features  
n Low profile: 9.91 mm (0.390 in.) with 0.38 mm  
(0.015 in.) standoffs, 9.53 mm (0.375 in.) with  
standoffs recessed  
n Wide input voltage range: 36 Vdc to 75 Vdc  
n Overcurrent protection  
n Output overvoltage protection  
n Input-to-output isolation: 1500 Vdc  
n Operating case temperature range: –40 °C to  
+110 °C  
n Remote on/off  
n Output voltage adjustment: 90% to 110% of VO, nom  
n JQA Certified to EN60950  
The LW020 Single-Output-Series Power Modules use  
advanced, surface-mount technology and deliver high-qual-  
ity, compact, dc-dc conversion at an economical price.  
n UL* 1950 Recognized, CSAC22.2 No. 950-95  
Certified, VDE0805 (EN60950, IEC950) Licensed  
Applications  
n CE mark meets 73/23/EEC and 93/68/EEC  
directives§  
n Distributed power architectures  
n Communication equipment  
n Computer equipment  
n Within FCC Class A radiated limits  
Description  
The LW020 Single-Output-Series Power Modules are  
low-profile dc-dc converters that operate over an  
input voltage range of 36 Vdc to 75 Vdc and provide  
precisely regulated outputs. The outputs are isolated  
from the input, allowing versatile polarity configura-  
tions and grounding connections. Built-in filtering for  
both input and output minimizes the need for external  
filtering. The modules have a maximum power rating  
of 20 W at a typical full-load efficiency of up to 85%.  
Options  
n Choice of remote on/off configuration  
n Case ground pin  
n Synchronization  
n Short pins: 2.79 mm ± 0.25 mm  
(0.110 in. ± 0.010 in.)  
n Short pins: 3.68 mm ± 0.25 mm  
(0.145 in. ± 0.010 in.)  
* UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Associa-  
tion.  
VDE is a trademark of Verband Deutscher Elektrotechniker e.V.  
§This product is intended for integration into end-use equipment.  
All the required procedures for CE marking of end-use equip-  
ment should be followed. (The CE mark is placed on selected  
products.)  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the devices. These are  
absolute stress ratings only. Functional operation of the devices is not implied at these or any other conditions in  
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for  
extended periods can adversely affect device reliability.  
Parameter  
Symbol  
Min  
Max  
Unit  
Input Voltage:  
Continuous  
VI  
VI, trans  
0
0
80  
100  
Vdc  
V
Transient (100 ms)  
Operating Case Temperature  
TC  
–40  
110*  
°C  
(See Thermal Considerations section.)  
Storage Temperature  
I/O Isolation Voltage  
Tstg  
–40  
120  
°C  
1500  
Vdc  
* Maximum case temperature varies based on power dissipation. See derating curve, Figure 16, for details.  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Table 1. Input Specifications  
Parameter  
Operating Input Voltage  
Symbol  
VI  
Min  
36  
Typ  
48  
Max  
75  
Unit  
Vdc  
A
Maximum Input Current  
II, max  
1.1  
(VI = 0 V to VI, max; IO = IO, max; see Figure 1.)  
Inrush Transient  
i2t  
II  
3
0.1  
A2s  
Input Reflected-ripple Current  
mAp-p  
(50 Hz to 20 MHz; 12 µH source impedance,  
TC = 25 °C; see Figure 11 and Design Considerations  
section.)  
Input Ripple Rejection (100 Hz—120 Hz)  
60  
dB  
Fusing Considerations  
CAUTION: This power module is not internally fused. An input line fuse must always be used.  
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone  
operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fus-  
ing is not included; however, to achieve maximum safety and system protection, always use an input line fuse.  
The safety agencies require a normal-blow fuse with a maximum rating of 5 A (see Safety Considerations  
section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the  
same type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data for further information.  
2
Lineage Power  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Electrical Specifications (continued)  
Table 2. Output Specifications  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set Point  
(VI = 48 V; IO = IO, max; TC = 25 °C)  
LW020G  
LW020F  
LW020A  
LW020B  
LW020C  
VO, set  
VO, set  
VO, set  
VO, set  
VO, set  
2.46  
3.25  
4.92  
11.81  
14.76  
2.5  
3.3  
5.0  
12.0  
15.0  
2.54  
3.35  
5.08  
12.19  
15.24  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Output Voltage  
(Over all line, load, and temperature  
conditions until end of life; see Figure 13.)  
LW020G  
LW020F  
LW020A  
LW020B  
LW020C  
VO  
VO  
VO  
VO  
VO  
2.4  
3.20  
4.85  
11.64  
14.55  
2.6  
3.40  
5.15  
12.36  
15.45  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Output Regulation:  
Line (VI = 36 V to 75 V)  
Load (IO = IO, min to IO, max)  
Temperature (TC = –40 °C to +100 °C)  
All  
All  
All  
0.01  
0.05  
0.5  
0.1  
0.2  
1.0  
%VO  
%VO  
%VO  
Output Ripple and Noise Voltage  
(See Figure 12.):  
RMS  
LW020A, F,  
G
LW020B, C  
LW020A, F,  
G
20  
50  
20  
50  
100  
150  
mVrms  
mVrms  
mVp-p  
mVp-p  
Peak-to-peak (5 Hz to 20 MHz)  
LW020B, C  
Output Current  
(At IO < IO, min, the modules may exceed  
output ripple specifications.)  
LW020A, F,  
G
LW020B  
LW020C  
IO  
IO  
IO  
0.4  
0.17  
0.13  
4.0  
1.67  
1.33  
A
A
A
Output Current-limit Inception  
All  
IO  
103  
150  
%IO, max  
(VO = 90% x VO, set; see Figure 2.)  
Output Short-circuit Current  
(VO = 250 mV)  
LW020C  
LW020B  
LW020A, F,  
G
IO  
IO  
IO  
150  
150  
150  
250  
220  
200  
%IO, max  
%IO, max  
%IO, max  
Efficiency  
LW020G  
LW020F  
LW020A  
LW020B  
LW020C  
η
η
η
η
η
71  
74  
77  
82  
82  
75  
77  
81  
85  
85  
%
%
%
%
%
(VI, nom; IO = IO, max; TC = 25 °C; see Figures  
3—7 and 13.)  
Switching Frequency  
All  
256  
kHz  
Dynamic Response  
(ýIO/ýt = 1 A/10 µs, VI = VI, nom, TA = 25 °C):  
Load Change from IO = 50% to 75% of  
IO, max:  
Peak Deviation  
Settling Time (VO < 10% peak  
deviation)  
All  
All  
2
1.0  
%VO, set  
ms  
Load Change from IO = 50% to 25% of  
IO, max:  
Peak Deviation  
Settling Time (VO < 10% peak  
deviation)  
All  
All  
2
1.0  
%VO, set  
ms  
Lineage Power  
3
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Electrical Specifications (continued)  
Table 3. Isolation Specifications  
Parameter  
Isolation Capacitance  
Min  
Typ  
0.002  
Max  
Unit  
µF  
Isolation Resistance  
10  
M¾  
General Specifications  
Parameter  
Calculated MTBF (IO = 80% of IO, max; TC = 40 °C)  
Weight  
Min  
Typ  
4,500,000  
Max  
Unit  
hours  
g (oz.)  
54 (1.9)  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions and Design Considerations for further information.  
Parameter  
Device Symbol  
Min  
Typ  
Max  
Unit  
Remote On/Off Signal Interface:  
(VI = 0 V to VI, max; open collector or equivalent  
compatible; signal referenced to VI(–) terminal.  
See Figure 14 and Feature Descriptions.):  
Negative Logic: Device Code Suffix “1”:  
Logic Low—Module On  
Logic High—Module Off  
Positive Logic: If Device Code Suffix “1” is not  
specified:  
Logic Low—Module Off  
Logic High—Module On  
Module Specifications:  
On/Off Current—Logic Low  
On/Off Voltage:  
All  
Ion/off  
1.0  
mA  
Logic Low  
Logic High (Ion/off = 0)  
All  
All  
Von/off  
Von/off  
–0.7  
1.2  
10  
V
V
Open Collector Switch Specifications:  
Leakage Current During Logic High  
(Von/off = 10 V)  
All  
All  
Ion/off  
50  
µA  
V
Output Low Voltage During Logic Low  
(Ion/off = 1 mA)  
Von/off  
1.2  
4
Lineage Power  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Feature Specifications (continued)  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Turn-on Delay and Rise Times  
(at 80% of IO, max; TA = 25 °C):  
Case 1: On/Off Input Is Set for Unit On and then  
Input Power Is Applied (delay from point at  
which VI = 48 V until VO = 10% of VO, nom).  
Case 2: 48 V Input Is Applied for at Least One  
Second, and then the On/Off Input Is Set to  
Turn the Module On (delay from point at which  
on/off input is toggled until VO = 10% of  
VO, nom).  
All  
All  
Tdelay  
27  
2
50  
10  
ms  
ms  
Tdelay  
Output Voltage Rise Time (time for VO to rise  
from 10% of VO, nom to 90% of VO, nom)  
Output Voltage Overshoot (at 80% of IO, max;  
TA = 25 °C)  
All  
All  
Trise  
1.5  
3.0  
5
ms  
%
Output Voltage Set-point Adjustment Range  
LW020B  
All others  
83  
90  
110  
110  
%VO, nom  
%VO, nom  
Output Overvoltage Protection (clamp)  
LW020G VO, clamp  
2.9  
3.9  
5.6  
13.2  
16.5  
3.8  
5.0  
7.0  
16.5  
20.0  
V
V
V
V
V
LW020F  
LW020A  
LW020B  
LW020C  
VO, clamp  
VO, clamp  
VO, clamp  
VO, clamp  
Lineage Power  
5
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Characteristics Curves  
76  
74  
1.0  
0.9  
72  
70  
68  
66  
64  
PO = 20 W  
PO = 10 W  
PO = 2 W  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
VI = 36 V  
VI = 48 V  
VI = 75 V  
62  
60  
0.4  
0.9  
1.4  
1.9  
2.4  
2.9  
3.4  
3.9  
0.1  
0.0  
OUTPUT CURRENT, IO (A)  
8-1483(C).a  
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT VOLTAGE, V I (V)  
Figure 3. LW020G Typical Converter Efficiency vs.  
Output Current, TA = 25 °C  
8-1481(C).a  
Figure 1. LW020 Typical Input Characteristics,  
TA = 25 °C  
80  
79  
100%  
78  
77  
76  
75  
74  
VO, nom  
80%  
VO, nom  
60%  
VO, nom  
VI = 75  
V
V
V
I = 75  
VI = 54  
VI = 36  
73  
72  
I = 54  
40%  
VO, nom  
I =  
36  
71  
70  
0.0  
20%  
VO, nom  
0.5  
1.0  
1.5  
2.0  
2.5  
(A)  
3.0  
3.5 4.0  
0
OUTPUT CURRENT, I  
O
50%  
100%  
150%  
0
IO, max  
IO, max  
IO, max  
8-1483(C)  
NORMALIZED OUTPUT CURRENT, IO (A)  
8-1258(C).a  
Figure 4. LW020F Typical Converter Efficiency vs.  
Output Current, TA = 25 °C  
Figure 2. LW020A, B, C, F, and G Typical Output  
Characteristics, TA = 25 °C  
6
Lineage Power  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Characteristics Curves (continued)  
88  
86  
82  
81  
84  
82  
80  
78  
80  
79  
78  
V
I
= 75  
= 54  
= 36  
76  
74  
VI  
77  
VI = 36  
VI  
76  
75  
74  
VI = 54  
VI = 75  
72  
70  
0.0  
0.2  
0.4  
0.6  
0.8  
(A)  
1.0  
1.2  
73  
72  
OUTPUT CURRENT, I  
O
8-1485(C)  
0.0 0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5 4.0  
OUTPUT CURRENT, IO (A)  
Figure 7. LW020C Typical Converter Efficiency vs.  
Output Current, TA = 25 °C  
8-1260(C).a  
Figure 5. LW020A Typical Converter Efficiency vs.  
Output Current  
86  
84  
100%  
VO, nom  
99%  
VO, nom  
82  
80  
78  
VI = 75  
76  
VI = 54  
74  
VI = 36  
75%  
IO, max  
72  
70  
50%  
IO, max  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4 1.6  
OUTPUT CURRENT, IO (A)  
8-1484(C)  
TIME, t (100 µs/div)  
Figure 6. LW020B Typical Converter Efficiency vs.  
Output Current, TA = 25 °C  
8-1262(C).a  
Figure 8. LW020A, B, C, F, and G Typical Output  
Voltage for a Step Load Change from 50%  
to 75%  
Lineage Power  
7
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Characteristics Curves (continued)  
Test Configurations  
TO OSCILLOSCOPE  
CURRENT  
PROBE  
LTEST  
101%  
VO, nom  
VI(+)  
12 µH  
100%  
, nom  
CS 220 µF  
IMPEDANCE < 0.1 Ω  
@ 20 ˚C, 100 kHz  
V
O
33 µF  
BATTERY  
VI(-)  
8-203(C)  
Note: Input reflected-ripple current is measured with a simulated  
source impedance of 12 µH. Capacitor Cs offsets possible  
battery impedance. Current is measured at the input of the  
module.  
50%  
I
O
, max  
25%  
I
O, max  
Figure 11. Input Reflected-Ripple Test Setup  
TIME, t (100 µs/div)  
8-1261(C).b  
COPPER STRIP  
Figure 9. LW020A, B, C, F, and G Typical Output  
Voltage for a Step Load Change from 50%  
to 25%  
V
V
O
O
(+)  
(-)  
RESISTIVE  
LOAD  
0.1 µF  
SCOPE  
8-513(C)  
Note: Use a 0.1 µF ceramic capacitor. Scope measurement should  
be made using a BNC socket. Position the load between  
50 mm and 75 mm (2 in. and 3 in.) from the module.  
5V  
Figure 12. Peak-to-Peak Output Noise  
Measurement Test Setup  
0
100%  
VO, nom  
50%  
O, nom  
V
CONTACT AND  
DISTRIBUTION LOSSES  
VI(+)  
VI(-)  
VO(+)  
VO(-)  
II  
IO  
LOAD  
0
SUPPLY  
TIME, t (1 ms/div)  
CONTACT RESISTANCE  
8-1263(C).b  
8-204(C)  
Note: All measurements are taken at the module terminals. When  
socketing, place Kelvin connections at module terminals to  
avoid measurement errors due to socket contact resistance.  
Figure 10. LW020A, B, C, F, and G Typical Output  
Voltage Start-Up when Signal Applied to  
Remote On/Off  
[VO(+) VO(–)]IO  
------------------------------------------------  
η =  
× 100  
%
[VI(+) VI(–)]II  
Figure 13. Output Voltage and Efficiency  
Measurement Test Setup  
8
Lineage Power  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
The power module has extra-low voltage (ELV) outputs  
when all inputs are ELV.  
Design Considerations  
Grounding Considerations  
The input to these units is to be provided with a maxi-  
mum 5 A normal-blow fuse in the ungrounded lead.  
For standard units, the case is connected internally to  
VI(+). For units with the case ground pin option, the  
case is not connected internally allowing the user flexi-  
bility in grounding.  
Feature Descriptions  
Overcurrent Protection  
Input Source Impedance  
To provide protection in a fault (output overload) condi-  
tion, the unit is equipped with internal current-limiting  
circuitry and can endure current limiting for an unlim-  
ited duration. At the point of current-limit inception, the  
unit shifts from voltage control to current control. If the  
output voltage is pulled very low during a severe fault,  
the current-limit circuit can exhibit either foldback or  
tailout characteristics (output-current decrease or  
increase). The unit operates normally once the output  
current is brought back into its specified range.  
The power module should be connected to a low ac-  
impedance input source. Highly inductive source  
impedances can affect the stability of the power mod-  
ule. For the test configuration in Figure 11, a 33 µF  
electrolytic capacitor (ESR < 0.7 ¾ at 100 kHz)  
mounted close to the power module helps ensure sta-  
bility of the unit. For other highly inductive source  
impedances, consult the factory for further application  
guidelines.  
Output Overvoltage Protection  
Safety Considerations  
The output overvoltage clamp consists of control cir-  
cuitry, independent of the primary regulation loop, that  
monitors the voltage on the output terminals. The con-  
trol loop of the protection circuit has a higher voltage  
set point than the primary loop (see Feature Specifica-  
tions table). In a fault condition, the overvoltage clamp  
ensures that the output voltage does not exceed  
VO, clamp, max. This provides a redundant voltage-control  
that reduces the risk of output overvoltage.  
For safety-agency approval of the system in which the  
power module is used, the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standard,  
i.e., UL 1950, CSA C22.2 No. 950-95, and VDE 0805  
(EN60950, IEC950).  
If the input source is non-SELV (ELV or a hazardous  
voltage greater than 60 Vdc and less than or equal to  
75 Vdc), for the module's output to be considered  
meeting the requirements of safety extra-low voltage  
(SELV), all of the following must be true:  
Remote On/Off  
n The input source is to be provided with reinforced  
insulation from any other hazardous voltages, includ-  
ing the ac mains.  
Two remote on/off options are available. Positive logic  
remote on/off turns the module on during a logic-high  
voltage on the REMOTE ON/OFF pin, and off during a  
logic low. Negative logic remote on/off, device code  
suffix “1,” turns the module off during a logic high and  
on during a logic low.  
n One VI pin and one VO pin are to be grounded or  
both the input and output pins are to be kept floating.  
n The input pins of the module are not operator acces-  
To turn the power module on and off, the user must  
supply a switch to control the voltage between the  
on/off terminal and the VI(–) terminal (Von/off). The  
switch can be an open collector or equivalent (see Fig-  
ure 14). A logic low is Von/off = –0.7 V to 1.2 V. The max-  
imum Ion/off during a logic low is 1 mA. The switch  
should maintain a logic-low voltage while sinking 1 mA.  
sible.  
n Another SELV reliability test is conducted on the  
whole system, as required by the safety agencies, on  
the combination of supply source and the subject  
module to verify that under a single fault, hazardous  
voltages do not appear at the module's output.  
Note: Do not ground either of the input pins of the  
module without grounding one of the output  
pins. This may allow a non-SELV voltage to  
appear between the output pins and ground.  
During a logic high, the maximum Von/off generated by  
the power module is 6 V. The maximum allowable leak-  
age current of the switch at Von/off = 6 V is 50 µA.  
Lineage Power  
9
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Feature Descriptions (continued)  
Remote On/Off (continued)  
The module has internal capacitance to reduce noise at the ON/OFF pin. Additional capacitance is not generally  
needed and may degrade the start-up characteristics of the module.  
VI(+)  
VI(-)  
-
Von/off  
+
REMOTE  
ON/OFF  
Ion/off  
8-758(C).a  
Figure 14. Remote On/Off Implementation  
Output Voltage Adjustment  
Output voltage trim allows the user to increase or decrease the output voltage set point of a module. This is accom-  
plished by connecting an external resistor between the TRIM pin and either the VO(+) or VO(–) pins. With an exter-  
nal resistor between the TRIM and VO(+) pins (Radj-down), the output voltage set point (VO, adj) decreases. With an  
external resistor between the TRIM pin and VO(–) pin (Radj-up), VO, adj increases.  
The following equations determine the required external resistor value to obtain an output voltage change of ý%:  
c[d • (1 Δ%) 1]  
Radj-down = ---------------------------------------------------- b kΩ  
Δ%  
a
Radj-up = ------------------- b kΩ  
d Δ%  
Device  
a
b
c
d
–5% VO Radj-down  
+5% VO Radj-up  
LW020G  
LW020F  
LW020A  
LW020B  
LW020C  
14.0  
14.0  
51.10  
51.10  
16.90  
15.40  
16.90  
7.02  
5.19  
2.01  
1.58  
1.76  
2.0  
2.70  
2.0  
75.3 k¾  
110.9 k¾  
19.3 k¾  
88.9 k¾  
52.8 k¾  
23.3 k¾  
16.0 k¾  
18.2 k¾  
4.02  
15.40  
21.50  
9.80  
12.24  
246.5 k¾  
356.3 k¾  
The adjusted output voltage cannot exceed 110% of the nominal output voltage between the VO(+) and VO(–) ter-  
minal.  
The modules have a fixed current-limit set point. Therefore, as the output voltage is adjusted down, the available  
output power is reduced. In addition, the minimum output current is a function of the output voltage. As the output  
voltage is adjusted down, the minimum required output current can increase.  
10  
Lineage Power  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
power of the module should not exceed the rated  
power for the module as listed in the Ordering Informa-  
tion table.  
Feature Descriptions (continued)  
Synchronization (Optional)  
The unit is capable of external synchronization from an  
independent time base with a switching rate of  
256 kHz. The amplitude of the synchronizing pulse  
train is TTL compatible and the duty cycle ranges  
between 40% and 60%. Synchronization is referenced  
to VI(+).  
Heat Transfer  
Increasing airflow over the module enhances the heat  
transfer via convection. Figure 16 shows the maximum  
power that can be dissipated by the module without  
exceeding the maximum case temperature versus local  
ambient temperature (TA) for natural convection  
through 3.0 ms–1 (600 ft./min.).  
Thermal Considerations  
Introduction  
Systems in which these power modules may be used  
typically generate natural convection airflow rates of  
0.3 ms–1 (60 ft./min.) due to other heat-dissipating com-  
ponents in the system. Therefore, the natural convec-  
tion condition represents airflow rates of up to 0.3 ms–1  
(60 ft./min.). Use of Figure 16 is shown in the following  
example.  
The LW020 Single-Output-Series power module oper-  
ates in a variety of thermal environments; however, suf-  
ficient cooling should be provided to help ensure  
reliable operation of the unit. Heat-dissipating compo-  
nents inside the unit are thermally coupled to the case.  
Heat is removed by conduction, convection, and radia-  
tion to the surrounding environment. Proper cooling  
can be verified by measuring the case temperature.  
Peak case temperature (TC) occurs at the position indi-  
cated in Figure 15.  
Example  
What is the minimum airflow necessary for a LW020A  
operating at VI = 48 V, an output current of 3.6 A, and a  
maximum ambient temperature of 85 °C?  
Solution:  
Given: VI = 48 V, IO = 3.6 A, TA = 85 °C  
Determine PD (Figure 18): PD = 4.5 W  
Determine airflow (Figure 16): v = 1.0 ms–1  
(200 ft./min.)  
7
MAX CASE  
TEMPERATURE  
6
5
4
NATURAL  
CONVECTION  
3
-1  
1.0 ms (200 ft./min.)  
2.0 ms-1 (400 ft./min.)  
2
3.0 ms-1 (600 ft./min.)  
8-1265(C)  
1
0
Note: Dimensions are in millimeters and (inches). Pin locations are  
for reference only.  
40  
50  
60  
70  
80  
90  
100  
110 120  
Figure 15. Case Temperature Measurement  
Location  
MAX AMBIENT TEMPERATURE, TA (˚C)  
8-1264(C).a  
Note: Conversion factor for linear feet per minute to meters per  
second: 200 ft./min. = 1 ms–1  
Note that the view in Figure 15 is of the metal surface  
of the module—the pin locations shown are for refer-  
ence. The temperature at this location should not  
exceed the maximum case temperature indicated in  
the derating curve shown in Figure 16. The output  
.
Figure 16. Forced Convection Power Derating;  
Either Orientation  
Lineage Power  
11  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Thermal Considerations (continued)  
Heat Transfer (continued)  
6
5
4
3
4.5  
4.0  
VI = 75  
3.5  
3.0  
2.5  
2
1
0
VI = 54  
VI = 36  
2.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4 1.6  
VI = 36 V  
VI = 48 V  
1.5  
OUTPUT CURRENT, IO (A)  
VI = 75 V  
8-1479(C)  
1.0  
0.5  
0.4  
Figure 19. LW020B Power Dissipation vs. Output  
Current, TA = 25 °C  
0.9  
1.4  
1.9  
2.4  
2.9  
3.4  
3.9  
OUTPUT CURRENT, IO (A)  
8-1478(C).a  
4.5  
4.0  
Figure 17. LW020F and G Power Dissipation vs.  
Output Current, TA = 25 °C  
3.5  
VI = 75  
3.0  
2.5  
2.0  
1.5  
1.0  
6
5
VI = 54  
VI  
= 36  
0.8  
4
3
0.5  
0.0  
0.0  
0.2  
0.4  
0.6  
1.0  
1.2  
OUTPUT CURRENT, IO (A)  
2
VI = 75  
VI = 48  
VI = 36  
1
0
8-1477(C)  
Figure 20. LW020C Power Dissipation vs. Output  
Current, TA = 25 °C  
0.0 0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5 4.0  
OUTPUT CURRENT, IO (A)  
8-1275(C).a  
Figure 18. LW020A Power Dissipation vs. Output  
Current  
12  
Lineage Power  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Thermal Measurements  
The derating curves in Figure 16 were derived from measurements obtained in an experimental apparatus shown  
in Figure 21. Note that the module and the printed-wiring board (PWB) that it is mounted on are vertically oriented.  
The passage has a rectangular cross section.  
FACING PWB  
PWB  
MODULE  
AIR VELOCITY  
AND AMBIENT  
TEMPERATURE  
MEASURED  
76 (3.0)  
AIRFLOW  
BELOW THE  
MODULE  
13 (0.5)  
8-1126(C).d  
Note: Dimensions are in millimeters and (inches).  
Figure 21. Experimental Test Setup  
Layout Considerations  
Copper paths must not be routed beneath the power module standoffs.  
Lineage Power  
13  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Outline Diagram  
Dimensions are in millimeters and (inches). Copper paths must not be routed beneath the power module standoffs.  
Tolerances: x.x ± 0.5 mm (0.02 in.), x.xx ± 0.25 mm (0.010 in.). Pin-to-pin tolerances are not cumulative.  
Note: For standard modules, VI(+) is internally connected to the case.  
Top View  
Pin  
Function  
1
REMOTE  
ON/OFF  
2
No Connec-  
tion (sync fea-  
ture optional)  
3
4
5
VI(–)  
VI(+)  
CASE Pin  
(pin optional)  
6
7
8
TRIM  
VO(–)  
VO(+)  
Side View  
Bottom View  
8-1198(C).g  
14  
Lineage Power  
LW020 Single-Output-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 20 W  
Data Sheet  
April 2008  
Recommended Hole Pattern  
Component-side footprint.  
Dimensions are in millimeters and (inches).  
50.8 (2.00)  
2.5  
(0.10)  
45.72 (1.800)  
12.7  
(0.50)  
12.4  
(0.49)  
5.08  
(0.200)  
2.54 (0.100)  
50.8  
(2.00)  
7.62 (0.300)  
17.78  
10.16  
(0.400)  
15.24  
(0.600)  
20.32  
(0.800)  
(0.700)  
37.8  
(1.49)  
3.43  
(0.135)  
38.86  
(1.530)  
DRILL HOLE OF APPROX.  
2.54 (0.100) DIAMETER  
TO RECESS STANDOFFS  
CASE OUTLINE  
IF LOWER HEIGHT IS NEEDED  
8-1198(C).g  
Ordering Information  
Table 4. Device Codes  
Input Voltage  
48 V  
Output Voltage  
Output Power  
10 W  
Device Code  
LW020G  
LW020F  
Comcode  
108258195  
2.5 V  
3.3 V  
5 V  
48 V  
13.2 W  
20 W  
107640807  
107314304  
107681033  
107640799  
48 V  
LW020A  
48 V  
12 V  
15 V  
20 W  
LW020B  
48 V  
20 W  
LW020C  
Optional features may be ordered using the device code suffixes shown. To order more than one option, list suf-  
fixes in numerically descending order. Please contact your Lineage Power Account Manager or Field Applica-  
tion Engineer for pricing and availability.  
Table 5. Device Options  
Option  
Device Code Suffix  
Short pins: 2.79 mm ± 0.25 mm  
(0.110 in. ± 0.010 in.)  
8
Case ground pin  
7
6
Short pins: 3.68 mm ± 0.25 mm  
(0.145 in. ± 0.010 in.)  
Synchronization  
3
1
Negative remote on/off logic  
Lineage Power  
15  
Asia-Pacific Headquarters  
Tel: +65 641 6 4283  
Europe, Middle-East and Afric a He adquarters  
Tel: +49 89 6089 286  
World Wide Headquarters  
Lineage Power Corporation  
30 00 Skyline Drive, Mesquite, TX 75149, USA  
+1-800-526-7819  
India Headquarters  
Tel: +91 80 28411633  
(Outsid e U.S.A .: +1-97 2-2 84 -2626)  
www.line agepower.com  
e-m ail: techsupport1@linea gepower.com  
Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or  
application. No rights under any patent accompany the sale of any such product(s) or information.  
© 2008 Lineage Power Corporation, (Mesquite, Texas) All International Rights Reserved.  
April 2008  
DS00-059EPS (Replaces DS00-058EPS)  

相关型号:

LW020C

LW020 Single-Output-Series Power Modules 36 Vdc to 75 Vdc inputs 20W
VISHAY

LW020C1

DC-to-DC Voltage Converter
ETC

LW020C3

DC-to-DC Voltage Converter
ETC

LW020C7

DC-to-DC Voltage Converter
ETC

LW020C71

DC-to-DC Voltage Converter
ETC

LW020C8

DC-to-DC Voltage Converter
ETC

LW020C81

DC-to-DC Voltage Converter
ETC

LW020C87

DC-to-DC Voltage Converter
ETC

LW020C871

DC-to-DC Voltage Converter
ETC

LW020F

LW020 Single-Output-Series Power Modules 36 Vdc to 75 Vdc inputs 20W
VISHAY

LW020F1

DC-to-DC Voltage Converter
ETC

LW020F3

DC-to-DC Voltage Converter
ETC