SI3900DV_09 [VISHAY]

Dual N-Channel 20-V (D-S) MOSFET; 双N通道20 -V (D -S )的MOSFET
SI3900DV_09
型号: SI3900DV_09
厂家: VISHAY    VISHAY
描述:

Dual N-Channel 20-V (D-S) MOSFET
双N通道20 -V (D -S )的MOSFET

文件: 总9页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3900DV  
Vishay Siliconix  
Dual N-Channel 20-V (D-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS (V)  
RDS(on) (Ω)  
ID (A)  
2.4  
Definition  
0.125 at VGS = 4.5 V  
0.200 at VGS = 2.5 V  
TrenchFET® Power MOSFET  
Compliant to RoHS Directive 2002/95/EC  
20  
1.8  
TSOP-6  
Top View  
G1  
S2  
G2  
D1  
S1  
D2  
1
2
3
6
5
D
1
D
2
3 mm  
4
G
G
2
1
2.85 mm  
S
S
2
1
Ordering Information: Si3900DV-T1-E3 (Lead (Pb)-free)  
Si3900DV-T1-GE3 (Lead (Pb)-free and Halogen-free)  
N-Channel MOSFET  
N-Channel MOSFET  
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Parameter  
Symbol  
5 s  
Steady State  
Unit  
VDS  
Drain-Source Voltage  
Gate-Source Voltage  
20  
8
V
VGS  
12  
TA = 25 °C  
A = 85 °C  
2.4  
1.7  
2.0  
1.4  
Continuous Drain Current (TJ = 150 °C)a  
ID  
T
A
IDM  
IS  
Pulsed Drain Current (10 µs Pulse Width)  
Continuous Source Current (Diode Conduction)a  
1.05  
1.15  
0.59  
0.75  
0.83  
0.53  
TA = 25 °C  
TA = 85 °C  
Maximum Power Dissipationa  
PD  
W
TJ, Tstg  
Operating Junction and Storage Temperature Range  
- 55 to 150  
°C  
THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
Typical  
93  
Maximum  
110  
Unit  
t 5 s  
Maximum Junction-to-Ambienta  
Maximum Junction-to-Foot (Drain)  
RthJA  
Steady State  
Steady State  
130  
75  
150  
°C/W  
RthJF  
90  
Notes:  
a. Surface Mounted on 1" x 1" FR4 board.  
Document Number: 71178  
S09-2275-Rev. D, 02-Nov-09  
www.vishay.com  
1
Si3900DV  
Vishay Siliconix  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
VGS(th)  
IGSS  
VDS = VGS, ID = 250 µA  
Gate Threshold Voltage  
0.6  
1.5  
100  
1
V
VDS = 0 V, VGS  
=
12 V  
Gate-Body Leakage  
nA  
VDS = 20 V, VGS = 0 V  
DS = 20 V, VGS = 0 V, TJ = 85 °C  
VDS 5 V, VGS = 4.5 V  
IDSS  
ID(on)  
Zero Gate Voltage Drain Current  
µA  
A
V
10  
On-State Drain Currenta  
5
VGS = 4.5 V, ID = 2.4 A  
0.100  
0.160  
5
0.125  
0.200  
Drain-Source On-State Resistancea  
RDS(on)  
Ω
V
GS = 2.5 V, ID = 1.0 A  
Forward Transconductancea  
Diode Forward Voltagea  
Dynamicb  
gfs  
VDS = 5 V, ID = 2.4 A  
IS = 1.05 A, VGS = 0 V  
S
V
VSD  
0.79  
1.10  
4.0  
Qg  
Qgs  
Qgd  
td(on)  
tr  
Total Gate Charge  
Gate-Source Charge  
Gate-Drain Charge  
Turn-On Delay Time  
Rise Time  
2.1  
0.3  
0.4  
10  
30  
14  
6
VDS = 10 V, VGS = 4.5 V, ID = 2.4 A  
nC  
ns  
17  
50  
25  
12  
50  
V
DD = 10 V, RL = 10 Ω  
ID 1 A, VGEN = 4.5 V, Rg = 6 Ω  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
trr  
IF = 3.0 A, dI/dt = 100 A/µs  
Source-Drain Reverse Recovery Time  
30  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
10  
8
10  
T
= - 55 °C  
V
GS  
= 4.5 V thru 3.5 V  
3 V  
C
8
25 °C  
125 °C  
6
6
2.5 V  
2 V  
4
4
2
2
1.5 V  
3
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
1
2
4
5
V
GS  
- Gate-to-Source Voltage (V)  
V
DS  
- Drain-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
www.vishay.com  
2
Document Number: 71178  
S09-2275-Rev. D, 02-Nov-09  
Si3900DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.5  
300  
250  
200  
150  
100  
50  
0.4  
0.3  
C
iss  
V
GS  
= 2.5 V  
0.2  
0.1  
0.0  
V
GS  
= 4.5 V  
C
oss  
C
rss  
0
0
1
2
I
3
4
5
6
7
0
4
8
12  
16  
20  
- Drain Current (A)  
V
- Drain-to-Source Voltage (V)  
D
DS  
On-Resistance vs. Drain Current  
Capacitance  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
4.5  
3.6  
2.7  
1.8  
0.9  
0.0  
V
D
= 10 V  
DS  
= 2.4 A  
V
D
= 4.5 V  
GS  
= 2.4 A  
I
I
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
T - Junction Temperature (°C)  
J
Q
- Total Gate Charge (nC)  
g
Gate Charge  
On-Resistance vs. Junction Temperature  
10  
0.40  
0.32  
0.24  
0.16  
0.08  
0.00  
I
D
= 2.4 A  
I
D
= 1 A  
T
= 150 °C  
J
1
T
= 25 °C  
J
0.1  
0
1
2
3
4
5
0
0.3  
0.6  
0.9  
1.2  
1.5  
V
GS  
- Gate-to-Source Voltage (V)  
V
SD  
- Source-to-Drain Voltage (V)  
Source-Drain Diode Forward Voltage  
On-Resistance vs. Gate-to-Source Voltage  
Document Number: 71178  
S09-2275-Rev. D, 02-Nov-09  
www.vishay.com  
3
Si3900DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.4  
8
6
I
D
= 250 µA  
0.2  
0.0  
4
2
0
- 0.2  
- 0.4  
- 0.6  
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.01  
0.1  
1
10  
30  
T
- Temperature (°C)  
Time (s)  
J
Single Pulse Power, Junction-to-Ambient  
Threshold Voltage  
2
1
Duty Cycle = 0.5  
0.2  
Notes:  
P
DM  
0.1  
0.1  
t
1
0.05  
t
2
t
t
1
2
1. Duty Cycle, D =  
0.02  
2. Per Unit Base = R  
= 130 °C/W  
thJA  
(t)  
3. TJM - T = P  
Z
A
DM thJA  
4. Surface Mounted  
Single Pulse  
0.01  
-
-
-
-
1
4
3
2
10  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
10  
100  
600  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?71178.  
www.vishay.com  
4
Document Number: 71178  
S09-2275-Rev. D, 02-Nov-09  
Package Information  
Vishay Siliconix  
TSOP: 5/6−LEAD  
JEDEC Part Number: MO-193C  
e1  
e1  
5
5
4
3
6
1
4
E
1
E
E
1
E
1
2
2
3
-B-  
-B-  
e
e
b
b
M
M
C
0.15  
C
B
A
0.15  
B A  
5-LEAD TSOP  
6-LEAD TSOP  
4x  
1
-A-  
D
0.17 Ref  
c
R
R
A
2
A
L
2
Gauge Plane  
Seating Plane  
Seating Plane  
L
0.08  
C
A
1
-C-  
(L )  
1
4x  
1
MILLIMETERS  
INCHES  
Dim  
A
A1  
A2  
b
c
D
E
E1  
e
Min  
Nom  
-
Max  
Min  
0.036  
0.0004  
0.035  
0.012  
0.004  
0.116  
0.106  
0.061  
Nom  
-
Max  
0.91  
0.01  
0.90  
0.30  
0.10  
2.95  
2.70  
1.55  
1.10  
0.10  
1.00  
0.45  
0.20  
3.10  
2.98  
1.70  
0.043  
0.004  
0.039  
0.018  
0.008  
0.122  
0.117  
0.067  
-
-
-
0.32  
0.15  
3.05  
2.85  
1.65  
0.95 BSC  
1.90  
-
0.038  
0.013  
0.006  
0.120  
0.112  
0.065  
0.0374 BSC  
0.075  
-
1.80  
2.00  
0.50  
0.071  
0.012  
0.079  
0.020  
e1  
L
0.32  
0.60 Ref  
0.25 BSC  
-
0.024 Ref  
0.010 BSC  
-
L1  
L2  
R
0.10  
0
-
0.004  
0
-
4
8
4
8
7
Nom  
7 Nom  
1
ECN: C-06593-Rev. I, 18-Dec-06  
DWG: 5540  
Document Number: 71200  
18-Dec-06  
www.vishay.com  
1
AN823  
Vishay Siliconix  
Mounting LITTLE FOOTR TSOP-6 Power MOSFETs  
Surface mounted power MOSFET packaging has been based on  
integrated circuit and small signal packages. Those packages  
have been modified to provide the improvements in heat transfer  
required by power MOSFETs. Leadframe materials and design,  
molding compounds, and die attach materials have been  
changed. What has remained the same is the footprint of the  
packages.  
Since surface mounted packages are small, and reflow soldering  
is the most common form of soldering for surface mount  
components, “thermal” connections from the planar copper to the  
pads have not been used. Even if additional planar copper area is  
used, there should be no problems in the soldering process. The  
actual solder connections are defined by the solder mask  
openings. By combining the basic footprint with the copper plane  
on the drain pins, the solder mask generation occurs automatically.  
The basis of the pad design for surface mounted power MOSFET  
is the basic footprint for the package. For the TSOP-6 package  
outline drawing see http://www.vishay.com/doc?71200 and see  
http://www.vishay.com/doc?72610 for the minimum pad footprint.  
In converting the footprint to the pad set for a power MOSFET, you  
must remember that not only do you want to make electrical  
connection to the package, but you must made thermal connection  
and provide a means to draw heat from the package, and move it  
away from the package.  
A final item to keep in mind is the width of the power traces. The  
absolute minimum power trace width must be determined by the  
amount of current it has to carry. For thermal reasons, this  
minimum width should be at least 0.020 inches. The use of wide  
traces connected to the drain plane provides a low impedance  
path for heat to move away from the device.  
REFLOW SOLDERING  
In the case of the TSOP-6 package, the electrical connections are  
very simple. Pins 1, 2, 5, and 6 are the drain of the MOSFET and  
are connected together. For a small signal device or integrated  
circuit, typical connections would be made with traces that are  
0.020 inches wide. Since the drain pins serve the additional  
function of providing the thermal connection to the package, this  
level of connection is inadequate. The total cross section of the  
copper may be adequate to carry the current required for the  
application, but it presents a large thermal impedance. Also, heat  
spreads in a circular fashion from the heat source. In this case the  
drain pins are the heat sources when looking at heat spread on the  
PC board.  
Vishay Siliconix surface-mount packages meet solder reflow  
reliability requirements. Devices are subjected to solder reflow as a  
test preconditioning and are then reliability-tested using  
temperature cycle, bias humidity, HAST, or pressure pot. The  
solder reflow temperature profile used, and the temperatures and  
time duration, are shown in Figures 2 and 3.  
Figure 1 shows the copper spreading recommended footprint for  
the TSOP-6 package. This pattern shows the starting point for  
utilizing the board area available for the heat spreading copper. To  
create this pattern, a plane of copper overlays the basic pattern on  
pins 1,2,5, and 6. The copper plane connects the drain pins  
electrically, but more importantly provides planar copper to draw  
heat from the drain leads and start the process of spreading the  
heat so it can be dissipated into the ambient air. Notice that the  
planar copper is shaped like a “T” to move heat away from the  
drain leads in all directions. This pattern uses all the available area  
underneath the body for this purpose.  
0.167  
4.25  
Ramp-Up Rate  
+6_C/Second Maximum  
120 Seconds Maximum  
70 180 Seconds  
240 +5/0_C  
0.074  
1.875  
Temperature @ 155 " 15_C  
Temperature Above 180_C  
Maximum Temperature  
Time at Maximum Temperature  
Ramp-Down Rate  
0.014  
0.35  
0.122  
3.1  
0.026  
0.65  
20 40 Seconds  
+6_C/Second Maximum  
0.049  
1.25  
0.049  
1.25  
0.010  
0.25  
FIGURE 2. Solder Reflow Temperature Profile  
FIGURE 1. Recommended Copper Spreading Footprint  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
1
AN823  
Vishay Siliconix  
10 s (max)  
255 260_C  
1X4_C/s (max)  
3-6_C/s (max)  
217_C  
140 170_C  
60 s (max)  
3_C/s (max)  
60-120 s (min)  
Reflow Zone  
Pre-Heating Zone  
Maximum peak temperature at 240_C is allowed.  
FIGURE 3. Solder Reflow Temperature and Time Durations  
THERMAL PERFORMANCE  
On-Resistance vs. Junction Temperature  
A basic measure of a device’s thermal performance is the  
junction-to-case thermal resistance, Rqjc, or the  
junction-to-foot thermal resistance, Rqjf. This parameter is  
measured for the device mounted to an infinite heat sink and  
is therefore a characterization of the device only, in other  
words, independent of the properties of the object to which the  
device is mounted. Table 1 shows the thermal performance  
of the TSOP-6.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
= 4.5 V  
GS  
I
D
= 6.1 A  
TABLE 1.  
Equivalent Steady State Performance—TSOP-6  
Thermal Resistance Rq  
30_C/W  
jf  
50 25  
0
25  
50  
75  
100 125 150  
SYSTEM AND ELECTRICAL IMPACT OF  
TSOP-6  
T
Junction Temperature (_C)  
J
FIGURE 4. Si3434DV  
In any design, one must take into account the change in  
MOSFET rDS(on) with temperature (Figure 4).  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
2
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR TSOP-6  
0.099  
(2.510)  
0.039  
0.020  
0.019  
(1.001)  
(0.508)  
(0.493)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
26  
Document Number: 72610  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

SI3900M100

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M16

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M160

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M200

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M25

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M250

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M35

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M450

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M50

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M63

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3900M80

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI3905DV

Dual P-Channel 8-V (D-S) MOSFET
VISHAY