SI5511DC-T1-GE3 [VISHAY]

Small Signal Field-Effect Transistor, 3.9A I(D), 30V, 2-Element, N-Channel and P-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, 1206-8, CHIPFET-8;
SI5511DC-T1-GE3
型号: SI5511DC-T1-GE3
厂家: VISHAY    VISHAY
描述:

Small Signal Field-Effect Transistor, 3.9A I(D), 30V, 2-Element, N-Channel and P-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, 1206-8, CHIPFET-8

开关 光电二极管 晶体管
文件: 总16页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5511DC  
Vishay Siliconix  
N- and P-Channel 30 V (D-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS (V)  
RDS(on) (Ω)  
ID (A) Qg (Typ.)  
Definition  
4a,g  
4a,g  
0.055 at VGS = 4.5 V  
0.090 at VGS = 2.5 V  
0.150 at VGS = - 4.5 V  
0.256 at VGS = - 2.5 V  
TrenchFET® Power MOSFETs  
Compliant to RoHS Directive 2002/95/EC  
N-Channel  
P-Channel  
30  
4.2 nC  
- 3.6a  
- 2.7a  
- 30  
2.85 nC  
APPLICATIONS  
Buck-Boost  
1206-8 ChipFET®  
- DSC  
- Portable Devices  
1
D
1
S
2
S
1
D
1
G
1
Marking Code  
D
1
S
2
G
2
EE  
XXX  
G
1
D
2
G
2
Lot Traceability  
and Date Code  
D
2
Part # Code  
S
1
D
2
Bottom View  
Ordering Information: Si5511DC-T1-E3 (Lead (Pb)-free)  
N-Channel MOSFET  
P-Channel MOSFET  
Si5511DC-T1-GE3 (Lead (Pb)-free and Halogen-free)  
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Parameter  
Symbol  
N-Channel  
P-Channel  
Unit  
VDS  
30  
- 30  
Drain-Source Voltage  
Gate-Source Voltage  
V
VGS  
12  
4a, g  
4a, g  
4a, g  
3.9a  
15  
- 3.6a  
- 2.8a  
TC = 25 °C  
TC = 70 °C  
TA = 25 °C  
TA = 70 °C  
ID  
Continuous Drain Current (TJ = 150 °C)  
- 2.3b, c  
- 1.8b, c  
- 10  
A
IDM  
IS  
Pulsed Drain Current  
TC = 25 °C  
2.6  
1.7b, c  
3.1  
- 2.6  
- 1.7b, c  
2.6  
Source Drain Current Diode Current  
TA = 25 °C  
TC = 25 °C  
TC = 70 °C  
TA = 25 °C  
TA = 70 °C  
2.0  
1.7  
PD  
Maximum Power Dissipation  
W
2.1b, c  
1.33b, c  
1.3b, c  
0.84b, c  
TJ, Tstg  
- 55 to 150  
260  
Operating Junction and Storage Temperature Range  
Soldering Recommendations (Peak Temperature)d, e  
°C  
THERMAL RESISTANCE RATINGS  
N-Channel  
Typ. Max.  
P-Channel  
Typ. Max.  
Parameter  
Maximum Junction-to-Ambientb, f  
Maximum Junction-to-Foot (Drain)  
Symbol  
RthJA  
Unit  
t 5 s  
50  
30  
60  
40  
77  
33  
95  
40  
°C/W  
RthJF  
Steady State  
Notes:  
a. Based on TC = 25 °C.  
b. Surface mounted on 1" x 1" FR4 board.  
c. t = 5 s.  
d. See Reliability Manual for profile. The ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result  
of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure  
adequade bottom side solder interconnection.  
e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.  
f. Maximum under steady state conditions is 110 °C/W for N-Channel and 130 °C/W for P-Channel.  
g. Package limited.  
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
www.vishay.com  
1
Si5511DC  
Vishay Siliconix  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Static  
Symbol  
Test Conditions  
Min.  
Typ.a Max.  
Unit  
VGS = 0 V, ID = 250 µA  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
30  
VDS  
Drain-Source Breakdown Voltage  
V
VGS = 0 V, ID = - 250 µA  
- 30  
ID = 250 µA  
24.2  
- 23.1  
3.6  
V
DS Temperature Coefficient  
ΔVDS/TJ  
ΔVGS(th)/TJ  
ID = - 250 µA  
mV/°C  
ID = 250 µA  
VGS(th) Temperature Coefficient  
I
D = - 250 µA  
VDS = VGS, ID = 250 µA  
DS = VGS, ID = - 250 µA  
2.3  
0.7  
2
VGS(th)  
Gate Threshold Voltage  
Gate-Body Leakage  
V
V
P-Ch  
N-Ch  
P-Ch  
N-Ch  
- 0.7  
- 2  
100  
- 100  
1
IGSS  
VDS = 0 V, VGS  
=
12 V  
nA  
VDS = 30 V, VGS = 0 V  
V
DS = - 30 V, VGS = 0 V  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
- 1  
10  
IDSS  
ID(on)  
RDS(on)  
gfs  
Zero Gate Voltage Drain Current  
On-State Drain Currentb  
µA  
A
V
DS = 30 V, VGS = 0 V, TJ = 55 °C  
V
DS = - 30 V, VGS = 0 V, TJ = 55 °C  
VDS 5 V, VGS = 4.5 V  
- 10  
15  
VDS - 5 V, VGS = - 4.5 V  
VGS = 4.5 V, ID = 4.8 A  
- 10  
0.045 0.055  
0.125 0.150  
0.075 0.090  
0.213 0.256  
10.8  
V
GS = - 4.5 V, ID = - 2.3 A  
GS = 2.5 V, ID = 3.8 A  
GS = - 2.5 V, ID = 1.8 A  
VDS = 15 V, ID = 4.8 A  
Drain-Source On-State Resistanceb  
Ω
S
V
V
Forward Transconductanceb  
V
DS = - 15 V, ID = - 2.3 A  
6.56  
Dynamica  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
435  
260  
65  
Ciss  
Coss  
Crss  
Input Capacitance  
N-Channel  
DS = 15 V, VGS = 0 V, f = 1 MHz  
V
Output Capacitance  
pF  
55  
P-Channel  
DS = - 15 V, VGS = 0 V, f = 1 MHz  
30  
V
Reverse Transfer Capacitance  
42  
VDS = 15 V, VGS = 5 V, ID = 4.8 A  
DS = - 15 V, VGS = - 5 V, ID = - 3.2 A  
4.7  
7.1  
V
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
4.1  
4.2  
3.8  
1.1  
0.6  
0.9  
1.85  
2.7  
7.7  
6.2  
6.3  
4.6  
Qg  
Total Gate Charge  
N-Channel  
DS = 15 V, VGS = 4.5 V, ID = 4.8 A  
nC  
V
Qgs  
Qgd  
Rg  
Gate-Source Charge  
Gate-Drain Charge  
Gate Resistance  
P-Channel  
V
DS = - 15 V, VGS = - 4.5 V, ID = - 3.2 A  
f = 1 MHz  
Ω
www.vishay.com  
2
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
Si5511DC  
Vishay Siliconix  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Dynamica  
Symbol  
Test Conditions  
Min.  
Typ.a Max.  
Unit  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
9
12  
23  
68  
117  
72  
50  
42  
98  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
N-Channel  
DD = 15 V, RL = 3.95 Ω  
ID 3.8 A, VGEN = 4.5 V, Rg = 1 Ω  
15  
45  
78  
48  
33  
28  
65  
V
ns  
P-Channel  
DD = - 15 V, RL = 18.1 Ω  
ID - 1.86 A, VGEN = - 4.5 V, Rg = 1 Ω  
Turn-Off Delay Time  
V
Fall Time  
Drain-Source Body Diode Characteristics  
Continuous Source-Drain Diode Current  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
2.6  
- 2.6  
15  
IS  
TC = 25 °C  
A
V
Pulse Diode Forward Currenta  
Body Diode Voltage  
ISM  
- 10  
1.2  
IS = 2.4 A, VGS = 0 V  
0.8  
VSD  
I
S = - 1.5 A, VGS = 0 V  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
N-Ch  
P-Ch  
- 0.8  
11.6  
19.8  
6.1  
- 1.2  
18  
trr  
Qrr  
ta  
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
ns  
30  
N-Channel  
IF = 2.4 A, dI/dt = 100 A/µs, TJ = 25 °C  
9.2  
27  
nC  
17.5  
8.4  
P-Channel  
IF = - 1.5 A, dI/dt = - 100 A/µs, TJ = 25 °C  
17.2  
3.2  
ns  
tb  
Reverse Recovery Rise Time  
2.6  
Notes:  
a. Guaranteed by design, not subject to production testing.  
b. Pulse test; pulse width 300 µs, duty cycle 2 %.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
www.vishay.com  
3
Si5511DC  
Vishay Siliconix  
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
15  
12  
9
5
4
3
2
1
0
V
GS  
= 5 V thru 3 V  
V
= 2.5 V  
GS  
6
T
= 125 °C  
C
V
V
= 2 V  
GS  
3
T
= 25 °C  
1.0  
C
= 1.5 V  
GS  
T
= - 55 °C  
C
0
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
0.0  
0.5  
1.5  
2.0  
2.5  
V
DS  
- Drain-to-Source Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
600  
500  
400  
300  
200  
100  
0
C
iss  
V
GS  
= 2.5 V  
V
GS  
= 4.5 V  
C
oss  
C
rss  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I
D
- Drain Current (A)  
V
DS  
- Drain-to-Source Voltage (V)  
On-Resistance vs. Drain Current and Gate Voltage  
Capacitance  
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
D
= 4.5 V  
GS  
= 4.8 A  
I
D
= 4.8 A  
I
4
3
2
1
0
V
DS  
= 15 V  
V
D
= 2.5 V  
GS  
= 3.7 A  
V
GS  
= 24 V  
I
0
1
2
3
4
5
6
- 50 - 25  
0
25  
50  
75  
100 125 150  
Q
- Total Gate Charge (nC)  
T - Junction Temperature (°C)  
J
g
Gate Charge  
On-Resistance vs. Junction Temperature  
www.vishay.com  
4
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
Si5511DC  
Vishay Siliconix  
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
20  
10  
I
= 4.8 A  
D
T
A
= 150 °C  
1
0.1  
T
A
= 25 °C  
T
A
= 125 °C  
T
A
= 25 °C  
0.01  
0.001  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1
2
3
4
5
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Source-Drain Diode Forward Voltage  
On-Resistance vs. Gate-to-Source Voltage  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
50  
40  
I
D
= 250 µA  
30  
20  
10  
0
-4  
-3  
-2  
-1  
- 50 - 25  
0
25  
50  
75  
100 125 150  
10  
10  
10  
10  
Time (s)  
Single Pulse Power  
1
10  
100 600  
T
- Temperature (°C)  
J
Threshold Voltage  
100  
Limited by R  
*
DS(on)  
10  
1
1 ms  
10 ms  
100 ms  
1 s  
10 s  
0.1  
DC  
BVDSS Limited  
0.01  
T
A
= 25 °C  
Single Pulse  
0.001  
0.1  
1
10  
100  
V
DS  
- Drain-to-Source Voltage (V)  
* V  
GS  
minimum V at which R  
is specified  
DS(on)  
GS  
Safe Operating Area, Junction-to-Ambient  
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
www.vishay.com  
5
Si5511DC  
Vishay Siliconix  
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
4
3
2
1
0
8
6
4
2
0
Package Limited  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
T
- Case Temperature (°C)  
C
T
- Case Temperature (°C)  
C
Power Derating  
Current Derating*  
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
www.vishay.com  
6
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
Si5511DC  
Vishay Siliconix  
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
Notes:  
P
DM  
0.1  
0.05  
t
1
t
0.02  
2
t
t
1
2
1. Duty Cycle, D =  
2. Per Unit Base = R  
= 90 °C/W  
thJA  
(t)  
3. T - T = P  
JM  
Z
A
DM thJA  
Single Pulse  
4. Surface Mounted  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
10  
100  
600  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
www.vishay.com  
7
Si5511DC  
Vishay Siliconix  
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
10  
8
5
4
3
2
1
0
V
GS  
= 5 V thru 3.5 V  
V
GS  
= 3 V  
6
V
GS  
= 2.5 V  
4
V
GS  
= 2 V  
T
A
= 125 °C  
2
T
A
= 25 °C  
V
GS  
= 1.5 V  
T
A
= - 55 °C  
0
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
0.0  
0.6  
1.2  
1.8  
2.4  
V
DS  
- Drain-to-Source Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
500  
400  
300  
200  
100  
0
C
iss  
V
GS  
= 2.5 V  
V
GS  
= 4.5 V  
C
oss  
C
rss  
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
30  
I
D
- Drain Current (A)  
V
DS  
- Drain-to-Source Voltage (V)  
On-Resistance vs. Drain Current and Gate Voltage  
Capacitance  
5
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
D
= 2.3 A  
V
D
= 4.5 V,  
GS  
= 2.3 A  
4
3
2
1
0
I
V
GS  
= 15 V  
V
GS  
= 24 V  
V
D
= 2.5 V,  
GS  
= 1.8 A  
I
0
1
2
3
4
5
- 50 - 25  
0
25  
50  
75  
100 125 150  
Q
- Total Gate Charge (nC)  
T - Junction Temperature (°C)  
J
g
Gate Charge  
On-Resistance vs. Junction Temperature  
www.vishay.com  
8
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
Si5511DC  
Vishay Siliconix  
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.40  
0.32  
0.24  
0.16  
0.08  
0.00  
20  
10  
I
D
= 2.3 A  
T
= 150 °C  
J
T
A
= 125 °C  
1
0.1  
T
= 25 °C  
J
T
A
= 25 °C  
0.01  
0.001  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1
2
3
4
5
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Source-Drain Diode Forward Voltage  
On-Resistance vs. Gate-to-Source Voltage  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
50  
40  
I
D
= 250 µA  
30  
20  
10  
0
2
3
- 50 - 25  
0
25  
50  
75  
100 125 150  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
Time (s)  
Single Pulse Power  
10  
1
10  
10  
T
- Temperature (°C)  
J
Threshold Voltage  
100  
Limited by R  
*
DS(on)  
10  
10 ms  
1
100 ms  
1 s  
10 s  
0.1  
DC  
T
= 25 °C  
A
0.01  
Single Pulse  
0.001  
0.1  
1
10  
100  
V
DS  
- Drain-to-Source Voltage (V)  
* V  
GS  
minimum V at which R  
is specified  
DS(on)  
GS  
Safe Operating Area, Junction-to-Case  
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
www.vishay.com  
9
Si5511DC  
Vishay Siliconix  
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
4
3
2
1
0
1.6  
1.2  
0.8  
0.4  
0.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
T
- Case Temperature (°C)  
T
- Case Temperature (°C)  
C
C
Current Derating*  
Power Derating  
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
www.vishay.com  
10  
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
Si5511DC  
Vishay Siliconix  
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
Notes:  
P
DM  
0.1  
t
0.05  
1
t
2
t
t
1
2
1. Duty Cycle, D =  
0.02  
2. Per Unit Base = R  
= 110 °C/W  
thJA  
(t)  
3. T - T = P  
JM  
Z
A
DM thJA  
4. Surface Mounted  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
10  
100  
600  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?73787.  
Document Number: 73787  
S10-0547-Rev. C, 08-Mar-10  
www.vishay.com  
11  
Package Information  
Vishay Siliconix  
1206-8 ChipFETR  
4
L
D
8
1
7
2
6
3
5
4
5
4
6
3
7
2
8
1
4
E
1
E
x
S
e
b
c
Backside View  
2X 0.10/0.13 R  
A
DETAIL X  
NOTES:  
1. All dimensions are in millimeaters.  
2. Mold gate burrs shall not exceed 0.13 mm per side.  
3. Leadframe to molded body offset is horizontal and vertical shall not exceed  
0.08 mm.  
4. Dimensions exclusive of mold gate burrs.  
5. No mold flash allowed on the top and bottom lead surface.  
MILLIMETERS  
INCHES  
Min Nom Max  
Dim  
A
b
c
c1  
D
E
E1  
e
Min  
1.00  
0.25  
0.1  
Nom  
Max  
1.10  
0.039  
0.010  
0.004  
0
0.012  
0.006  
0.043  
0.014  
0.008  
0.0015  
0.122  
0.078  
0.067  
0.30  
0.35  
0.15  
0.20  
0
0.038  
3.10  
2.95  
1.825  
1.55  
3.05  
0.116  
0.072  
0.061  
0.120  
0.075  
0.065  
0.0256 BSC  
1.90  
1.975  
1.70  
1.65  
0.65 BSC  
0.28  
0.42  
0.011  
0.017  
L
0.55 BSC  
5_Nom  
0.022 BSC  
5_Nom  
S
ECN: C-03528—Rev. F, 19-Jan-04  
DWG: 5547  
Document Number: 71151  
15-Jan-04  
www.vishay.com  
1
AN812  
Vishay Siliconix  
Dual-Channel 1206-8 ChipFETr Power MOSFET Recommended  
Pad Pattern and Thermal Performance  
INTRODUCTION  
New Vishay Siliconix ChipFETs in the leadless 1206-8  
package feature the same outline as popular 1206-8 resistors  
80 mil  
and capacitors but provide all the performance of true power  
semiconductor devices. The 1206-8 ChipFET has the same  
footprint as the body of the LITTLE FOOTR TSOP-6, and can  
25 mil  
18 mil  
43 mil  
be thought of as a leadless TSOP-6 for purposes of visualizing  
board area, but its thermal performance bears comparison  
with the much larger SO-8.  
This technical note discusses the dual ChipFET 1206-8  
pin-out, package outline, pad patterns, evaluation board  
layout, and thermal performance.  
10 mil  
26 mil  
PIN-OUT  
FIGURE 2.  
Footprint With Copper Spreading  
Figure 1 shows the pin-out description and Pin 1 identification  
for the dual-channel 1206-8 ChipFET device. The pin-out is  
similar to the TSOP-6 configuration, with two additional drain  
pins to enhance power dissipation and thus thermal  
performance. The legs of the device are very short, again  
helping to reduce the thermal path to the external heatsink/pcb  
and allowing a larger die to be fitted in the device if necessary.  
The pad pattern with copper spreading shown in Figure 2  
improves the thermal area of the drain connections (pins 5 and  
6, pins 7 and 8) while remaining within the confines of the basic  
footprint. The drain copper area is 0.0019 sq. in. or  
1.22 sq. mm. This will assist the power dissipation path away  
from the device (through the copper leadframe) and into the  
board and exterior chassis (if applicable) for the dual device.  
The addition of a further copper area and/or the addition of vias  
to other board layers will enhance the performance still further.  
An example of this method is implemented on the Vishay  
Siliconix Evaluation Board described in the next section  
(Figure 3).  
Dual 1206-8 ChipFET  
S
1
G
1
S
2
G
2
D
1
THE VISHAY SILICONIX EVALUATION  
BOARD FOR THE DUAL 1206-8  
D
1
D
2
D
2
The dual ChipFET 1206-08 evaluation board measures 0.6 in  
by 0.5 in. Its copper pad pattern consists of an increased pad  
area around each of the two drain leads on the top-side—  
approximately 0.0246 sq. in. or 15.87 sq. mm—and vias  
added through to the underside of the board, again with a  
maximized copper pad area of approximately the board-size  
dimensions, split into two for each of the drains. The outer  
package outline is for the 8-pin DIP, which will allow test  
sockets to be used to assist in testing.  
FIGURE 1.  
For package dimensions see the 1206-8 ChipFET package  
outline drawing (http://www.vishay.com/doc?71151).  
BASIC PAD PATTERNS  
The basic pad layout with dimensions is shown in Application  
Note 826, Recommended Minimum Pad Patterns With Outline  
The thermal performance of the 1206-8 on this board has been  
measured with the results following on the next page. The  
testing included comparison with the minimum recommended  
footprint on the evaluation board-size pcb and the industry  
standard one-inch square FR4 pcb with copper on both sides  
of the board.  
Drawing  
Access  
for  
Vishay Siliconix  
MOSFETs,  
(http://www.vishay.com/doc?72286). This is sufficient for low  
power dissipation MOSFET applications, but power  
semiconductor performance requires a greater copper pad  
area, particularly for the drain leads.  
Document Number: 71127  
12-Dec-03  
www.vishay.com  
1
 
AN812  
Vishay Siliconix  
Front of Board  
Back of Board  
ChipFETr  
vishay.com  
FIGURE 3.  
The results show that a major reduction can be made in the  
thermal resistance by increasing the copper drain area. In this  
example, a 57_C/W reduction was achieved without having to  
increase the size of the board. If increasing board size is an  
option, a further 38_C/W reduction was obtained by  
maximizing the copper from the drain on the larger 1” square  
PCB.  
THERMAL PERFORMANCE  
Junction-to-Foot Thermal Resistance (the Package  
Performance)  
Thermal performance for the 1206-8 ChipFET measured as  
junction-to-foot thermal resistance is 30_C/W typical, 40_C/W  
maximum for the dual device. The “foot” is the drain lead of the  
device as it connects with the body. This is identical to the dual  
SO-8 package RQjf performance, a feat made possible by  
shortening the leads to the point where they become only a  
small part of the total footprint area.  
200  
Min. Footprint  
160  
Dual EVB  
Junction-to-Ambient Thermal Resistance  
(dependent on pcb size)  
120  
The typical RQja for the dual-channel 1206-8 ChipFET is  
90_C/W steady state, identical to the SO-8. Maximum ratings  
are 110_C/W for both the 1206-8 and the SO-8. Both packages  
have comparable thermal performance on the 1” square pcb  
footprint with the 1206-8 dual package having a quarter of the  
body area, a significant factor when considering board area.  
80  
40  
1” Square PCB  
Testing  
0
To aid comparison further, Figure 4 illustrates ChipFET 1206-8  
dual thermal performance on two different board sizes and  
three different pad patterns.The results display the thermal  
performance out to steady state and produce a graphic  
account on how an increased copper pad area for the drain  
connections can enhance thermal performance. The  
measured steady state values of RQja for the Dual 1206-8  
ChipFET are :  
-5  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
10  
Time (Secs)  
1
10  
100  
1000  
FIGURE 4.  
Dual 1206-8 ChipFET  
SUMMARY  
The thermal results for the dual-channel 1206-8 ChipFET  
package display identical power dissipation performance to  
the SO-8 with a footprint reduction of 80%. Careful design of  
the package has allowed for this performance to be achieved.  
The short leads allow the die size to be maximized and thermal  
resistance to be reduced within the confines of the TSOP-6  
body size.  
1) Minimum recommended pad pattern (see 185_C/W  
Figure 2) on the evaluation board size of  
0.5 in x 0.6 in.  
2) The evaluation board with the pad pattern 128_C/W  
described on Figure 3.  
ASSOCIATED DOCUMENT  
3) Industry standard 1” square pcb with  
maximum copper both sides.  
90_C/W  
1206-8 ChipFET Single Thermal performance, AN811,  
(http://www.vishay.com/doc?71126).  
Document Number: 71127  
12-Dec-03  
www.vishay.com  
2
 
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR 1206-8 ChipFET®  
0.093  
(2.357)  
0.026  
0.016  
0.010  
(0.650)  
(0.406)  
(0.244)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
2
Document Number: 72593  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please  
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Material Category Policy  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the  
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council  
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment  
(EEE) - recast, unless otherwise specified as non-compliant.  
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that  
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free  
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference  
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21  
conform to JEDEC JS709A standards.  
Revision: 02-Oct-12  
Document Number: 91000  
1

相关型号:

SI5513CDC

N- and P-Channel 20-V (D-S) MOSFET
VISHAY

SI5513CDC-T1-E3

N- and P-Channel 20-V (D-S) MOSFET
VISHAY

SI5513CDC-T1-GE3

N- and P-Channel 20 V (D-S) MOSFET
VISHAY

SI5513CDC_10

N- and P-Channel 20 V (D-S) MOSFET
VISHAY

SI5513DC

Complementary 20-V (D-S) MOSFET
VISHAY

SI5513DC-T1

Complementary 20-V (D-S) MOSFET
VISHAY

SI5513DC-T1-E3

Complementary 20-V (D-S) MOSFET
VISHAY

SI5513DC-T1-GE3

TRANSISTOR 3100 mA, 20 V, 2 CHANNEL, N AND P-CHANNEL, Si, SMALL SIGNAL, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, 1206-8, CHIPFET-8, FET General Purpose Small Signal
VISHAY

SI5515CDC

N- and P-Channel 20-V (D-S) MOSFET
VISHAY

SI5515CDC-T1-E3

N- and P-Channel 20-V (D-S) MOSFET
VISHAY

SI5515CDC-T1-GE3

N- and P-Channel 20 V (D-S) MOSFET
VISHAY

SI5515CDC_10

N- and P-Channel 20 V (D-S) MOSFET
VISHAY