SI9140CY-T1 [VISHAY]

MP Controller For High Performance Process Power Supplies;
SI9140CY-T1
型号: SI9140CY-T1
厂家: VISHAY    VISHAY
描述:

MP Controller For High Performance Process Power Supplies

CD 开关 光电二极管
文件: 总19页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si9140  
Vishay Siliconix  
MP Controller For High Performance Process Power Supplies  
FEATURES  
D Runs on 3.3- or 5-V Supplies  
D High Frequency Operation (>1 MHz) D Full Set of Protection Circuitry  
D Adjustable, High Precision Output  
D High Efficiency Synchronous  
D 2000-V ESD Rating (Si9140CQ/DQ)  
Voltage  
Switching  
DESCRIPTION  
Siliconix’ Si9140 Buck converter IC is a high-performance,  
surface-mount switchmode controller made to power the new  
generation of low-voltage, high-performance micro-  
processors. The Si9140 has an input voltage range of 3 to  
6.5 V to simplify power supply designs in desktop PCs. Its  
high-frequency switching capability and wide bandwidth  
feedback loop provide tight, absolute static and transient load  
regulation. Circuits using the Si9140 can be implemented with  
low-profile, inexpensive inductors, and will dramatically  
minimize power supply output and processor decoupling  
capacitance. The Si9140 is designed to meet the stringent  
regulation requirements of new and future high-frequency  
microprocessors, while improving the overall efficiency in new  
“green” systems.  
down. These simultaneous changes have made dedicated,  
high-frequency, point-of-use buck converters an essential part  
of any system design. These point-of-use converters must  
operate at higher frequencies and provide wider feedback  
bandwidths than existing converters, which typically operate  
at less than 250 kHz and have feedback bandwidths of less  
than 50 kHz. The Si9140’s 100-kHz feedback loop bandwidth  
ensures a minimum improvement of one-half the required  
output/decoupling capacitance, resulting in a tremendous  
reduction in board size and cost of implementation.  
With the microprocessing power of any PC representing an  
investment of hundreds of dollars, designers need to ensure  
that the reliable operation of the processor will not be affected  
by the power supply. The Si9140 provides this assurance. A  
demo board, the Si9140DB, is available.  
Today’s state-of-the-art microprocessors run at frequencies  
over 100 MHz. Processor clock speeds are going up and so  
are current requirements, but operating voltages are going  
Si9140CQ-T1 and Si9140DQ-T1 are available in lead free.  
APPLICATION CIRCUIT  
V
IN  
V
CCP  
R3  
C3  
L1  
2 x Si4435DY  
+
V
OUT  
R1  
R2  
C1  
+
2 x Si4410DY  
D1  
Power-Good  
U1  
R4  
C2  
Si9140  
C4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
DD  
S
R7  
MON  
DR  
C8  
R13  
C5  
R5  
V
D
S
GOOD  
PGND  
COMP  
FB  
UVLO  
SET  
R10  
0.1%  
C
R
NI  
OSC  
R6  
C9  
V
REF  
OSC  
R12  
0.1%  
ENABLE  
C6  
C7  
GND  
R8  
R9  
C10  
R11  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
1
Si9140  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
Voltages Referenced to GND.  
V
P
V
, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
S
DD  
Thermal Impedance (QJA  
)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "0.3 V  
GND  
16-Pin SOIC (Y Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140_C/W  
to V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V  
16-Pin TSSOP (Q Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135_C/W  
DD  
S
Linear Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V +0.3 V  
DD  
Operating Temperature  
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V +0.3 V  
DD  
C Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0_ to 70_C  
Peak Output Drive Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 mA  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 to 150_C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150_C  
Power Dissipation (Package)a  
D Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40_ to 85_C  
Notes  
a. Device mounted with all leads soldered or welded to PC board.  
b. Derate 7.2 mW/_C above 25_C.  
c. Derate 7.4 mW/_C above 25_C.  
\b  
16-Pin SOIC (Y Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 mW  
c
16-Pin TSSOP (Q Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925 mW  
* . Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability. Stresses above Absolute Maximum rating may cause permanent  
damage. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be applied at any  
one time  
RECOMMENDED OPERATING RANGE  
Voltages Referenced to GND.  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V to 6.5 V  
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 pF to 200 pF  
DD  
OSC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V to 6.5 V  
Linear Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V  
S
DD  
f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 kHz to 2 MHz  
OSC  
DD  
R
OSC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 kW to 250 kW  
V
REF  
Load Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >150 kW  
SPECIFICATIONS  
Limits  
Test Conditions  
C Suffix 0 to 70_C  
Unless Otherwise Specifieda  
D Suffix 40 to 85_C  
3 V v V v 6.5 V, V = V  
S
DD  
DD  
Parameter  
Reference  
Symbol  
Minb  
Typ  
Maxb  
Unit  
GND = P  
GND  
I
= 10 mA  
1.455  
1.477  
1.545  
1.523  
REF  
Output Voltage  
V
REF  
V
T
A
= 25_C  
1.50  
Oscillator  
c
Maximum Frequency  
f
f
V
= 5 V, C  
= 47 pF, R  
= 5.0 kW  
2.0  
MAX  
DD  
OSC  
OSC  
MHz  
V
= 5 V  
DD  
Accuracy  
0.85  
1.0  
1.0  
1.15  
8
OSC  
C
OSC  
= 100 pF, R  
= 7.50 kW, T = 25_C  
OSC  
A
R
OSC  
Voltage  
V
ROSC  
V
c
Voltage Stability  
Temperature Stability  
4 V v V v 6 V, Ref to 5 V, T = 25_C  
8  
DD  
A
Df/f  
%
c
Referenced to 25_C  
"5  
Error Amplifier (COSC = GND, OSC DISABLED)  
Input Bias Current  
Open Loop Voltage Gain  
Offset Voltage  
I
V
NI  
= V  
, V = 1.0 V  
1.0  
47  
1.0  
15  
mA  
dB  
FB  
REF  
FB  
A
VOL  
55  
0
V
V
= V  
REF  
15  
mV  
MHz  
OS  
NI  
c
Unity Gain Bandwidth  
BW  
10  
Source (V = 1 V, NI = V  
)
2.0  
0.8  
60  
1.0  
FB  
REF  
Output Current  
I
mA  
dB  
EA  
Sink (V = 2 V, NI = V  
)
0.4  
FB  
REF  
c
Power Supply Rejection  
P
SRR  
3 V < V < 6.5 V  
DD  
UVLOSET Voltage Monitor  
V
V
UVLO  
UVLO  
High to Low  
Low to High  
0.85  
1.0  
1.2  
175  
1.15  
UVLOHL  
SET  
Under Voltage Lockout  
Hysteresis  
V
UVLOLH  
SET  
V
HYS  
V
V
mV  
UVLOLH UVLOHL  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
2
Si9140  
Vishay Siliconix  
SPECIFICATIONS  
Limits  
Test Conditions  
C Suffix 0 to 70_C  
Unless Otherwise Specifieda  
D Suffix 40 to 85_C  
3 V v V v 6.5 V, V = V  
S
DD  
DD  
Parameter  
Symbol  
Minb  
Typ  
Maxb  
Unit  
GND = P  
GND  
UVLOSET Voltage Monitor  
UVLO Input Current  
I
V
UVLO  
= 0 to V  
DD  
100  
100  
nA  
UVLO(SET)  
Output Drive (DR and DS)  
Output High Voltage  
Output Low Voltage  
Peak Output Current  
Peak Output Current  
Break-Before-Make  
V
V
= V = 5 V, I = 10 mA  
OUT  
4.7  
4.8  
0.2  
OH  
S
DD  
V
V
V
= V = 5 V, I = 10 mA  
OUT  
0.3  
OL  
SOURCE  
S
DD  
I
V
V
= V = 5 V, V  
= 0 V  
= 5 V  
380  
300  
40  
260  
S
S
DD  
OUT  
OUT  
mA  
nS  
I
= V = 5 V, V  
200  
SINK  
DD  
t
V
DD  
= 6.5 V  
BBM  
Logic  
ENABLE Turn-On Delay  
ENABLE Logic Low  
t
ENABLE Delay to Output, EN , V = 5 V  
1.5  
ms  
dEN  
LH DD  
V
0.2 V  
DD  
ENL  
V
ENABLE Logic High  
ENABLE Input Current  
V
0.8 V  
DD  
ENH  
I
ENABLE = 0 to V  
1.0  
1.0  
mA  
EN  
DD  
VGOOD Comparator (Voltage-Good Comparator)  
Input Offset Voltage  
Input Hysteresis  
Input Bias Current  
Output Sink I  
V
45  
0
10  
0
45  
1
OS  
V
IN  
Common Mode Voltage = V  
, V = 5 V  
mV  
REF DD  
V
INHYS  
BMON  
I
V
IN  
= V , V = 5 V  
REF DD  
1  
mA  
mA  
mV  
I
V
OUT  
= 5 V, V = 5 V  
6
9
SINK  
DD  
Output Low Voltage  
V
I
= 2 mA, V = 5 V  
350  
500  
OL  
OUT  
DD  
Supply  
Supply Current—Normal Mode  
Supply Current—Standby Mode  
f
= 1 MHz, R  
= 7.50 kW  
1.6  
2.3  
mA  
OSC  
OSC  
I
DD  
ENABLE < 0.4 V  
250  
330  
mA  
Notes  
a. 100 pF includes C  
on C  
.
STRAY  
OSC  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.  
c. Guaranteed by design, not subject to production testing.  
TYPICAL CHARACTERISTICS (25_C UNLESS OTHERWISE NOTED)  
V
vs. Supply Voltage  
V
REF  
vs. Temperature  
REF  
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
1.480  
V
REF  
with 10 mA Load  
V
DD  
= 3 V  
V
DD  
= 6 V  
3.0  
3.5  
4.0  
V
4.5  
5.0  
5.5  
6.0  
6.5  
50  
25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
t Temperature (_C)  
DD  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
3
Si9140  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS OTHERWISE NOTED)  
V
vs. Load Current  
Error Amplifier Gain and Phase  
REF  
80  
60  
40  
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
0
Gain  
30  
3.0, 3.6 V  
6.5 V  
Phase  
20  
0
60  
90  
5.0 V  
20  
120  
150  
40  
0
5
10  
15  
20  
25  
30  
10  
0.0001 0.001  
0.01  
0.1  
1
100  
V
REF  
Sourcing Current (mA)  
f Frequency (MHz)  
Standby Current  
vs. Supply Voltage and Temperature  
Supply Current  
vs. Supply Voltage and Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
260  
70_C  
C
= 10 pF  
L
f = 1 MHz  
T
A
= 85_C  
250  
240  
70_C  
25_C  
T
= 85_C  
A
0_C  
230  
220  
210  
25_C  
40_C  
0_C  
40_C  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
V
DD  
Supply Voltage (V)  
V
DD  
Supply Voltage (V)  
DR Sourcing Current vs. Supply Voltage  
DR Sinking Current vs. Supply Voltage  
600  
500  
400  
300  
200  
100  
600  
500  
400  
300  
200  
100  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
V
DD  
Supply Voltage (V)  
V
DD  
Supply Voltage (V)  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
4
Si9140  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS OTHERWISE NOTED)  
DS Sourcing vs. Supply Voltage  
DS Sinking Current vs. Supply Voltage  
600  
500  
400  
300  
200  
100  
600  
500  
400  
300  
200  
100  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
V
DD  
Supply Voltage (V)  
V
DD  
Supply Voltage (V)  
Switching Frequency vs. Supply Voltage  
Frequency vs. R  
/C  
OSC OSC  
10.00  
1.00  
0.10  
0.01  
1.2  
1.1  
1.0  
0.9  
0.8  
R
OSC  
C
OSC  
= 7.50 kW  
= 100 pF  
4.99 kW  
12.1 kW  
24.9 kW  
49.9 kW  
100 kW  
249 kW  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
40  
200  
300  
V
DD  
Supply Voltage (V)  
C
OSC  
Capacitance (pF)  
Enable Turn-OFF Delay to Output  
UVLO Hysteresis vs. Supply Voltage  
70  
60  
50  
40  
30  
20  
215  
195  
175  
155  
135  
115  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
V
DD  
Supply Voltage (V)  
V
DD  
Supply Voltage (V)  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
5
Si9140  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS OTHERWISE NOTED)  
V
GOOD  
Sinking Current vs. Supply Voltage  
20  
16  
12  
8
4
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
V
DD  
Supply Voltage (V)  
PIN CONFIGURATIONS AND ORDERING INFORMATION  
SOIC-16  
TSSOP-16  
1
2
3
V
16  
15  
14  
V
S
DD  
V
V
S
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD  
D
D
MON  
R
D
R
D
S
MON  
GOOD  
V
S
GOOD  
V
COMP  
FB  
PGND  
UVLO  
COMP  
FB  
4
5
13  
12  
PGND  
UVLO  
SET  
SET  
NI  
C
OSC  
R
OSC  
NI  
6
7
8
C
11  
10  
9
OSC  
OSC  
V
REF  
GND  
ENABLE  
V
REF  
R
Top View  
GND  
ENABLE  
Top View  
ORDERING INFORMATION−SOIC-16  
ORDERING INFORMATIONꢀTSSOP-16  
Part Number  
Temperature Range  
Part Number  
Temperature Range  
Si9140CY  
Si9140CQ  
Si9140CY-T1  
Si9140CQ-T1  
Si9140CQ-T1—E3  
Si9140DQ  
0_ to 70_C  
0_ to 70_C  
Si9140CY-T1—E3  
Si9140DY  
Si9140DY-T1  
Si9140DQ-T1  
Si9140DQ-T1—E3  
40_ to 85_C  
40_ to 85_C  
Si9140DY-T1—E3  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
6
Si9140  
Vishay Siliconix  
PIN DESCRIPTION  
Pin 1: VDD  
operation is disabled, supply current is reduced, the oscillator  
stops and DS goes high while DR goes low.  
The positive power supply for all functional blocks except  
output driver. A bypass capacitor of 0.1 mF (minimum) is  
recommended.  
Pin 10: ROSC  
A resistor connected from this pin to ground sets the  
oscillator’s capacitor COSC, charge and discharge current.  
See the oscillator section of the description of operation.  
Pin 2: MON  
Non-inverting input of a comparator. Inverting input is tied  
internally to reference voltage. This comparator is typically  
used to monitor the output voltage and to flag the processor  
when the output voltage falls out of regulation.  
Pin 11: COSC  
An external capacitor is connected to this pin to set the  
oscillator frequency.  
Pin 3: VGOOD  
This is an open drain output. It will be held at ground when the  
voltage at MON (Pin 2) is less than the internal reference. An  
external pull-up resistor will pull this pin high if the MON pin (Pin  
2) is higher than the VREF. (Refer to Pin 2 description.)  
0.75  
ROSC   COSC  
(at V = 5.0 V)  
DD  
fOSC  
]
Pin 4: COMP  
Pin 12: UVLOSET  
This pin is the output of the error amplifier. A compensation  
network is connected from this pin to the FB pin to stabilize the  
system. This pin drives one input of the internal pulse width  
modulation comparator.  
This pin will place the chip in the standby mode if the UVLOSET  
voltage drops below 1.2 V. Once the UVLOSET voltage  
exceeds 1.2 V, the chip operates normally. There is a built-in  
hysteresis of 165 mV.  
Pin 5: FB  
Pin 13: PGND  
The inverting input of the error amplifier. An external resistor  
divider is connected to this pin to set the regulated output  
voltage. The compensation network is also connected to this  
pin.  
The negative return for the VS supply.  
Pin 14: DS  
Pin 6: NI  
This CMOS push-pull output pin drives the external p-channel  
The non-inverting input of the error amplifier. In normal  
operation it is externally connected to VREF or an external  
reference.  
MOSFET. This pin will be high in the standby mode.  
break-before-make function between DS and DR is built-in.  
A
Pin 15: DR  
Pin 7: VREF  
This pin supplies a 1.5-V reference.  
This CMOS push-pull output pin drives the external n-channel  
MOSFET. This pin will be low in the standby mode.  
A
break-before-make function between the DS and DR is built-in.  
Pin 8: GND (Ground)  
Pin 9: ENABLE  
Pin 16: VS  
A logic high on this pin allows normal operation. A logic low  
places the chip in the standby mode. In standby mode normal  
The positive terminal of the power supply which powers the  
CMOS output drivers. A bypass capacitor is required.  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
7
Si9140  
Vishay Siliconix  
FUNCTIONAL BLOCK DIAGRAM  
V
REF  
1.5-V Reference  
Generator  
V
DD  
V
REF  
UVLO  
V
UVLO  
UVLO  
SET  
GND  
V
UVLO  
ENABLE  
COMP  
V
P
S
V
S
Error Amp  
NI  
+
+
FB  
Driver  
D
S
GND  
Logic  
and  
P
GND  
BBM  
V
S
Control  
C
R
OSC  
Driver  
D
R
Oscillator  
OSC  
P
GND  
V
GOOD  
MON  
+
V
REF  
TIMING WAVEFORMS  
5 V  
0 V  
ENABLE  
1.5 V  
V
COMP  
V
COSC  
1 V  
t
BBM  
D
S
D
R
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
8
Si9140  
Vishay Siliconix  
DESCRIPTION OF OPERATION  
Schematics of the Si9140 dc-to-dc conversion solutions for  
high-performance PC microprocessors are shown in Figure 1  
and 2 respectively. These solutions are geared to meet the  
extremely demanding transient regulation and power  
requirements of these new microprocessors at minimal cost  
and with a minimal parts count. The two solutions are nearly  
identical, except for slight variations in output voltage, load  
transient amplitude, and specified power. Figure 3 is a  
schematic diagram for a 3.3-V logic converter.  
5 V  
(V  
)
IN  
V
CCP  
Coiltronics  
L1  
R3  
CTX07-12877  
2 x Si4435DY  
2 x Si4410DY  
+
100  
1.5 mH  
C3  
0.1 mF  
R1  
20 k  
R2  
2.9 V  
(V  
C1  
10 k  
)
2 x 220 mF  
10 V  
OS-CON  
OUT  
D1  
D1FS4  
+
Power-Good  
C2  
3 x 330 mF  
6.3V OS-CON  
R4  
24.9 k  
U1  
Si9140  
C4, 5.6 pF  
1
2
3
4
5
6
7
8
16  
V
V
DD  
S
15  
14  
13  
12  
11  
10  
9
R7  
100 k  
MON  
DR  
R13  
C8  
R5  
10 k 1 mF  
C5, 180 pF  
V
GOOD  
D
S
PGND  
240 k  
COMP  
FB  
UVLO  
SET  
R12  
13.3 k,  
0.1%  
C
R
NI  
OSC  
R6  
C9  
V
REF  
OSC  
220 pF  
R8  
4.99 k  
C6  
0.1 mF  
C7  
0.1 mF  
ENABLE  
GND  
40.2 k  
R9  
11 k  
C10, 180 pF  
R11, 4.7 k  
R10  
14.2 k  
0.1%  
FIGURE 1. 2.9 V @ 10 A  
5 V  
(V  
)
IN  
V
CCP  
R3  
L1  
Coiltronics  
CTX07-12877  
2 x Si4435DY  
Si4410DY  
+
100  
1.5 mH  
C3  
0.1 mF  
R1  
20 k  
R2  
10 k  
2.5 V  
C1  
(V  
OUT  
)
2 x 220 mF  
10 V  
OS-CON  
D1  
D1FS4  
+
Power-Good  
U1  
R4  
40.2 k  
C2  
3 x 330 mF 6.3V  
Si9140  
OS-CON  
C4, 5.6 pF  
1
16  
15  
14  
13  
12  
11  
10  
9
V
V
DD  
S
2
3
4
5
6
7
8
R7  
100 k  
MON  
DR  
R13  
C8  
R5  
10 k 1 mF  
C5, 180 pF  
V
GOOD  
D
S
PGND  
240 k  
COMP  
FB  
UVLO  
R12  
13.3 k,  
0.1%  
SET  
C
R
NI  
OSC  
R6  
C9  
V
REF  
OSC  
220 pF  
R8  
4.99 k  
C6  
0.1 mF  
C7  
0.1 mF  
ENABLE  
GND  
40.2 k  
R9  
11 k  
C10, 180 pF  
R11, 4.7 k  
R10  
20 k  
0.1%  
FIGURE 2. 2.5 V @ 8.5 A  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
9
Si9140  
Vishay Siliconix  
5 V  
(V  
IN  
)
R3  
100  
L1  
Coiltronics  
Si4435DY  
Si4410DY  
+
10 mH  
CTX07-12891  
C3  
0.1 mF  
3.3 V  
(V  
C1  
2 x 220 mF  
TPS  
)
OUT  
D1  
D1FS4  
+
Tantalum  
C2  
3 x 330 mF  
TPS  
Tantalum  
U1  
Si9140  
C4, 330 pF  
1
16  
15  
14  
13  
12  
11  
10  
9
V
V
DD  
S
2
3
4
5
6
7
8
R7  
100 k  
MON  
DR  
R13  
C8  
R5  
10 k 1 mF  
C5, 1000 pF  
V
GOOD  
D
S
PGND  
16.2 k  
COMP  
FB  
UVLO  
SET  
C
R
NI  
OSC  
R6  
C9  
220 pF  
R12, 13.3 k  
V
REF  
OSC  
R8  
40.2 k  
4.99 k  
C6  
0.1 mF  
C7  
0.1 mF  
ENABLE  
GND  
R9  
20 k  
C10  
R11  
1000 pF 4.7 k  
R10  
11 k  
FIGURE 3. 3.3 V@ 5 A  
5 V  
(V  
IN  
)
R3  
100  
L1  
10 mH  
Coiltronics  
CTX07-12891  
Si4435DY  
+
C3  
0.1 mF  
C1  
1.5 V  
OUT  
2 x 220 mF  
(V  
)
D1  
D1FS4  
+
Si4410DY  
TPS  
Tantalum  
C2  
3 x 330 mF  
TPS  
Tantalum  
U1  
Si9140  
C4, 330 pF  
1
16  
V
DD  
V
S
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
R7  
MON  
DR  
R13  
C8  
100 k  
R5  
10 k 1 mF  
C5, 1000 pF  
V
GOOD  
D
S
PGND  
16.2 k  
COMP  
FB  
UVLO  
SET  
C
R
NI  
OSC  
R6  
R12, 13.3 k  
C9  
V
REF  
OSC  
220 pF  
R8  
40.2 k  
4.99 k  
C6  
0.1 mF  
C7  
0.1 mF  
ENABLE  
GND  
R9  
20 k  
C10  
1000 pF  
R11  
4.7 k  
+
FIGURE 4. 1.5-V Converter for GTL Bus @ 5 A  
Figure 4 is a schematic diagram of a converter which produces  
1.5 V for a GTL bus.  
D Switch and Synchronous Rectification  
MOSFETs—delivers the power to the load  
D Inductor—filters and stores the energy  
D Input/Output Capacitor—filters the ripple  
Each of these dc-to-dc converters has four major sections:  
D PWM Controller—regulates the output voltage  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
10  
Si9140  
Vishay Siliconix  
The functions of each circuit are explained in detail below.  
Design equations are provided to optimize each application  
circuit.  
The error amplifier of the PWM controller plays a major role in  
determining the output voltage, stability, and the transient  
response of the power supply. In the Si9140, the non-inverting  
input of the error amplifier is available for use with an external  
precision reference for tighter tolerance regulation. With a  
two-pair lead-lag compensation network, it is easy to create a  
stable 100-kHz closed loop converter with the Si9140 error  
amplifier.  
PWM Controller  
There are generally two types of controllers, voltage mode or  
current mode. In voltage mode control, an error voltage is  
generated by comparing the output voltage to the reference  
voltage. The error voltage is then compared to an artificial  
ramp, and the result is the duty cycle necessary to regulate the  
output voltage. In current mode, an actual inductor current is  
used, in place of the artificial ramp, to sense the voltage across  
the current sense resistor.  
The Si9140 achieves the 5-mS transient response by  
generating a 100-kHz closed-loop bandwidth. This is possible  
only by switching above 400 kHz and utilizing an error amplifier  
with at least a 10-MHz bandwidth. The Si9140 controller has  
a 25-MHz unity gain bandwidth error amplifier. The switching  
frequency must be at least four times greater than the desired  
closed-loop bandwidth to prevent oscillation. To respond to  
the stimuli, the error amplifier bandwidth needs to be at least  
10 times larger than the desired bandwidth.  
The logic and timing sequence for voltage mode control is  
shown in Figure 5. The Si9140 offers voltage mode control,  
which is better suited for applications requiring both fast  
transient response and high output current.  
Current mode control requires a current sense resistor to  
monitor the inductor current. A 10-mW sense resistor in a 10-A  
design will dissipate 1 W, decreasing efficiency by 3.5%. Such  
a design would require a 2-W resistor to satisfy derating criteria,  
besides requiring additional board space. Voltage mode control  
is a second-order LC system and has a faster natural transient  
response compared to current mode control (first-order RC  
system). Current mode has the advantage of providing an  
inherently good line regulation. But the situations where line  
voltage is fixed, as in the point-of-use conversion for  
microprocessors, this feature is wasted. Current mode control  
also provides automatic pulse-to-pulse current limiting. This  
feature requires a current sense resistor as stated above. These  
characteristics make voltage mode control ideal for high-end  
microprocessor power supplies.  
Phase  
Gain  
Frequency (Hz)  
FIGURE 6. 100-kHz BW Synchronous Buck Converter  
OSC  
COMP  
The Si9140 solution requires only three 330-mF OS-CON  
capacitors on the output of power supply to meet the 10-A  
transient requirement. Other converter solutions on the market  
with 20- to 50-kHz closed loop bandwidths typically require two  
to five times the output capacitance specified above to match  
the Si9140’s performance.  
D
S
D
R
The theoretical issues and analytical steps involved in  
compensating a feedback network are beyond the scope of  
this application note. However, to ease the converter design  
for today’s high-performance microprocessors, typical  
component values for the feedback network are provided in  
Table 1 for various combinations of output capacitance. Figure  
6 shows the Bode plot (frequency domain) of the 2.9-V  
converter shown schematically in Figure 1.  
FIGURE 5. Voltage Mode Logic and Timing Diagram  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
11  
Si9140  
Vishay Siliconix  
reference and 3.5% transient load regulation safely complies  
with the "5% regulation requirement. If additional margin is  
desired, an external precision reference can be used in place  
of the internal 1.5-V reference.  
TABLE 1.  
FEEDBACK NETWORK COMPONENT VALUES  
Total Output and  
Decoupling Capacitance  
C4  
C5  
R5  
a
3 x 330 mF . . . . . . . . . Os-con  
b
Switching and Synchronous Rectification MOSFETs  
6 x 100 mF . . . . . . . . . Tantalum  
5.6 pF  
180 pF  
240 k  
b
25 x 1 mF . . . . . . . . . . Ceramic  
a
2 x 330 mF . . . . . . . . . Os-con  
The synchronous gate drive outputs of Si9140 PWM controller  
drive the high-side p-channel switch MOSFET and the  
low-side n-channel synchronous rectifier MOSFET. The  
physical difference between the non-synchronous to  
synchronous rectification requires an additional MOSFET  
across the free-wheeling diode (D1). The inductor current will  
reach 0 A if the peak-to-peak inductor current equals twice the  
output current. In synchronous rectification mode, current is  
allowed to flow backwards from the inductor (L1) through the  
synchronous MOSFET (Q3) and to the output capacitor (C2)  
once the current reaches 0 A. Refer to schematic on Figure 1.  
In non-synchronous rectification, the diode (D1) prevents the  
current from flowing in the reverse direction. This minor  
difference has a drastic affect on the performance of a power  
supply. By allowing the current to flow in the reverse direction,  
it preserves the continuous inductor current mode, maintaining  
the wide converter bandwidth and improving efficiency. Also,  
maintaining the continuous current mode during light load to  
full load guarantees consistent transient response throughout  
a wide range of load conditions.  
b
4 x 100 mF . . . . . . . . . Tantalum  
10 pF  
10 pF  
220 pF  
100 pF  
200 k  
100 k  
b
25 x 1 mF . . . . . . . . . . Ceramic  
a
3 x 330 mF . . . . . . . . . Tantalum  
b
4 x 100 mF . . . . . . . . . Tantalum  
b
25 x 1 mF . . . . . . . . . . Ceramic  
a. Power supply output capacitance.  
b. mprocessor decoupling capacitance.  
Figure 7 is the measured transient response (time domain) for  
the 10-A step response. The measured transient response  
shows the processor voltage regulating to 70 mV, well within  
the 0.145-V regulation.  
The Si9140’s switching frequency is determined by the  
external ROSC and COSC values, allowing designers to set the  
switching frequency of their choice. For applications where  
space is the main constraint, the switching frequency can be  
set as high as 2 MHz to minimize inductor and output capacitor  
size. In applications where efficiency is the main concern, the  
switching frequency can be set low to maximize battery life.  
The switching frequency for high-performance processors  
applications circuits are set for 400 kHz. The equation for  
switching frequency is:  
The transition from stop clock and auto halt to active mode is  
a perfect example. The microprocessor current can vary from  
0.5 A to 10 A or greater during these transitions. If the  
converter were to operate in discontinuous current mode  
during the stop clock and auto halt modes, the transfer function  
of the converter would be different compared to operation in  
the active mode. In discontinuous current mode, the converter  
bandwidth can be 10 to 15 times lower than the continuous  
current mode (Figure 8). Therefore, the response time will also  
be 10 to 15 times slower, violating the microprocessor’s  
regulator requirements. This could result in unreliable  
operation of the microprocessor.  
0.75  
ROSC   COSC  
(at V = 5.0 V)  
DD  
fOSC  
[
The precision reference is set at 1.5 V"1.5%. The reference  
is capable of sourcing up to 1 mA. The combination of 1.5%  
mP  
Voltage  
2.9 V  
mP  
Current  
10 A  
5 A  
0 A  
a) Transient Response from 0- to 10-A Step Load  
b) Transient Response from 10- to 0-A Step Load  
FIGURE 7.  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
12  
Si9140  
Vishay Siliconix  
For these reasons, synchronous rectification is a must in  
today’s microprocessors power supply design. Pulse-  
Worst case current of 10 A can be handled with two paralleled  
Si4435DY and two paralleled Si4410DY MOSFETs, which  
results in the efficiency levels shown in Figure 9.  
skipping modes are undesirable in high-performance  
microprocessor power supplies, especially when the minimum  
load current is as high as 500 mA. This pulse-skipping mode  
disables the synchronous rectification during light load and  
generates a random noise spectrum which may produce EMI  
problems.  
100  
V
OUT  
= 5 V  
IN  
V
= 2.9 V  
Siliconix’ TrenchFETt technology has resulted in 20-mW  
n-channel (Si4410DY) and 35-mW p-channel (Si4435DY)  
MOSFETs in the SO-8 surface-mount package. These LITTLE  
FOOTr products totally eliminate the need for an external  
heatsink.  
95  
90  
85  
80  
Phase  
0
2
4
6
8
10  
I
(A)  
OUT  
FIGURE 9. Efficiency  
Gain  
Good electrical designs must provide an adequate margin for  
the specification, but they should not be grossly overdesigned  
to lower costs. LITTLE FOOT power MOSFETs allow  
designers to balance cost and performance considerations  
without sacrificing either. If the design requires only an 8.5-A  
continuous current, for example, one Si4410DY can be  
eliminated. Table 2 shows the number of MOSFETs required  
to handle the various output current levels of today’s high-  
performance microprocessors. For other output power levels,  
the equations below should be used to calculate the power  
handling capability of the MOSFET.  
Frequency (Hz)  
FIGURE 8. Non-Synchronous Converter BW  
TABLE 2.  
CONVERTER REQUIREMENTS (FIGURES 1, 2, AND 3)  
IO (A)  
Maxi-  
mum  
Quantity High-Side P-Channel  
Quantity Low-Side N-Channel  
Si4410DY  
Quantity Input (C1-C3)  
Capacitor Os-con 220 mF  
Si4435DY  
5 A  
8.5 A  
10 A  
1
2
2
3
1
1
2
2
1
2
2
3
14.5 A  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
13  
Si9140  
Vishay Siliconix  
QSW   VIN   fOSC IPP   VO   tC   fOSC  
2
PDissipation in switch + IRMS SW   RSW  
)
)
2
2
VO  
3   VIN  
IPEAK2 ) IPP2 ) IPEAK   IPP  
ǒ
+ Ǹ  
Ǔ
 
IRMS SW  
QRECT   VIN   fOSC  
2
PDissipation in synchronous rectification + IRMS RECT   RRECT  
)
2
(V – V  
IN  
)
O
2
2
) I  
ǒI  
Ǹ
Ǔ
  I  
PP  
I
+
) I  
 
PEAK  
PP  
PEAK  
RMS RECT  
3   V  
IN  
I
R
=
=
=
=
=
=
=
=
=
=
=
=
Switch rms current  
RMSSW  
I
= I  
+ DI  
PP  
PEAK  
Switch on resistance  
Synchronous rectifier rms current  
Synchronous rectifier on resistance  
Total gate charge of switch  
Total gate charge of synchronous rectifier  
Input voltage  
Output voltage  
Output current  
Switching frequency  
efficiency  
Crossover time  
SW  
I
RMSRECT  
R
Q
Q
V
V
RECT  
2
VO  
SW  
RECT  
IN  
DI +  
L   fOSC   VIN  
O
I
f
O
P
IN – (0.5   VO   DI)  
IPEAK  
+
OSC  
VO  
h
t
C
VO   IO  
PIN  
+
h
Current  
I
O
I
PP  
I
PEAK  
0 A  
time  
Inductor  
negligible compared to the wire loss. Kool Mu is the best  
material to use at 500 kHz to deliver 30 W in the minimum  
volume. Ferrite has a lower core cost and loss at this  
frequency, but the core size is fairly large. If the power supply  
is designed on the motherboard and space is not a critical  
issue, ferrite is a better choice.  
The size and value of the inductor are critical in meeting overall  
circuit dimensional requirements and in assuring proper  
transient voltage regulation. The size of the core is determined  
by the output power, the material of the core, and the operating  
frequency. To handle higher output power, the core must be  
larger. Luckily, a higher switching frequency will lower the  
inductance value, decreasing the core size. However, a higher  
switching frequency can also mean greater core loss.  
The higher switching frequency reduces the core size by  
decreasing the amount of energy that must be stored between  
switching periods. It also accelerates the transient response to  
the load by decreasing the inductance value. The inductance  
is calculated with following equation:  
In applications where the dc flux density is high and the ac flux  
density swing is only 100 to 200 gauss, the core loss will be  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
14  
Si9140  
Vishay Siliconix  
2
of Sanyo (OS-CON) input capacitors required to handle  
various output currents are specified in Table 2.  
VO  
VIN   DI   fOSC  
L +  
Output Capacitor  
DI = desired output current ripple. Typically DI = 25% of maximum  
output current.  
To regulate the microprocessor’s input voltage within 145 mV  
during 10-A load transients, a large output capacitance with  
low ESR is required. The output capacitor of the power supply  
and decoupling capacitors at the microprocessor must hold up  
the processor voltage until the power supply responds to the  
change. Even with fastest known switching solution, it still  
takes three 330-mF OS-CON capacitors to handle the load  
transient. If it weren’t for the 10-A load transient, the output  
capacitor would not need a low ESR value. The fundamental  
output ripple current in a continuous step-down converter is  
much lower than the input ripple current. Maintaining voltage  
regulation during transients requires an ESR in the range of  
Finally, the time required to ramp up the current in the inductor  
can be reduced with smaller inductance. A quick response  
from the power supply relaxes the decoupling capacitance  
required at the microprocessor, reducing the overall solution  
cost and size.  
Input Capacitor  
The input capacitor’s function is to filter the raw power and  
serve as the local power source to eliminate power-up and  
transient surge failures. The type and characteristics of input  
capacitors are determined by the input power and inductance  
of the step-down converter. The ripple current handling  
requirement usually dominates the selection criteria. The  
capacitance required to maintain regulation will automatically  
be achieved once it meets the ripple current requirement. The  
following equation calculates the ripple current of the input  
capacitor:  
30 mW.  
For microprocessors with lower transient  
requirements, the number of output and decoupling capacitors  
can be reduced. The lower transient requirements also allows  
greater consideration for Tantalum or Nichicon PL series  
capacitors.  
Conclusion  
The Si9140 synchronous Buck controller’s ability to switch up  
to 1 MHz combined with a 25-MHz error amplifier provides the  
best solution in powering high- performance microprocessors.  
The high switching frequency reduces inductor size without  
compromising output ripple voltage. The wide converter  
bandwidth generated with the help of a 25-MHz error amplifier  
reduces the amount of decoupling capacitors required to  
handle the extreme transient requirement. The Si9140’s  
synchronous fixed-frequency operation eliminates the pulse  
skipping mode that generates random unpredictable  
EMI/EMC problems in desktop and notebook computers. The  
synchronous rectification also allows the converter to operate  
in continuous current mode, independent of output load  
current. This preserves the wide closed-loop converter  
bandwidth required to meet the transient demand of the  
microprocessor as it transitions from stop clock and auto halt  
to active mode. The synchronous rectification improves the  
efficiency of the converter by substituting the much smaller I2R  
MOSFET loss for the VI diode loss. The need for heatsinking  
is eliminated by using low rDS(on) TrenchFETs (Si4410DY and  
Si4435DY).  
IRIPPLE  
IRMSSW2 – IIN  
2
+ Ǹ  
An aluminum-electrolytic capacitor from Sanyo (OS-CON),  
AVX (TPS Tantalum), or Nichicon (PL series) should be used  
in high-power (30-W) applications to handle the ripple current.  
The Sanyo capacitor is smaller and handles higher ripple  
current than Nichicon, but at higher cost than the Nichicon  
product. The AVX Tantalum capacitor has the best  
capacitance and current handling capability per volume ratio,  
but it takes extra surface area compared to OS-CON or PL  
series. The TPS capacitors, lead time and cost have  
increased drastically in the recent past due to high demand,  
causing designers to shy away from the TPS Tantalum  
capacitors. Nichicon capacitors can be used to provide an  
economical solution if space is available or a large bulk  
capacitance is already present on the input line. The number  
Document Number: 70026  
S-40699—Rev. H, 19-Apr-04  
www.vishay.com  
15  
Legal Disclaimer Notice  
Vishay  
Notice  
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc.,  
or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.  
Information contained herein is intended to provide a product description only. No license, express or implied, by  
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's  
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express  
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness  
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.  
Customers using or selling these products for use in such applications do so at their own risk and agree to fully  
indemnify Vishay for any damages resulting from such improper use or sale.  
Document Number: 91000  
Revision: 08-Apr-05  
www.vishay.com  
1
Package Information  
Vishay Siliconix  
SOIC (NARROW): 16-LEAD (POWER IC ONLY)  
JEDEC Part Number: MS-012  
MILLIMETERS  
INCHES  
Dim  
A
A1  
B
C
D
Min  
1.35  
0.10  
0.38  
0.18  
9.80  
3.80  
Max  
1.75  
0.20  
0.51  
0.23  
10.00  
4.00  
Min  
Max  
0.069  
0.008  
0.020  
0.009  
0.393  
0.157  
0.053  
0.004  
0.015  
0.007  
0.385  
0.149  
E
16 15  
14 13  
12 11  
10  
7
9
8
1.27 BSC  
0.050 BSC  
e
H
L
Ĭ
5.80  
0.50  
0_  
6.20  
0.93  
8_  
0.228  
0.020  
0_  
0.244  
0.037  
8_  
E
1
2
3
4
5
6
ECN: S-40080—Rev. A, 02-Feb-04  
DWG: 5912  
H
D
C
All Leads  
0.101 mm  
0.004 IN  
A1  
Ĭ
L
e
B
Document Number: 72807  
28-Jan-04  
www.vishay.com  
1
Package Information  
Vishay Siliconix  
TSSOP: 16-LEAD  
DIMENSIONS IN MILLIMETERS  
Symbols  
Min  
-
Nom  
1.10  
0.10  
1.00  
0.28  
0.127  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
-
Max  
1.20  
0.15  
1.05  
0.38  
-
A
A1  
A2  
B
0.05  
-
0.22  
-
C
D
4.90  
6.10  
4.30  
-
5.10  
6.70  
4.50  
-
E
E1  
e
L
0.50  
0.90  
-
0.70  
1.10  
0.10  
6°  
L1  
y
θ1  
0°  
3°  
ECN: S-61920-Rev. D, 23-Oct-06  
DWG: 5624  
Document Number: 74417  
23-Oct-06  
www.vishay.com  
1
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

SI9140CY-T1-E3

SWITCHING MODE POWER SUPPLY CONTR-LEAD F - Tape and Reel
VISHAY

SI9140DQ

SMP Controller For High Performance Process Power Supplies
VISHAY

SI9140DQ-T1

MP Controller For High Performance Process Power Supplies
VISHAY

SI9140DQ-T1-E3

MP Controller For High Performance Process Power Supplies
VISHAY

SI9140DY

SMP Controller For High Performance Process Power Supplies
VISHAY

SI9140DY-T1

IC 0.35 A SWITCHING CONTROLLER, 2000 kHz SWITCHING FREQ-MAX, PDSO16, SOIC-16, Switching Regulator or Controller
VISHAY

SI9140DY-T1-E3

IC REG CTRLR BUCK PWM 16-SOIC
VISHAY

SI9140_04

MP Controller For High Performance Process Power Supplies
VISHAY

SI9142

Synchronous Buck Controller for High Performance Processors
VISHAY

SI9142CW

Synchronous Buck Controller for High Performance Processors
VISHAY

SI9142CW-T1-E3

IC 1 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO20, ROHS COMPLIANT, SOIC-20, Switching Regulator or Controller
VISHAY

SI9142DB

Synchronous Buck Controller for High Performance Processors
VISHAY