SIC639 [VISHAY]

50 A VRPower® Integrated Power Stage;
SIC639
型号: SIC639
厂家: VISHAY    VISHAY
描述:

50 A VRPower® Integrated Power Stage

文件: 总18页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
50 A VRPower® Integrated Power Stage  
DESCRIPTION  
FEATURES  
• Thermally enhanced PowerPAK® MLP55-31L  
package  
The SiC639 are integrated power stage solutions optimized  
for synchronous buck applications to offer high current, high  
efficiency, and high power density performance. Packaged  
in Vishay’s proprietary 5 mm x 5 mm MLP package, SiC639  
enables voltage regulator designs to deliver up to 50 A  
continuous current per phase.  
• Vishay’s Gen IV MOSFET technology and a low  
side MOSFET with integrated Schottky diode  
• Delivers up to 50 A continuous current  
• High efficiency performance  
The internal power MOSFETs utilizes Vishay’s  
state-of-the-art Gen IV TrenchFET® technology that delivers  
industry benchmark performance to significantly reduce  
switching and conduction losses.  
• High frequency operation up to 1.5 MHz  
• Power MOSFETs optimized for 19 V input stage  
• 3.3 V, 5 V PWM logic with tri-state and hold-off  
• Zero current detect control for light load efficiency  
improvement  
The SiC639 incorporate an advanced MOSFET gate driver  
IC that features high current driving capability, adaptive  
dead-time control, an integrated bootstrap Schottky diode,  
a thermal warning (THWn) that alerts the system of  
excessive junction temperature, and zero current detection  
to improve light load efficiency. The drivers are also  
compatible with a wide range of PWM controllers and  
supports tri-state PWM, 3.3 V, 5 V PWM logic.  
• Low PWM propagation delay (< 20 ns)  
• Faster disable  
• Thermal monitor flag  
• Under voltage lockout for VCIN  
• Material categorization: for definitions of compliance  
please see www.vishay.com/doc?99912  
APPLICATIONS  
• Multi-phase VRDs for computing, graphics card and  
memory  
• Intel IMVP-8/9 VRPower delivery  
- VCORE, VGRAPHICS, VSYSTEM  
platforms  
Skylake, Kabylake  
AGENT  
- VCCGI for Apollo Lake platforms  
• Up to 24 V rail input DC/DC VR modules  
TYPICAL APPLICATION DIAGRAM  
5 V  
Input  
BOOT  
PHASE  
VCIN  
ZCD_EN#  
Output  
SW  
DSBL#  
Gate  
PWM  
controller  
driver  
PWM  
THWn  
Fig. 1 - SiC639 and SiC639A Typical Application Diagram  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
1
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
PINOUT CONFIGURATION  
33  
GL  
31 30 29 28 27 26 25 24  
24 25 26 27 28 29 30 31  
1
1
PWM  
PWM  
23 VSWH  
22 VSWH  
VSWH 23  
VSWH 22  
VSWH 21  
GL  
ZCD_EN# 2  
2 ZCD_EN#  
32  
CGND  
VCIN  
VCIN  
3
4
3
4
21 VSWH  
20 VSWH  
CGND  
BOOT  
CGND  
V
SWH 20  
35  
PGND  
BOOT 5  
5
6
19 VSWH  
18 VSWH  
17 VSWH  
16 VSWH  
VSWH 19  
6
7
8
N.C.  
PHASE  
VIN  
N.C.  
V
V
SWH 18  
SWH 17  
34  
VIN  
7
PHASE  
VSWH 16  
8 VIN  
9
10 11  
12 13 14 15  
15 14 13 12  
11 10  
9
Top view  
Bottom view  
Fig. 2 - SiC639 Pin Configuration  
PIN CONFIGURATION  
PIN NUMBER  
NAME  
FUNCTION  
1
PWM  
PWM input logic  
The ZCD_EN# pin enables or disables zero cross detection on inductor current when it detects  
PWM = mid.  
When ZCD_EN# is LOW, GL stays on until ZCD detected when it detects PWM = mid.  
When ZCD_EN# is HIGH, GL turns off when it detects PWM = mid.or PWM = 1  
2
ZCD_EN#  
3
VCIN  
CGND  
BOOT  
N.C.  
Supply voltage for internal logic circuitry  
Signal ground  
4, 32  
5
High side driver bootstrap voltage  
Not connected internally, can be left floating or connected to ground  
Return path of high side gate driver  
Power stage input voltage. Drain of high side MOSFET  
Power ground  
6
7
8 to 11, 34  
12 to 15, 28, 35  
16 to 26  
27, 33  
PHASE  
VIN  
PGND  
VSWH  
GL  
Phase node of the power stage  
Low side MOSFET gate signal  
29  
VDRV  
Supply voltage for internal gate driver  
Thermal warning open drain output  
Disable pin. Active low  
30  
THWn  
DSBL#  
31  
ORDERING INFORMATION  
PART NUMBER  
SiC639CD-T1-GE3  
SiC639ACD-T1-GE3  
SiC639DB  
PACKAGE  
MARKING CODE  
SiC639  
OPTION  
PowerPAK MLP55-31L  
PowerPAK MLP55-31L  
5 V PWM optimized  
3.3 V PWM optimized  
SiC639A  
Reference board  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
2
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
PART MARKING INFORMATION  
=
=
=
=
=
=
=
=
pin 1 indicator  
P/N  
part number code  
Siliconix logo  
ESD symbol  
P/N  
LL  
F
assembly factory code  
year code  
Y
F Y W W  
WW  
LL  
week code  
lot code  
ABSOLUTE MAXIMUM RATINGS  
ELECTRICAL PARAMETER  
CONDITIONS  
LIMIT  
-0.3 to +30  
-0.3 to +7  
-0.3 to +7  
-0.3 to +30  
-7 to +35  
35  
UNIT  
Input voltage  
VIN  
VCIN  
VDRV  
Control logic supply voltage  
Drive supply voltage  
Switch node (DC voltage)  
Switch node (AC voltage) (1)  
BOOT voltage (DC voltage)  
BOOT voltage (AC voltage) (2)  
BOOT to PHASE (DC voltage)  
BOOT to PHASE (AC voltage) (3)  
VSWH  
VBOOT  
V
40  
-0.3 to +7  
-0.3 to +8  
VBOOT-PHASE  
All logic inputs and outputs  
(PWM, DSBL#, and THWn)  
-0.3 to VCIN + 0.3  
Max. operating junction temperature  
Ambient temperature  
TJ  
TA  
150  
-40 to +125  
-65 to +150  
3000  
°C  
V
Storage temperature  
Tstg  
Human body model, JESD22-A114  
Charged device model, JESD22-C101  
Electrostatic discharge protection  
1000  
Notes  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the  
specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability  
The specification values indicated “AC” is VSWH to PGND -8 V (< 20 ns, 10 μJ), min. and 35 V (< 50 ns), max.  
The specification value indicates “AC voltage” is VBOOT to PGND, 40 V (< 50 ns) max.  
(1)  
(2)  
(3)  
The specification value indicates “AC voltage” is VBOOT to VPHASE, 8 V (< 20 ns) max.  
RECOMMENDED OPERATING RANGE  
ELECTRICAL PARAMETER  
MINIMUM  
TYPICAL  
MAXIMUM  
UNIT  
Input voltage (VIN)  
2.7  
4.5  
4.5  
4
-
5
24  
5.5  
5.5  
5.5  
-
Drive supply voltage (VDRV  
)
V
Control logic supply voltage (VCIN  
)
5
BOOT to PHASE (VBOOT-PHASE, DC voltage)  
Thermal resistance from junction to ambient  
Thermal resistance from junction to case  
4.5  
10.6  
1.6  
-
°C/W  
-
-
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
3
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL SPECIFICATIONS  
(DSBL# = ZCD_EN# = 5 V, VIN = 12 V, VDRV and VCIN = 5 V, TA = 25 °C)  
LIMITS  
UNIT  
PARAMETER  
SYMBOL  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
POWER SUPPLY  
VDSBL# = 0 V, no switching, VPWM = FLOAT  
-
-
-
-
-
-
-
5
300  
350  
9
-
-
Control logic supply current  
Drive supply current  
IVCIN  
VDSBL# = 5 V, no switching, VPWM = FLOAT  
μA  
V
DSBL# = 5 V, fS = 300 kHz, D = 0.1  
fS = 300 kHz, D = 0.1  
-
14  
-
mA  
μA  
fS = 1 MHz, D = 0.1  
30  
15  
55  
IVDRV  
VDSBL# = 0 V, no switching  
-
VDSBL# = 5 V, no switching  
-
BOOTSTRAP SUPPLY  
Bootstrap diode forward voltage  
PWM CONTROL INPUT (SiC639)  
Rising threshold  
VF  
IF = 2 mA  
0.4  
V
VTH_PWM_R  
VTH_PWM_F  
VTRI_FLOAT  
VTRI_WINDOW  
VHYS_TRI_R  
-
-
4.2  
Falling threshold  
0.72  
-
2.3  
-
-
-
V
Tri-state voltage  
VPWM = FLOAT  
-
Tri-state window  
1.38  
3
Tri-state rising threshold hysteresis  
-
-
-
-
-
-
225  
325  
-
-
mV  
μA  
Tri-state falling threshold hysteresis VHYS_TRI_F  
-
VPWM = 5 V, DSBL# = high  
350  
1
V
PWM = 5 V, DSBL# = low  
PWM = 0 V, DSBL# = high  
PWM = 0 V, DSBL# = low  
-
PWM input current  
IPWM  
V
-
-350  
-1  
V
-
PWM CONTROL INPUT (SiC639A)  
Rising threshold  
VTH_PWM_R  
VTH_PWM_F  
VTRI_FLOT  
-
-
2.7  
Falling threshold  
0.72  
-
1.8  
-
-
-
V
Tri-state voltage  
VPWM = FLOAT  
-
Tri-state window  
VTRI_WINDOW  
VHYS_TRI_R  
1.38  
1.95  
-
Tri-state rising threshold hysteresis  
-
-
-
-
-
-
250  
300  
-
mV  
μA  
Tri-state falling threshold hysteresis VHYS_TRI_F  
-
VPWM = 3.3 V, DSBL# = high  
PWM = 3.3 V, DSBL# = low  
PWM = 0 V, DSBL# = high  
PWM = 0 V, DSBL# = low  
225  
1
V
-
PWM input current  
IPWM  
V
-
-225  
-1  
V
-
TIMING SPECIFICATIONS  
Tri-state to GH/GL rising  
propagation delay  
tPD_TRI_R  
-
30  
-
Tri-state GH hold-off time  
Tri-state GL hold-off time  
GH - turn off propagation delay  
tTSHO_GH  
tTSHO_GL  
-
-
-
35  
130  
15  
-
-
-
tPD_OFF_GH  
No load, see Fig. 4  
GH - turn on propagation delay  
(dead time rising)  
tPD_ON_GH  
tPD_OFF_GL  
tPD_ON_GL  
-
-
-
10  
13  
10  
-
-
-
ns  
GL - turn off propagation delay  
GL - turn on propagation delay  
(dead time falling)  
DSBL# Lo to GH/GL falling  
propagation delay  
tPD_DSBL#_F  
Fig. 5  
-
15  
-
-
-
PWM minimum on-time  
tPWM_ON_MIN  
30  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
4
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL SPECIFICATIONS  
(DSBL# = ZCD_EN# = 5 V, VIN = 12 V, VDRV and VCIN = 5 V, TA = 25 °C)  
LIMITS  
UNIT  
PARAMETER  
SYMBOL  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
DSBL# ZCD_EN# INPUT  
DSBL# logic input voltage  
VIH_DSBL#  
VIL_DSBL#  
VIH_ZCD_EN#  
VIL_ZCD_EN#  
Input logic high  
Input logic low  
Input logic high  
Input logic low  
2
-
-
-
-
-
-
0.8  
-
V
2
-
ZCD_EN# logic input voltage  
PROTECTION  
0.8  
VCIN rising, on threshold  
-
2.7  
-
3.7  
3.1  
4.1  
Under voltage lockout  
VUVLO  
V
VCIN falling, off threshold  
-
-
-
-
-
-
Under voltage lockout hysteresis  
THWn flag set (2)  
THWn flag clear (2)  
VUVLO_HYST  
TTHWn_SET  
TTHWn_CLEAR  
TTHWn_HYST  
VOL_THWn  
575  
160  
135  
25  
mV  
-
-
°C  
V
THWn flag hysteresis (2)  
-
THWn output low  
ITHWn = 2 mA  
-
0.02  
Notes  
(1)  
Typical limits are established by characterization and are not production tested  
Guaranteed by design  
(2)  
DETAILED OPERATIONAL DESCRIPTION  
PWM Input with Tri-State Function  
Diode Emulation Mode (ZCD_EN#)  
The PWM input receives the PWM control signal from the VR  
controller IC. The PWM input is designed to be compatible  
with standard controllers using two state logic (H and L) and  
advanced controllers that incorporate tri-state logic (H, L  
and tri-state) on the PWM output. For two state logic, the  
PWM input operates as follows. When PWM is driven above  
VPWM_TH_R the low side is turned off and the high side is  
turned on. When PWM input is driven below VPWM_TH_F the  
high side is turned off and the low side is turned on. For  
tri-state logic, the PWM input operates as previously stated  
for driving the MOSFETs when PWM is logic high and logic  
low. However, there is a third state that is entered as the  
PWM output of tri-state compatible controller enters its high  
impedance state during shut-down. The high impedance  
state of the controller’s PWM output allows the SiC639 and  
SiC639A to pull the PWM input into the tri-state region (see  
definition of PWM logic and tri-state, Fig. 4). If the PWM  
input stays in this region for the tri-state hold-off period,  
tTSHO, both high side and low side MOSFETs are turned  
off. The function allows the VR phase to be disabled without  
negative output voltage swing caused by inductor ringing  
and saves a Schottky diode clamp. The PWM and tri-state  
regions are separated by hysteresis to prevent false  
triggering.  
When ZCD_EN# pin is driven below VIL_ZCD_EN# diode  
emulation mode is enabled. If the PWM input is wi thin the  
tri-state window for longer than the tri-state hold off time,  
then the low side MOSFET is under control of the ZCD (zero  
crossing detect) comparator. In this mode, the LS MOSFET  
is turned off if the inductor current is < or = 0. Light load  
efficiency is improved by avoiding discharge of output  
capacitors. If ZCD_EN# is high, diode emulation mode is  
disabled. In this mode if PWM enters tri-state, the device will  
go into tri-state mode after tri-state delay and both the high  
side and low side MOSFETs will be turned off.  
Thermal Shutdown Warning (THWn)  
The THWn pin is an open drain signal that flags the presence  
of excessive junction temperature. Connect with  
a
maximum of 20 k, to VCIN. An internal temperature sensor  
detects the junction temperature. The temperature  
threshold is 160 °C. When this junction temperature is  
exceeded the THWn flag is set. When the junction  
temperature drops below 135 °C the device will clear the  
THWn signal. The SiC639 and SiC639A do not stop  
operation when the flag is set. The decision to shutdown  
must be made by an external thermal control function.  
Voltage Input (VIN)  
Disable (DSBL#)  
This is the power input to the drain of the high side power  
MOSFET. This pin is connected to the high power  
intermediate BUS rail.  
In the low state, the DSBL# pin shuts down the driver IC  
and disables both high-side and low side MOSFETs.  
WhenDSBL# is low, the PWM resistor divider is also  
disconnected. In this state, standby current is minimized. If  
DSBL# is left unconnected, an internal pull-down resistor  
will pull the pin to CGND and shut down the IC.  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
5
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
Switch Node (VSWH and PHASE)  
Bootstrap Circuit (BOOT)  
The switch node, VSWH, is the circuit power stage output.  
This is the output applied to the power inductor and output  
filter to deliver the output for the buck converter. The PHASE  
pin is internally connected to the switch node VSWH. This pin  
is to be used exclusively as the return pin for the BOOT  
capacitor. A 20 kresistor is connected between GH  
(the high side gate) and PHASE to provide a discharge path  
for the HS MOSFET in the event that VCIN goes to zero while  
The internal bootstrap diode and an external bootstrap  
capacitor form a charge pump that supplies voltage to the  
BOOT pin. An integrated bootstrap diode is incorporated so  
that only an external capacitor is necessary to complete the  
bootstrap circuit. Connect a boot strap capacitor with one  
leg tied to BOOT pin and the other tied to PHASE pin.  
Shoot-Through Protection and Adaptive Dead Time  
The SiC639 and SiC639A have an internal adaptive logic to  
avoid shoot through and optimize dead time. The shoot  
through protection ensures that both high side and low side  
MOSFETs are not turned on at the same time. The adaptive  
dead time control operates as follows. The high side and low  
side gate voltages are monitored to prevent the MOSFET  
turning on from tuning on until the other MOSFET’s gate  
voltage is sufficiently low (< 1 V). Built in delays also ensure  
that one power MOSFET is completely off, before the other  
can be turned on. This feature helps to adjust dead time as  
gate transitions change with respect to output current and  
temperature.  
V
IN is still applied.  
Ground Connections (CGND and PGND  
)
PGND (power ground) should be externally connected  
to CGND (signal ground). The layout of the printed circuit  
board should be such that the inductance separating CGND  
and PGND is minimized. Transient differences due to  
inductance effects between these two pins should not  
exceed 0.5 V  
Control and Drive Supply Voltage Input (VDRV, VCIN  
)
V
CIN is the bias supply for the gate drive control IC. VDRV is  
the bias supply for the gate drivers. It is recommended to  
separate these pins through a resistor. This creates a low  
pass filtering effect to avoid coupling of high frequency gate  
drive noise into the IC.  
Under Voltage Lockout (UVLO)  
During the start up cycle, the UVLO disables the gate  
drive holding high side and low side MOSFET gates low  
until the supply voltage rail has reached a point at which  
the logic circuitry can be safely activated. The SiC639,  
SiC639A also incorporates logic to clamp the gate drive  
signals to zero when the UVLO falling edge triggers the  
shutdown of the device. As an added precaution, a 20 k  
resistor is connected between GH (the high side gate) and  
PHASE to provide a discharge path for the HS MOSFET.  
FUNCTIONAL BLOCK DIAGRAM  
THWn  
BOOT  
VIN  
VDRV  
Thermal monitor  
& warning  
VCIN  
UVLO  
DISB#  
VCIN  
-
+
GL  
20K  
PHASE  
SW  
PWM logic  
control &  
state  
Anti-cross  
conduction  
control  
Vref = 1 V  
DISB  
DISB  
-
+
machine  
logic  
V
ref = 1 V  
PWM  
CGND  
VDRV  
SW  
PGND  
PGND  
ZCD_EN#  
GL  
Fig. 3 - SiC639 Functional Block Diagram  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
6
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
DEVICE TRUTH TABLE  
DSBL#  
ZCD_EN#  
PWM  
GH  
GL  
H
L
H
H
L
H, IL > 0 A  
L, IL < 0 A  
H
L
H to mid  
L
H
H
L
L
L
L to mid  
L
L
L
L
H
L
L
H
L
L
X
X
H
H
H
H
H
H
L
H
L
H
mid  
L
PWM TIMING DIAGRAM  
Fig. 4 - Timing Diagram  
DSBL# PROPAGATION DELAY  
PWM  
PWM  
Disable  
DSBL#  
DSBL#  
GH  
GL  
GH  
GL  
t
t
DSBL#Low to GH Falling Propagation Delay  
DSBL# Low to GL Falling Propagation Delay  
Fig. 5 - DSBL# Falling Propagation Delay  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
7
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL CHARACTERISTICS  
Test condition: VIN = 13 V, DSBL# = VDRV = VCIN = 5 V, ZCD_EN# = 5 V, VOUT = 1 V, LOUT = 250 nH (DCR = 0.32 m), TA = 25 °C,  
natural convection cooling (All power loss and normalized power loss curves show SiC639 and SiC639A losses only unless otherwise stated)  
55  
50  
45  
40  
35  
30  
25  
20  
15  
94  
90  
86  
82  
78  
74  
70  
66  
62  
500 kHz  
750 kHz  
500 kHz  
1 MHz  
1 MHz  
Complete converter efficiency  
IN = [(VIN x IIN) + 5 V x (IVDRV + IVCIN)]  
OUT = VOUT x IOUT, measured at output capacitor  
P
P
0
15 30 45 60 75 90 105 120 135 150  
0
5
10 15 20 25 30 35 40 45 50  
Output Current, IOUT (A)  
PCB Temperature, TPCB (°C)  
Fig. 6 - Efficiency vs. Output Current (VIN = 12.6 V)  
Fig. 9 - Safe Operating Area  
5.0  
16.0  
14.0  
12.0  
10.0  
8.0  
IOUT = 25A  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1 MHz  
750 kHz  
6.0  
4.0  
500 kHz  
2.0  
0.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
200 300 400 500 600 700 800 900 1000 1100  
Output Current, IOUT (A)  
Switching Frequency, fs (KHz)  
Fig. 7 - Power Loss vs. Switching Frequency (VIN = 12.6 V)  
Fig. 10 - Power Loss vs. Output Current (VIN = 12.6 V)  
94  
98  
500 kHz  
500 kHz  
94  
90  
86  
90  
86  
82  
750 kHz  
82  
750 kHz  
1 MHz  
78  
1 MHz  
78  
74  
74  
70  
70  
Complete converter efficiency  
Complete converter efficiency  
P
P
IN = [(VIN x IIN) + 5 V x (IVDRV + IVCIN)]  
OUT = VOUT x IOUT, measured at output capacitor  
PIN = [(VIN x IIN) + 5 V x (IVDRV + IVCIN)]  
66  
62  
66  
P
OUT = VOUT x IOUT, measured at output capacitor  
62  
0
5
10 15 20 25 30 35 40 45 50  
Output Current, IOUT (A)  
0
5
10 15 20 25 30 35 40 45 50  
Output Current, IOUT (A)  
Fig. 8 - Efficiency vs. Output Current (VIN = 9 V)  
Fig. 11 - Efficiency vs. Output Current (VIN = 19 V)  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
8
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL CHARACTERISTICS  
Test condition: VIN = 13 V, DSBL# = VDRV = VCIN = 5 V, ZCD_EN# = 5 V, VOUT = 1 V, LOUT = 250 nH (DCR = 0.32 m), TA = 25 °C,  
natural convection cooling (All power loss and normalized power loss curves show SiC639 and SiC639A losses only unless otherwise stated)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
IF = 2 mA  
VUVLO_RISING  
VUVLO_FALLING  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Temperature (°C)  
Fig. 12 - UVLO Threshold vs. Temperature  
Fig. 15 - Boot Diode Forward Voltage vs. Temperature  
3.20  
3.20  
2.85  
2.50  
2.15  
1.80  
1.45  
1.10  
0.75  
0.40  
2.85  
2.50  
2.15  
1.80  
1.45  
1.10  
0.75  
0.40  
VTH_PWM_R  
VTRI_TH_F  
VTH_PWM_R  
VTRI_TH_F  
VTRI  
VTRI  
VTRI_TH_R  
VTRI_TH_R  
VTH_PWM_F  
VTH_PWM_F  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Driver Supply Voltage, VCIN (V)  
Fig. 13 - PWM Threshold vs. Temperature (SiC639A)  
Fig. 16 - PWM Threshold vs. Driver Supply Voltage (SiC639A)  
5.00  
5.0  
4.50  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VTH_PWM_R  
VTH_PWM_R  
4.00  
3.50  
VTRI_TH_F  
VTRI_TH_F  
3.00  
VTRI  
VTRI  
2.50  
2.00  
1.50  
VTRI_TH_R  
VTRI_TH_R  
1.00  
VTH_PWM_F  
VTH_PWM_F  
0.50  
0
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Driver Supply Voltage, VCIN (V)  
Temperature (°C)  
Fig. 14 - PWM Threshold vs. Temperature (SiC639)  
Fig. 17 - PWM Threshold vs. Driver Supply Voltage (SiC639)  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
9
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL CHARACTERISTICS  
Test condition: VIN = 13 V, DSBL# = VDRV = VCIN = 5 V, ZCD_EN# = 5 V, VOUT = 1 V, LOUT = 250 nH (DCR = 0.32 m), TA = 25 °C,  
natural convection cooling (All power loss and normalized power loss curves show SiC639 and SiC639A losses only unless otherwise stated)  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
VIH_DSBL#  
VIH_ZCD_EN#_R  
VIL_ZCD_EN#_F  
VIL_DSBL#  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Driver Supply Voltage, VCIN (V)  
Fig. 18 - DSBL# Threshold vs. Temperature  
Fig. 21 - ZCD_EN# Threshold vs. Driver Supply Voltage  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
8
VDSBL# = 0 V  
VIH_DSBL#  
7
6
5
4
3
2
1
0
VIL_DSBL#  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Driver Supply Voltage, VCIN (V)  
Temperature (°C)  
Fig. 19 - DSBL# vs. Driver Input Voltage  
Fig. 22 - Driver Shutdown Current vs. Temperature  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
340  
330  
320  
310  
300  
290  
280  
270  
260  
VPWM = FLOAT  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Temperature (°C)  
Fig. 20 - DSBL# Pull-Down Current vs. Temperature  
Fig. 23 - Driver Supply Current vs. Temperature  
Document Number: 76585  
S20-0485-Rev. B, 29-Jun-2020  
10  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
PCB LAYOUT RECOMMENDATIONS  
Step 1: VIN/GND Planes and Decoupling  
Step 3: VCIN/VDRV Input Filter  
VSWH  
CVDRV  
P
G
N
D
PGND  
CVCIN  
VIN  
CGND  
VIN plane  
PGND plane  
1. Layout VIN and PGND planes as shown above  
1. The VCIN/VDRV input filter ceramic cap should be placed  
very close to IC. It is recommended to connect two caps  
separately  
2. Ceramic capacitors should be placed right between VIN  
and PGND, and very close to the device for best  
decoupling effect  
2. CVCIN cap should be placed between pin 3 and pin 4  
(CGND of driver IC) to achieve best noise filtering  
3. Difference values / packages of ceramic capacitors  
should be used to cover entire decoupling spectrum e.g.  
1210, 0805, 0603, and 0402  
3. CVDRV cap should be placed between pin 28 (PGND of  
driver IC) and pin 29 to provide maximum instantaneous  
driver current for low side MOSFET during switching  
cycle  
4. Smaller capacitance value, closer to device VIN pin(s)  
- better high frequency noise absorbing  
4. For connecting CVCIN analog ground, it is recommended  
to use large plane to reduce parasitic inductance  
Step 2: VSWH Plane  
Step 4: BOOT Resistor and Capacitor Placement  
V
SWH  
CBOOT  
RBOOT  
PGND plane  
1. Connect output inductor to DrMOS with large plane to  
lower the resistance  
1. These components need to be placed very close to IC,  
right between PHASE (pin 7) and BOOT (pin 5)  
2. If any snubber network is required, place the  
components as shown above and the network can be  
placed at bottom  
2. To reduce parasitic inductance, chip size 0402 can be  
used  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
11  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Step 5: Signal Routing  
Vishay Siliconix  
1. Thermal relief vias can be added on the VIN and PGND  
pads to utilize inner layers for high current and thermal  
dissipation  
CGND  
2. To achieve better thermal performance, additional vias  
can be put on VIN plane and PGND plane.  
CGND  
3. VSWH pad is a noise source and not recommended to put  
vias on this plane  
4. 8 mil drill for pads and 10 mils drill for plane can be the  
optional via size. Vias on pad may drain solder during  
assembly and cause assembly issue. Please consult  
with the assembly house for guideline  
Step 7: Ground Connection  
CGND  
PGND  
VSWH  
1. Route the PWM / ZCD_EN# / DSBL# / THWn signal  
traces out of the top left corner next DrMOS pin 1  
PGND  
2. PWM signal is very important signal, both signal and  
return traces need to pay special attention of not letting  
this trace cross any power nodes on any layer  
3. It is best to “shield” traces form power switching nodes,  
e.g. VSWH, to improve signal integrity  
4. GL (pin 27) has been connected with GL pad internally  
and does not need to connect externally  
1. It is recommended to make single connection between  
GND and PGND and this connection can be done on top  
C
Step 6: Adding Thermal Relief Vias  
layer  
2. It is recommended to make the whole inner 1 layer (next  
to top layer) ground plane and separate them into CGND  
and PGND plane  
3. These ground planes provide shielding between noise  
source on top layer and signal trace on bottom layer  
VSWH  
CGND  
PGND  
PGND  
VIN  
plane  
VIN plane  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
12  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
Multi-Phases VRPower PCB Layout  
Following is an example for 6 phase layout. As can be seen, all the VRPower stages are lined in X-direction compactly with  
decoupling caps next to them. The inductors are placed as close as possible to the SiC639 and SiC639A to minimize the PCB  
copper loss. Vias are applied on all PADs (VIN, PGND, CGND) of the SiC639 and SiC639A to ensure that both electrical and thermal  
performance are excellent. Large copper planes are used for all the high current loops, such as VIN, VSWH, VOUT and PGND. These  
copper planes are duplicated in other layers to minimize the inductance and resistance. All the control signals are routed from  
the SiC639 and SiC639A to a controller placed to the north of the power stage through inner layers to avoid the overlap of high  
current loops. This achieves a compact design with the output from the inductors feeding a load located to the south of the  
design as shown in the figure.  
VIN  
PGND  
VOUT  
Fig. 24 - Multi-Phase VRPower Layout Top View  
VIN  
PGND  
VOUT  
Fig. 25 - Multi-Phase VRPower Layout Bottom View  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
13  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC639, SiC639A  
www.vishay.com  
Vishay Siliconix  
PRODUCT SUMMARY  
Part number  
SiC639  
SiC639A  
50 A power stage, 2.7 VIN to 24 VIN, 5 V PWM  
with ZCD mode  
50 A power stage, 2.7 VIN to 24 VIN, 3.3 V  
PWM with ZCD mode  
Description  
Input voltage min. (V)  
Input voltage max. (V)  
Continuous current rating max. (A)  
Switch frequency max. (kHz)  
Enable (yes / no)  
2.7  
2.7  
24  
24  
50  
50  
1500  
1500  
Yes  
Yes  
Monitoring features  
Protection  
-
-
UVLO, THDN  
UVLO, THDN  
Light load mode  
ZCD  
ZCD  
3.3  
Pulse-width modulation (V)  
Package type  
5
PowerPAK MLP55-31L  
5.0 x 5.0 x 0.75  
PowerPAK MLP55-31L  
5.0 x 5.0 x 0.75  
2
Package size (W, L, H) (mm)  
Status code  
2
Product type  
VRPower (DrMOS)  
Computer, industrial, networking  
VRPower (DrMOS)  
Computer, industrial, networking  
Applications  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?76585.  
S20-0485-Rev. B, 29-Jun-2020  
Document Number: 76585  
14  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
www.vishay.com  
Vishay Siliconix  
PowerPAK® MLP55-31L Case Outline  
0.08 C  
D2-5  
K12  
5
6
K7  
2 x  
A
Pin 1 dot  
K1 D2- 1  
by marking  
A1  
A2  
0.10 C A  
A
K4  
D
2 x  
D2-4  
24  
0.10 C B  
31  
1
23  
MLP55-31L  
(5 mm x 5 mm)  
8
16  
B
15  
9
K2  
C
D2- 3  
D2- 2  
K9  
(Nd-1) x e  
ref.  
Top view  
Side view  
Bottom view  
MILLIMETERS  
NOM.  
0.75  
INCHES  
NOM.  
DIM.  
MIN.  
0.70  
0.00  
MAX.  
0.80  
MIN.  
0.027  
0.000  
MAX.  
0.031  
0.002  
A (8)  
A1  
0.029  
-
0.05  
-
A2  
b (4)  
0.20 ref.  
0.25  
0.008 ref.  
0.010  
0.20  
4.90  
0.30  
5.10  
0.008  
0.193  
0.012  
0.200  
D
5.00  
0.196  
e
0.50 BSC  
5.00  
0.019 BSC  
0.196  
E
4.90  
0.35  
5.10  
0.45  
0.193  
0.013  
0.200  
0.017  
L
0.40  
0.015  
N (3)  
Nd (3)  
Ne (3)  
D2-1  
D2-2  
D2-3  
D2-4  
D2-5  
E2-1  
E2-2  
E2-3  
E2-4  
F1  
32  
32  
8
8
8
8
0.98  
0.98  
1.87  
1.03  
1.08  
1.08  
1.97  
0.039  
0.039  
0.074  
0.041  
0.043  
0.043  
0.078  
1.03  
0.041  
1.92  
0.076  
0.30 BSC  
1.05  
0.012 BSC  
0.041  
1.00  
1.27  
1.93  
3.75  
1.10  
1.37  
2.03  
3.82  
0.039  
0.050  
0.076  
0.148  
0.043  
0.054  
0.080  
0.152  
1.32  
0.052  
1.98  
0.078  
3.80  
0.150  
0.45 BSC  
0.20 BSC  
0.20 BSC  
0.67 BSC  
0.22 BSC  
1.25 BSC  
0.05 BSC  
0.38 BSC  
0.12 BSC  
0.018 BSC  
0.008 BSC  
0.008 BSC  
0.026 BSC  
0.008 BSC  
0.049 BSC  
0.002 BSC  
0.015 BSC  
0.005 BSC  
F2  
K1  
K2  
K3  
K4  
K5  
K6  
Revision: 24-Oct-16  
Document Number: 64909  
1
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
www.vishay.com  
Vishay Siliconix  
MILLIMETERS  
NOM.  
INCHES  
DIM.  
MIN.  
MAX.  
MIN.  
NOM.  
MAX.  
K7  
K8  
0.40 BSC  
0.40 BSC  
0.40 BSC  
0.85 BSC  
0.40 BSC  
0.40 BSC  
0.016 BSC  
0.016 BSC  
0.016 BSC  
0.033 BSC  
0.016 BSC  
0.016 BSC  
K9  
K10  
K11  
K12  
ECN: T16-0644-Rev. E, 24-Oct-16  
DWG: 6025  
Notes  
1. Use millimeters as the primary measurement  
2. Dimensioning and tolerances conform to ASME Y14.5M. - 1994  
3. N is the number of terminals,  
Nd is the number of terminals in X-direction, and  
Ne is the number of terminals in Y-direction  
4. Dimension b applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip  
5. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body  
6. Exact shape and size of this feature is optional  
7. Package warpage max. 0.08 mm  
8. Applied only for terminals  
Revision: 24-Oct-16  
Document Number: 64909  
2
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
PAD Pattern  
Vishay Siliconix  
www.vishay.com  
Recommended Land Pattern  
PowerPAK® MLP55-31L  
Top side transparent view  
(not bottom view)  
Land pattern for MLP55-31L  
(D2-4)  
3.4  
5
1.35  
1
0.57  
(D2-1)  
1.03  
(D2-5)  
1.05  
0.5  
31  
24  
24  
31  
0.75  
(D3) 0.3  
1.13  
0.3  
1
23  
23  
1
1.15  
2.02  
1.75  
(K2) 0.22  
0.3  
(K1) 0.67  
8
16  
8
16  
0.35  
0.18  
9
15  
(L)  
0.4  
(L)  
0.4  
0.3  
(D2-2)  
1.03  
(D2-3)  
1.92  
9
0.5  
15  
0.35  
0.35  
0.65  
0.75  
0.5  
All dimensions in millimeters  
24  
31  
1
23  
33  
Component for MLP55-31L  
Land pattern for MLP55-31L  
32  
33  
35  
8
16  
9
15  
Revision: 18-Oct-2019  
Document Number: 66944  
1
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2019 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 01-Jan-2019  
Document Number: 91000  
1

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX