SiC789CD-T1-GE3 [VISHAY]

Thermal monitor flag;
SiC789CD-T1-GE3
型号: SiC789CD-T1-GE3
厂家: VISHAY    VISHAY
描述:

Thermal monitor flag

文件: 总19页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
60 A VRPower® Integrated Power Stage  
DESCRIPTION  
FEATURES  
• Thermally enhanced PowerPAK® MLP66-40L  
package  
The SiC789 and SiC789A are integrated power stage  
solutions optimized for synchronous buck applications to  
offer high current, high efficiency, and high power  
density performance. Packaged in Vishay’s proprietary  
6 mm x 6 mm MLP package, SiC789 and SiC789A enable  
voltage regulator designs to deliver up to 60 A continuous  
current per phase.  
• Vishay’s Gen IV MOSFET technology and a  
low-side MOSFET with integrated Schottky  
diode  
• Delivers up to 60 A continuous current  
• 95 % peak efficiency  
The  
internal  
power  
MOSFETs  
utilize  
Vishay’s  
• High frequency operation up to 1.5 MHz  
• Power MOSFETs optimized for 12 V input stage  
state-of-the-art Gen IV TrenchFET technology that delivers  
industry benchmark performance to significantly reduce  
switching and conduction losses.  
• 3.3 V (SiC789A) / 5 V (SiC789) PWM logic with tri-state and  
hold-off  
The SiC789 and SiC789A incorporate an advanced  
MOSFET gate driver IC that features high current driving  
capability, adaptive dead-time control, an integrated  
bootstrap Schottky diode, a thermal warning (THWn) that  
alerts the system of excessive junction temperature, and  
skip mode (SMOD#) to improve light load efficiency. The  
drivers are also compatible with a wide range of PWM  
controllers and supports tri-state PWM, 3.3 V (SiC789A) /  
5 V (SiC789) PWM logic.  
• SMOD# logic for light load efficiency improvement  
• Low PWM propagation delay (< 20 ns)  
• Thermal monitor flag  
• Faster enable / disable  
• Under voltage lockout for VCIN  
• Material categorization: for definitions of compliance  
please see www.vishay.com/doc?99912  
APPLICATIONS  
• Multi-phase VRDs for CPU, GPU, and memory  
TYPICAL APPLICATION DIAGRAM  
5 V  
V
IN  
BOOT  
PHASE  
VCIN  
SMOD#  
VSWH  
DSBL#  
VOUT  
Gate  
driver  
PWM  
controller  
PWM  
THWn  
Fig. 1 - SiC789 and SiC789A Typical Application Diagram  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
1
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
PINOUT CONFIGURATION  
VSWH30  
30 VSWH  
1 SMOD#  
SMOD# 1  
2 VCIN  
VCIN 2  
VSWH29  
PGND28  
PGND27  
PGND26  
PGND25  
PGND24  
PGND23  
29 VSWH  
28 PGND  
27 PGND  
26 PGND  
25 PGND  
24 PGND  
23 PGND  
41  
CGND  
41  
CGND  
3 VDRV  
VDRV 3  
4 BOOT  
BOOT4  
5 CGND  
6 GH  
CGND5  
GH 6  
43  
VSWH  
43  
VSWH  
7 PHASE  
PHASE 7  
42  
VIN  
42  
VIN  
8 VIN  
9 VIN  
10 VIN  
VIN 8  
VIN 9  
PGND22  
PGND21  
22 PGND  
21 PGND  
VIN 10  
Top view  
Bottom view  
Fig. 2 - SiC789 and SiC789A Pin Configuration  
PIN DESCRIPTION  
PIN NUMBER  
NAME  
FUNCTION  
1
SMOD#  
VCIN  
Low-side gate turn-off logic. Active low  
Supply voltage for internal logic circuitry  
Supply voltage for internal gate driver  
High-side driver bootstrap voltage  
Analog ground for the driver IC  
2
3
VDRV  
4
BOOT  
CGND  
GH  
5, 37, 41  
6
High-side gate signal  
7
PHASE  
VIN  
Return path of high-side gate driver  
8 to 14, 42  
Power stage input voltage. Drain of high-side MOSFET  
Switch node of the power stage  
Power ground  
15, 29 to 35, 43  
VSWH  
PGND  
GL  
16 to 28  
36  
Low-side gate signal  
38  
THWn  
DSBL#  
PWM  
Thermal warning open drain output  
Disable pin. Active low  
39  
40  
PWM control input  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
MARKING CODE  
SiC789A  
OPTION  
SiC789ACD-T1-GE3  
SiC789CD-T1-GE3  
SiC789ADB and SiC789DB  
3.3 V PWM optimized  
5 V PWM optimized  
PowerPAK® MLP66-40L  
SiC789  
Reference board  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
2
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
ELECTRICAL PARAMETER  
Input Voltage  
CONDITIONS  
LIMIT  
UNIT  
VIN  
-0.3 to +25  
-0.3 to +7  
-0.3 to +7  
-0.3 to +25  
-8 to +30  
32  
Control Logic Supply Voltage  
Drive Supply Voltage  
VCIN  
VDRV  
Switch Node (DC voltage)  
Switch Node (AC voltage) (1)  
BOOT Voltage (DC voltage)  
BOOT Voltage (AC voltage) (2)  
BOOT to PHASE (DC voltage)  
BOOT to PHASE (AC voltage) (3)  
VSWH  
V
VBOOT  
38  
-0.3 to +7  
-0.3 to +8  
VBOOT- PHASE  
All Logic Inputs and Outputs  
(PWM, DSBL#, and THWn)  
-0.3 to VCIN + 0.3  
fS = 300 kHz, VIN = 12 V, VOUT = 1.8 V  
60  
50  
(4)  
Output Current, IOUT(AV)  
A
°C  
V
fS = 1 MHz, VIN = 12 V, VOUT = 1.8 V  
Max. Operating Junction Temperature  
Ambient Temperature  
TJ  
150  
TA  
-40 to +125  
-65 to +150  
5000  
Storage Temperature  
Tstg  
Human body model, JESD22-A114  
Charged device model, JESD22-C101  
Electrostatic Discharge Protection  
1000  
Note  
(1)  
(2)  
(3)  
(4)  
The specification values indicated “AC” is VSWH to PGND, -8 V (< 20 ns, 10 μJ), min. and 30 V (< 50 ns), max.  
The specification value indicates “AC voltage” is VBOOT to PGND, 36 V (< 50 ns) max.  
The specification value indicates “AC voltage” is VBOOT to VPHASE, 8 V (< 20 ns) max.  
Output current rated with testing evaluation board at TA = 25 °C with natural convection cooling. The rating is limited by the peak evaluation  
board temperature, TJ = 150 °C, and varies depending on the operating conditions and PCB layout. This rating may be changed with different  
application settings.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING RANGE  
ELECTRICAL PARAMETER  
MINIMUM  
TYPICAL  
MAXIMUM  
UNIT  
Input Voltage (VIN)  
4.5  
4.5  
4.5  
4
-
5
18  
5.5  
5.5  
5.5  
-
Drive Supply Voltage (VDRV  
)
V
Control Logic Supply Voltage (VCIN  
)
5
BOOT to PHASE (VBOOT-PHASE, DC voltage)  
Thermal Resistance from Junction to PAD  
Thermal Resistance from Junction to Case  
4.5  
1
-
°C/W  
-
2.5  
-
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
3
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL SPECIFICATIONS  
(DSBL# = SMOD# = 5 V, VIN = 12 V, VDRV and VCIN = 5 V, TA = 25 °C)  
LIMITS  
UNIT  
PARAMETER  
SYMBOL  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
POWER SUPPLY  
VDSBL# = 0 V, no switching, VPWM = FLOAT  
-
-
-
-
-
-
-
85  
290  
295  
16  
-
-
Control Logic Supply Current  
Drive Supply Current  
IVCIN  
VDSBL# = 5 V, no switching, VPWM = FLOAT  
μA  
V
DSBL# = 5 V, fS = 300 kHz, D = 0.1  
fS = 300 kHz, D = 0.1  
-
25  
-
mA  
μA  
fS = 1 MHz, D = 0.1  
50  
IVDRV  
VDSBL# = 0 V, no switching  
35  
-
VDSBL# = 5 V, no switching  
60  
-
BOOTSTRAP SUPPLY  
Bootstrap Diode Forward Voltage  
PWM CONTROL INPUT (SiC789)  
Rising Threshold  
VF  
IF = 2 mA  
0.4  
V
V
VTH_PWM_R  
VTH_PWM_F  
VTRI  
3.4  
0.72  
-
3.7  
0.9  
4.0  
1.1  
-
Falling Threshold  
Tri-state Voltage  
VPWM = FLOAT  
2.3  
Tri-state Rising Threshold  
Tri-state Falling Threshold  
VTRI_TH_R  
VTRI_TH_F  
0.9  
3.1  
1.15  
3.35  
1.38  
3.6  
Tri-state Rising Threshold  
Hysteresis  
VHYS_TRI_R  
VHYS_TRI_F  
-
-
225  
325  
-
-
mV  
μA  
Tri-state Falling Threshold  
Hysteresis  
VPWM = 5 V  
VPWM = 0 V  
-
-
-
-
350  
PWM Input Current  
IPWM  
-350  
PWM CONTROL INPUT (SiC789A)  
Rising Threshold  
VTH_PWM_R  
VTH_PWM_F  
VTRI  
2.2  
0.72  
-
2.45  
0.9  
2.7  
1.1  
-
Falling Threshold  
Tri-state Voltage  
VPWM = FLOAT  
1.8  
V
Tri-state Rising Threshold  
Tri-state Falling Threshold  
VTRI_TH_R  
VTRI_TH_F  
0.9  
1.95  
1.15  
2.2  
1.38  
2.45  
Tri-state Rising Threshold  
Hysteresis  
VHYS_TRI_R  
VHYS_TRI_F  
-
-
225  
275  
-
-
mV  
μA  
Tri-state Falling Threshold  
Hysteresis  
VPWM = 3.3 V  
VPWM = 0 V  
-
-
-
-
225  
PWM Input Current  
IPWM  
-225  
TIMING SPECIFICATIONS  
Tri-State to GH/GL Rising  
Propagation Delay  
tPD_TRI_R  
-
30  
-
Tri-state Hold-Off Time  
tTSHO  
-
-
130  
18  
-
-
GH - Turn Off Propagation Delay  
tPD_OFF_GH  
No load, see fig. 4  
GH - Turn On Propagation Delay  
(Dead time rising)  
tPD_ON_GH  
tPD_OFF_GL  
tPD_ON_GL  
-
-
-
10  
12  
10  
-
-
-
GL - Turn Off Propagation Delay  
ns  
GL - Turn On Propagation Delay  
(Dead time falling)  
DSBL# Low to GH/GL Falling  
Propagation Delay  
tPD_DSBL#_F  
Fig. 5  
Fig. 5  
-
15  
-
DSBL# High to GH/GL Rising  
Propagation Delay  
tPD_DSBL#_R  
tPWM_ON_MIN  
-
20  
-
-
-
PWM Minimum On-Time  
30  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
4
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL SPECIFICATIONS  
(DSBL# = SMOD# = 5 V, VIN = 12 V, VDRV and VCIN = 5 V, TA = 25 °C)  
LIMITS  
UNIT  
PARAMETER  
SYMBOL  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
DSBL# SMOD# INPUT  
DSBL# Logic Input Voltage  
VIH_DSBL#  
VIL_DSBL#  
VIH_SMOD#  
VIL_SMOD#  
Input logic high  
Input logic low  
Input logic high  
Input logic low  
2
-
-
-
-
-
-
0.8  
-
V
2
-
SMOD# Logic Input Voltage  
PROTECTION  
0.8  
VCIN rising, on threshold  
-
2.7  
-
3.7  
3.1  
4.1  
Under Voltage Lockout  
VUVLO  
V
VCIN falling, off threshold  
-
-
-
-
-
-
Under Voltage Lockout Hysteresis  
THWn Flag Set (2)  
THWn Flag Clear (2)  
VUVLO_HYST  
TTHWn_SET  
TTHWn_CLEAR  
TTHWn_HYST  
VOL_THWn  
575  
160  
135  
25  
mV  
-
-
°C  
V
THWn Flag Hysteresis (2)  
-
THWn Output Low  
ITHWn = 2 mA  
-
0.02  
Notes  
(1)  
Typical limits are established by characterization and are not production tested.  
Guaranteed by design.  
(2)  
DETAILED OPERATIONAL DESCRIPTION  
PWM Input with Tri-state Function  
Pre-Charger Function  
The PWM input receives the PWM control signal from the VR  
controller IC. The PWM input is designed to be compatible  
with standard controllers using two state logic (H and L) and  
advanced controllers that incorporate tri-state logic (H, L  
and tri-state) on the PWM output. For two state logic, the  
PWM input operates as follows. When PWM is driven above  
VPWM_TH_R the low-side is turned OFF and the high-side is  
turned ON. When PWM input is driven below VPWM_TH_F the  
high-side is turned OFF and the low-side is turned ON. For  
tri-state logic, the PWM input operates as previously stated  
for driving the MOSFETs when PWM is logic high and logic  
low. However, there is a third state that is entered as the  
PWM output of tri-state compatible controller enters its high  
impedance state during shut-down. The high impedance  
state of the controller’s PWM output allows the SiC789 and  
SiC789A to pull the PWM input into the tri-state region (see  
definition of PWM logic and Tri-State, fig. 4). If the PWM  
input stays in this region for the Tri-state Hold-Off Period,  
tTSHO, both high-side and low-side MOSFETs are turned  
OFF. The function allows the VR phase to be disabled  
without negative output voltage swing caused by inductor  
ringing and saves a Schottky diode clamp. The PWM and  
tri-state regions are separated by hysteresis to prevent  
false triggering. The SiC789A incorporates PWM voltage  
thresholds that are compatible with 3.3 V logic and the  
SiC789 thresholds are compatible with 5 V logic.  
When DSBL# is driven from below VIL_DSBL# to above  
VIH_DSBL# the low-side is turned ON for a short duration  
(60 ns typical) to refresh the BOOT capacitor in case it has  
been discharged due to the driver being in standby for a  
long period of time.  
Diode Emulation Mode (SMOD#)  
When SMOD# is logic low diode emulation mode is enabled  
and the low-side is turned OFF. This is a non-synchronous  
conversion mode that improves light load efficiency by  
reducing switching losses. Conducted losses that occur in  
synchronous buck regulators when inductor current is  
negative can also be reduced. Circuitry in the external  
controller IC detects when inductor current crosses zero  
and drives SMOD# below VIL_SMOD# turning the low-side  
MOSFET OFF. The function can be also be used for a  
pre-biased output voltage. If SMOD# is left unconnected, an  
internal pull up resistor will pull the pin to VCIN (logic high) to  
disable the SMOD# function.  
Thermal Shutdown Warning (THWn)  
The THWn pin is an open drain signal that flags the presence  
of excessive junction temperature. Connect, with  
a
maximum of 20 kΩ, to VCIN. An internal temperature sensor  
detects the junction temperature. The temperature  
threshold is 160 °C. When this junction temperature is  
exceeded the THWn flag is set. When the junction  
temperature drops below 135 °C the device will clear the  
THWn signal. The SiC789 and SiC789A do not stop  
operation when the flag is set. The decision to shutdown  
must be made by an external thermal control function.  
Disable (DSBL#)  
In the low state, the DSBL# pin shuts down the driver IC and  
disables both high-side and low-side MOSFETs. In this  
state, standby current is minimized. If DSBL# is left  
unconnected, an internal pull-down resistor will pull the pin  
to CGND and shut down the IC.  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
5
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Voltage Input (VIN)  
Vishay Siliconix  
Bootstrap Circuit (BOOT)  
This is the power input to the drain of the high-side power  
MOSFET. This pin is connected to the high power  
intermediate BUS rail.  
The internal bootstrap diode and an external bootstrap  
capacitor form a charge pump that supplies voltage to the  
BOOT pin. An integrated bootstrap diode is incorporated so  
that only an external capacitor is necessary to complete the  
bootstrap circuit. Connect a boot strap capacitor with one  
leg tied to BOOT pin and the other tied to PHASE pin.  
Switch Node (VSWH and PHASE)  
The switch node, VSWH, is the circuit power stage output.  
This is the output applied to the power inductor and output  
filter to deliver the output for the buck converter. The PHASE  
pin is internally connected to the switch node, VSWH. This pin  
is to be used exclusively as the return pin for the BOOT  
capacitor. A 20 kΩ resistor is connected between GH and  
PHASE to provide a discharge path for the HS MOSFET in  
the event that VCIN goes to zero while VIN is still applied.  
Shoot-Through Protection and Adaptive Dead Time  
The SiC789 and SiC789A have an internal adaptive logic to  
avoid shoot through and optimize dead time. The shoot  
through protection ensures that both high-side and low-side  
MOSFETs are not turned ON at the same time. The adaptive  
dead time control operates as follows. The high-side and  
low-side gate voltages are monitored to prevent the  
MOSFET turning ON from tuning ON until the other  
MOSFET's gate voltage is sufficiently low (< 1 V). Built in  
delays also ensure that one power MOSFET is completely  
OFF, before the other can be turned ON. This feature helps  
to adjust dead time as gate transitions change with respect  
to output current and temperature.  
Ground Connections (CGND and PGND  
)
PGND (power ground) should be externally connected to  
CGND (control signal ground). The layout of the printed circuit  
board should be such that the inductance separating CGND  
and PGND is minimized. Transient differences due to  
inductance effects between these two pins should not  
exceed 0.5 V  
Under Voltage Lockout (UVLO)  
Control and Drive Supply Voltage Input (VDRV, VCIN  
)
During the start up cycle, the UVLO disables the gate  
drive, holding high-side and low-side MOSFET gates low,  
until the supply voltage rail has reached a point at which  
the logic circuitry can be safely activated. The SiC789 and  
SiC789A also incorporate logic to clamp the gate drive  
signals to zero when the UVLO falling edge triggers the  
shutdown of the device. As an added precaution, a 20 kΩ  
resistor is connected between GH and PHASE to provide a  
discharge path for the HS MOSFET.  
V
CIN is the bias supply for the gate drive control IC. VDRV is  
the bias supply for the gate drivers. It is recommended to  
separate these pins through a resistor. This creates a low  
pass filtering effect to avoid coupling of high frequency gate  
drive noise into the IC.  
FUNCTIONAL BLOCK DIAGRAM  
THWn  
BOOT  
GH  
VIN  
VDRV  
Thermal monitor  
& warning  
VCIN  
UVLO  
DSBL#  
VCIN  
-
+
20K  
PHASE  
PWM logic  
control &  
state  
Anti-cross  
conduction  
control  
Vref = 1 V  
GL  
VSWH  
PWM  
CGND  
-
+
machine  
logic  
Vref = 1 V  
VDRV  
GL  
PGND  
SMOD#  
Fig. 3 - SiC789 and SiC789A Functional Block Diagram  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
6
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
DEVICE TRUTH TABLE  
DSBL#  
SMOD#  
PWM  
GH  
L
GL  
L
Open  
L
X
X
L
X
X
L
L
H
L
L
L
H
L
H
Tri-state  
L
H
L
L
H
L
L
H
H
H
H
L
H
L
H
H
H
L
H
Tri-state  
L
PWM TIMING DIAGRAM  
VTH_PWM_R  
VTH_PWM_F  
VTH_TRI_F  
VTH_TRI_R  
PWM  
tPD_OFF_GL  
tTSHO  
GL  
tPD_ON_GL  
tPD_TRI_R  
tTSHO  
tPD_ON_GH  
tPD_OFF_GH  
tPD_TRI_R  
GH  
Fig. 4 - Definition of PWM Logic and Tri-State  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
7
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
OPERATION TIMING DIAGRAM: DSBL#  
PWM  
Vishay Siliconix  
PWM  
Enable  
DSBL #  
DSBL #  
GH  
GL  
GH  
GL  
t
t
DSBL# High to GH Rising Propagation Delay  
DSBL# High to GL Rising Propagation Delay  
PWM  
PWM  
Disable  
DSBL #  
DSBL #  
GH  
GL  
GH  
GL  
t
t
DSBL# Low to GL Falling Propagation Delay  
DSBL# Low to GH Falling Propagation Delay  
Fig. 5 - DSBL# Propagation Delay  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
8
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
ELECTRICAL CHARACTERISTICS  
Test condition: VIN = 12 V, VDRV = VCIN = 5 V, DSBL# = SMOD# = 5 V, VOUT = 1 V, LOUT = 270 nH (DCR = 0.32 mΩ), TA = 25 °C  
(All power loss and normalized power loss curves show SiC789 and SiC789A losses only unless otherwise stated)  
12.0  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
94  
90  
86  
82  
78  
74  
70  
66  
62  
300 kHz  
500 kHz  
1 MHz  
1 MHz  
800 kHz  
800 kHz  
300 kHz  
Complete converter efficiency  
IN = [(VIN x IIN) + 5 V x (IVDRV + IVCIN)]  
OUT = VOUT x IOUT, measured at output capacitor  
P
P
500 kHz  
0
0
0
5
10 15 20 25 30 35 40 45 50 55  
Output Current, IOUT (A)  
0
5
10 15 20 25 30 35 40 45 50 55  
Output Current, IOUT (A)  
Fig. 6 - Efficiency vs. Output Current  
Fig. 9 - Power Loss vs. Output Current  
12.0  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
94  
90  
86  
82  
78  
74  
70  
66  
62  
VOUT = 1.0V  
VOUT = 0.9V  
fS = 500 kHz  
VOUT = 0.7 V  
VOUT = 0.7V  
VOUT = 0.8 V  
VOUT = 0.9 V  
VOUT = 1.0 V  
VOUT = 0.8V  
fS = 500kHz  
5
10 15 20 25 30 35 40 45 50 55  
Output Current, IOUT (A)  
0
5
10 15 20 25 30 35 40 45 50 55  
Output Current, IOUT (A)  
Fig. 7 - Efficiency vs. Output Current  
Fig. 10 - Power Loss vs. Output Current  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
64  
56  
48  
40  
32  
24  
16  
8
fS = 300 kHz  
300 kHz  
1 MHz  
VOUT = 0.7 V  
VOUT = 0.8 V  
VOUT = 0.9 V  
VOUT = 1.0 V  
0
0
5
10 15 20 25 30 35 40 45 50 55  
Output Current, IOUT (A)  
15 30 45 60 75 90 105 120 135 150  
PCB Temperature, TPCB (°C)  
Fig. 8 - Power Loss vs. Output Current  
Fig. 11 - Safe Operating Area  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
9
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
1.80  
1.65  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
1.20  
1.16  
1.12  
1.08  
1.04  
1.00  
0.96  
0.92  
0.88  
300 kHz  
1 MHz  
200 300 400 500 600 700 800 900 1000 1100 1200  
0
5
10 15 20 25 30 35 40 45 50 55  
Output Current, IOUT (A)  
Switching Frequency, fS (kHz)  
Fig. 12 - Power Loss vs. Switching Frequency  
Fig. 15 - Driver Supply Current vs. Output Current  
0.40  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
IF = 2 mA  
VUVLO_RISING  
VUVLO_FALLING  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Temperature (°C)  
Fig. 13 - UVLO Threshold vs. Temperature  
Fig. 16 - BOOT Diode Forward Voltage vs. Temperature  
3.2  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
0.6  
0.2  
2.8  
VTH_PWM_R  
VTH_PWM_R  
2.4  
VTRI_TH_F  
VTRI  
2.0  
1.6  
1.2  
VTRI_TH_F  
VTRI  
VTRI_TH_R  
VTRI_TH_R  
0.8  
VTH_PWM_F  
VTH_PWM_F  
0.4  
0.0  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Driver Supply Voltage, VCIN (V)  
Temperature (°C)  
Fig. 14 - PWM Threshold vs. Temperature (SiC789A)  
Fig. 17 - PWM Threshold vs. Driver Supply Voltage (SiC789A)  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
10  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
VTH_PWM_R  
VTRI_TH_F  
VTRI  
VTH_PWM_R  
VTRI_TH_F  
VTRI  
VTRI_TH_R  
VTRI_TH_R  
VTH_PWM_F  
VTH_PWM_F  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Driver Supply Voltage, VCIN (V)  
Temperature (°C)  
Fig. 18 - PWM Threshold vs. Temperature (SiC789)  
Fig. 21 - PWM Threshold vs. Driver Supply Voltage (SiC789)  
2.2  
2.2  
2.0  
1.8  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VIH_DSBL#  
VIH_DSBL#  
1.6  
1.4  
VIL_DSBL#  
1.2  
1.0  
0.8  
VIL_DSBL#  
0.6  
-60 -40 -20  
0
20 40 60 80 100 120 140  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
Driver Supply Voltage, VCIN (V)  
Temperature (°C)  
Fig. 19 - DSBL# Threshold vs. Temperature  
Fig. 22 - DSBL# Threshold vs. Driver Supply Voltage  
2.2  
2.0  
1.8  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VIH_SMOD#  
VIH_SMOD#  
1.6  
1.4  
VIL_SMOD#  
1.2  
1.0  
0.8  
VIL_SMOD#  
0.6  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Driver Supply Voltage, VCIN (V)  
Temperature (°C)  
Fig. 20 - SMOD# Threshold vs. Temperature  
Fig. 23 - SMOD# Threshold vs. Driver Supply Voltage  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
11  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
-8.0  
-8.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
VSMOD# = 0 V  
-9.0  
-9.5  
-10.0  
-10.5  
-11.0  
-11.5  
-12.0  
9.0  
8.5  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Temperature (°C)  
Fig. 24 - DSBL# Pull-down Current vs. Temperature  
Fig. 26 - SMOD# Pull-up Current vs. Temperature  
200  
430  
410  
390  
370  
350  
330  
310  
290  
270  
180  
160  
140  
120  
100  
80  
VPWM = FLOAT  
VDSBL# = 0 V  
60  
40  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Temperature (°C)  
Fig. 25 - Driver Shutdown Current vs. Temperature  
Fig. 27 - Driver Quiescent Current vs. Temperature  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
12  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
PCB LAYOUT RECOMMENDATIONS  
Step 1: VIN / PGND Planes and Decoupling  
Step 3: VCIN / VDRV Input Filter  
VIN Plane  
Vias for ground connection  
CGND  
PGND  
Cvdrv  
VIN CGND  
Cvcin  
VSWH  
PGND Plane  
1. Layout VIN and PGND planes as shown above  
1. VCIN / VDRV input filter ceramic capacitors should be  
placed as close as possible to IC. It is recommended to  
connect two capacitors separately  
2. Ceramic capacitors should be placed directly between  
VIN and PGND, and as close as possible to IC for best  
decoupling effect  
2. VCIN capacitor should be placed between pin 2 and  
pin 37 (CGND of driver IC) to achieve best noise filtering  
3. Different ceramic capacitor values and packages should  
be used to cover entire decoupling spectrum, e.g. 1210,  
0805, 0603, and 0402  
3. VDRV capacitor should be placed between pin 3 and  
PGND to provide maximum instantaneous driver current  
for low-side MOSFET during switching cycle. PGND can  
be connected to inner ground plane through vias, as  
shown above  
4. Smaller capacitance values, placed closer to the IC’s VIN  
pin(s), result in better high frequency noise absorbing  
4. Pin 5 and pin 37 should be connected with CGND pad, as  
shown above  
Step 2: VSWH Plane  
5. For connecting VCIN to CGND, it is recommended to use  
a large plane to reduce parasitic inductance  
Step 4: BOOT Resistor and Capacitor Placement  
CGND  
Snubber  
VSWH  
PGND Plane  
1. Connect output inductor to IC with large plane to lower  
resistance  
2. VSWH plane also serves as a heat-sink for low-side  
MOSFET. Please make the plane wide and short to  
achieve best thermal path  
1. The components need to be placed as close as possible  
to IC, directly between PHASE (pin 7) and BOOT (pin 4)  
3. If a snubber network is required, place components as  
shown above  
2. To reduce parasitic inductance, 0402 package size can  
be used  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
13  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Step 5: Signal Routing  
Vishay Siliconix  
Step 7: Ground Connection  
CGND  
CGND  
CGND  
GND Plane  
PGND  
1. Route the PWM, SMOD#, DSBL#, and THWn signal  
traces out of the top right corner, next to pin 1  
1. It is recommended to make the entire first inner layer  
(below top layer) the ground plane  
2. The PWM signal is a very important signal, both signal  
and return traces should not cross any power nodes on  
any layer  
2. The ground plane provides analog ground and power  
ground connections  
3. The ground plane provides shielding between noise  
source on top layer and signal traces on bottom layer  
3. It is best to “shield” these traces from power switching  
nodes, e.g. VSWH, with a GND island to improve signal  
integrity  
Step 6: Adding Thermal Relief Vias  
VIN Plane  
VIN  
CGND  
VSWH  
P
GND Plane  
1. Thermal relief vias can be added to the VIN and CGND  
pads to utilize inner layers for high-current and thermal  
dissipation  
2. To achieve better thermal performance, additional vias  
can be added to VIN and PGND planes  
3. The VSWH pad is a noise source and it is not  
recommended to place vias on this pad  
4. 8 mil drill for pads and 10 mils drill for planes are the  
optional via sizes. Vias on pad may drain solder during  
assembly and cause assembly issues. Please consult  
with the assembly house for guidelines  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
14  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
RECOMMENDED LAND PATTERN PowerPAK® MLP66-40L in millimeters  
2.200  
0.276  
2.200  
0.276  
0.100  
0.100  
0.100  
0.100  
0.200  
0.025  
0.025  
40  
40  
0.100  
0.100  
4.600  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
15  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SiC789, SiC789A  
www.vishay.com  
Vishay Siliconix  
PACKAGE OUTLINE DRAWING MLP66-40L  
2 x  
0.08 C  
A1  
A2  
K1  
A
5
6
0.10 C A  
D
Pin #1 dent  
K2  
A
0.41  
30  
D2-1  
40  
Pin 1 dot  
by marking  
31  
2 x  
1
0.10 C B  
MLP66-40L  
(6 mm x 6 mm)  
10  
21  
B
20  
11  
D2-2  
D2-3  
C
(Nd-1)X  
ref.  
e
Top view  
Side view  
Bottom view  
MILLIMETERS  
INCHES  
NOM.  
0.029  
DIM.  
MIN.  
0.70  
0.00  
NOM.  
0.75  
MAX.  
0.80  
MIN.  
0.027  
0.000  
MAX.  
0.031  
0.002  
A
A1  
-
0.05  
-
A2  
0.20 ref.  
0.25  
0.008 ref.  
0.098  
b
0.20  
0.30  
0.45  
0.078  
0.011  
D
6.00 BSC  
0.50 BSC  
6.00 BSC  
0.40  
0.236 BSC  
0.019 BSC  
0.236 BSC  
0.015  
e
E
L
0.35  
0.013  
0.017  
N
40  
40  
Nd  
Ne  
D2-1  
D2-2  
D2-3  
E2-1  
E2-2  
E2-3  
K1  
K2  
10  
10  
10  
10  
1.45  
1.45  
2.35  
4.35  
1.95  
1.95  
1.50  
1.55  
1.55  
2.45  
4.45  
2.05  
2.05  
0.057  
0.057  
0.095  
0.171  
0.076  
0.076  
0.059  
0.061  
0.061  
0.096  
0.175  
0.080  
0.080  
1.50  
0.059  
2.40  
0.094  
4.40  
0.173  
2.00  
0.078  
2.00  
0.078  
0.73 BSC  
0.21 BSC  
0.028 BSC  
0.008 BSC  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?62972.  
S14-2287-Rev. B, 08-Dec-14  
Document Number: 62972  
16  
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
www.vishay.com  
Vishay Siliconix  
PowerPAK® MLP66-40 Case Outline  
K1  
2 x  
0.08 C  
A1  
A2  
A
5
6
0.10 C A  
K2  
D
A
Pin 1 dot  
by marking  
0.41  
30  
D2-1  
31  
40  
2 x  
1
0.10 C B  
MLP66-40  
(6 mm x 6 mm)  
10  
21  
B
20  
11  
D2-2  
D2-3  
C
(Nd-1)X  
ref.  
e
Top View  
Bottom View  
Side View  
MILLIMETERS  
INCHES  
DIM.  
MIN.  
0.70  
0.00  
NOM.  
0.75  
MAX.  
0.80  
MIN.  
0.027  
0.000  
NOM.  
0.029  
MAX.  
0.031  
0.002  
A (8)  
A1  
-
0.05  
-
A2  
b (4)  
0.20 ref.  
0.25  
0.008 ref.  
0.098  
0.20  
0.30  
0.45  
0.078  
0.011  
D
6.00 BSC  
0.50 BSC  
6.00 BSC  
0.40  
0.236 BSC  
0.019 BSC  
0.236 BSC  
0.015  
e
E
L
0.35  
0.013  
0.017  
N (3)  
Nd (3)  
Ne (3)  
D2-1  
D2-2  
D2-3  
E2-1  
E2-2  
E2-3  
K1  
40  
40  
10  
10  
10  
10  
1.45  
1.45  
2.35  
4.35  
1.95  
1.95  
1.50  
1.55  
1.55  
2.45  
4.45  
2.05  
2.05  
0.057  
0.057  
0.095  
0.171  
0.076  
0.076  
0.059  
0.061  
0.061  
0.096  
0.175  
0.080  
0.080  
1.50  
0.059  
2.40  
0.094  
4.40  
0.173  
2.00  
0.078  
2.00  
0.078  
0.73 BSC  
0.21 BSC  
0.028 BSC  
0.008 BSC  
K2  
ECN: T14-0826-Rev. B, 12-Jan-15  
DWG: 5986  
Notes  
1. Use millimeters as the primary measurement  
2. Dimensioning and tolerances conform to ASME Y14.5M. - 1994  
3. N is the number of terminals. Nd is the number of terminals in X-direction and Ne is the number of terminals in Y-direction  
4. Dimension b applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip  
5. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body  
6. Exact shape and size of this feature is optional  
7. Package warpage max. 0.08 mm  
8. Applied only for terminals  
Revision: 12-Jan-15  
Document Number: 64846  
1
For technical questions, contact: powerictechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
PAD Pattern  
Vishay Siliconix  
www.vishay.com  
Recommended Land Pattern PowerPAK® MLP66-40L  
2.200  
0.276  
2.200  
0.276  
0.100  
0.100  
0.100  
0.100  
0.200  
0.025  
0.025  
1
1
40  
40  
0.100  
0.100  
4.600  
All Dimensions are in milimeters  
Revision: 28-Feb-14  
Document Number: 67964  
1
For technical questions, contact: analogswitchtechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Revision: 13-Jun-16  
Document Number: 91000  
1

相关型号:

SiC789DB

Thermal monitor flag
VISHAY

SIC841160

New Solid State Relay compact size pitch 22,5mm
CELDUC

SIC841500

New Solid State Relay compact size pitch 22,5mm
CELDUC

SIC842160

New Solid State Relay compact size pitch 22,5mm
CELDUC

SIC862500

New Solid State Relay compact size pitch 22,5mm
CELDUC

SIC864520

New Solid State Relay compact size pitch 22,5mm
CELDUC

SIC865560

New Solid State Relay compact size pitch 22,5mm
CELDUC

SIC9552A

High Precision Non-Isolated Buck LED Driver
SISEMIC

SIC9553A

High Precision Non-Isolated Buck LED Driver
SISEMIC

SIC9554A

High Precision Non-Isolated Buck LED Driver
SISEMIC

SIC9555A

High Precision Non-Isolated Buck LED Driver
SISEMIC

SIC9556A

High Precision Non-Isolated Buck LED Driver
SISEMIC