TH3A105M025F3000 [VISHAY]

CAP TANT 1UF 25V 20% 1206;
TH3A105M025F3000
型号: TH3A105M025F3000
厂家: VISHAY    VISHAY
描述:

CAP TANT 1UF 25V 20% 1206

文件: 总18页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TH3  
Vishay Sprague  
www.vishay.com  
Solid Tantalum Surface Mount Capacitors  
TANTAMOUNT™ Molded Case, HI-TMP®  
High Temperature 150 °C, Automotive Grade  
FEATURES  
• Operating temperature up to 150 °C with 50 ꢀ  
voltage derating  
• AEC-Q200 qualified  
• 100 ꢀ surge current tested  
Available  
Available  
(B, C, D, E case sizes)  
• RoHS-compliant terminations available:  
matte tin (all cases), gold (A, C, D, and E cases)  
• Standard EIA 535BAAC case size (A through E)  
• Compliant terminations  
Available  
• Moisture sensitivity level 1  
LINKS TO ADDITIONAL RESOURCES  
• Material categorization: for definitions of compliance  
please see www.vishay.com/doc?99912  
Note  
3
D
3
D
3D Models  
Calculators  
Related  
Documents  
Infographics  
Did You  
Know  
*
This datasheet provides information about parts that are  
RoHS-compliant and / or parts that are non RoHS-compliant. For  
example, parts with lead (Pb) terminations are not RoHS-compliant.  
Please see the information / tables in this datasheet for details  
T
Technical  
Notes  
APPLICATIONS  
• Automotive  
PERFORMANCE / ELECTRICAL  
CHARACTERISTICS  
www.vishay.com/doc?40215  
• Industrial  
Operating Temperature: -55 °C to +150 °C  
Capacitance Range: 0.33 μF to 220 μF  
Capacitance Tolerance: 10 ꢀ, 20 ꢀ  
Voltage Rating: 6.3 VDC to 50 VDC  
• High temperature sensors  
Note  
For recommended voltage derating guidelines see “Typical  
Performance Characteristics”  
ORDERING INFORMATION  
TH3  
D
106  
K
035  
C
0700  
TYPE  
CASE  
CODE  
CAPACITANCE  
CAPACITANCE  
TOLERANCE  
DC VOLTAGE  
RATING AT +85 °C  
TERMINATION AND  
PACKAGING  
ESR  
See  
Ratings  
and Case  
Codes  
table.  
This is expressed in  
picofarads. The first  
two digits are the  
significant figures.  
The third is the  
number of zeros  
to follow.  
K = 10 ꢀ  
M = 20 ꢀ  
This is expressed in V.  
To complete the  
three-digit block, zeros  
precede the voltage  
rating. A decimal point  
is indicated by an “R”.  
(6R3 = 6.3 V)  
Gold  
Maximum  
100 kHz ESR  
0500 = 500 m  
5000 = 5.0   
10R0 = 10.0   
A = 7" (178 mm) reel  
B = 13" (330 mm) reel  
Matte tin  
C = 7" (178 mm) reel  
D = 13" (330 mm) reel  
V = 7" (178 mm) reel,  
dry pack  
U = 13" (330 mm) reel,  
dry pack  
Tin / lead  
E = 7" (178 mm) reel  
F = 13" (330 mm) reel  
T = 7" (178 mm) reel,  
dry pack  
W = 13" (330 mm) reel,  
dry pack  
Notes  
We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size. Voltage  
substitutions will be marked with the higher voltage rating  
Dry pack as specified in J-STD-033  
Revision: 22-Oct-2020  
Document Number: 40084  
1
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TH3  
Vishay Sprague  
www.vishay.com  
DIMENSIONS in inches [millimeters]  
L
W
H
TW  
Glue Pad  
TH (MIN.)  
P
Glue Pad  
CASE CODE  
EIA SIZE  
L
W
H
P
TW  
TH (MIN.)  
0.126 0.008  
[3.2 0.20]  
0.063 0.008  
[1.6 0.20]  
0.063 0.008  
[1.6 0.20]  
0.031 0.012  
[0.80 0.30]  
0.047 0.004  
[1.2 0.10]  
0.028  
[0.70]  
A
3216-18  
0.138 0.008  
[3.5 0.20]  
0.110 0.008  
[2.8 0.20]  
0.075 0.008  
[1.9 0.20]  
0.031 0.012  
[0.80 0.30]  
0.087 0.004  
[2.2 0.10]  
0.028  
[0.70]  
B
C
D
E
3528-21  
6032-28  
7343-31  
7343-43  
0.236 0.012  
[6.0 0.30]  
0.126 0.012  
[3.2 0.30]  
0.098 0.012  
[2.5 0.30]  
0.051 0.012  
[1.3 0.30]  
0.087 0.004  
[2.2 0.10]  
0.039  
[1.0]  
0.287 0.012  
[7.3 0.30]  
0.169 0.012  
[4.3 0.30]  
0.110 0.012  
[2.8 0.30]  
0.051 0.012  
[1.3 0.30]  
0.094 0.004  
[2.4 0.10]  
0.039  
[1.0]  
0.287 0.012  
[7.3 0.30]  
0.169 0.012  
[4.3 0.30]  
0.157 0.012  
[4.0 0.30]  
0.051 0.012  
[1.3 0.30]  
0.094 0.004  
[2.4 0.10]  
0.039  
[1.0]  
Note  
Glue pad (non-conductive, part of molded case) is dedicated for glue attachment (as user option)  
RATINGS AND CASE CODES  
μF  
6.3 V  
10 V  
16 V  
20 V  
25 V  
35 V  
50 V  
0.33  
0.47  
0.68  
A (11.0)  
A (14.0)  
A (3.0, 5.2) /  
B (5.0)  
1.0  
A (6.5)  
A (4.3)  
A (5.9)  
A (6.6) / B (4.4)  
B (4.2) / C (3.3)  
C (3.3)  
1.5  
2.2  
A (4.6)  
A (5.9) / B (3.5) A (5.2) / B (3.0) B (2.5) / C (2.2)  
B (2.5, 3.5) /  
3.3  
4.7  
6.8  
10  
A (3.4) / B (3.0) B (2.7) / C (3.7) B (3.0) / C (2.0)  
D (1.7)  
C (1.5) / D (0.9)  
D (0.9)  
C (1.7)  
A (5.0) /  
B (2.9, 1.9) /  
C (1.7)  
A (5.0) / B (2.8) / B (3.1) / C (1.3) /  
A (2.9) / B (2.7) A (2.9) / B (2.1)  
C (1.6)  
D (1.0)  
A (2.6, 2.0) /  
A (2.6)  
B (2.4) / C (1.4) C (1.8) / D (0.9)  
B (1.8) / C (1.7)  
A (3.4, 2.0) /  
B (1.8) /  
B (2.0) /  
C (1.4, 0.8)  
C (1.8, 1.7)  
C (1.6) /  
C (1.1) / D (0.9)  
A (3.4, 2.7)  
B (1.8)  
C (1.1)  
D (0.8) / E (0.5)  
D (0.25, 0.3, 0.7)  
A (2.9, 2.0) /  
B (2.0) / C (1.0) /  
D (0.9)  
B (1.4, 2.0) /  
D (0.7)  
15  
B (2.0, 1.8, 1.5) / B (2.0) / C (1.0)  
C (1.8, 1.4)  
C (1.2) / D (0.7)  
B (1.9) /  
B (1.5) /  
D (0.3, 0.6) /  
22  
33  
47  
B (2.0, 1.5)  
B (1.9, 1.7)  
C (0.8, 1.0) /  
C (1.5, 1.1)  
C (1.0) / D (0.7)  
D (0.6)  
D (0.6)  
E (0.5)  
D (0.8)  
B (1.9, 1.4) /  
D (0.8)  
C (0.9, 0.6) /  
D (0.6)  
D (0.5)  
E (0.6)  
B (1.8) /  
C (0.8, 0.5) /  
D (0.6)  
C (0.8, 0.6) /  
D (0.6)  
B (1.8) / C (0.8)  
D (0.7) / E (0.6)  
E (0.6)  
C (1.0, 0.8) /  
D (1.0, 0.6, 0.4)  
68  
B (1.8)  
E (0.3)  
D (0.6)  
C (0.9, 0.5) /  
D (0.6)  
D (0.6) /  
E (0.6, 0.15)  
100  
150  
220  
D (0.6)  
E (0.5)  
Note  
ESR limits in are shown in parenthesis  
Revision: 22-Oct-2020  
Document Number: 40084  
2
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TH3  
Vishay Sprague  
www.vishay.com  
MARKING  
“A” CASE VOLTAGE CODE  
Indicates high temperature  
Indicates  
high temperature  
Capacitance code, pF  
VOLTS  
4.0  
6.3  
10  
CODE  
Voltage  
Capacitance, μF  
G
J
Date code  
designation  
22  
H10  
A
C
D
E
V
T
V 104H  
Polarity  
band (+)  
16  
2
XX  
20  
Voltage  
code  
25  
Date code  
Vishay marking  
Polarity band (+)  
35  
A Case  
B, C, D, E Case  
50  
Marking  
Capacitor marking includes an anode (+) polarity band, capacitance in microfarads and the voltage rating. “A” case capacitors use a letter  
code for the voltage and EIA capacitance code.  
The Vishay identification marking is included if space permits. Vishay marking (“circled 2”) may show additives in the form of short lines,  
depicting actual manufacturing facility. For A case capacitors discontinuation in polarity bar maybe used as actual manufacturing facility  
designation. Capacitors rated at 6.3 V are marked 6 V. Uppercase letter “H” indicates lead (Pb)-free capacitors; lowercase letter “h”  
indicates SnPb containing capacitors.  
A manufacturing date code is marked on all capacitors. for details see FAQ: www.vishay.com/doc?40110.  
Call the factory for further explanation.  
STANDARD RATINGS  
MAX. ESR  
AT +25 °C  
100 kHz  
()  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT +25 °C  
(μA)  
MAX. DF  
AT +25 °C  
(%)  
CAPACITANCE  
(μF)  
CASE CODE  
PART NUMBER  
(A)  
6.3 VDC AT +85 °C; 4 VDC AT +125 °C; 3.15 VDC AT +150 °C  
10  
10  
15  
22  
22  
33  
33  
47  
47  
68  
100  
A
A
B
B
B
B
B
B
C
B
E
TH3A106(1)6R3(3)3400  
TH3A106(1)6R3(3)2700  
TH3B156(1)6R3(2)1800  
TH3B226(1)6R3(2)2000  
TH3B226(1)6R3(2)1500  
TH3B336(1)6R3(2)1900  
TH3B336(1)6R3(2)1700  
TH3B476(1)6R3(2)1800  
TH3C476(1)6R3(3)0800  
TH3B686(1)6R3(2)1800  
TH3E107(1)6R3(3)0300  
0.6  
0.6  
0.9  
1.3  
1.3  
2.0  
2.0  
2.8  
2.8  
4.1  
6.0  
6
6
6
6
6
6
6
8
6
6
6
3.40  
2.70  
1.80  
2.00  
1.50  
1.90  
1.70  
1.80  
0.80  
1.80  
0.30  
0.15  
0.17  
0.22  
0.21  
0.24  
0.21  
0.22  
0.22  
0.37  
0.22  
0.74  
10 VDC AT +85 °C; 7 VDC AT +125 °C; 5 VDC AT +150 °C  
2.2  
4.7  
4.7  
6.8  
10  
10  
10  
10  
10  
15  
15  
15  
15  
15  
15  
15  
A
A
B
A
A
A
B
C
C
A
A
B
B
B
C
C
TH3A225(1)010(3)4600  
TH3A475(1)010(3)2900  
TH3B475(1)010(2)2700  
TH3A685(1)010(3)2600  
TH3A106(1)010(3)3400  
TH3A106(1)010(3)2000  
TH3B106(1)010(2)1800  
TH3C106(1)010(3)1800  
TH3C106(1)010(3)1700  
TH3A156(1)010(3)2900  
TH3A156(1)010(3)2000  
TH3B156(1)010(2)2000  
TH3B156(1)010(2)1800  
TH3B156(1)010(2)1500  
TH3C156(1)010(3)1800  
TH3C156(1)010(3)1400  
0.5  
0.5  
0.5  
6.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4.60  
2.90  
2.70  
2.60  
3.40  
2.00  
1.80  
1.80  
1.70  
2.90  
2.00  
2.00  
1.80  
1.50  
1.80  
1.40  
0.13  
0.16  
0.18  
0.17  
0.15  
0.19  
0.22  
0.25  
0.25  
0.16  
0.19  
0.21  
0.22  
0.24  
0.25  
0.28  
Note  
Part number definitions:  
(1) Capacitance tolerance: K, M  
(2) Termination and packaging: C, D, E, F, V, U, T, W  
(3) Termination and packaging: A, B, C, D, E, F, V, U, T, W  
Revision: 22-Oct-2020  
Document Number: 40084  
3
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TH3  
Vishay Sprague  
www.vishay.com  
STANDARD RATINGS  
MAX. ESR  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT +25 °C  
(μA)  
MAX. DF  
AT +25 °C  
(%)  
CAPACITANCE  
(μF)  
AT +25 °C  
100 kHz  
()  
CASE CODE  
PART NUMBER  
(A)  
10 VDC AT +85 °C; 7 VDC AT +125 °C; 5 VDC AT +150 °C  
22  
22  
22  
33  
33  
33  
47  
47  
47  
47  
68  
68  
68  
68  
68  
B
C
C
B
B
D
B
C
C
D
C
C
D
D
D
C
C
D
D
E
TH3B226(1)010(2)1500  
TH3C226(1)010(3)1500  
TH3C226(1)010(3)1100  
TH3B336(1)010(2)1900  
TH3B336(1)010(2)1400  
TH3D336(1)010(3)0800  
TH3B476(1)010(2)1800  
TH3C476(1)010(3)0800  
TH3C476(1)010(3)0500  
TH3D476(1)010(3)0600  
TH3C686(1)010(3)1000  
TH3C686(1)010(3)0800  
TH3D686(1)010(3)1000  
TH3D686(1)010(3)0600  
TH3D686(1)010(3)0400  
TH3C107(1)010(3)0900  
TH3C107(1)010(3)0500  
TH3D107(1)010(3)0600  
TH3D157(1)010(3)0600  
TH3E227(1)010(3)0500  
2.2  
2.2  
2.2  
3.3  
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
6.8  
6.8  
6.8  
6.8  
6.8  
6
6
6
6
6
6
6
6
6
6
8
8
6
6
6
6
6
8
8
8
1.50  
1.50  
1.10  
1.90  
1.40  
0.80  
1.80  
0.80  
0.50  
0.60  
1.00  
0.80  
1.00  
0.60  
0.40  
0.90  
0.50  
0.60  
0.60  
0.50  
0.24  
0.27  
0.32  
0.21  
0.25  
0.43  
0.22  
0.37  
0.47  
0.50  
0.33  
0.37  
0.39  
0.50  
0.61  
0.35  
0.47  
0.50  
0.50  
0.61  
100  
100  
100  
150  
220  
10.0  
10.0  
10.0  
15.0  
22.0  
16 VDC AT +85 °C; 10 VDC AT +125 °C; 8 VDC AT +150 °C  
1.0  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
6.8  
6.8  
6.8  
10  
10  
10  
15  
15  
22  
22  
22  
22  
33  
33  
33  
47  
47  
47  
68  
100  
100  
100  
A
A
A
B
A
B
A
A
B
C
B
C
C
B
C
B
C
C
D
C
C
D
C
C
D
D
D
E
TH3A105(1)016(3)6500  
TH3A225(1)016(3)4300  
TH3A335(1)016(3)3400  
TH3B335(1)016(2)3000  
TH3A475(1)016(3)2900  
TH3B475(1)016(2)2100  
TH3A685(1)016(3)2600  
TH3A685(1)016(3)2000  
TH3B685(1)016(2)1800  
TH3C685(1)016(3)1700  
TH3B106(1)016(2)2000  
TH3C106(1)016(3)1400  
TH3C106(1)016(3)0800  
TH3B156(1)016(2)2000  
TH3C156(1)016(3)1000  
TH3B226(1)016(2)1900  
TH3C226(1)016(3)1000  
TH3C226(1)016(3)0800  
TH3D226(1)016(3)0800  
TH3C336(1)016(3)0900  
TH3C336(1)016(3)0600  
TH3D336(1)016(3)0600  
TH3C476(1)016(3)0800  
TH3C476(1)016(3)0600  
TH3D476(1)016(3)0600  
TH3D686(1)016(3)0600  
TH3D107(1)016(3)0600  
TH3E107(1)016(3)0600  
TH3E107(1)016(3)0150  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.1  
1.1  
1.1  
1.1  
1.6  
1.6  
1.6  
2.4  
2.4  
3.5  
3.5  
3.5  
3.5  
5.3  
5.3  
5.3  
7.5  
7.5  
7.5  
10.9  
16.0  
16.0  
16.0  
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4.5  
6
6
6
6
6
6
6
6
8
8
8
6.50  
4.30  
3.40  
3.00  
2.90  
2.10  
2.60  
2.00  
1.80  
1.70  
2.00  
1.40  
0.80  
2.00  
1.00  
1.90  
1.00  
0.80  
0.80  
0.90  
0.60  
0.60  
0.80  
0.60  
0.60  
0.60  
0.60  
0.60  
0.15  
0.11  
0.13  
0.15  
0.17  
0.16  
0.2  
0.17  
0.19  
0.22  
0.25  
0.21  
0.28  
0.37  
0.21  
0.33  
0.21  
0.33  
0.37  
0.43  
0.35  
0.43  
0.50  
0.37  
0.43  
0.43  
0.50  
0.50  
0.56  
1.11  
E
Note  
Part number definitions:  
(1) Capacitance tolerance: K, M  
(2) Termination and packaging: C, D, E, F, V, U, T, W  
(3) Termination and packaging: A, B, C, D, E, F, V, U, T, W  
Revision: 22-Oct-2020  
Document Number: 40084  
4
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TH3  
Vishay Sprague  
www.vishay.com  
STANDARD RATINGS  
MAX. ESR  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT +25 °C  
(μA)  
MAX. DF  
AT +25 °C  
(%)  
CAPACITANCE  
(μF)  
AT +25 °C  
100 kHz  
()  
CASE CODE  
PART NUMBER  
(A)  
20 VDC AT +85 °C; 13 VDC AT +125 °C; 10 VDC AT +150 °C  
1.0  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
10  
A
A
B
B
C
A
B
B
C
C
B
C
D
C
D
D
D
E
TH3A105(1)020(3)5900  
TH3A225(1)020(3)5900  
TH3B225(1)020(2)3500  
TH3B335(1)020(2)2700  
TH3C335(1)020(3)2700  
TH3A475(1)020(3)5000  
TH3B475(1)020(2)1900  
TH3B475(1)020(2)2900  
TH3C475(1)020(3)1700  
TH3C106(1)020(3)1100  
TH3B156(1)020(2)2000  
TH3C156(1)020(3)1000  
TH3D156(1)020(3)0900  
TH3C226(1)020(3)1000  
TH3D226(1)020(3)0700  
TH3D336(1)020(3)0600  
TH3D476(1)020(3)0700  
TH3E476(1)020(3)0600  
TH3E686(1)020(3)0600  
0.5  
0.5  
0.5  
0.7  
0.7  
0.9  
0.9  
0.9  
0.9  
2.0  
3.0  
3.0  
3.0  
4.4  
4.4  
6.6  
9.4  
9.4  
13.6  
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
5.90  
5.90  
3.50  
2.70  
2.70  
5.00  
2.90  
1.90  
1.70  
1.10  
2.00  
1.00  
0.90  
1.00  
0.70  
0.60  
0.70  
0.60  
0.60  
0.11  
0.11  
0.16  
0.18  
0.20  
0.12  
0.17  
0.21  
0.25  
0.32  
0.21  
0.33  
0.41  
0.33  
0.46  
0.5  
15  
15  
15  
22  
22  
33  
47  
0.46  
0.56  
0.56  
47  
68  
E
25 VDC AT +85 °C; 17 VDC AT +125 °C; 12.5 VDC AT +150 °C  
0.47  
1.0  
1.0  
1.0  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
6.8  
6.8  
10  
A
A
A
B
A
B
B
C
A
B
C
B
C
C
D
B
B
C
D
D
D
E
TH3A474(1)025(3)14R0  
TH3A105(1)025(3)5200  
TH3A105(1)025(3)3000  
TH3B105(1)025(2)5000  
TH3A225(1)025(3)5200  
TH3B225(1)025(2)3000  
TH3B335(1)025(2)3000  
TH3C335(1)025(3)2000  
TH3A475(1)025(3)5000  
TH3B475(1)025(2)2800  
TH3C475(1)025(3)1600  
TH3B685(1)025(2)2400  
TH3C685(1)025(3)1400  
TH3C106(1)025(3)1100  
TH3D106(1)025(3)0900  
TH3B156(1)025(2)2000  
TH3B156(1)025(2)1400  
TH3C156(1)025(3)1200  
TH3D156(1)025(3)0700  
TH3D226(1)025(3)0600  
TH3D336(1)025(3)0500  
TH3E476(1)025(3)0600  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.8  
0.8  
1.2  
1.2  
1.2  
1.7  
1.7  
2.5  
2.5  
3.8  
3.8  
3.8  
3.8  
5.5  
8.3  
11.8  
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
14.00  
5.20  
3.00  
5.00  
5.20  
3.00  
3.00  
2.00  
5.00  
2.80  
1.60  
2.40  
1.40  
1.10  
0.90  
2.00  
1.40  
1.20  
0.70  
0.60  
0.50  
0.60  
0.073  
0.12  
0.16  
0.13  
0.12  
0.17  
0.17  
0.23  
0.12  
0.17  
0.26  
0.19  
0.28  
0.32  
0.41  
0.21  
0.25  
0.30  
0.46  
0.50  
0.55  
0.56  
10  
15  
15  
15  
15  
22  
33  
47  
Note  
Part number definitions:  
(1) Capacitance tolerance: K, M  
(2) Termination and packaging: C, D, E, F, V, U, T, W  
(3) Termination and packaging: A, B, C, D, E, F, V, U, T, W  
Revision: 22-Oct-2020  
Document Number: 40084  
5
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TH3  
Vishay Sprague  
www.vishay.com  
STANDARD RATINGS  
MAX. ESR  
MAX. RIPPLE  
100 kHz  
IRMS  
MAX. DCL  
AT +25 °C  
(μA)  
MAX. DF  
AT +25 °C  
(%)  
CAPACITANCE  
(μF)  
AT +25 °C  
100 kHz  
()  
CASE CODE  
PART NUMBER  
(A)  
35 VDC AT +85 °C; 23 VDC AT +125 °C; 17.5 VDC AT +150 °C  
0.33  
1.0  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
3.3  
4.7  
4.7  
4.7  
6.8  
6.8  
10  
A
A
B
B
C
B
C
B
B
C
B
C
D
C
D
C
D
D
D
D
D
D
E
TH3A334(1)035(3)11R0  
TH3A105(1)035(3)6600  
TH3B105(1)035(2)4400  
TH3B155(1)035(2)4200  
TH3C155(1)035(3)3300  
TH3B225(1)035(2)2500  
TH3C225(1)035(3)2200  
TH3B335(1)035(2)3500  
TH3B335(1)035(2)2500  
TH3C335(1)035(3)1700  
TH3B475(1)035(2)3100  
TH3C475(1)035(3)1300  
TH3D475(1)035(3)1000  
TH3C685(1)035(3)1800  
TH3D685(1)035(3)0900  
TH3C106(1)035(3)1600  
TH3D106(1)035(3)0700  
TH3D106(1)035(3)0300  
TH3D106(1)035(3)0250  
TH3D156(1)035(3)0700  
TH3D226(1)035(3)0600  
TH3D226(1)035(3)0300  
TH3E226(1)035(3)0500  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.2  
1.2  
1.2  
1.7  
1.6  
1.6  
2.4  
2.4  
3.5  
3.5  
3.5  
3.5  
5.3  
7.7  
7.7  
7.7  
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
11.00  
6.60  
4.40  
4.20  
3.30  
2.50  
2.20  
3.50  
2.50  
1.70  
3.10  
1.30  
1.00  
1.80  
0.90  
1.60  
0.70  
0.30  
0.25  
0.70  
0.60  
0.30  
0.50  
0.08  
0.11  
0.14  
0.14  
0.18  
0.18  
0.22  
0.16  
0.18  
0.25  
0.17  
0.29  
0.39  
0.25  
0.41  
0.26  
0.46  
0.71  
0.77  
0.46  
0.50  
0.71  
0.61  
10  
10  
10  
15  
22  
22  
22  
50 VDC AT +85 °C; 33 VDC AT +125 °C; 25 VDC AT +150 °C  
1.0  
3.3  
4.7  
4.7  
6.8  
10  
C
D
C
D
D
D
E
TH3C105(1)050(3)3300  
TH3D335(1)050(3)1700  
TH3C475(1)050(3)1500  
TH3D475(1)050(3)0900  
TH3D685(1)050(3)0900  
TH3D106(1)050(3)0800  
TH3E106(1)050(3)0500  
0.5  
1.7  
2.4  
2.4  
3.4  
5.0  
5.0  
4
6
6
6
6
6
6
3.30  
1.70  
1.50  
0.90  
0.90  
0.80  
0.50  
0.18  
0.30  
0.27  
0.41  
0.41  
0.43  
0.61  
10  
Note  
Part number definitions:  
(1) Capacitance tolerance: K, M  
(2) Termination and packaging: C, D, E, F, V, U, T, W  
(3) Termination and packaging: A, B, C, D, E, F, V, U, T, W  
POWER DISSIPATION  
CASE CODE  
MAXIMUM PERMISSIBLE POWER DISSIPATION AT +25 °C (W) IN FREE AIR  
A
B
C
D
E
0.075  
0.085  
0.110  
0.150  
0.165  
Revision: 22-Oct-2020  
Document Number: 40084  
6
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TH3  
Vishay Sprague  
www.vishay.com  
STANDARD PACKAGING QUANTITY  
UNITS PER REEL  
CASE CODE  
7" REEL  
2000  
2000  
500  
13" REEL  
9000  
A
B
C
D
E
8000  
3000  
500  
2500  
400  
1500  
PRODUCT INFORMATION  
Guide for Molded Tantalum Capacitors  
Pad Dimensions  
www.vishay.com/doc?40074  
Package Dimensions  
Moisture Sensitivity (MSL)  
SELECTOR GUIDES  
www.vishay.com/doc?40135  
Solid Tantalum Selector Guide  
Solid Tantalum Chip Capacitors  
FAQ  
www.vishay.com/doc?49053  
www.vishay.com/doc?40091  
Frequently Asked Questions  
www.vishay.com/doc?40110  
Revision: 22-Oct-2020  
Document Number: 40084  
7
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
Guide for Molded Tantalum Capacitors  
Rating for rating, tantalum capacitors tend to have as much  
as three times better capacitance / volume efficiency than  
aluminum electrolytic capacitors. An approximation of the  
capacitance / volume efficiency of other types of capacitors  
may be inferred from the following table, which shows the  
dielectric constant ranges of the various materials used in  
each type. Note that tantalum pentoxide has a dielectric  
constant of 26, some three times greater than that of  
aluminum oxide. This, in addition to the fact that extremely  
thin films can be deposited during the electrolytic process  
mentioned earlier, makes the tantalum capacitor extremely  
efficient with respect to the number of microfarads available  
per unit volume. The capacitance of any capacitor is  
determined by the surface area of the two conducting  
plates, the distance between the plates, and the dielectric  
constant of the insulating material between the plates.  
INTRODUCTION  
Tantalum electrolytic capacitors are the preferred choice in  
applications where volumetric efficiency, stable electrical  
parameters, high reliability, and long service life are primary  
considerations. The stability and resistance to elevated  
temperatures of the tantalum / tantalum oxide / manganese  
dioxide system make solid tantalum capacitors an  
appropriate choice for today's surface mount assembly  
technology.  
Vishay Sprague has been a pioneer and leader in this field,  
producing a large variety of tantalum capacitor types for  
consumer, industrial, automotive, military, and aerospace  
electronic applications.  
Tantalum is not found in its pure state. Rather, it is  
commonly found in a number of oxide minerals, often in  
combination with Columbium ore. This combination is  
known as “tantalite” when its contents are more than  
one-half tantalum. Important sources of tantalite include  
Australia, Brazil, Canada, China, and several African  
countries. Synthetic tantalite concentrates produced from  
tin slags in Thailand, Malaysia, and Brazil are also a  
significant raw material for tantalum production.  
Electronic applications, and particularly capacitors,  
consume the largest share of world tantalum production.  
Other important applications for tantalum include cutting  
tools (tantalum carbide), high temperature super alloys,  
chemical processing equipment, medical implants, and  
military ordnance.  
COMPARISON OF CAPACITOR  
DIELECTRIC CONSTANTS  
e
DIELECTRIC  
DIELECTRIC CONSTANT  
Air or vacuum  
Paper  
1.0  
2.0 to 6.0  
2.1 to 6.0  
2.2 to 2.3  
2.7 to 2.8  
3.8 to 4.4  
4.8 to 8.0  
5.1 to 5.9  
5.4 to 8.7  
8.4  
Plastic  
Mineral oil  
Silicone oil  
Quartz  
Glass  
Vishay Sprague is a major user of tantalum materials in the  
form of powder and wire for capacitor elements and rod and  
sheet for high temperature vacuum processing.  
Porcelain  
Mica  
Aluminum oxide  
Tantalum pentoxide  
Ceramic  
THE BASICS OF TANTALUM CAPACITORS  
26  
Most metals form crystalline oxides which are  
non-protecting, such as rust on iron or black oxide on  
copper. A few metals form dense, stable, tightly adhering,  
electrically insulating oxides. These are the so-called  
“valve”metals and include titanium, zirconium, niobium,  
tantalum, hafnium, and aluminum. Only a few of these  
permit the accurate control of oxide thickness by  
electrochemical means. Of these, the most valuable for the  
electronics industry are aluminum and tantalum.  
Capacitors are basic to all kinds of electrical equipment,  
from radios and television sets to missile controls and  
automobile ignitions. Their function is to store an electrical  
charge for later use.  
12 to 400K  
In the tantalum electrolytic capacitor, the distance between  
the plates is very small since it is only the thickness of the  
tantalum pentoxide film. As the dielectric constant of the  
tantalum pentoxide is high, the capacitance of a tantalum  
capacitor is high if the area of the plates is large:  
eA  
t
------  
C =  
where  
C = capacitance  
Capacitors consist of two conducting surfaces, usually  
metal plates, whose function is to conduct electricity. They  
are separated by an insulating material or dielectric. The  
dielectric used in all tantalum electrolytic capacitors is  
tantalum pentoxide.  
Tantalum pentoxide compound possesses high-dielectric  
strength and a high-dielectric constant. As capacitors are  
being manufactured, a film of tantalum pentoxide is applied  
to their electrodes by means of an electrolytic process. The  
film is applied in various thicknesses and at various voltages  
and although transparent to begin with, it takes on different  
colors as light refracts through it. This coloring occurs on the  
tantalum electrodes of all types of tantalum capacitors.  
e = dielectric constant  
A = surface area of the dielectric  
t = thickness of the dielectric  
Tantalum capacitors contain either liquid or solid  
electrolytes. In solid electrolyte capacitors, a dry material  
(manganese dioxide) forms the cathode plate. A tantalum  
lead is embedded in or welded to the pellet, which is in turn  
connected to a termination or lead wire. The drawings show  
the construction details of the surface mount types of  
tantalum capacitors shown in this catalog.  
Revision: 29-Apr-2021  
Document Number: 40074  
1
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
SOLID ELECTROLYTE TANTALUM CAPACITORS  
TANTALUM CAPACITORS FOR ALL DESIGN  
CONSIDERATIONS  
Solid electrolyte capacitors contain manganese dioxide,  
which is formed on the tantalum pentoxide dielectric layer  
by impregnating the pellet with a solution of manganous  
nitrate. The pellet is then heated in an oven, and the  
manganous nitrate is converted to manganese dioxide.  
Solid electrolyte designs are the least expensive for a given  
rating and are used in many applications where their very  
small size for a given unit of capacitance is of importance.  
They will typically withstand up to about 10 % of the rated  
DC working voltage in a reverse direction. Also important  
are their good low temperature performance characteristics  
and freedom from corrosive electrolytes.  
The pellet is next coated with graphite, followed by a layer  
of metallic silver, which provides a conductive surface  
between the pellet and the leadframe.  
Vishay Sprague patented the original solid electrolyte  
capacitors and was the first to market them in 1956. Vishay  
Sprague has the broadest line of tantalum capacitors and  
has continued its position of leadership in this field. Data  
sheets covering the various types and styles of Vishay  
Sprague capacitors for consumer and entertainment  
electronics, industry, and military applications are available  
where detailed performance characteristics must be  
specified.  
Molded Chip tantalum capacitor encases the element in  
plastic resins, such as epoxy materials. The molding  
compound has been selected to meet the requirements of  
UL 94 V-0 and outgassing requirements of ASTM E-595.  
After assembly, the capacitors are tested and inspected to  
assure long life and reliability. It offers excellent reliability  
and high stability for consumer and commercial electronics  
with the added feature of low cost  
Surface mount designs of “Solid Tantalum” capacitors use  
lead frames or lead frameless designs as shown in the  
accompanying drawings.  
MOLDED CHIP CAPACITOR  
Epoxy  
Encapsulation  
Silver  
Adhesive  
Anode  
Polarity Bar  
MnO2/Carbon/  
Silver Coating  
Solderable Anode  
Solderable  
Cathode  
Leadframe  
Termination  
Sintered  
Tantalum  
Termination  
Revision: 29-Apr-2021  
Document Number: 40074  
2
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
COMMERCIAL PRODUCTS  
SOLID TANTALUM CAPACITORS - MOLDED CASE  
793DX-CTC3-  
SERIES  
293D  
593D  
TR3  
TP3  
TL3  
CTC4  
PRODUCT IMAGE  
TYPE  
Surface mount TANTAMOUNT™, molded case  
Standard  
industrial grade  
High performance,  
automotive grade  
FEATURES  
CECC approved  
Low ESR  
Low ESR  
Very low DCL  
TEMPERATURE  
RANGE  
-55 °C to +125 °C  
CAPACITANCE  
RANGE  
0.1 μF to 470  
μF  
0.1 μF to 1000 μF 0.1 μF to 100 μF  
1 μF to 470 μF  
4 V to 50 V  
0.47 μF to 1000 μF 0.1 μF to 470 μF  
VOLTAGE RANGE  
4 V to 75 V  
4 V to 50 V  
4 V to 75 V  
4 V to 50 V  
4 V to 50 V  
CAPACITANCE  
TOLERANCE  
10 %, 20 %  
0.005 CV or  
0.25 ꢀA,  
whichever is  
greater  
LEAKAGE  
CURRENT  
0.01 CV or 0.5 ꢀA, whichever is greater  
DISSIPATION  
FACTOR  
CASE CODES  
TERMINATION  
4 % to 30 %  
A, B, C, D, E  
4 % to 6 %  
A, B, C, D  
4 % to 15 %  
A, B, C, D, E  
4 % to 30 %  
A, B, C, D, E, W  
4 % to 15 %  
A, B, C, D, E  
4 % to 15 %  
A, B, C, D, E  
100 % matte tin standard, tin / lead available  
SOLID TANTALUM CAPACITORS - MOLDED CASE  
SERIES  
TH3  
TH4  
TH5  
PRODUCT IMAGE  
TYPE  
Surface mount TANTAMOUNT™, molded case  
High temperature +150 °C,  
automotive grade  
High temperature +175 °C,  
automotive grade  
FEATURES  
Very high temperature +200 °C  
-55 °C to +200 °C  
TEMPERATURE  
RANGE  
-55 °C to +150 °C  
-55 °C to +175 °C  
CAPACITANCE  
RANGE  
VOLTAGE RANGE  
0.33 μF to 220 μF  
6.3 V to 50 V  
10 μF to 100 μF  
6.3 V to 35 V  
4.7 μF to 100 μF  
5 V to 24 V  
CAPACITANCE  
TOLERANCE  
10 %, 20 %  
LEAKAGE  
CURRENT  
0.01 CV or 0.5 ꢀA, whichever is greater  
DISSIPATION  
FACTOR  
4 % to 8 %  
A, B, C, D, E  
4.5 % to 8 %  
B, C, D, E  
6 % to 10 %  
D, E  
CASE CODES  
100 % matte tin standard,  
tin / lead and gold plated available  
TERMINATION  
100 % matte tin  
Gold plated  
Revision: 29-Apr-2021  
Document Number: 40074  
3
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
HIGH RELIABILITY PRODUCTS  
SOLID TANTALUM CAPACITORS - MOLDED CASE  
SERIES  
TM3  
T83  
CWR11  
95158  
PRODUCT  
IMAGE  
TANTAMOUNT™,  
molded case,  
hi-rel. COTS  
TANTAMOUNT™,  
molded case, hi-rel.  
TANTAMOUNT™, molded case,  
DLA approved  
TYPE  
High reliability,  
for medical Instruments  
High reliability,  
standard and low ESR  
FEATURES  
MIL-PRF-55365/8 qualified  
Low ESR  
TEMPERATURE  
RANGE  
-55 °C to +125 °C  
CAPACITANCE  
1 μF to 220 μF  
4 V to 20 V  
0.1 μF to 470 μF  
4 V to 63 V  
0.1 μF to 100 μF  
4.7 μF to 220 μF  
10 %, 20 %  
RANGE  
VOLTAGE RANGE  
4 V to 50 V  
CAPACITANCE  
TOLERANCE  
10 %, 20 %  
5 %, 10 %, 20 %  
LEAKAGE  
CURRENT  
0.005 CV or 0.25 μA,  
whichever is greater  
0.01 CV or 0.5 ꢀA, whichever is greater  
DISSIPATION  
4 % to 8 %  
A, B, C, D, E  
4 % to 15 %  
A, B, C, D, E  
4 % to 6 %  
A, B, C, D  
4 % to 12 %  
C, D, E  
FACTOR  
CASE CODES  
TERMINATION  
100 % matte tin;  
tin / lead;  
tin / lead solder fused  
100 % matte tin;  
tin / lead  
Tin / lead;  
tin / lead solder fused  
Tin / lead solder plated;  
gold plated  
Revision: 29-Apr-2021  
Document Number: 40074  
4
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
PLASTIC TAPE AND REEL PACKAGING in inches [millimeters]  
0.157 0.004  
[4.0 0.10]  
10 pitches cumulative  
tolerance on tape  
0.008 [0.200]  
Tape thickness  
0.014  
[0.35]  
MAX.  
Deformation  
between  
embossments  
0.059 + 0.004 - 0.0  
[1.5 + 0.10 - 0.0]  
0.069 0.004  
[1.75 0.10]  
0.079 0.002  
Embossment  
[2.0 0.05]  
Top  
cover  
tape  
A0  
20°  
0.030 [0.75]  
MIN. (Note 3)  
F
W
Maximum  
component  
rotation  
B1 MAX.  
(Note 6)  
K0  
B0  
Top  
0.030 [0.75]  
cover  
tape  
MIN. (Note 4)  
(Side or front sectional view)  
0.004 [0.1]  
MAX.  
Center lines  
of cavity  
P1  
For tape feeder  
reference only  
including draft.  
Concentric around B  
(Note 5)  
D
1 MIN. for components  
0.079 x 0.047 [2.0 x 1.2] and larger.  
(Note 5)  
USER DIRECTION OF FEED  
Maximum  
cavity size  
(Note 1)  
0
Cathode (-)  
Anode (+)  
Direction of Feed  
Tape and Reel Specifications: all case sizes are available  
on plastic embossed tape per EIA-481. Standard reel  
diameter is 7" [178 mm], 13" [330 mm] reels are available and  
recommended as the most cost effective packaging method.  
3.937 [100.0]  
0.039 [1.0]  
MAX.  
20° maximum  
component rotation  
Typical  
component  
cavity  
Tape  
B0  
0.039 [1.0]  
MAX.  
center line  
The most efficient packaging quantities are full reel  
increments on a given reel diameter. The quantities shown  
allow for the sealed empty pockets required to be in  
conformance with EIA-481. Reel size and packaging  
orientation must be specified in the Vishay Sprague part  
number.  
0.9843 [250.0]  
Typical  
component  
center line  
Camber  
(top view)  
A0  
Allowable camber to be 0.039/3.937 [1/100]  
non-cumulative over 9.843 [250.0]  
(Top view)  
Notes  
(1)  
Metric dimensions will govern. Dimensions in inches are rounded and for reference only  
A0, B0, K0, are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body  
dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the  
cavity (A0, B0, K0) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent  
rotation of the component within the cavity of not more than 20°  
(2)  
(3)  
(4)  
(5)  
(6)  
Tape with components shall pass around radius “R” without damage. The minimum trailer length may require additional length to provide  
“R” minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum  
This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed  
cavities or to the edge of the cavity whichever is less  
This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier  
tape between the embossed cavity or to the edge of the cavity whichever is less  
The embossed hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of  
embossment location shall be applied independent of each other  
B1 dimension is a reference dimension tape feeder clearance only  
CASE  
CODE  
TAPE  
SIZE  
B1  
(MAX.)  
D1  
(MIN.)  
K0  
(MAX.)  
F
P1  
W
MOLDED CHIP CAPACITORS; ALL TYPES  
A
B
C
D
E
0.165  
[4.2]  
0.039  
[1.0]  
0.138 0.002  
[3.5 0.05]  
0.094  
[2.4]  
0.157 0.004  
[4.0 1.0]  
0.315 0.012  
[8.0 0.30]  
8 mm  
0.32  
[8.2]  
0.059  
[1.5]  
0.217 0.00  
[5.5 0.05]  
0.177  
[4.5]  
0.315 0.004  
[8.0 1.0]  
0.472 0.012  
[12.0 0.30]  
12 mm  
W
Revision: 29-Apr-2021  
Document Number: 40074  
5
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
RECOMMENDED REFLOW PROFILES  
Capacitors should withstand reflow profile as per J-STD-020 standard, three cycles.  
Tp  
TC - 5 °C  
tp  
Max. ramp-up rate = 3 °C/s  
Max. ramp-down rate = 6 °C/s  
TL  
tL  
Ts max.  
Preheat area  
Ts min.  
ts  
25  
Time 25 °C to peak  
TIME (s)  
PROFILE FEATURE  
Preheat / soak  
SnPb EUTECTIC ASSEMBLY  
LEAD (Pb)-FREE ASSEMBLY  
Temperature min. (Ts min.  
)
100 °C  
150 °C  
150 °C  
200 °C  
Temperature max. (Ts max.  
)
Time (ts) from (Ts min. to Ts max.  
Ramp-up  
)
60 s to 120 s  
60 s to 120 s  
Ramp-up rate (TL to Tp)  
Liquidus temperature (TL)  
Time (tL) maintained above TL  
3 °C/s max.  
183 °C  
3 °C/s max.  
217 °C  
60 s to 150 s  
60 s to 150 s  
Peak package body temperature (Tp)  
Depends on case size - see table below  
Time (tp) within 5 °C of the specified  
classification temperature (TC)  
20 s  
30 s  
Time 25 °C to peak temperature  
Ramp-down  
6 min max.  
8 min max.  
Ramp-down rate (Tp to TL)  
6 °C/s max.  
6 °C/s max.  
PEAK PACKAGE BODY TEMPERATURE (Tp)  
PEAK PACKAGE BODY TEMPERATURE (Tp)  
CASE CODE  
SnPb EUTECTIC PROCESS  
235 °C  
LEAD (Pb)-FREE PROCESS  
260 °C  
250 °C  
A, B, C  
D, E, W  
220 °C  
PAD DIMENSIONS in inches [millimeters]  
D
C
B
A
A
B
C
D
CASE CODE  
(MIN.)  
(NOM.)  
(NOM.)  
(NOM.)  
MOLDED CHIP CAPACITORS, ALL TYPES  
A
B
C
D
E
0.071 [1.80]  
0.118 [3.00]  
0.118 [3.00]  
0.157 [4.00]  
0.157 [4.00]  
0.185 [4.70]  
0.067 [1.70]  
0.071 [1.80]  
0.094 [2.40]  
0.098 [2.50]  
0.098 [2.50]  
0.098 [2.50]  
0.053 [1.35]  
0.065 [1.65]  
0.118 [3.00]  
0.150 [3.80]  
0.150 [3.80]  
0.150 [3.80]  
0.187 [4.75]  
0.207 [5.25]  
0.307 [7.80]  
0.346 [8.80]  
0.346 [8.80]  
0.346 [8.80]  
W
Revision: 29-Apr-2021  
Document Number: 40074  
6
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Molded Guide  
Vishay Sprague  
www.vishay.com  
GUIDE TO APPLICATION  
1.  
AC Ripple Current: the maximum allowable ripple  
current shall be determined from the formula:  
be established when calculating permissible  
operating levels. (Power dissipation calculated using  
+25 °C temperature rise).  
P
RESR  
IRMS  
=
------------  
6.  
Printed Circuit Board Materials: molded capacitors  
are compatible with commonly used printed circuit  
board materials (alumina substrates, FR4, FR5, G10,  
PTFE-fluorocarbon and porcelanized steel).  
where,  
P =  
power dissipation in W at +25 °C as given in  
the tables in the product datasheets (Power  
Dissipation).  
7.  
Attachment:  
7.1  
Solder Paste: the recommended thickness of the  
RESR = the capacitor equivalent series resistance at  
the specified frequency  
solder paste after application is 0.007"  
0.001"  
[0.178 mm 0.025 mm]. Care should be exercised in  
selecting the solder paste. The metal purity should be  
as high as practical. The flux (in the paste) must be  
active enough to remove the oxides formed on the  
metallization prior to the exposure to soldering heat. In  
practice this can be aided by extending the solder  
preheat time at temperatures below the liquidous  
state of the solder.  
2.  
AC Ripple Voltage: the maximum allowable ripple  
voltage shall be determined from the formula:  
VRMS = IRMS x Z  
or, from the formula:  
P
7.2  
Soldering: capacitors can be attached by  
conventional soldering techniques; vapor phase,  
convection reflow, infrared reflow, wave soldering,  
and hot plate methods. The soldering profile charts  
show recommended time / temperature conditions  
for soldering. Preheating is recommended. The  
recommended maximum ramp rate is 2 °C per s.  
VRMS = Z ------------  
RESR  
where,  
P =  
power dissipation in W at +25 °C as given in  
the tables in the product datasheets (Power  
Dissipation).  
Attachment with  
a
soldering iron is not  
RESR = the capacitor equivalent series resistance at  
the specified frequency  
recommended due to the difficulty of controlling  
temperature and time at temperature. The soldering  
iron must never come in contact with the capacitor.  
For details see www.vishay.com/doc?40214.  
Z =  
the capacitor impedance at the specified  
frequency  
2.1  
2.2  
The sum of the peak AC voltage plus the applied DC  
voltage shall not exceed the DC voltage rating of the  
capacitor.  
The sum of the negative peak AC voltage plus the  
applied DC voltage shall not allow a voltage reversal  
exceeding 10 % of the DC working voltage at  
+25 °C.  
7.2.1 Backward and Forward Compatibility: capacitors  
with SnPb or 100 % tin termination finishes can be  
soldered using SnPb or lead (Pb)-free soldering  
processes.  
8.  
Cleaning (Flux Removal) After Soldering: molded  
capacitors are compatible with all commonly used  
solvents such as TES, TMS, Prelete, Chlorethane,  
Terpene and aqueous cleaning media. However,  
CFC / ODS products are not used in the production  
of these devices and are not recommended.  
Solvents containing methylene chloride or other  
epoxy solvents should be avoided since these will  
attack the epoxy encapsulation material.  
3.  
4.  
Reverse Voltage: solid tantalum capacitors are not  
intended for use with reverse voltage applied.  
However, they have been shown to be capable of  
withstanding momentary reverse voltage peaks of up  
to 10 % of the DC rating at 25 °C and 5 % of the DC  
rating at +85 °C.  
8.1  
9.  
When using ultrasonic cleaning, the board may  
resonate if the output power is too high. This  
vibration can cause cracking or a decrease in the  
adherence of the termination. DO NOT EXCEED 9W/l  
at 40 kHz for 2 min.  
Temperature Derating: if these capacitors are to be  
operated at temperatures above +25 °C, the  
permissible RMS ripple current shall be calculated  
using the derating factors as shown:  
TEMPERATURE (°C)  
DERATING FACTOR  
Recommended Mounting Pad Geometries: proper  
mounting pad geometries are essential for  
successful solder connections. These dimensions  
are highly process sensitive and should be designed  
to minimize component rework due to unacceptable  
solder joints. The dimensional configurations shown  
are the recommended pad geometries for both wave  
and reflow soldering techniques. These dimensions  
are intended to be a starting point for circuit board  
designers and may be fine tuned if necessary based  
upon the peculiarities of the soldering process and /  
or circuit board design.  
+25  
+85  
+125  
+150 (1)  
+175 (1)  
+200 (1)  
1.0  
0.9  
0.4  
0.3  
0.2  
0.1  
Note  
(1) Applicable for dedicated high temperature product series  
5.  
Power Dissipation: power dissipation will be  
affected by the heat sinking capability of the  
mounting surface. Non-sinusoidal ripple current may  
produce heating effects which differ from those  
shown. It is important that the equivalent IRMS value  
Revision: 29-Apr-2021  
Document Number: 40074  
7
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Typical Performance Characteristics  
www.vishay.com  
Vishay Sprague  
Molded Chip Tantalum Capacitors, Automotive Grade  
ELECTRICAL PERFORMANCE CHARACTERISTICS  
ITEM  
PERFORMANCE CHARACTERISTICS  
-55 °C to +85 °C  
Category temperature range  
(to +125 °C / +150 °C / +175 °C with voltage derating - refer to graph “Category Voltage vs. Temperature”) (1)  
Capacitance tolerance  
Dissipation factor  
ESR  
20 %, 10 %, tested via bridge method, at 25 °C, 120 Hz  
Limits per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hz  
Limits per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHz  
Leakage current  
After application of rated voltage applied to capacitors for 5 min using a steady source of power with 1 kΩ  
resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or 0.5 μA,  
whichever is greater. Note that the leakage current varies with temperature and applied voltage. See graph  
“Typical Leakage Current Temperature Factor” for the appropriate adjustment factor.  
Capacitance change by  
temperature  
+30 % max. (at +175 °C)  
+20 % max. (at +125 °C and +150 °C)  
+10 % max. (at +85 °C)  
-10 % max. (at -55 °C)  
Reverse voltage  
Ripple current  
Capacitors are capable of withstanding peak voltages in the reverse direction equal to:  
10 % of the DC rating at +25 °C  
5 % of the DC rating at +85 °C  
1 % of the DC rating at +125 °C  
For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used at  
temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the  
derating factors:  
1.0 at +25 °C  
0.9 at +85 °C  
0.4 at +125 °C  
0.3 at +150 °C  
0.2 at +175 °C  
Maximum operating  
and surge voltages vs.  
temperature  
+85 °C  
+125 °C  
+150 °C / +175 °C  
CATEGORY  
VOLTAGE  
(V)  
CATEGORY  
VOLTAGE  
(V)  
RATED VOLTAGE SURGE VOLTAGE  
SURGE VOLTAGE  
(V)  
(V)  
(V)  
4
6.3  
10  
5.2  
8
2.7  
4
3.4  
5
n/a  
3
13  
20  
26  
32  
46  
65  
60  
75  
75  
7
8
5
16  
10  
13  
17  
23  
33  
33  
42  
50  
12  
16  
20  
28  
40  
40  
50  
50  
8
20  
10  
25  
12.5  
17.5  
25  
35  
50  
50 (2)  
63  
n/a  
n/a  
n/a  
75 (3)  
Notes  
All information presented in this document reflects typical performance characteristics  
Series TH3 - up to 150 °C; TH4 - up to 175 °C  
Capacitance value 15 μF and higher  
(1)  
(2)  
(3)  
For 293D and TR3 only  
Revision: 22-Jul-2020  
Document Number: 40215  
1
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Typical Performance Characteristics  
www.vishay.com  
Vishay Sprague  
RECOMMENDED VOLTAGE DERATING GUIDELINES (for temperature below +85 °C)  
VOLTAGE RAIL  
CAPACITOR VOLTAGE RATING  
3.3  
5
6.3  
10  
10  
20  
12  
25  
15  
35  
24  
50 or series configuration  
Notes  
For temperatures above +85 °C the same voltage derating ratio is recommended, but with respect to category voltage.  
Up to +85 °C: category voltage = rated voltage  
At +125 °C: category voltage = 2/3 of rated voltage  
At 150 °C / 175 °C: category voltage = 1/2 of rated voltage  
For more information about recommended voltage derating see: www.vishay.com/doc?40246  
CATEGORY VOLTAGE VS. TEMPERATURE  
Axis Title  
10000  
1.0  
0.8  
1000  
0.6  
0.4  
100  
0.2  
0
10  
-55  
0
25  
85  
125  
150  
175  
Temperature (°C)  
Note  
Below 85 °C category voltage is equal to rated voltage  
TYPICAL LEAKAGE CURRENT FACTOR  
Axis Title  
100  
10000  
1000  
100  
10  
+175 °C  
+150 °C  
+125 °C  
1
85 °C  
+55 °C  
0.1  
+25 °C  
0.01  
0 °C  
-55 °C  
0.001  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Percent of Rated Voltage  
Note  
At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.  
At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.  
At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.  
At +150 °C, the leakage current shall not exceed 15 times the value listed in the Standard Ratings table.  
At +175 °C, the leakage current shall not exceed 18 times the value listed in the Standard Ratings table  
Revision: 22-Jul-2020  
Document Number: 40215  
2
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Typical Performance Characteristics  
www.vishay.com  
Vishay Sprague  
ENVIRONMENTAL PERFORMANCE CHARACTERISTICS  
ITEM  
CONDITION  
POST TEST PERFORMANCE  
High temperature  
exposure (storage)  
MIL-STD-202, method 108  
1000 h, at maximum rated temperature,  
unpowered  
Capacitance change  
Dissipation factor  
Leakage current  
ESR  
Within 20 % of initial value  
Initial specified limit  
Initial specified limit  
Initial specified limit  
Operational life test  
at +125 °C  
AEC-Q200  
1000 h application 2/3 of rated voltage  
Capacitance change  
Dissipation factor  
Leakage current  
ESR  
Within 20 % of initial value  
Initial specified limit  
Shall not exceed 10 times the initial limit  
Initial specified limit  
Operational life test  
at +150 °C (for TH3)  
and at +175 °C  
(for TH4)  
AEC-Q200  
1000 h application 1/2 of rated voltage  
Capacitance change  
Dissipation factor  
Leakage current  
ESR  
Within 20 % of initial value  
Shall not exceed 3 times the initial limit  
Shall not exceed 10 times the initial limit  
Shall not exceed 3 times the initial limit  
Surge voltage  
MIL-PRF-55365:  
Capacitance change  
Dissipation factor  
Leakage current  
ESR  
Within 30 % of initial value  
1000 successive test cycles at 85 °C of surge  
voltage (as specified in the table above), in  
series with a 33 Ω resistor at the rate of  
30 s ON, 30 s OFF  
Shall not exceed 1.5 times the initial limit  
Shall not exceed 2 times the initial limit  
Shall not exceed 1.5 times the initial limit  
Biased humidity test AEC-Q200  
At 85 °C / 85 % RH, 1000 h,  
Capacitance change  
Dissipation factor  
Leakage current  
ESR  
Within 20 % of initial value  
Shall not exceed 3 times the initial limit  
Shall not exceed 10 times the initial limit  
Shall not exceed 3 times the initial limit  
with rated voltage applied  
Temperature cycling AEC-Q200 / JESD22, method JA-104  
-55 °C / +125 °C, for 1000 cycles  
Capacitance change  
Dissipation factor  
Leakage current  
ESR  
Within 20 % of initial value  
Initial specified limit  
Initial specified limit  
Initial specified limit  
MECHANICAL PERFORMANCE CHARACTERISTICS  
ITEM  
CONDITION  
POST TEST PERFORMANCE  
Vibration  
MIL-STD-202, method 204: 10 Hz to 2000 Hz, 5 g  
peak for 20 min, 12 cycles each of 3 orientations  
(total 36 cycles), at rated voltage  
Capacitance change  
Dissipation factor  
Leakage current  
Within 20 % of initial value  
Initial specified limit  
Initial specified limit  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Mechanical shock  
MIL-STD-202, method 213, condition F, 1500 g peak,  
0.5 ms, half-sine  
Capacitance change  
Dissipation factor  
Leakage current  
Within 20 % of initial value  
Initial specified limit  
Initial specified limit  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Resistance  
to solder heat  
MIL-STD-202, method 210, condition D  
Solder dip 260 °C 5 °C, 10 s  
Capacitance change  
Dissipation factor  
Leakage current  
Within 20 % of initial value  
Initial specified limit  
Initial specified limit  
Resistance to  
solvents  
MIL-STD-202, method 215  
Capacitance change  
Dissipation factor  
Leakage current  
Within 20 % of initial value  
Initial specified limit  
Initial specified limit  
There shall be no mechanical or visual damage to  
capacitors post-conditioning.  
Body marking shall remain legible.  
Solderability  
AEC-Q200 / J-STD-002  
Electrical test not required  
Terminal strength /  
Shear force test  
AEC-Q200-006  
Part should not be sheared off the pads and no body  
cracking post-conditioning. Electrical test not required.  
Apply a pressure load of 17.7 N (1.8 kg) for 60 s  
horizontally to the center of capacitor side body  
Exception: for case size 0603 pressure load is 5N  
Flammability  
Encapsulation materials meet UL 94 V-0 with an  
oxygen index of 32 %  
n/a  
Revision: 22-Jul-2020  
Document Number: 40215  
3
For technical questions, contact: tantalum@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product  
with the properties described in the product specification is suitable for use in a particular application. Parameters provided in  
datasheets and / or specifications may vary in different applications and performance may vary over time. All operating  
parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.  
Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited  
to the warranty expressed therein.  
Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and  
for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of  
any of the products, services or opinions of the corporation, organization or individual associated with the third-party website.  
Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website  
or for that of subsequent links.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please  
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 09-Jul-2021  
Document Number: 91000  
1

相关型号:

TH3A105M025F5200

CAP TANT 1UF 25V 20% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A105M035C6600

CAP TANT 1UF 35V 20% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A105M035D6600

CAP TANT 1UF 35V 20% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A105M035E6600

CAP TANT 1UF 35V 20% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A105M035F6600

CAP TANT 1UF 35V 20% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A106K010C3400

CAP TANT 10UF 10V 10% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A106K010D3400

CAP TANT 10UF 10V 10% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A106K010E3400

CAP TANT 10UF 10V 10% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A106K010F3400

CAP TANT 10UF 10V 10% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A106K6R3C2700

CAP TANT 10UF 6.3V 10% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A106K6R3D2700

CAP TANT 10UF 6.3V 10% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TH3A106K6R3E2700

CAP TANT 10UF 6.3V 10% 1206

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY