TSOP14836 [VISHAY]

Photo IC;
TSOP14836
型号: TSOP14836
厂家: VISHAY    VISHAY
描述:

Photo IC

文件: 总8页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSOP148..  
Vishay Semiconductors  
IR Receiver Modules for Remote Control Systems  
Description  
The TSOP148.. - series are miniaturized receivers for  
infrared remote control systems. PIN diode and  
preamplifier are assembled on lead frame, the epoxy  
package is designed as IR filter.  
The demodulated output signal can directly be  
decoded by a microprocessor. TSOP148.. is the stan-  
dard IR remote control receiver series, supporting all  
major transmission codes.  
1
2
3
16672  
Features  
Mechanical Data  
• Photo detector and preamplifier in one  
package  
Pinning: 1 = Out, 2 = GND, 3 = Vs  
• Internal filter for PCM frequency  
• Improved shielding against electrical  
field disturbance  
• TTL and CMOS compatibility  
• Output active low  
• Low power consumption  
Parts Table  
e3  
Part  
Carrier Frequency  
TSOP14833  
TSOP14836  
TSOP14838  
TSOP14840  
33 kHz  
36 kHz  
38 kHz  
40 kHz  
• Improved immunity against ambient light  
• Suitable burst length 10 cycles/burst  
• Lead (Pb)-free component  
• Component in accordance to RoHS 2002/95/EC  
and WEEE 2002/96/EC  
Block Diagram  
Application Circuit  
16833_3  
16842-6  
R1 = 100 Ω  
3
Transmitter  
with  
TSALxxxx  
TSOPxxxxx  
VS  
V S  
+ VS  
C1  
=
35 kΩ  
4.7 µF  
1
µC  
OUT  
OUT  
VO  
Band  
Pass  
Demo-  
dulator  
Input  
AGC  
GND  
GND  
2
R1 + C1 recommended to suppress power supply  
disturbances.  
PIN  
Control Circuit  
GND  
The output voltage should not be hold continuously at  
=
a voltage below VO 3.5 V by the external circuit.  
Document Number 81456  
Rev. 1.0, 07-Sep-06  
www.vishay.com  
1
TSOP148..  
Vishay Semiconductors  
Absolute Maximum Ratings  
Absolute Maximum Ratings  
Tamb = 25 °C, unless otherwise specified  
Parameter  
Test condition  
Symbol  
VS  
Value  
Unit  
V
Supply Voltage  
(Pin 3)  
(Pin 3)  
(Pin 1)  
(Pin 1)  
- 0.3 to + 6.0  
Supply Current  
IS  
VO  
3
- 0.3 to VS  
5
mA  
V
Output Voltage  
Output Current  
IO  
mA  
°C  
Junction Temperature  
Storage Temperature Range  
Operating Temperature Range  
Power Consumption  
Soldering Temperature  
Tj  
100  
Tstg  
Tamb  
Ptot  
Tsd  
- 25 to + 85  
- 25 to + 85  
30  
°C  
°C  
(Tamb 85 °C)  
mW  
°C  
t 10 s, 1 mm from case  
260  
Electrical and Optical Characteristics  
Tamb = 25 °C, unless otherwise specified  
Parameter  
Test condition  
VS = 5 V, Ev = 0  
S = 5 V, Ev = 40 klx, sunlight  
Symbol  
Min  
0.8  
Typ.  
1.0  
Max  
1.5  
Unit  
mA  
Supply Current (Pin 3)  
ISD  
ISH  
VS  
d
V
1.5  
mA  
V
Supply Voltage  
4.5  
5.5  
Transmission Distance  
Ev = 0, test signal see fig. 1,  
35  
m
IR diode TSAL6200,  
IF = 250 mA  
IOSL = 0.5 mA, Ee = 0.7 mW/m2,  
test signsl see fig. 1  
Output Voltage Low (Pin 1)  
Minimum Irradiance (38 kHz)  
VOSL  
250  
mV  
mW/m2  
Pulse width tolerance:  
Ee min  
0.15  
45  
0.35  
t
pi - 8/fo < tpo < tpi + 6/fo,  
test signal see fig. 1  
tpi - 8/fo < tpo < tpi + 6/fo,  
test signal see fig. 1  
W/m2  
deg  
Maximum Irradiance  
Directivity  
Ee max  
30  
Angle of half transmission  
distance  
ϕ1/2  
www.vishay.com  
2
Document Number 81456  
Rev. 1.0, 07-Sep-06  
TSOP148..  
Vishay Semiconductors  
Typical Characteristics  
Tamb = 25 °C unless otherwise specified  
Optical Test Signal  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
E
e
(IR diode TSAL6200,I = 0.4 A, 15 pulses, f = f , T = 10 ms)  
F
0
Ton  
Toff  
t
t
*
pi  
T
* t  
pi  
10/fo is recommended for optimal function  
Output Signal  
V
O
16110_1  
1)  
5/f < t < 15/f  
0
= 950 nm,  
optical test signal, fig. 3  
0
d
V
OH  
OL  
2)  
t
pi  
- 8/f < t < t + 6/f  
0
po  
pi  
0
V
0.1  
1
10  
100 1000 10 000 100 000  
2)  
1)  
t
t
t
d
po  
20166  
E - Irradiance (mW/m²)  
e
Figure 1. Output Function  
Figure 4. Output Pulse Diagram  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.7  
0.6  
0.5  
Output Pulse  
0.4  
0.3  
0.2  
0.1  
0
Input Burst Duration  
f = f  
f (3 dB) = f /10  
5 ꢀ  
0
0
= 950 nm,  
optical test signal, fig. 1  
0.1  
1
10 100 1000 10 000 100 000  
E - Irradiance (mW/m²)  
e
0.7  
0.9  
1.1  
1.3  
16925  
f/f - Relative Frequency  
0
20165  
Figure 2. Pulse Length and Sensitivity in Dark Ambient  
Figure 5. Frequency Dependence of Responsivity  
Optical Test Signal  
E
e
4.0  
Correlation with ambient light sources:  
3.5  
2
10 W/m  
10 W/m  
1.4 klx(Std.illum.A,T= 2855 K)  
8.2 klx(Daylight, T= 5900 K)  
2
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
t
600 µs  
600 µs  
T = 60 ms  
Output Signal, (see fig. 4)  
94 8134  
Ambient, = 950 nm  
V
O
V
OH  
OL  
V
t
T
on  
T
off  
0.01  
0.10  
1.00  
10.00  
100.00  
2
16911  
E - Ambient DC Irradiance (W/m )  
Figure 3. Output Function  
Figure 6. Sensitivity in Bright Ambient  
Document Number 81456  
Rev. 1.0, 07-Sep-06  
www.vishay.com  
3
TSOP148..  
Vishay Semiconductors  
0.5  
0.45  
0.4  
2.0  
f = f  
o
1.5  
0.35  
0.3  
f = 10 kHz  
1.0  
0.5  
0.0  
0.25  
0.2  
f = 1 kHz  
0.15  
0.1  
0.05  
f = 100 Hz  
0
- 30 - 10  
10  
30  
50  
70  
90  
0.1  
1.0  
10.0  
100.0  
1000.0  
T
amb  
- Ambient Temperature (°C)  
16912  
V
sRMS  
- AC Voltage on DC Supply Voltage (mV)  
20167  
Figure 7. Sensitivity vs. Supply Voltage Disturbances  
Figure 10. Sensitivity vs. Ambient Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
f(E) = f  
0
1.6  
1.2  
0.8  
0.4  
0.0  
2.0  
0.0  
0.4  
0.8  
1.2  
1.6  
750  
850  
950  
1050  
1150  
16919  
λ - Wavelength (nm)  
E - Field Strength of Disturbance (kV/m)  
94 8147  
Figure 8. Sensitivity vs. Electric Field Disturbances  
Figure 11. Relative Spectral Sensitivity vs. Wavelength  
0°  
10°  
20°  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
2
30°  
40°  
1.0  
0.9  
0.8  
50°  
60°  
0.2  
0.1  
0.0  
f = 38 kHz, E = 2 mW/m  
e
70°  
0.7  
80°  
0.6  
0.6 0.4 0.2  
0
0.2  
0.4  
0
20  
40  
60  
80  
100 120  
96 12223p2  
d
rel - Relative Transmission Distance  
16913  
Burst Length (number of cycles/burst)  
Figure 9. Max. Envelope Duty Cycle vs. Burstlength  
Figure 12. Directivity  
www.vishay.com  
Document Number 81456  
Rev. 1.0, 07-Sep-06  
4
TSOP148..  
Vishay Semiconductors  
Suitable Data Format  
The circuit of the TSOP148.. is designed in that way  
that unexpected output pulses due to noise or distur-  
bance signals are avoided. A bandpass filter, an inte-  
grator stage and an automatic gain control are used  
to suppress such disturbances.  
The distinguishing mark between data signal and dis-  
turbance signal are carrier frequency, burst length  
and duty cycle.  
IR Signal from fluorescent  
lamp with low modulation  
The data signal should fulfill the following conditions:  
• Carrier frequency should be close to center fre-  
quency of the bandpass (e.g. 38 kHz).  
0
5
10  
15  
20  
16920  
Time (ms)  
• Burst length should be 10 cycles/burst or longer.  
• After each burst which is between 10 cycles and  
70 cycles a gap time of at least 14 cycles is neces-  
sary.  
Figure 13. IR Signal from Fluorescent Lamp with low Modulation  
• For each burst which is longer than 1.8 ms a corre-  
sponding gap time is necessary at some time in the  
data stream. This gap time should be at least 4 times  
longer than the burst.  
IR Signal from fluorescent  
lamp with high modulation  
• Up to 800 short bursts per second can be received  
continuously.  
Some examples for suitable data format are: NEC  
Code (repetitive pulse), NEC Code (repetitive data),  
Toshiba Micom Format, Sharp Code, RC5 Code,  
RC6 Code, R-2000 Code, Sony Code.  
When a disturbance signal is applied to the  
TSOP148.. it can still receive the data signal. How-  
ever the sensitivity is reduced to that level that no  
unexpected pulses will occur.  
Some examples for such disturbance signals which  
are suppressed by the TSOP148.. are:  
0
5
10  
15  
20  
16921  
Time (ms)  
Figure 14. IR Signal from Fluorescent Lamp with high Modulation  
• DC light (e.g. from tungsten bulb or sunlight)  
• Continuous signal at 38 kHz or at any other  
frequency  
• Signals from fluorescent lamps with electronic  
ballast with high or low modulation  
(see Figure 13 or Figure 14).  
Document Number 81456  
Rev. 1.0, 07-Sep-06  
www.vishay.com  
5
TSOP148..  
Vishay Semiconductors  
Package Dimensions in mm  
16003  
www.vishay.com  
6
Document Number 81456  
Rev. 1.0, 07-Sep-06  
TSOP148..  
Vishay Semiconductors  
Ozone Depleting Substances Policy Statement  
It is the policy of Vishay Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating  
systems with respect to their impact on the health and safety of our employees and the public, as well as  
their impact on the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are  
known as ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs  
and forbid their use within the next ten years. Various national and international initiatives are pressing for an  
earlier ban on these substances.  
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use  
of ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments  
respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
We reserve the right to make changes to improve technical design  
and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each  
customer application by the customer. Should the buyer use Vishay Semiconductors products for any  
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all  
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal  
damage, injury or death associated with such unintended or unauthorized use.  
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Document Number 81456  
Rev. 1.0, 07-Sep-06  
www.vishay.com  
7
Legal Disclaimer Notice  
Vishay  
Notice  
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc.,  
or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.  
Information contained herein is intended to provide a product description only. No license, express or implied, by  
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's  
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express  
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness  
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.  
Customers using or selling these products for use in such applications do so at their own risk and agree to fully  
indemnify Vishay for any damages resulting from such improper use or sale.  
Document Number: 91000  
Revision: 08-Apr-05  
www.vishay.com  
1

相关型号:

TSOP14838

Photo IC
VISHAY

TSOP14A1003AC

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003AE

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003AR

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003AS

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003BC

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003BE

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003BR

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003BS

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003CC

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003CE

TSOP Series Ultra Precision Molded Resistor Networks
AAC

TSOP14A1003CR

TSOP Series Ultra Precision Molded Resistor Networks
AAC