TSOP75356VTR [VISHAY]

Photo IC;
TSOP75356VTR
型号: TSOP75356VTR
厂家: VISHAY    VISHAY
描述:

Photo IC

文件: 总12页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
IR Receiver Modules for Remote Control Systems  
FEATURES  
• Very low supply current  
• Photo detector and preamplifier in one  
package  
• Compatible also with short burst dataformats  
• Supply voltage: 2.5 V to 5.5 V  
4
• Improved immunity against ambient light  
3
• Capable of side or top view  
2
1
• Two lenses for high sensitivity and wide  
receiving angle  
• Insensitive to supply voltage ripple and noise  
20953  
• Narrow optical filter to reduce interference from plasma  
TV emissions  
• Compliant to RoHS Directive 2002/95/EC and in  
accordance to WEEE 2002/96/EC  
Note  
** Please see document “Vishay Material Category Policy”:  
www.vishay.com/doc?99902  
MECHANICAL DATA  
Pinning:  
1, 4 = GND, 2 = VS, 3 = OUT  
DESCRIPTION  
The TSOP753.., TSOP755.. series are  
a two lens  
miniaturized receiver module for infrared remote control  
systems. One PIN diode per lens and a preamplifier are  
assembled on a leadframe, the epoxy lens cap is designed  
as an IR filter.  
The demodulated output signal can be directly decoded by  
a microprocessor. The TSOP753.. is compatible with all  
common IR remote control data formats. It is optimized to  
suppress almost all spurious pulses from energy saving  
fluorescent lamps. The TSOP755.. has an excellent noise  
suppression. It is immune to dimmed LCD backlighting and  
any fluorescent lamps. AGC3 and AGC5 may also suppress  
some data signals in case of continuous transmission.  
This component has not been qualified according to  
automotive specifications.  
PARTS TABLE  
NOISY ENVIRONMENTS AND SHORT BURSTS  
VERY NOISY ENVIRONMENTS AND SHORT  
BURSTS (AGC5)  
CARRIER FREQUENCY  
(AGC3)  
30 kHz  
33 kHz  
36 kHz  
38 kHz  
40 kHz  
56 kHz  
TSOP75330  
TSOP75333  
TSOP75336  
TSOP75338  
TSOP75340  
TSOP75356  
TSOP75530  
TSOP75533  
TSOP75536  
TSOP75538  
TSOP75540  
TSOP75556  
BLOCK DIAGRAM  
APPLICATION CIRCUIT  
17170_7  
R1  
C1  
Transmitter  
with  
2
IR receiver  
VS  
+ VS  
GND  
VS  
TSALxxxx  
30 kΩ  
3
µC  
OUT  
GND  
OUT  
VO  
Band  
pass  
Demo-  
dulator  
Input  
AGC  
1, 4  
The external components R and C are optional  
1
1
PIN  
GND  
Control circuit  
to improve the robustness against electrical overstress  
(typical values are R = 100 Ω, C = 0.1 µF).  
1
1
20445-1  
The output voltage VO should not be pulled down to a level  
below 1 V by the external circuit.  
The capacitive load at the output should be less than 2 nF.  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
1
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
TEST CONDITION  
SYMBOL  
VALUE  
UNIT  
V
Supply voltage  
VS  
IS  
- 0.3 to + 6  
Supply current  
3
mA  
V
Output voltage  
VO  
IO  
- 0.3 to (VS + 0.3)  
Output current  
5
mA  
°C  
Junction temperature  
Storage temperature range  
Operating temperature range  
Power consumption  
Tj  
100  
Tstg  
Tamb  
Ptot  
- 25 to + 85  
- 25 to + 85  
10  
°C  
°C  
Tamb 85 °C  
mW  
Note  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.  
ELECTRICAL AND OPTICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)  
PARAMETER  
TEST CONDITION  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
V
Supply voltage  
VS  
ISD  
ISH  
2.5  
5.5  
Ev = 0, VS = 3.3 V  
0.27  
0.35  
0.45  
0.45  
mA  
mA  
Supply current  
Ev = 40 klx, sunlight  
Ev = 0, test signal see fig. 1,  
IR diode TSAL6200,  
IF = 250 mA  
OSL = 0.5 mA, Ee = 0.7 mW/m2,  
test signal see fig. 1  
Transmission distance  
Output voltage low  
Minimum irradiance  
d
45  
m
mV  
I
VOSL  
100  
Pulse width tolerance:  
tpi - 5/fo < tpo < tpi + 6/fo,  
test signal see fig. 1  
Ee min.  
0.15  
50  
0.35  
mW/m2  
tpi - 5/fo < tpo < tpi + 6/fo,  
test signal see fig. 1  
Maximum irradiance  
Directivity  
Ee max.  
30  
W/m2  
deg  
Angle of half transmission  
distance  
ϕ1/2  
TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)  
0.4  
Optical Test Signal  
(IR diode TSAL6200, IF = 0.4 A, N = 6 pulses, f = f0, t = 10 ms)  
Ee  
0.35  
0.3  
t
Output Pulse Width  
0.25  
0.2  
0.15  
0.1  
0.05  
0
tpi *)  
T
*) tpi 6/f is recommended for optimal function  
0
Input Burst Length  
Output Signal  
1) 3/f0 < td < 9/f0  
14337  
VO  
2)  
λ = 950 nm,  
optical test signal, fig. 1  
t
- 4/f0 < tpo < tpi + 6/f0  
pi  
VOH  
VOL  
0.1  
1
10  
100  
1000  
10 000  
1)  
2)  
t
td  
tpo  
20760  
Ee - Irradiance (mW/m²)  
Fig. 1 - Output Active Low  
Fig. 2 - Pulse Length and Sensitivity in Dark Ambient  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
2
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
Optical Test Signal  
4
3.5  
3
Ee  
Correlation with Ambient Light Sources:  
10 W/m² = 1.4 klx (Std. illum. A, T = 2855 K)  
10 W/m² = 8.2 klx (Daylight, T = 5900 K)  
Wavelength of Ambient  
Illumination: λ = 950 nm  
t
2.5  
2
600 µs  
600 µs  
t = 60 ms  
1.5  
1
94 8134  
Output Signal, (see fig. 4)  
VO  
VOH  
VOL  
0.5  
0
0.01  
0.1  
1
10  
100  
t
ton  
toff  
Ee - Ambient DC Irradiance (W/m²)  
20745  
Fig. 3 - Output Function  
Fig. 6 - Sensitivity in Bright Ambient  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
f = 100 Hz  
Ton  
f = 10 kHz  
f = 20 kHz  
Toff  
f = 30 kHz  
f = f0  
λ = 950 nm,  
Optical Test Signal, Fig. 3  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
10 000  
20744  
20746  
Δ VsRMS - AC Voltage on DC Supply Voltage (mV)  
Ee - Irradiance (mW/m²)  
Fig. 4 - Output Pulse Diagram  
Fig. 7 - Sensitivity vs. Supply Voltage Disturbances  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
f = f0 5 ꢀ  
Δ f(3 dB) = f0/10  
0
0.0  
0
500  
1000 1500 2000 2500 3000  
f - EMI Frequency (MHz)  
0.7  
0.9  
1.1  
1.3  
20747  
16925  
f/f - Relative Frequency  
0
Fig. 5 - Frequency Dependence of Responsivity  
Fig. 8 - Sensitivity vs. Electric Field Disturbances  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
3
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
0°  
10°  
20°  
30°  
40°  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
f = 38 kHz, Ee = 2 mW/m²  
1.0  
0.9  
50°  
60°  
0.8  
70°  
80°  
TSOP753..  
60  
TSOP755..  
80 100  
0.6  
0.4  
0.2  
0
0
20  
40  
120  
21427  
drel - Relative Transmission Distance  
22183  
Burst Length (number of cycles/burst)  
Fig. 9 - Max. Envelope Duty Cycle vs. Burst Length  
Fig. 12 - Horizontal Directivity  
0°  
10°  
20°  
30°  
40°  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
1.0  
0.9  
50°  
60°  
0.08  
0.06  
0.04  
0.02  
0
0.8  
70°  
80°  
0.6  
0.4  
0.2  
0
- 30  
- 10  
10  
30  
50  
70  
90  
Tamb - Ambient Temperature (°C)  
20749  
21428  
drel - Relative Transmission Distance  
Fig. 10 - Sensitivity vs. Ambient Temperature  
Fig. 13 - Vertical Directivity  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
750 800 850 900 950 1000 1050 1100 1150  
21425  
λ- Wavelength (nm)  
Fig. 11 - Relative Spectral Sensitivity vs. Wavelength  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
4
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
SUITABLE DATA FORMAT  
The TSOP753.., TSOP755.. series are designed to suppress  
spurious output pulses due to noise or disturbance signals.  
Data and disturbance signals can be distinguished by the  
devices according to carrier frequency, burst length and  
envelope duty cycle. The data signal should be close to the  
band-pass center frequency (e.g. 38 kHz) and fulfill the  
conditions in the table below.  
When a data signal is applied to the TSOP753.. and  
TSOP755.. in the presence of a disturbance signal, the  
sensitivity of the receiver is reduced to insure that no  
spurious pulses are present at the output. Some examples  
of disturbance signals which are suppressed are:  
0
10  
15  
20  
5
• DC light (e.g. from tungsten bulb or sunlight)  
• Continuous signals at any frequency  
16920  
Time (ms)  
Fig. 14 - IR Signal from Fluorescent Lamp  
with Low Modulation  
• Strongly or weakly modulated noise from fluorescent  
lamps with electronic ballasts (see fig. 14 or fig. 15)  
0
5
10  
15  
20  
16921  
Time (ms)  
Fig. 15 - IR Signal from Fluorescent Lamp  
with High Modulation  
TSOP753..  
TSOP755..  
Minimum burst length  
6 cycles/burst  
6 cycles/burst  
After each burst of length  
a minimum gap time is required of  
6 to 35 cycles  
10 cycles  
6 to 24 cycles  
10 cycles  
For bursts greater than  
a minimum gap time in the data stream is  
needed of  
35 cycles  
24 cycles  
> 4 x burst length  
2000  
> 25 ms  
2000  
Maximum number of continuous short  
bursts/second  
Recommended for NEC code  
Recommended for RC5/RC6 code  
Recommended for Sony code  
Recommended for XMP format  
Recommended for RCMM code  
Recommended for RECS-80 code  
yes  
yes  
no  
yes  
yes  
no  
yes  
yes  
yes  
yes  
yes  
yes  
Suppression of interference from fluorescent  
lamps  
Most common disturbance signals are  
suppressed  
Most common disturbance signals are  
suppressed  
Note  
For data formats with long bursts please see the datasheet for TSOP752.., TSOP754.. .  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
5
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
PACKAGE DIMENSIONS in millimeters  
6.8  
6.6 0.1  
(3.4)  
3.2  
2.5  
Mold residue  
Mold residue  
2.2  
(0.635)  
(1)  
1.27  
(3 x)  
0.5 0.1  
(4 x)  
technical drawings  
according to DIN  
specifications  
3 x 1.27 = 3.81  
(2.2)  
Marking area  
Tool separation line  
Not indicated tolerances 0.15  
Proposed pad layout  
from component side  
(for reference only)  
3 x 1.27 = 3.81  
1.27  
(R1.3)  
Pick and place area  
Drawing-No.: 6.550-5297.01-4  
Issue: 4; 13.09.11  
0.8  
22608  
ASSEMBLY INSTRUCTIONS  
Reflow Soldering  
Manual Soldering  
• Reflow soldering must be done within 72 h while stored  
under a max. temperature of 30 °C, 60 % RH after  
opening the dry pack envelope  
• Use a soldering iron of 25 W or less. Adjust the  
temperature of the soldering iron below 300 °C  
• Finish soldering within 3 s  
• Set the furnace temperatures for pre-heating and heating  
in accordance with the reflow temperature profile as  
shown in the diagram. Excercise extreme care to keep the  
maximum temperature below 260 °C. The temperature  
shown in the profile means the temperature at the device  
surface. Since there is a temperature difference between  
the component and the circuit board, it should be verified  
that the temperature of the device is accurately being  
measured  
• Handle products only after the temperature has cooled off  
• Handling after reflow should be done only after the work  
surface has been cooled off  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
6
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
VISHAY LEAD (Pb)-FREE REFLOW SOLDER PROFILE  
300  
max. 260 °C  
245 °C  
255 °C  
250  
240 °C  
217 °C  
200  
max. 20 s  
max. 100 s  
150  
max. 120 s  
100  
max. Ramp Up 3 °C/s  
max. Ramp Down 6 °C/s  
50  
0
0
50  
100  
150  
t (s)  
200  
250  
300  
19800  
max. 2 cycles allowed  
TAPING VERSION TSOP..TR DIMENSIONS in millimeters  
7.1  
16  
7.5  
1.75  
1.34 ref.  
Ø 1.5  
Ø 1.5 min  
technical drawings  
according to DIN  
specifications  
Drawing-No.: 9.700-5337.01-4  
Issue: 1; 16.10.08  
21577  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
7
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
TAPING VERSION TSOP..TT DIMENSIONS in millimeters  
7.1  
16  
1.75  
7.5  
Ø 1.5  
Ø 1.5 min.  
technical drawings  
according to DIN  
specifications  
Drawing-No.: 9.700-5338.01-4  
Issue: 3; 09.06.09  
21578  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
8
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
REEL DIMENSIONS in millimeters  
16734  
LEADER AND TRAILER DIMENSIONS in millimeters  
Trailer  
Leader  
no devices  
no devices  
devices  
End  
Start  
min. 200  
min. 400  
96 11818  
COVER TAPE PEEL STRENGTH  
LABEL  
According to DIN EN 60286-3  
0.1 N to 1.3 N  
300 10 mm/min.  
Standard bar code labels for finished goods  
The standard bar code labels are product labels and used  
for identification of goods. The finished goods are packed in  
final packing area. The standard packing units are labeled  
with standard bar code labels before transported as finished  
goods to warehouses. The labels are on each packing unit  
and contain Vishay Semiconductor GmbH specific data.  
165° to 180° peel angle  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
9
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
Vishay Semiconductors  
VISHAY SEMICONDUCTOR GmbH STANDARD BAR CODE PRODUCT LABEL (finished goods)  
PLAIN WRITING  
Item-description  
Item-number  
Selection-code  
LOT-/serial-number  
Data-code  
ABBREVIATION  
LENGTH  
-
18  
INO  
8
SEL  
3
BATCH  
10  
COD  
3 (YWW)  
Plant-code  
PTC  
2
Quantity  
QTY  
8
Accepted by  
Packed by  
ACC  
-
PCK  
-
Mixed code indicator  
Origin  
MIXED CODE  
-
xxxxxxx+  
Company logo  
Long bar code top  
Item-number  
Plant-code  
Type  
Length  
N
8
N
2
Sequence-number  
Quantity  
X
3
N
8
Total length  
-
21  
Short bar code bottom  
Selection-code  
Data-code  
Type  
Length  
X
N
X
-
3
3
Batch-number  
Filter  
10  
1
Total length  
-
17  
After more than 72 h under these conditions moisture  
content will be too high for reflow soldering.  
In case of moisture absorption, the devices will recover to  
the former condition by drying under the following condition:  
192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen)  
or  
DRY PACKING  
The reel is packed in an anti-humidity bag to protect the  
devices from absorbing moisture during transportation and  
storage.  
Aluminum bag  
96 h at 60 °C + 5 °C and < 5 % RH for all device containers  
or  
Label  
24 h at 125 °C + 5 °C not suitable for reel or tubes.  
An EIA JEDEC standard JSTD-020 level 4 label is included  
on all dry bags.  
Reel  
LEVEL  
CAUTION  
This bag contains  
15973  
MOISTURE-SENSITIVE DEVICES  
4
1. Shelf life in sealed bag: 12 months at < 40 °C and < 90 ꢀ relative  
humidity (RH)  
FINAL PACKING  
The sealed reel is packed into a cardboard box. A secondary  
cardboard box is used for shipping purposes.  
2. After this bag is opened, devices that will be subjected to soldering  
reflow or equivalent processing (peak package body temp. 260 °C)  
must be  
2a. Mounted within 72 hours at factory condition of < 30 °C/60 ꢀ RH or  
2b. Stored at < 5 ꢀ RH  
3. Devices require baking befor mounting if:  
Humidity Indicator Card is > 10 ꢀ when read at 23 °C 5 °C or  
2a. or 2b. are not met.  
RECOMMENDED METHOD OF STORAGE  
4. If baking is required, devices may be baked for:  
192 hours at 40 °C + 5 °C/- 0 °C and < 5 ꢀ RH (dry air/nitrogen) or  
96 hours at 60 °C 5 °C and < 5 ꢀ RH for all device containers or  
24 hours at 125 °C 5 °C not suitable for reels or tubes  
Dry box storage is recommended as soon as the aluminum  
bag has been opened to prevent moisture absorption. The  
following conditions should be observed, if dry boxes are  
not available:  
Bag Seal Date:  
(If blank, see barcode label)  
Note: Level and body temperature defined by EIA JEDEC Standard JSTD-020  
22522  
EIA JEDEC standard JSTD-020 level 4 label is included  
on all dry bags  
• Storage temperature 10 °C to 30 °C  
• Storage humidity 60 % RH max.  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
10  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
TSOP753.., TSOP755..  
www.vishay.com  
ESD PRECAUTION  
Proper storage and handling procedures should be followed  
to prevent ESD damage to the devices especially when they  
are removed from the antistatic shielding bag. Electro-static  
sensitive devices warning labels are on the packaging.  
Vishay Semiconductors  
VISHAY SEMICONDUCTORS STANDARD  
BAR CODE LABELS  
The Vishay Semiconductors standard bar code labels are  
printed at final packing areas. The labels are on each  
packing unit and contain Vishay Semiconductors specific  
data.  
BAR CODE PRODUCT LABEL (example)  
22178  
Rev. 1.7, 17-Oct-11  
Document Number: 81939  
11  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

VISHAY

TSOP75356W

Photo IC, LINEAR OUTPUT PHOTO DETECTOR, GREEN, MINIATURE, PLASTIC PACKAGE-4
VISHAY

TSOP75356WTR

Photo IC, TRANSISTOR-STAGE OUTPUT PHOTO IC,BAR
VISHAY

TSOP75356WTT

Photo IC, TRANSISTOR-STAGE OUTPUT PHOTO IC,BAR
VISHAY

TSOP75356WWTR

暂无描述
VISHAY

TSOP75356WWTT

Linear Output Photo IC,
VISHAY

TSOP753W

IR Receiver Modules for Remote Control Systems
VISHAY

TSOP75430

IR Receiver Modules for Remote Control Systems
VISHAY

TSOP75430FTR

暂无描述
VISHAY
VISHAY
VISHAY

TSOP75430TR

Photo IC, TRANSISTOR-STAGE OUTPUT PHOTO IC,BAR
VISHAY