EDI9LC644V [WEDC]

128Kx32 SSRAM/1Mx32 SDRAM; 128Kx32 SSRAM / SDRAM 1Mx32
EDI9LC644V
型号: EDI9LC644V
厂家: WHITE ELECTRONIC DESIGNS CORPORATION    WHITE ELECTRONIC DESIGNS CORPORATION
描述:

128Kx32 SSRAM/1Mx32 SDRAM
128Kx32 SSRAM / SDRAM 1Mx32

静态存储器 动态存储器
文件: 总25页 (文件大小:1544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EXTERNAL MEMORY SOLUTION FOR TEXAS INSTRUMENTS TMS320C6000 DSP  
n Clock speeds:  
The EDI9LC644VxxBC is a 3.3V, 128K x 32 Synchronous  
Pipeline SRAM and a 1Mx32 Synchronous DRAM array con-  
structed with one 128K x 32 SBSRAM and two 1Mx16  
SDRAM die mounted on a multilayer laminate substrate. The  
device is packaged in a 153 lead, 14mm by 22mm, BGA.  
• SSRAM: 200, 166,150, and 133 MHz  
• SDRAMs: 125 and 100 MHz  
n DSP Memory Solution  
• Texas Instruments TMS320C6201  
• Texas Instruments TMS320C6701  
n Packaging:  
The EDI9LC644VxxBC provides a total memory solution for  
the Texas Instruments TMS320C6201 and the  
TMS320C6701 DSPs  
The Synchronous Pipeline SRAM is available with clock  
speeds of 200, 166,150, and 133 MHz, allowing the user  
to develop a fast external memory for the SSRAM inter-  
face port .  
• 153 pin BGA, JEDEC MO-163  
n 3.3V Operating supply voltage  
n Direct control interface to both the SSRAM and SDRAM  
ports on the “C6x”  
The SDRAM is available in clock speeds of 125 and 100  
MHz, allowing the user to develop a fast external memory  
for the SDRAM interface port .  
n Common address and databus  
n 65% space savings vs. monolithic solution  
n Reduced system inductance and capacitance  
PIN CONFIGURATION  
A0-16  
DQ0-31  
SSCLK  
SSADC  
SSWE  
Address Bus  
Data Bus  
DQ19 DQ23  
DQ18 DQ22  
VCCQ VCCQ  
DQ17 DQ21  
DQ16 DQ20  
VCCQ VCCQ  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A2  
DQ24 DQ28  
DQ25 DQ29  
VCCQ VCCQ  
DQ26 DQ30  
DQ27 DQ31  
VCCQ VCCQ  
VSS SDCE VSS  
SSRAM Clock  
VCC SDWE SDA10 NC  
SSRAM Address Status Control  
SSRAM Write Enable  
VCC  
VCC  
VCC  
VSS  
VSS SDCLK VSS  
VSS VSS VSS  
VSS  
VSS  
SSOE  
SSRAM Output Enable  
SDRAM Clock  
SDCLK  
SDRAS  
SDCAS  
SDWE  
SDA10  
BWE0-3  
SDRAM Row Address Strobe  
SDRAM Column Address Strobe  
SDRAM Write Enable  
NC  
NC  
A6  
NC  
NC  
A7  
NC SDRAS SDCAS VSS  
A4  
A3  
A5  
A8  
VSS  
VSS  
NC  
NC  
NC  
A1  
A10  
A9  
VSS VSS  
A0  
A11 A12  
SDRAM Address 10/auto precharge  
NC/A17 NC/A18 NC/A19 VSS  
VSS  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A13  
A15  
A14  
A16  
SSRAM Byte Write Enables  
SDRAM SDQM 0 - 3  
NC  
NC  
NC BWE2 BWE3 NC  
VCC BWE0 BWE1 NC  
VCCQ VCCQ  
DQ12 DQ11  
DQ13 DQ10  
VCCQ VCCQ  
DQ14 DQ9  
DQ15 DQ8  
VCCQ VCCQ  
DQ4 DQ0  
DQ5 DQ1  
VCCQ VCCQ  
DQ6 DQ2  
DQ7 DQ3  
SSCE  
SDCE  
VCC  
Chip Enable SSRAM Device  
Chip Enable SDRAM Device  
Power Supply pins, 3.3V  
VCC  
VCC  
VCC  
VSS  
VSS SSCLK VSS  
VSS VSS VSS  
VSS  
VSS  
VCCQ  
Data Bus Power Supply pins,  
3.3V (2.5V future)  
VCC SSADC SSWE NC  
VCC SSOE SSCE NC  
VSS  
NC  
Ground  
No Connect  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
January 2002 Rev. 4  
ECO# 14667  
FIG. 2 BLOCK DIAGRAM  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
SSCLK  
Input  
Input  
Pulse  
Pulse  
Positive Edge The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock.  
SSADS  
SSOE  
SSWE  
When sampled at the positive rising edge of the clock, SSADS, SSOE, and SSWE define the operation  
Active Low to be executed by the SSRAM.  
SSCE  
SDCLK  
SDCE  
Input  
Input  
Input  
Pulse  
Pulse  
Pulse  
Active Low SSCE disable or enable SSRAM device operation.  
Positive Edge The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.  
Active Low SDCE disable or enable device operation by masking or enabling all inputs except SDCLK and BWE0-3.  
SDRAS  
SDCAS  
SDWE  
When sampled at the positive rising edge of the clock, SDCAS, SDRAS, and SDWE define the  
Active Low operation to be executed by the SDRAM.  
Input  
Input  
Pulse  
Level  
Address bus for SSRAM and SDRAM  
A0 and A1 are the burst address inputs for the SSRAM  
During a Bank Active command cycle, A0-9, SDA10 defines the row address (RA0-10) when sampled  
at the rising clock edge.  
A0-16  
,
During a Read or Write command cycle, A0-7 defines the column address (CA0-7) when sampled at  
the rising clock edge. In addition to the row address, SDA10 is used to invoke Autoprecharge  
operation at the end of the Burst Read or Write Cycle. If SDA10 is high, autoprecharge is selected and  
SDA10  
A
11 defines the bank to be precharged (low = bank A, high = bank B). If SDA10 is low,  
autoprecharge is disabled.  
During a Precharge command cycle, SDA10 is used in conjunction with A11 to control which bank(s)  
to precharge. If SDA10 is high, both bank A and Bank B will be precharged regardless of the state of  
A11. If SDA10 is low, then A11 is used to define which bank to precharge.  
DQ0-31  
BWE0-3  
Input  
Output  
Level  
Pulse  
Data Input/Output are multiplexed on the same pins.  
Input  
BWE0-3 perform the byte write enable function for the SSRAM and DQM function for the SDRAM.  
BWE0 is associated with DQ0-7, BWE1 with DQ8-15, BWE2 with DQ16-23 and BWE3 with DQ24-31  
.
VCC, VSS  
VCCQ  
Supply  
Supply  
Power and ground for the input buffers and the core logic.  
Data base power supply pins, 3.3V (2.5V future).  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
Voltage on Vcc Relative to Vss  
Vin (DQx)  
-0.5V to +4.6V  
-0.5V to Vcc +0.5V  
-55°C to +125°C  
+175°C  
Storage Temperature (BGA)  
Junction Temperature  
Short Circuit Output Current  
Supply Voltage1  
Input High Voltage1,2  
Input Low Voltage1,2  
VCC  
VIH  
VIL  
ILI  
3.135  
2.0  
3.6  
VCC +0.3  
0.8  
V
V
100 mA  
*Stress greater than those listed under "Absolute Maximum Ratings" may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions greater  
than those indicated in operational sections of this specifications is not  
implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
-0.3  
-10  
V
Input Leakage Current  
0 - VIN - Vcc  
10  
µA  
Output Leakage (Output Disabled)  
0 - VIN - Vcc  
ILO  
-10  
10  
µA  
Output High (IOH = -4mA)1  
Output Low (IOL = 8mA)1  
VOH  
VOL  
2.4  
V
V
0.4  
1. All voltages referenced to Vss (GND).  
2. Overshoot: VIH  
Underershoot: VIL  
+6.0V for t - tKC/2  
-2.0V for t - tKC/2  
Power Supply Current:  
133MHz  
400  
450  
500  
TBD  
300  
350  
400  
TBD  
220  
235  
255  
20.0  
550  
Operating (1,2,3)  
SSRAM Active / DRAM Auto Refresh  
SSRAM Active / DRAM Idle  
ICC  
150MHz  
166MHz  
200MHz  
133MHz  
150MHz  
166MHz  
200MHz  
83MHz  
580  
625  
TBD  
450  
480  
525  
TBD  
240  
250  
280  
40.0  
mA  
1
2
3
Power Supply Current  
Operating1,2,3  
ICC  
mA  
Power Supply Current  
Operating1,2,3  
SDRAM Active / SSRAM Idle  
SSCE and SDCE VCC -0.2V,  
ICC  
ISB  
100MHz  
125MHz  
mA  
mA  
1
2
CMOS Standby  
All other inputs at VSS +0.2  
VCC -0.2V, Clk frequency = 0  
SSCE and SDCE VIH min  
All other inputs at VIL max  
VCC -0.2V, Clk frequency = 0  
VIN or  
VIN  
ISB  
30.0  
190  
55.0  
250  
TTL Standby  
Auto Refresh  
VIN or  
mA  
mA  
VIN  
ICC  
5
1. ICC (operating) is specified with no output current. ICC (operating) increases with faster cycle times and greater output loading.  
2. “Device idle” means device is deselected (CE VIH) Clock is running at max frequency and Addresses are switching each cycle.  
3. Typical values are measured at 3.3V, 25°C. ICC (operating) is specified at specified frequency.  
Address Input Capacitance1  
Input/Output Capacitance (DQ)1  
Control Input Capacitance1  
Clock Input Capacitance1  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
CI  
5
8
5
4
8
pF  
CO  
CA  
CCK  
10  
8
pF  
pF  
pF  
6
1. This parameter is sampled.  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Clock to output valid  
tKHKH  
tKLKH  
tKHKL  
tKHQV  
tKHQX  
tKQLZ  
tKQHZ  
tOELQV  
tOELZ  
tOEHZ  
tS  
5
1.6  
1.6  
6
2.4  
2.4  
7
2.6  
2.6  
8
2.8  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.5  
3.5  
3.8  
4.0  
Clock to output invalid  
1.5  
0
1.5  
1.5  
0
1.5  
1.5  
0
1.5  
1.5  
0
1.5  
Clock to output on Low-Z  
Clock to output in High-Z  
Output Enable to output valid  
Output Enable to output in Low-Z  
Output Enable to output in High-Z  
Address, Control, Data-in Setup Time to Clock  
Address, Control, Data-in Hold Time to Clock  
3
2.5  
3.5  
3.5  
3.8  
3.8  
4.0  
4.0  
0
0
0
0
3.0  
3.5  
3.5  
3.8  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
tH  
Deselected Cycle, Power Down  
WRITE Cycle, Begin Burst  
None  
H
L
L
L
X
L
X
X
L
High-Z  
External  
External  
External  
Current  
Current  
Current  
Current  
Current  
Current  
D
Q
READ Cycle, Begin Burst  
L
L
H
H
H
H
H
H
L
READ Cycle, Begin Burst  
L
L
H
L
High-Z  
Q
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
X
X
H
H
X
H
H
H
H
H
H
H
H
L
High-Z  
Q
H
X
X
High-Z  
D
L
D
1. X means “don’t care”, H means logic HIGH. L means logic LOW.  
2. All inputs except SSOE must meet setup and hold times around the rising edge (LOW to HIGH) of SSCLK.  
3. Suspending burst generates wait cycle  
4. For a write operation following a read operation, SSOE must be HIGH before the input data required setup time plus High-Z time for SSOE and staying  
HIGH though out the input data hold time.  
5. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
READ  
H
L
X
L
X
H
L
X
H
L
X
H
L
WRITE one Byte (DQ0-7  
)
WRITE all Bytes  
L
L
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
SSRAM READ TIMING  
SSRAM WRITE TIMING  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
Clock Cycle Time1  
CL = 3  
CL = 2  
tCC  
tCC  
8
10  
1000  
1000  
6
10  
12  
1000  
1000  
7
12  
15  
1000  
1000  
8
ns  
Clock to valid Output delay1,2  
Output Data Hold Time2  
Clock HIGH Pulse Width3  
Clock LOW Pulse Width3  
Input Setup Time3  
Input Hold Time3  
CLK to Output Low-Z2  
CLK to Output High-Z  
Row Active to Row Active Delay4  
RAS to CAS Delay4  
Row Precharge Time4  
Row Active Time4  
Row Cycle Time - Operation4  
Row Cycle Time - Auto Refresh4,8  
Last Data in to New Column Address Delay5  
Last Data in to Row Precharge5  
Last Data in to Burst Stop5  
Column Address to Column Address Delay6  
Number of Valid Output Data7  
tSAC  
tOH  
tCH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
3
2
1
2
3
3
3
2
1
2
3
3
3
2
1
2
tCL  
tSS  
tSH  
tSLZ  
tSHZ  
tRRD  
tRCD  
tRP  
7
7
8
20  
20  
20  
50  
70  
70  
1
1
1
1.5  
2
1
20  
20  
20  
50  
80  
80  
1
1
1
1.5  
2
2
24  
24  
24  
60  
90  
90  
1
1
1
1.5  
2
1
tRAS  
tRC  
10,000  
10,000  
10,000  
tRFC  
tCDL  
tRDL  
tBDL  
tCCD  
ns  
CLK  
CLK  
CLK  
CLK  
ea  
1. Parameters depend on programmed CAS latency.  
2. If clock rise time is longer than 1ns (tRISE/2 -0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time = 1ns. If tRISE of tFALL are longer than 1ns. [(tRISE = tFALL)/2] - 1ns should be added to the parameter.  
4. The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up to the  
next higher integer.  
5. Minimum delay is required to complete write.  
6. All devices allow every cycle column address changes.  
7. In case of row precharge interrupt, auto precharge and read burst stop.  
8. A new command may be given tRFC after self-refresh exit.  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
CLOCK FREQUENCY AND LATENCY PARAMETERS - 125MHZ SDRAM  
125MHz (8.0ns)  
100MHz (10.0ns)  
83MHz (12.0ns)  
3
3
2
9
7
6
6
5
4
3
2
2
2
2
2
3
2
2
1
1
1
1
1
1
1
1
1
CLOCK FREQUENCY AND LATENCY PARAMETERS - 100MHZ SDRAM  
100MHz (12.0ns)  
83MHz (12.0ns)  
3
2
7
6
5
5
2
2
2
2
2
2
1
1
1
1
1
1
Refresh Period1,2  
1. 4096 cycles  
tREF  
64  
64  
ms  
2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to “wake-up” the device.  
Mode Register Set  
Auto Refresh (CBR)  
L
L
L
L
L
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
L
OP CODE  
X
BA  
X
X
L
Precharge  
Single Bank  
Precharge all Banks  
L
L
H
H
H
L
2
L
L
L
H
Bank Activate  
Write  
L
L
H
L
BA  
BA  
BA  
BA  
BA  
X
Row Address  
2
2
2
2
2
3
L
H
H
H
H
H
H
X
X
X
L
H
L
Write with Auto Precharge  
Read  
L
L
L
L
L
L
Read with Auto Precharge  
Burst Termination  
No Operation  
L
L
H
L
H
X
X
X
X
X
L
H
H
X
X
X
L
H
X
X
X
X
Device Deselect  
H
X
X
X
Data Write/Output Disable  
Data Mask/Output Disable  
NOTES:  
X
4
4
H
X
1. All of the SDRAM operations are defined by states of SDCE, SDWE, SDRAS, SDCAS, and BWE0-3 at the positive rising edge of the clock.  
2. Bank Select (BA), if A11 = 0 then bank A is selected, if BA = 1 then bank B is selected.  
3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency.  
4. The BWE has two functions for the data DQ Read and Write operations. During a Read cycle, when BWE goes high at a clock timing the data outputs are  
disabled and become high impedance after a two clock delay. BWE also provides a data mask function for Write cycles. When it activates, the Write  
operation at the clock is prohibited (zero clock latency).  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
Set the Mode Register  
1
1
X
X
X
Start Auto  
No Operation  
L
H
H
L
X
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
Activate the specified bank and row  
ILLEGAL  
Idle  
H
H
H
H
X
L
Column  
2
1
1
L
H
L
Column  
ILLEGAL  
H
H
X
L
X
X
X
No Operation  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Precharge  
3
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
1
Row Active  
H
H
H
H
X
L
Column  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
No Operation  
4,5  
4,5  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
Read  
H
H
H
H
X
L
Column  
Terminate Burst; Start the Write cycle  
Terminate Burst; Start a new Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
Write  
H
H
H
H
X
L
Column  
Terminate Burst; Start a new Write cycle  
Terminate Burst; Start the Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
Read with  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Auto Precharge  
H
H
H
H
X
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
ILLEGAL  
H
X
X
Continue the Burst  
Continue the Burst  
X
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
X
X
X
X
ILLEGAL  
L
H
H
L
ILLEGAL  
2
2
Write with  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Auto Precharge  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
H
X
L
X
Continue the Burst  
X
Continue the Burst  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
No Operation; Bank(s) idle after tRP  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
2
2
2
Precharging  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
ILLEGAL  
H
H
X
L
X
X
X
No Operation; Bank(s) idle after tRP  
H
X
L
X
No Operation; Bank(s) idle after tRP  
X
No Operation; Bank(s) idle after tRP  
OP Code  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
L
L
H
L
X
X
X
L
H
H
L
X
2
2
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
Row Activating  
H
H
H
H
X
L
Column  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination No Operation; Row active after tRCD  
H
X
L
X
No Operation  
Device Deselect  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
No Operation; Row active after tRCD  
X
No Operation; Row active after tRCD  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
ILLEGAL  
L
H
H
L
X
2
2
6
6
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Write Recovering  
H
H
H
H
X
L
Column  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination No Operation; Row active after tDPL  
H
X
L
X
No Operation  
Device Deselect  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
No Operation; Row active after tDPL  
X
No Operation; Row active after tDPL  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
ILLEGAL  
2
Write Recovering  
with Auto  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
H
H
H
H
X
Column  
ILLEGAL  
2,6  
2,6  
Precharge  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
H
X
X
X
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
L
L
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
X
X
X
X
ILLEGAL  
L
L
H
H
L
ILLEGAL  
L
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Refreshing  
L
H
H
H
H
X
L
Column  
ILLEGAL  
L
L
H
L
Column  
Read  
ILLEGAL  
L
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
No Operation; Idle after tRC  
L
H
X
L
X
No Operation; Idle after tRC  
H
L
X
No Operation; Idle after tRC  
OP Code  
ILLEGAL  
L
L
L
H
L
X
X
X
ILLEGAL  
L
L
H
H
L
X
ILLEGAL  
Mode Register  
Accessing  
L
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
L
H
H
H
H
X
Column  
ILLEGAL  
L
L
H
L
Column  
Read  
ILLEGAL  
ILLEGAL  
L
H
H
X
X
X
X
Burst Termination  
No Operation  
L
H
X
X
No Operation; Idle after two clock cycles  
H
X
Device Deselect No Operation; Idle after two clock cycles  
NOTES:  
1. Both Banks must be idle otherwise it is an illegal action.  
2. The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegal. If BA selects the bank not being referenced by the  
Current State then the action may be legal depending on the state of that bank.  
3. The minimum and maximum Active time (tRAS) must be satisfied.  
4. The RAS to CAS Delay (tRCD) must occur before the command is given.  
5. Address SDA10 is used to determine if the Auto Precharge function is activated.  
6. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements. The command is illegal if the minimum bank to bank  
delay time (tRRD) is not satisfied.  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE)  
@ CAS LATENCY = 3, BURST LENGTH = 1  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
SDRAM POWER UP SEQUENCE  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
SDRAM READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4  
NOTES:  
1. Minimum row cycle times are required to complete internal DRAM operation.  
2 Row precharge can interrupt burst on any cycle. (CAS Latency - 1) number of valid output data is available after Row precharge. Last valid output will  
be Hi-Z (tSHZ) after the clock.  
3. Access time from Row active command. tCC *(tRCD + CAS Latency - 1) + tSAC.  
4. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4  
1. To write data before burst read ends. BWE should be asserted three cycle prior to write command to avoid bus contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge will be written.  
3. BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge  
cycle will be masked internally.  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
SDRAM PAGE READ CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
NOTES:  
1. SDCE can be “don’t care” when SDRAS, SDCAS and SDWE are high at the clock going high edge.  
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
Notes:  
1. To interrupt burst write by Row precharge, BWE should be asserted to mask invalid input data.  
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
NOTES:  
1. tCDL should be met to complete write.  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @ BURST LENGTH  
= 4  
NOTES:  
1. tCDL should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length = 1 & 2 and BRSW mode)  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
SDRAM READ INTERRUPTED BY PRECHARGE COMMAND & READ BURST  
STOP @ BURST LENGTH = FULL PAGE  
NOTES:  
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.  
2. About the valid DQs after burst stop, it is the same as the case of SDRAS interrupt. Both cases are illustrated in the above timing diagram. See the label  
1, 2 on each of them. But at burst write, burst stop and SDRAS interrupt should be compared carefully. Refer to the timing diagram of Full page write  
burst stop cycle.  
3. Burst stop is valid at every burst length.  
White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520  
SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND & WRITE BURST  
STOP @ BURST LENGTH = FULL PAGE  
NOTES:  
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.  
2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by AC parameter of tRDL.  
BWE at write interrupt by precharge command is needed to prevent invalid write.  
BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge  
cycle will be masked internally.  
3. Burst stop is valid at every burst length.  
White Electronic Designs Corporation (602) 437-1520 www.whiteedc.com  
SDRAM BURST READ SINGLE BIT WRITE CYCLE @ BURST LENGTH = 2  
NOTES:  
1. BRSW modes enabled by setting A9 Highat MRS (Mode Register Set).  
At the BRSW Mode, the burst length at Write is fixed to 1regardless of programmed burst length.  
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is executed at the  
burst-end cycle, so in the case of BRSW write command, the next cycle starts the precharge.  
White Electronic Designs Corporation Phoenix AZ (602) 437-1520  
HIGH  
*Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycle.  
NOTES:  
1. SDCE, SDRAS, SDCAS & SDWE activation at the same clock cycle with address key will set internal mode register.  
2. Minimum 2 clock cycles should be met before new SDRAS activation.  
7. Please refer to Mode Register Set table.  
White Electronic Designs Corporation (602) 437-1520 www.whiteedc.com  
153 LEAD BGA (17 X 9 BALL ARRAY)  
JEDEC MO-163  
ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES  
Note:  
Ball attach pad for above BGA is 480 microns, in diameter. Pad is solder mask defined.  
EDI9LC644V2012BC  
EDI9LC644V2010BC  
EDI9LC644V1612BC  
EDI9LC644V1610BC  
EDI9LC644V1512BC  
EDI9LC644V1510BC  
EDI9LC644V1312BC  
EDI9LC644V1310BC  
200MHz  
200MHz  
166MHz  
166MHz  
150MHz  
150MHz  
133MHz  
133MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
White Electronic Designs Corporation Phoenix AZ (602) 437-1520  
Address Bus  
EA2-21  
EDI9LC644V  
128K x 32 SSRAM  
1M x 32 SDRAM  
EA  
EA  
2
3
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ0-7  
DQ8-15  
Texas Instruments  
TMS320C6x  
DSP  
DQ16-23  
DQ24-31  
SSWE\  
SSCE\  
SSOE\  
SSADC\  
SSCLK  
SSWE\  
CE  
SSOE\  
SSADS\  
SSCLK  
2\  
SSRAM  
Control  
BWE  
BWE  
BWE  
BWE  
0\  
1\  
2\  
3\  
BE0  
BE1  
BE2  
BE3  
\
\
\
\
Shared  
Controls  
SDA10  
SDA10  
CE  
SDRAS\  
SDCAS\  
SDWE\  
SDCLK  
SDCE\  
SDRAS\  
0\  
SDRAM  
SDCAS\ Control  
SDWE\  
SDCLK  
Data Bus  
ED0-31  
White Electronic Designs Corporation (602) 437-1520 www.whiteedc.com  

相关型号:

EDI9LC644V-BC

SSRAM/SDRAM MCP
ETC

EDI9LC644V1310BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1312BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1510BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1512BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1610BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1612BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V2010BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V2012BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDIN-10D

E-Series I/Q Demodulator 10 MHz
ETC

EDJ1104BASE

1G bits DDR3 SDRAM
ELPIDA

EDJ1104BASE-8A-E

1G bits DDR3 SDRAM
ELPIDA