W3EG6462S265D3G [WEDC]

DRAM,;
W3EG6462S265D3G
型号: W3EG6462S265D3G
厂家: WHITE ELECTRONIC DESIGNS CORPORATION    WHITE ELECTRONIC DESIGNS CORPORATION
描述:

DRAM,

动态存储器 双倍数据速率
文件: 总13页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED*  
512MB – 2x32Mx64 DDR SDRAM UNBUFFERED  
FEATURES  
DESCRIPTION  
Double-data-rate architecture  
The W3EG6462S is a 2x32Mx64 Double Data Rate  
SDRAM memory module based on 256Mb DDR SDRAM  
components. The module consists of sixteen 32Mx8 DDR  
SDRAMs in 66 pin TSOP packages mounted on a 184 pin  
FR4 substrate.  
DDR200, DDR266, DDR333 and DDR400  
• JEDEC design specified  
Bi-directional data strobes (DQS)  
Differential clock inputs (CK & CK#)  
Programmable Read Latency 2,2.5 (clock)  
Programmable Burst Length (2,4,8)  
Programmable Burst type (sequential & interleave)  
Edge aligned data output, center aligned data input.  
Auto and self refresh  
Synchronous design allows precise cycle control with the  
use of system clock. Data I/O transactions are possible on  
both edges and Burst Lengths allow the same device to be  
useful for a variety of high bandwidth, high performance  
memory system applications.  
* This product is under development, is not qualified or characterized and is subject to  
change or cancellation without notice.  
Serial presence detect  
Dual Rank  
Power supply:  
• VCC = VCCQ = +2.5V 0.2V (100, 133 and 166  
MHz)  
• VCC = VCCQ = +2.6V 0.1V (200 MHz)  
Standard 184 pin DIMM package  
• JD3 PCB height: 30.48 (1.20") MAX  
NOTE: Consult factory for availability of:  
• RoHS compliant products  
• Vendor source control options  
• Industrial temperature option  
OPERATING FREQUENCIES  
DDR400 @CL=3 DDR333 @CL=2.5 DDR266 @CL=2.5 DDR266 @CL=2 DDR266 @CL=2.5 DDR200 @CL=2  
Clock Speed  
CL-tRCD-tRP  
200MHz  
3-3-3  
166MHz  
2.5-3-3  
133MHz  
2-3-3  
133MHz  
2-3-3  
133MHz  
2.5-3-3  
100MHz  
2-2-2  
May 2005  
Rev. 4  
1
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
PIN CONFIGURATION  
PIN NAMES  
A0-A12  
Address input (Multiplexed)  
Bank Select Address  
Data Input/Output  
Data Strobe Input/Output  
Clock Input  
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL  
BA0-BA1  
1
VREF  
DQ0  
VSS  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
NC  
A0  
93  
94  
VSS  
DQ4  
DQ5  
VCCQ  
DQM0  
DQ6  
DQ7  
VSS  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
VSS  
NC  
DQ0-DQ63  
DQS0-DQS7  
CK0, CK1, CK2  
2
3
NC  
95  
A10  
4
DQ1  
DQS0  
DQ2  
VCC  
DQ3  
NC  
VSS  
96  
NC  
CK0#, CK1#, CK2# Clock Input  
5
NC  
BA1  
97  
VCCQ  
NC  
VSS  
DQ36  
DQ37  
VCC  
DQM4  
DQ38  
DQ39  
VSS  
DQ44  
RAS#  
DQ45  
VCCQ  
CS0#  
CS1#  
DQM5  
VSS  
CKE0, CKE1  
CS0#, CS1#  
RAS#  
CAS#  
WE#  
Clock Enable input  
6
98  
Chip Select Input  
Row Address Strobe  
Column Address Strobe  
Write Enable  
7
DQ32  
VCCQ  
DQ33  
DQS4  
DQ34  
VSS  
99  
8
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
NC  
VSS  
NC  
DQM0-DQM7  
VCC  
Data in Mask  
Power Supply  
Power Supply for DQS  
Ground  
NC  
DQ8  
DQ9  
DQS1  
VCCQ  
CK1  
CK1#  
VSS  
DQ10  
DQ11  
CKE0  
VCCQ  
DQ16  
DQ17  
DQS2  
VSS  
A9  
DQ18  
A7  
VCCQ  
DQ19  
A5  
DQ24  
VSS  
VCCQ  
DQ12  
DQ13  
DQM1  
VCC  
VCCQ  
BA0  
VSS  
DQ35  
DQ40  
VCCQ  
WE#  
DQ41  
CAS#  
VSS  
VREF  
Power Supply for Reference  
Serial EEPROM Power Supply  
Serial data I/O  
VCCSPD  
SDA  
DQ14  
DQ15  
CKE1  
VCCQ  
NC  
DQ20  
A12  
VSS  
DQ21  
A11  
DQM2  
VCC  
DQ22  
A8  
DQ23  
VSS  
A6  
DQ28  
DQ29  
VCCQ  
DQM3  
A3  
DQ30  
VSS  
DQ31  
NC  
NC  
VCCQ  
CK0  
CK0#  
SCL  
Serial clock  
SA0-SA2  
VCCID  
Address in EEPROM  
VCC Indentification Flag  
No Connect  
NC  
DQS5  
DQ42  
DQ43  
VCC  
DQ46  
DQ47  
NC  
NC  
DQ48  
DQ49  
VSS  
VCCQ  
DQ52  
DQ53  
NC  
CK2#  
CK2  
VCCQ  
DQS6  
DQ50  
DQ51  
VSS  
VCCID  
DQ56  
DQ57  
VCC  
DQS7  
DQ58  
DQ59  
VSS  
WP  
SDA  
SCL  
VCC  
DQM6  
DQ54  
DQ55  
VCCQ  
NC  
DQ25  
DQS3  
A4  
DQ60  
DQ61  
VSS  
VCC  
DQ26  
DQ27  
A2  
DQM7  
DQ62  
DQ63  
VCCQ  
SA0  
VSS  
A1  
NC  
SA1  
NC  
SA2  
VCC  
VCCSPD  
May 2005  
Rev. 4  
2
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
FUNCTIONAL BLOCK DIAGRAM  
CS1#  
CS0#  
DQS0  
DQM0  
DQS4  
DQM4  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DQ0  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
DQS1  
DQM1  
DQS5  
DQM5  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DQ8  
DQ8  
DQ40  
DQ9  
DQ9  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS2  
DQM2  
DQS6  
DQM6  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DQ16  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
DQS3  
DQM3  
DQS7  
DQM7  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
CS#  
DQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
RAS#  
CAS#  
RAS: DDR SDRAMs  
CAS: DDR SDRAMs  
BA0-BA1: DDR SDRAMs  
WE: DDR SDRAMs  
SERIAL PD  
SDA  
BA0-BA1  
WE#  
SCL  
WP  
A0  
A1  
A2  
SA0 SA1  
SA2  
A0-A12  
CKE0  
A0-A12: DDR SDRAMs  
CKE0: DDR SDRAMs  
CKE1: DDR SDRAMs  
VCCSPD  
VCCQ  
VCC  
SPD  
CKE1  
DDR SDRAMs  
DDR SDRAMs  
DDR SDRAMs  
DDR SDRAMs  
CLOCK INPUT  
CK0, CK0#  
CK1, CK1#  
CK2, CK2#  
4 SDRAMS  
6 SDRAMS  
6 SDRAMS  
VREF  
VSS  
NOTE: All resistor values are 22 ohms unless otherwise specified.  
May 2005  
Rev. 4  
3
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
VIN, VOUT  
VCC, VCCQ  
TSTG  
Value  
-0.5 to 3.6  
-1.0 to 3.6  
-55 to +150  
16  
Units  
V
V
°C  
W
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Storage Temperature  
Power Dissipation  
PD  
Short Circuit Current  
IOS  
50  
mA  
Note:  
Permanent device damage may occur if ‘ABSOLUTE MAXIMUM RATINGS’ are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability  
DC CHARACTERISTICS  
0°C TA 70°C, VCC = 2.5V 0.2V  
Parameter  
Symbol  
VCC  
Min  
2.3  
Max  
2.7  
Unit  
V
Supply Voltage  
Supply Voltage  
VCCQ  
VREF  
VTT  
2.3  
2.7  
V
Reference Voltage  
Termination Voltage  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
1.15  
1.35  
V
1.15  
1.35  
V
VIH  
VREF + 0.15  
-0.3  
VCCQ + 0.3  
VREF - 0.15  
V
VIL  
V
VOH  
VTT + 0.76  
V
VOL  
VTT-0.76  
V
CAPACITANCE  
TA = 25°C. f = 1MHz, VCC = 2.5V 0.2V, VREF = 1.4V 200mV  
Parameter  
Input Capacitance (A0-A12)  
Symbol  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
COUT  
Max  
Unit  
50  
50  
26  
50  
26  
13  
50  
13  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
Input Capacitance (RAS#, CAS#, WE#)  
Input Capacitance (CKE0, CKE1)  
Input Capacitance (CK0, CK0#)  
Input Capacitance (CS0#, CS1#)  
Input Capacitance (DQM0-DQM8)  
Input Capacitance (BA0-BA1)  
Data input/output capacitance (DQ0-DQ63)(DQS)  
May 2005  
Rev. 4  
4
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
IDD SPECIFICATIONS AND TEST CONDITIONS  
0°C TA 70°C, VCCQ = 2.5V 0.2V, VCC = 2.5V 0.2V  
Includes DDR SDRAM component only  
DDR400@ DDR333@ DDR266@ DDR266@ DDR200@  
CL=3  
Max  
CL=2.5-3-3  
Max  
CL=2  
Max  
CL=2.5  
Max  
CL=2  
Max  
Parameter  
Symbol Conditions  
IDD0  
Units  
Operating Current  
One device bank; Active - Precharge;  
2200  
1960  
1800  
1800  
1800  
mA  
tRC=tRC (MIN); tCK=tCK (MIN); DQ,DM  
and DQS inputs changing once per  
clock cycle; Address and control inputs  
changing once every two cycles.  
Operating Current  
IDD1  
One device bank; Active-Read-  
Precharge Burst = 2; tRC=tRC (MIN);  
tCK=tCK (MIN); lOUT = 0mA; Address  
and control inputs changing once per  
clock cycle.  
2480  
2320  
2080  
2080  
2080  
mA  
Precharge Power-  
Down Standby  
Current  
IDD2P  
All device banks idle; Power-down  
mode; tCK=tCK (MIN); CKE=(low)  
64  
64  
64  
64  
64  
rnA  
mA  
Idle Standby Current  
IDD2F  
CS# = High; All device banks idle;  
tCK=tCK (MIN); CKE = high; Address  
and other control inputs changing once  
per clock cycle. VIN = VREF for DQ,  
DQS and DM.  
960  
800  
720  
720  
720  
Active Power-Down  
Standby Current  
IDD3P  
IDD3N  
One device bank active; Power-Down  
mode; tCK (MIN); CKE=(low)  
640  
480  
960  
400  
800  
400  
800  
400  
800  
mA  
mA  
Active Standby  
Current  
CS# = High; CKE = High; One device  
bank; Active-Precharge; tRC=tRAS  
(MAX); tCK=tCK (MIN); DQ, DM and  
DQS inputs changing twice per clock  
cycle; Address and other control inputs  
changing once per clock cycle.  
1120  
Operating Current  
Operating Current  
IDD4R  
Burst = 2; Reads; Continuous burst;  
One device bank active; Address and  
control inputs changing once per clock  
cycle; TCK= TCK (MIN); lOUT = 0mA.  
2720  
2680  
2360  
2360  
2000  
2000  
2000  
2000  
2000  
2000  
mA  
rnA  
IDD4W  
Burst = 2; Writes; Continuous burst;  
One device bank active; Address and  
control inputs changing once per clock  
cycle; tCK=tCK (MIN); DQ,DM and DQS  
inputs changing once per clock cycle.  
Auto Refresh Current  
Self Refresh Current  
Operating Current  
IDD5  
IDD6  
tRC = tRC (MIN)  
3200  
64  
3000  
64  
2680  
64  
2680  
64  
2680  
64  
mA  
mA  
mA  
CKE 0.2V  
IDD7A  
Four bank interleaving Reads (BL=4)  
with auto precharge with tRC=tRC (MIN);  
tCK=tCK (MIN); Address and control  
inputs change only during Active Read  
or Write commands.  
4880  
4240  
3600  
3600  
3600  
May 2005  
Rev. 4  
5
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
DETAILED TEST CONDITIONS FOR DDR SDRAM IDD1 & IDD7A  
IDD1 : OPERATING CURRENT : ONE BANK  
IDD7A : OPERATING CURRENT : FOUR BANKS  
1. Typical Case : VCC=2.5V, T=25°C  
2. Worst Case : VCC=2.7V, T=10°C  
1. Typical Case : VCC=2.5V, T=25°C  
2. Worst Case : VCC=2.7V, T=10°C  
3. Only one bank is accessed with tRC (min), Burst  
Mode, Address and Control inputs on NOP edge  
are changing once per clock cycle. IOUT = 0mA  
3. Four banks are being interleaved with tRC (min),  
Burst Mode, Address and Control inputs on NOP  
edge are not changing. Iout=0mA  
4. Timing Patterns :  
4. Timing Patterns :  
DDR200 (100 MHz, CL=2) : tCK=10ns, CL2,  
BL=4, tRCD=2*tCK, tRAS=5*tCK  
Read : A0 N R0 N N P0 N A0 N - repeat the  
same timing with random address changing;  
50% of data changing at every burst  
DDR200 (100 MHz, CL=2) : tCK=10ns, CL2,  
BL=4, tRRD=2*tCK, tRCD=3*tCK, Read with  
Autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 A0 R3 A1 R0  
- repeat the same timing with random address  
changing; 100% of data changing at every  
burst  
DDR266 (133MHz, CL=2.5) : tCK=7.5ns,  
CL=2.5, BL=4, tRCD=3*tCK, tRC=9*tCK, tRAS=5*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat  
the same timing with random address  
DDR266 (133MHz, CL=2.5) : tCK=7.5ns,  
CL=2.5, BL=4, tRRD=3*tCK, tRCD=3*tCK  
Read with Autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N  
A1 R0 - repeat the same timing with random  
address changing; 100% of data changing at  
every burst  
changing; 50% of data changing at every burst  
DDR266 (133MHz, CL=2) : tCK=7.5ns, CL=2,  
BL=4, tRCD=3*tCK, tRC=9*tCK, tRAS=5*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat  
the same timing with random address  
changing; 50% of data changing at every burst  
DDR266 (133MHz, CL=2) : tCK=7.5ns, CL2=2,  
BL=4, tRRD=2*tCK, tRCD=2*tCK  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N  
A1 R0 - repeat the same timing with random  
address changing; 100% of data changing at  
every burst  
DDR333 (166MHz, CL=2.5) : tCK=6ns, BL=4,  
tRCD=10*tCK, tRAS=7*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat  
the same timing with random address  
changing; 50% of data changing at every burst  
DDR333 (166MHz, CL=2.5) : tCK=6ns,  
BL=4, tRRD=3*tCK, tRCD=3*tCK, Read with  
Autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N  
A1 R0 - repeat the same timing with random  
address changing; 100% of data changing at  
every burst  
DDR400 (200MHz, CL=3) : tCK=5ns, BL=4,  
tRCD=15*tCK, tRAS=7*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat  
the same timing with random address  
changing; 50% of data changing at every burst  
DDR400 (200MHz, CL=3) : tCK=5ns,  
BL=4, tRRD=10*tCK, tRCD=15*tCK, Read with  
Autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N  
A1 R0 - repeat the same timing with random  
address changing; 100% of data changing at  
every burst  
Legend:  
A = Activate, R = Read, W = Write, P = Precharge, N = NOP  
A (0-3) = Activate Bank 0-3  
R (0-3) = Read Bank 0-3  
May 2005  
Rev. 4  
6
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
DDR SDRAM COMPONENT ELECTRICAL CHARACTERISTICS AND  
RECOMMENDED AC OPERATING CONDITIONS  
AC CHARACTERISTICS  
403  
335  
262  
263/265  
202  
PARAMETER  
SYMBOL MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX UNITS NOTES  
Access window of DQs from CK/CK#  
CK high-level width  
CK low-level width  
tAC  
tCH  
tCL  
-0.7 +0.7 -0.75 +0.75 -0.75 +0.75 -0.75 +0.75 ns  
0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55  
0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55  
tCK  
tCK  
26  
26  
Clock cycle time  
CL = 3  
CL = 2.5  
CL = 2  
5
6
7.5  
13  
13  
6
6
7.5  
0.45  
0.45  
1.75  
13  
13  
7.5  
7.5  
13  
13  
7.5  
7.5  
13  
13  
7.5  
7.5  
13  
13  
ns 40, 45  
ns 40, 45  
ns 40, 45  
ns 23, 27  
ns 23, 27  
tCK (3)  
tCK (2.5)  
tCK (2)  
tDH  
7.5  
0.4  
0.4  
1.75  
-0.6  
0.35  
0.35  
13 7.5/10 13 7.5/10 13 7.5/10 13  
DQ and DM input hold time relative to DQS  
0.5  
0.5  
1.75  
0.5  
0.5  
1.75  
0.5  
0.5  
1.75  
DQ and DM input setup time relative to DQS  
DQ and DM input pulse width (for each input)  
Access window of DQS from CK/CK#  
DQS input high pulse width  
DQS input low pulse width  
DQS-DQ skew, DQS to last DQ valid, per group, per  
access  
tDS  
tDIPW  
tDQSCK  
tDQSH  
tDQSL  
tDQSQ  
ns  
27  
-0.60 +0.60 -0.75 +0.75 -0.75 +0.75 -0.75 +0.75 ns  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.5  
0.35  
0.35  
0.5  
tCK  
tCK  
0.40  
0.45  
0.5  
ns 22, 23  
Write command to first DQS latching transition  
DQS falling edge to CK rising - setup time  
DQS falling edge from CK rising - hold time  
Half clock period  
tDQSS  
tDSS  
tDSH  
tHP  
0.72 1.28 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25  
tCK  
tCK  
tCK  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
tCH,tCL  
tCH,tCL  
tCH,tCL  
tCH,tCL  
tCH,tCL  
ns  
31  
Data-out high-impedance window from CK/CK#  
Data-out low-impedance window from CK/CK#  
Address and control input hold time (fast slew rate)  
Address and control input setup time (fast slew rate)  
Address and control input hold time (slow slew rate)  
tHZ  
tLZ  
tIHF  
tISF  
tIHS  
+0.70  
+0.70  
+0.75  
+0.75  
+0.75 ns 16, 36  
ns 16, 36  
-0.70  
0.6  
0.6  
-0.70  
0.75  
0.75  
0.80  
-0.75  
0.90  
0.90  
1
-0.75  
.90  
.90  
1
-0.75  
.90  
.90  
1
ns  
ns  
ns  
12  
12  
12  
0.6  
May 2005  
Rev. 4  
7
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
DDR SDRAM COMPONENT ELECTRICAL CHARACTERISTICS AND  
RECOMMENDED AC OPERATING CONDITIONS (continued)  
AC CHARACTERISTICS  
403  
335  
262  
263/265  
202  
PARAMETER  
SYMBOL MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX UNITS NOTES  
Address and control input setup time (slow slew rate)  
Address and Control input pulse width (for each  
input)  
tISS  
tIPW  
0.6  
2.2  
0.80  
2.2  
1
2.2  
1
2.2  
1
2.2  
ns  
ns  
12  
LOAD MODE REGISTER command cycle time  
DQ-DQS hold, DQS to first DQ to go non-valid, per  
access  
tMRD  
tQH  
2
tHP  
- tQHS  
12  
tHP  
- tQHS  
15  
tHP  
- tQHS  
15  
tHP  
- tQHS  
15  
tHP  
- tQHS  
ns  
ns 22, 23  
Data hold skew factor  
ACTIVE to PRECHARGE command  
ACTIVE to READ with Auto precharge command  
ACTIVE to ACTIVE/AUTO REFRESH command  
period  
tQHS  
tRAS  
tRAP  
tRC  
0.50  
0.55  
0.75  
0.75  
0.75  
ns  
40 70,000 42 70,000 40 120,000 40 120,000 40 120,000 ns 31, 48  
15  
55  
15  
60  
15  
60  
20  
65  
20  
65  
ns  
ns  
AUTO REFRESH command period  
ACTIVE to READ or WRITE delay  
PRECHARGE command period  
DQS read preamble  
DQS read postamble  
ACTIVE bank a to ACTIVE bank b command  
DQS write preamble  
DQS write preamble setup time  
DQS write postamble  
Write recovery time  
Internal WRITE to READ command delay  
Data valid output window  
REFRESH to REFRESH command  
Average periodic refresh interval  
Terminating voltage delay to VCC  
Exit SELF REFRESH to non-READ command  
Exit SELF REFRESH to READ command  
tRFC  
tRCD  
tRP  
tRPRE  
tRPST  
tRRD  
tWPRE  
tWPRES  
tWPST  
tWR  
tWTR  
na  
tREFC  
tREFI  
tVTD  
70  
15  
15  
0.9  
0.4  
10  
0.25  
0
0.4  
15  
2
tQH - tDQSQ  
70.3  
75  
15  
15  
0.9  
0.4  
12  
0.25  
0
0.4  
15  
1
tQH - tDQSQ  
70.3  
7.8  
75  
15  
15  
0.9  
0.4  
15  
0.25  
0
0.4  
15  
1
tQH - tDQSQ  
70.3  
7.8  
75  
20  
20  
0.9  
0.4  
15  
0.25  
0
0.4  
15  
1
tQH - tDQSQ  
70.3  
7.8  
75  
20  
20  
0.9  
0.4  
15  
0.25  
0
0.4  
15  
1
tQH - tDQSQ  
70.3  
7.8  
ns  
ns  
ns  
tCK  
tCK  
ns  
tCK  
43  
1.1  
0.6  
1.1  
0.6  
1.1  
0.6  
1.1  
0.6  
37  
37  
ns 18, 19  
0.6  
0.6  
0.6  
0.6  
tCK  
ns  
tCK  
ns  
µs  
µs  
ns  
ns  
tCK  
17  
22  
21  
21  
7.8  
0
75  
200  
0
75  
200  
0
75  
200  
0
75  
200  
0
75  
200  
tXSNR  
tXSRD  
May 2005  
Rev. 4  
8
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
Notes  
17. The intent of the Don’t Care state after completion of the postamble is the DQS-  
driven signal should either be high, low, or high-Z and that any signal transition  
within the input switching region must follow valid input requirements. That is, if  
DQS transitions high [above VIHDC (MIN)] then it must not transition low (below  
1. All voltages referenced to VSS  
.
2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be  
conducted at nominal reference/supply voltage levels, but the related specifications  
and device operation are guaranteed for the full voltage range specified.  
3. Outputs measured with equivalent load:  
VIHDC) prior to tDQSH (MIN).  
18. This is not a device limit. The device will operate with a negative value, but system  
performance could be degraded due to bus turnaround.  
V
TT  
19. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE  
command. The case shown (DQS going from High-Z to logic LOW) applies when  
no WRITEs were previously in progress on the bus. If a previous WRITE was in  
50Ω  
RReeffeerreennccee  
progress, DQS could be HIGH during this time, depending on tDQSS  
.
Output  
Point  
30pF  
20. MIN (tRC or tRFC) for IDD measurements is the smallest multiple of tCK that meets  
the minimum absolute value for the respective parameter. tRAS (MAX) for IDD  
measurements is the largest multiple of tCK that meets the maximum absolute value  
(VOUT  
)
for tRAS  
.
4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test  
environment, but input timing is still referenced to VREF (or to the crossing point for  
CK/CK#), and parameter specifications are guaranteed for the specified AC input  
levels under normal use conditions. The mini-mum slew rate for the input signals  
used to test the device is 1V/ns in the range between VIL (AC) and VIH (AC).  
5. The AC and DC input level specifications are as defined in the SSTL_2 Standard  
(i.e., the receiver will effectively switch as a result of the signal crossing the AC  
input level, and will remain in that state as long as the signal does not ring back  
above [below] the DC input LOW [HIGH] level).  
21. The refresh period 64ms. This equates to an aver-age refresh rate of 7.8125µs.  
However, an AUTO REFRESH command must be asserted at least once every  
70.3µs; burst refreshing or posting by the DRAM controller greater than eight  
refresh cycles is not allowed.  
22. The valid data window is derived by achieving other specifications: tHP (tCK/2), tDQSQ  
and tQH (tQH = tHP - tQHS). The data valid window derates directly porportional with  
the clock duty cycle and a practical data valid window can be derived. The clock  
is allowed a maximum duty cycle variation of 45/55, beyond which functionality is  
uncertain. Figure 8, Derating Data Valid Window tHP - tQHS, shows derating curves  
for duty cycles ranging between 50/50 and 45/55.  
,
6.  
VREF is expected to equal VCCQ/2 of the transmitting device and to track variations  
in the DC level of the same. Peak-to-peak noise (non-common mode) on VREF may  
not exceed 2 percent of the DC value. Thus, from VCCQ/2, VREF is allowed 25mV  
for DC error and an additional 25mV for AC noise. This measurement is to be  
taken at the nearest VREF bypass capacitor.  
23. Each byte lane has a corresponding DQS.  
24. This limit is actually a nominal value and does not result in a fail value. CKE is  
HIGH during REFRESH command period (tRFC [MIN]) else CKE is LOW (i.e., during  
standby).  
7.  
8.  
V
TT is not applied directly to the device. VTT is a system supply for signal  
termination resistors, is expected to be set equal to VREF and must track variations  
in the DC level of VREF  
DD is dependent on output loading and cycle rates. Specified values are obtained  
25. To maintain a valid level, the transitioning edge of the input must:  
a. Sustain a constant slew rate from the current AC level through to the target AC  
level, VIL (AC) or VIH (AC).  
.
I
b. Reach at least the target AC level.  
with mini-mum cycle time at CL = 2 for 262, and 262, CL = 2.5 for 335 and 265, CL  
= 3 for 403 with the outputs open.  
c. After the AC target level is reached, continue to maintain at least the target DC  
level, VIL (DC) or VIH (DC).  
26. JEDEC specifies CK and CK# input slew rate must be ≥ 1V/ns (2V/ns  
differentially).  
27. DQ and DM input slew rates must not deviate from DQS by more than 10 percent.  
If the DQ/ DM/DQS slew rate is less than 0.5V/ns, timing must be derated: 50ps  
must be added to tDS and tDH for each 100mv/ns reduction in slew rate. If slew rate  
exceeds 4V/ns, functionality is uncertain.  
9. Enables on-chip refresh and address counters.  
10. DD specifications are tested after the device is properly initialized, and is averaged  
at the defined cycle rate.  
I
11. This parameter is sampled. VCC = +2.5V 0.2V, VCCQ = +2.5V 0.2V, VREF = VSS, f  
= 100 MHz, TA = 25°C, VOUT (DC) = VCCQ/2, VOUT (peak to peak) = 0.2V. DM input  
is grouped with I/O pins, reflecting the fact that they are matched in loading.  
12. For slew rates less than 1 V/ns and greater than or equal to 0.5 V/ns. If slew rate  
is less than 0.5 V/ns, timing must be derated: tIS has an additional 50ps per each  
100mV/ns reduction in slew rate from 500mV/ns, while tIH is unaffected. If slew rate  
exceeds 4.5V/ns, functionality is uncertain.  
28.  
VCC must not vary more than 4 percent if CKE is not active while any bank is active.  
29. The clock is allowed up to 150ps of jitter. Each timing parameter is allowed to vary  
by the same amount.  
30.  
t
HP min is the lesser of tCL minimum and tCH minimum actually applied to the device  
13. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at  
which CK and CK# cross; the input reference level for signals other than CK/CK# is  
CK and CK# inputs, collectively during bank active.  
31. READs and WRITEs with auto precharge are not allowed to be issued until tRAS  
(MIN) can be satisfied prior to the internal precharge command being issued.  
32. Any positive glitch in the nominal voltage must be less than 1/3 of the clock and  
not more than +400mV or 2.9V, whichever is less. Any negative glitch must be less  
than 1/3 of the clock cycle and not exceed either 300mV or 2.2V, whichever is more  
positive. However, the DC average cannot be below 2.3V minimum.  
VREF  
.
14. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period  
before VREF stabilizes, CKE < 0.3 x VCCQ is recognized as LOW.  
15. The output timing reference level, as measured at the timing reference point  
indicated in Note 3, is VTT  
.
16. tHZ and tLZ transitions occur in the same access time windows as valid data  
transitions. These parameters are not referenced to a specific voltage level, but  
specify when the device output is no longer driving (HZ) or begins driving (LZ).  
May 2005  
Rev. 4  
9
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
33. The voltage levels used are derived from a mini-mum VCC level and the referenced  
test load. In practice, the voltage levels obtained from a properly terminated bus will  
provide significantly different voltage values.  
41. Random addressing changing and 50 percent of data changing at every transfer.  
42. Random addressing changing and 100 percent of data changing at every transfer.  
43. CKE must be active (high) during the entire time a refresh command is executed.  
That is, from the time the AUTO REFRESH command is registered, CKE must be  
active at each rising clock edge, until tREF later.  
34.  
VIH overshoot: VIH (MAX) = VCCQ + 1.5V for a pulse width ≤ 3ns and the pulse width  
can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL (MIN) = -1.5V for a  
pulse width ≤ 3ns and the pulse width can not be greater than 1/3 of the cycle rate.  
44.  
I
I
DD2N specifies the DQ, DQS, and DM to be driven to a valid high or low logic level.  
DD2Q is similar to IDD2F except IDD2Q specifies the address and control inputs to  
35.  
36.  
V
CC and VCCQ must track each other.  
HZ (MAX) takes precedence over tDQSCK (MAX) + tRPST (MAX) condition. tLZ (MIN)  
will prevail over tDQSCK (MIN) + tRPRE (MAX) condition.  
RPST end point and tRPRE begin point are not referenced to a specific voltage level  
t
remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is “worst case.”  
45. Whenever the operating frequency is altered, not including jitter, the DLL is required  
to be reset. This is followed by 200 clock cycles.  
37.  
t
but specify when the device output is no longer driving (tRPST), or begins driving  
(tRPRE).  
38. During initialization, VCCQ, VTT, and VREF must be equal to or less than VCC + 0.3V.  
Alternatively, VTT may be 1.35V maximum during power up, even if VCC/VCCQ are  
0V, provided a minimum of 42Ω of series resistance is used between the VTT  
supply and the input pin.  
46. Leakage number reflects the worst case leakage possible through the module pin,  
not what each memory device contributes.  
47. When an input signal is HIGH or LOW, it is defined as a steady state logic HIGH or  
logic LOW.  
48. The 403 speed grade will operate with tRAS (MIN) = 40ns and tRAS (MAX) =  
120,000ns at any slower frequency.  
39. For 403, 335, 262, 263 and 265 speed grades, IDD3N is specified to be 35mA per  
DDR SDRAM at 100 MHz.  
40. The current part operates below the slowest JEDEC operating frequency of  
83 MHz. As such, future die may not reflect this option.  
May 2005  
Rev. 4  
10  
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
ORDERING INFORMATION FOR JD3  
Part Number  
Speed  
CAS Latency  
tRCD  
3
tRP  
3
Height*  
W3EG6462S403JD3  
W3EG6462S335JD3  
W3EG6462S262JD3  
W3EG6462S263JD3  
W3EG6462S265JD3  
W3EG6462S202JD3  
200MHz/400Mb/s  
166MHz/333Mb/s  
133MHz/266Mb/s  
133MHz/266Mb/s  
133MHz/266Mb/s  
100MHz/200Mb/s  
3
2.5  
2
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
3
3
2
2
2
3
3
2.5  
2
3
3
2
2
NOTES:  
• Consult Factory for availability of RoHS compliant products. (G = RoHS Compliant)  
• Vendor specific part numbers are used to provide memory components source control. The place holder for this is shown as lower case “x” in the part numbers above and is to  
be replaced with the respective vendors code. Consult factory for qualified sourcing options. (M = Micron, S = Samsung & consult factory for others)  
• Consult factory for availability of industrial temperature (-40°C to 85°C) option  
PACKAGE DIMENSIONS FOR JD3  
133.48  
(5.255" MAX.)  
131.34  
(5.171")  
3.81  
(0.150 MAX)  
128.95  
(5.077")  
3.99  
(0.157 (2x))  
30.48  
(1.20)  
MAX  
3.99  
(0.157)  
(MIN)  
17.78  
(0.700)  
2.31  
(0.091)  
(2x)  
3.00  
(0.118)  
(4x)  
1.27  
10.01  
(0.050 TYP.)  
(0.394)  
6.35  
(0.250)  
49.53  
(1.950)  
64.77  
1.27 0.10  
(0.050 0.004)  
(2.550)  
6.35  
1.78  
(0.070)  
(0.250)  
* ALL DIMENSIONS ARE IN MILLIMETERS AND (INCHES)  
May 2005  
Rev. 4  
11  
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
ORDERING INFORMATION FOR D3  
Part Number  
Speed  
CAS Latency  
tRCD  
3
tRP  
3
Height*  
W3EG6462S403D3  
W3EG6462S335D3  
W3EG6462S262D3  
W3EG6462S263D3  
W3EG6462S265D3  
W3EG6462S202D3  
200MHz/400Mb/s  
166MHz/333Mb/s  
133MHz/266Mb/s  
133MHz/266Mb/s  
133MHz/266Mb/s  
100MHz/200Mb/s  
3
2.5  
2
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
30.48 (1.20")  
3
3
2
2
2
3
3
2.5  
2
3
3
2
2
NOTES:  
• Consult Factory for availability of RoHS compliant products. (G = RoHS Compliant)  
• Vendor specific part numbers are used to provide memory components source control. The place holder for this is shown as lower case “x” in the part numbers above and is to  
be replaced with the respective vendors code. Consult factory for qualified sourcing options. (M = Micron, S = Samsung & consult factory for others)  
• Consult factory for availability of industrial temperature (-40°C to 85°C) option  
PACKAGE DIMENSIONS FOR D3  
133.48  
(5.255" MAX.)  
131.34  
(5.171")  
3.81  
(0.150 MAX)  
128.95  
(5.077")  
3.99  
(0.157 (2x))  
30.48  
(1.20)  
MAX  
3.99  
(0.157)  
(MIN)  
17.78  
(0.700)  
2.31  
(0.091)  
(2x)  
3.00  
(0.118)  
(4x)  
1.27  
10.01  
(0.050 TYP.)  
(0.394)  
6.35  
(0.250)  
49.53  
(1.950)  
64.77  
1.27 0.10  
(0.050 0.004)  
(2.550)  
6.35  
1.78  
(0.070)  
(0.250)  
* ALL DIMENSIONS ARE IN MILLIMETERS AND (INCHES)  
May 2005  
Rev. 4  
12  
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  
W3EG6462S-D3  
-JD3  
White Electronic Designs  
ADVANCED  
Document Title  
512MB – 2x32Mx64, DDR SDRAM UNBUFFERED  
Revision History  
Rev #  
History  
Release Date Status  
Rev A  
Initial Release  
9-20-02  
Advanced  
Rev 1  
1.1 Updated datasheet  
5-04  
Preliminary  
1.2 Removed "ED" from part number  
Rev 2  
Rev 3  
2.1 Added clock speed of 200MHz  
10-04  
1-05  
Advanced  
Advanced  
2.2 Moved back to Advanced until 200MHz is tested  
3.1 Updated module org from 64Mx64 to 2x32M64  
3.2 Updated pin configuration  
3.3 Added lead-free and RoHS notes  
3.4 Added source control notes  
3.5 Added industrial temperature note  
Rev 4  
4.1 Added JEDEC Standard PCB  
5-05  
Advanced  
4.2 D3 "NOT RECOMMENDED FOR NEW DESIGNS"  
May 2005  
Rev. 4  
13  
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com  

相关型号:

W3EG6462S265JD3

512MB - 2x32Mx64 DDR SDRAM UNBUFFERED
WEDC

W3EG6462S335D3

512MB - 2x32Mx64 DDR SDRAM UNBUFFERED
WEDC

W3EG6462S335JD3

512MB - 2x32Mx64 DDR SDRAM UNBUFFERED
WEDC

W3EG6462S403D3

512MB - 2x32Mx64 DDR SDRAM UNBUFFERED
WEDC

W3EG6462S403JD3

512MB - 2x32Mx64 DDR SDRAM UNBUFFERED
WEDC

W3EG6464S-AD4

512MB - 64Mx64 DDR SDRAM UNBUFFERED w/PLL
WEDC

W3EG6464S-BD4

512MB - 64Mx64 DDR SDRAM UNBUFFERED w/PLL
WEDC

W3EG6464S-D3

512MB - 64Mx64 DDR SDRAM UNBUFFERED
WEDC

W3EG6464S-JD3

512MB - 64Mx64 DDR SDRAM UNBUFFERED
WEDC