W3HG128M72AEF534F1SBG [WEDC]

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240;
W3HG128M72AEF534F1SBG
型号: W3HG128M72AEF534F1SBG
厂家: WHITE ELECTRONIC DESIGNS CORPORATION    WHITE ELECTRONIC DESIGNS CORPORATION
描述:

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240

动态存储器 双倍数据速率 内存集成电路
文件: 总17页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED*  
1GB – 128Mx72 DDR2 SDRAM FBDIMM, ECC  
FEATURES  
„
„
„
„
„
„
„
VCC = VCCQ = +1.8V for DDR2 SDRAM  
„
240-pin DDR2 fully buffered, dual in-line memory  
module (FBDIMM) with ECC to detect and report  
channel errors to the host memory controller.  
VREF = 0.9V SDRAM C/A termination  
VCC = 1.5V for advanced memory buffer (AMB)  
„
Fast DDR2 DRAM data transfer rates: PC2-6400*,  
PC2-5300, and PC2-4300  
Serial Presence Detect (SPD) with EEPROM  
Gold edge contacts  
Dual rank  
„
„
3.2 Gb/s and 4.0 Gb link transfer rates  
High speed differential point-to-point link between  
host memory controller and the AMB using serial,  
dual-simplex bit lanes  
RoHS  
• 10-pair southbound (data path to FBDIMM)  
• 14-pair northbound (data path to FBDIMM)  
DESCRIPTION  
The W3HG128M72AEF is a 128Mx72 fully buffered 240-  
pin Double Data Rate 2 SDRAM memory module based  
on 512Mb DDR2 SDRAM components. The module  
consists of eighteen 128Mx4, in FBGA package and a  
AMB mounted on a 240 pin FR4 substrate.  
„
„
„
Fault tolerant; can work around a bad bit lane in  
each direction  
High density scaling with up to 8 dual-rank modules  
(288 DDR2 SDRAM devices) per channel  
SMBus interface to AMB for conguration register  
* This product is under development, is not qualied or characterized and is subject to  
change or cancellation without notice.  
access.  
„
„
In-band and out-bank command access  
Deterministic protocol  
NOTE: Consult factory for availability of:  
• Vendor source control options  
• Enables memory controller to optimize DRAM  
access for maximum performance  
• Delivers precise control and repeatable memory  
behavior  
„
Automatic DDR2 SDRAM bus and channel  
calibration  
„
„
„
Transmitter de-emphasis to reduce ISI  
MBIST and IBIST test functions  
Transparent mode for DDR2 SDRAM test support  
PERFORMANCE PARAMETERS  
Speed Grade  
Module Bandwidth  
PC2-5300  
Peak Channel Throughput  
8.0 GB/s  
Link Transfer Rate  
4.0 GT/s  
Latency (CL-tRCD-tRP)  
665  
534  
5-5-5  
4-4-4  
PC2-4200  
6.4 GB/s  
3.2 GT/s  
* Consult factory for availability  
Note: JEDEC has not yet adopted a nal FBDIMM standard  
September 2007  
Rev. 3  
1
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
PIN ASSIGNMENT – 240 PIN FBDIMM  
PIN NAMES  
PIN  
1
SYMBOL  
PIN  
SYMBOL  
PN9#  
VSS  
PIN  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
SYMBOL  
VDD  
VDD  
VDD  
VSS  
PIN  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
SYMBOL  
SN9#  
VSS  
Symbol  
SCK  
SCK#  
Descriptions  
VDD  
61  
System Clock Input, positive line  
System Clock Input, negative line  
Primary Northbound Data, positive lines  
Primary Northbound Data, negative lines  
Primary Southbound Data, positive lines  
Primary Southbound Data, negative lines  
Secondary Northbound Data, positive lines  
Secondary Northbound Data, negative lines  
Secondary Southbound Data, positive lines  
Secondary Southbound Data, negative lines  
Serial Presence Detect (SPD) Clock Input  
SPD Data Input/Output  
2
VDD  
62  
3
VDD  
63  
PN10  
PN10#  
VSS  
SN10  
SN10#  
VSS  
PN0-PN13  
PN0#-PN13#  
PS0-PS9  
PS0#-PS9#  
SN0-SN13  
SN0#-SN13#  
SS0-SS9  
SS0#-SS9#  
SCL  
4
VSS  
64  
5
VDD  
65  
VDD  
VDD  
VDD  
VSS  
6
VDD  
66  
PN11  
PN11#  
VSS  
SN11  
SN11#  
VSS  
7
VDD  
67  
8
VSS  
68  
9
VCC  
69  
VSS  
VCC  
VCC  
VSS  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
VCC  
70  
PS0  
PS0#  
VSS  
SS0  
SS0#  
VSS  
VSS  
71  
VCC  
72  
VCC  
VCC  
VSS  
VCC  
73  
PS1  
PS1#  
VSS  
SS1  
SS1#  
VSS  
SDA  
VSS  
74  
SPD Address Inputs, also used to select the  
FBDIMM number in the AMB  
SA0-SA2  
VTT  
75  
VTT  
VID1  
RESET#  
VSS  
RFU2  
RFU2  
VSS  
76  
PS2  
PS2#  
VSS  
VID0  
SS2  
SS2#  
VSS  
Voltage ID: These pins must be  
unconnected for DDR2-based FBDIMMs.  
VID0 is VDD value: OPEN=1.8V,  
GND=1.5V;VID1 is VCC value: OPEN=1.5V,  
GND=1.2V  
AMB reset signal  
Reserved for Future Use  
AMB Core Power and AMB Channel  
Interface Power (1.5V)  
DRAM Power and AMB DRAM I/O Power  
(1.8V)  
77  
137 DNU/M_Test 197  
78  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
VSS  
RFU2  
RFU2  
VSS  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
VID0-VID1  
79  
PS3  
PS3#  
VSS  
SS3  
SS3#  
VSS  
80  
81  
RESET#  
RFU  
PN0  
PN0#  
VSS  
82  
PS4  
PS4#  
VSS  
SN0  
SN0#  
VSS  
SS4  
83  
SS4#  
VSS  
84  
VCC  
VDD  
VTT  
PN1  
PN1#  
VSS  
85  
VSS  
SN1  
SN1#  
VSS  
VSS  
86  
RFU1  
RFU1  
VSS  
RFU1  
RFU1  
VSS  
87  
DRAM Address/Command/Clock  
Termination Power (VDD/2  
SPD Power  
Ground  
PN2  
PN2#  
VSS  
88  
SN2  
SN2#  
VSS  
89  
VSS  
VSS  
)
90  
PS9  
PS9#  
VSS  
SS9  
SS9#  
VSS  
VCCSPD  
PN3  
PN3#  
VSS  
91  
SN3  
SN3#  
VSS  
VSS  
DNU/M_TEST  
92  
Do Not Use  
93  
PS5  
PS5#  
VSS  
SS5  
SS5#  
VSS  
Note:  
PN4  
PN4#  
VSS  
94  
SN4  
SN4#  
VSS  
1. These pin positions are reserved for forwarded clocks to be used in  
future module implemenations  
2. These pin positions are reserved for future architechture exibility.  
3. The following signals are CRC bits and thus appear out of the  
normal sequence: PN12/PN12#, SN12/SN12#, PN13/PN13#,  
PS9/PS9#, SS9/SS9#.  
95  
96  
PS6  
PS6#  
VSS  
SS6  
SS6#  
VSS  
PN5  
PN5#  
VSS  
97  
SN5  
SN5#  
VSS  
98  
99  
PS7  
PS7#  
VSS  
SS7  
SS7#  
VSS  
PN13  
PN13#  
VSS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
SN13  
SN13#  
VSS  
4. RFU = Reserved Future Use.  
PS8  
PS8#  
VSS  
RFU2  
RFU2  
VSS  
SS8  
SS8#  
VSS  
RFU2  
RFU2  
VSS  
VSS  
VSS  
RFU  
RFU  
VSS  
RFU1  
RFU1  
VSS  
VSS  
VSS  
PN12  
PN12#  
VSS  
VDD  
SN12  
SN12#  
VSS  
SCK  
SCK#  
VSS  
VDD  
VSS  
PN6  
PN6#  
VSS  
VDD  
SN6  
SN6#  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
PN7  
PN7#  
VSS  
VSS  
SN7  
SN7#  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
PN8  
PN8#  
VSS  
VTT  
SN8  
SN8#  
VSS  
VTT  
SA2  
SDA  
SCL  
VCCSPD  
SA0  
SA1  
PN9  
SN9  
September 2007  
Rev. 3  
2
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
FUNCTIONAL BLOCK DIAGRAM  
VSS  
CS0#  
CS1#  
DQS0  
DQS9  
DQS9  
DQS0#  
DM  
CS# DQS DQS#  
DM  
CS# DQS DQS#  
DQ0  
DQ4  
I/O 0  
I/O 0  
DQ1  
DQ2  
DQ3  
DQ5  
DQ6  
DQ7  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
DQS1  
DQS10  
DQS1#  
DQS10#  
DM  
CS# DQS DQS#  
DM  
CS# DQS DQS#  
DQ8  
DQ12  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ9  
DQ13  
DQ14  
DQ15  
DQ10  
DQ11  
DQS2  
DQS2#  
DQS11  
DQS11#  
DM  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
DM  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
DQ16  
DQ20  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ17  
DQ18  
DQ19  
DQ21  
DQ22  
DQ23  
DQS3  
DQS12  
DQS3#  
DQS12#  
DM  
DM  
DQ24  
DQ28  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ25  
DQ26  
DQ27  
DQ29  
DQ30  
DQ31  
DQS4  
DQS13  
DQS4#  
DQS13#  
DM  
DM  
DQ32  
DQ36  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ33  
DQ34  
DQ35  
DQ37  
DQ38  
DQ39  
DQS5  
DQS14  
DQS5#  
DQS14#  
DM  
DM  
DQ40  
DQ44  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ41  
DQ42  
DQ43  
DQ45  
DQ46  
DQ47  
DQS6  
DQS15  
DQS6#  
DQS15#  
DM  
DM  
DQ48  
DQ52  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ49  
DQ50  
DQ51  
DQ53  
DQ54  
DQ55  
DQS7  
DQS16  
DQS7#  
DQS16#  
DM  
DM  
DQ56  
DQ60  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ57  
DQ58  
DQ59  
DQ61  
DQ62  
DQ63  
DQS8  
DQS17  
DQS8#  
DQS17#  
DM  
DM  
CB0  
CB4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CB1  
CB2  
CB3  
CB5  
CB6  
CB7  
Terminators  
VTT  
PN0-PN13  
PN0#-PN13#  
PS0-PS9  
SN0-SN13  
SN0#-SN13#  
SS0-SS9  
VCCSPD  
Serial PD, AMB  
Out to Ctrl  
In from adj. FBDIMM  
Out to adj. FBDIMM  
VCC  
VDD  
AMB  
In from Ctrl  
PS0#-PS9#  
SS0#-SS9#  
DDR2 SDRAMs  
DQ0-DQ63  
DQS0-DQS17  
DQS0#-DQS17#  
CB0 -CB7  
A0-A15  
Data Input/Output  
A
M
B
VREF  
VSS  
signals to DDR2 Channel  
RAS#, CAS#  
WE#, ODT0  
CS0#, CS1#  
CKE0, CKE1  
DDR2 SDRAMs  
Command, Address and  
Clock signals to DDR2 Channel  
DDR2 SDRAMs  
Serial PD, AMB  
SCL  
SDA  
SA0-SA2  
CK0, CK0#  
CK1, CK1#  
Command, address and clock line terminations:  
22  
30  
39  
RAS#, CAS#, A0–A15,  
ODT0, WE#, BA0–BA2  
VTT  
VTT  
VTT  
SCL  
Serial PD  
WP A0 A1 A2  
SCK, SCK#  
RESET#  
SDA  
CK0, CK0#, CK1, CK1#,  
SA0 SA1 SA2  
CS0, CS1#,  
CKE0, CKE1  
September 2007  
Rev. 3  
3
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED*  
GENERAL DESCRIPTION  
in the center of each FBDIMM, acts as a repeater  
and buffer for all signals and commands exchanged  
between the host controller and the DDR2 SDRAM  
devices, including data input and output. The AMB  
communicates with the host controller and adjacent  
FBDIMMs on a system board using an industry-  
standard, high-speed, differential, point-to-point,  
interface at 1.5V.  
WEDC FBDIMM is a high-bandwidth, large-capacity-  
channel solution that has narrow host interface.  
FBDIMMs used DDR2 SDRAM devices isolated from  
the channel behind a buffer on the FBDIMM. Memory  
device capacity remains high and total memory capacity  
scales with DDR2 SDRAM bit density.  
As shown in Figure 1, the FBDIMM channel provides a  
communication path from a host controller to an array of  
DDR2 SDRAM devices, with the DDR2 SDRAM devices  
buffered behind an AMB device. The physical isolation  
of the DDR2 SDRAM devices from the channel enables  
the exibility to enhance the communication path to  
signicantly increase the reliability and availability of the  
memory subsystem.  
The AMB also allows buffering of memory trafc to  
support large memory capacities. All memory control for  
the DDR2 SDRAM devices resides in the host, including  
memory request initiation, timing, refresh, scrubbing,  
sparing, conguration access, and power management.  
The AMB interface is responsible for handling channel  
and memory requests to and from the local FBDIMM  
and for forwarding requests to other FBDIMMs on the  
memory channel.  
WEDC FBDIMM features a novel architecture, including  
the AMB that isolates the DDR2 SDRAM devices from  
the channel. This single-chip AMB component, located  
FIGURE 1: FBDIMM Solution Block Diagram  
DDR2 connector with unique key  
Commodity  
DDR2 SDRAM  
Devices  
DDR2  
DDR2  
DDR2  
DDR2  
Component  
Component  
Component  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
Up to 8 modules  
10  
AMB  
AMB  
AMB  
AMB  
• •  
DDR2  
DDR2  
DDR2  
DDR2  
Memory  
Controller  
14  
Component  
Component  
Component  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
SMBus  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
DDR2  
Component  
CLK  
Source  
SMbus access  
to buffer registers  
Common clock source  
September 2007  
Rev. 3  
4
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED*  
FUNCTIONAL DESCRIPTION  
ADVANCED MEMORY BUFFER (AMB)  
northbound frames, servicing requests directed to a  
specific FBDIMM's AMB, as defined in the protocol  
chapter of the specification, and merging the return  
data into the northbound frames.  
The AMB reference design complies with the "FBDIMM  
Architecture and Protocol Specication" (JEDEC  
standards, pending). It is expected that there will be  
multiple vendors for the AMB which will offer at least  
the minimum functionally as set forth in the industry  
specication. To achieve optimal operation and  
compatibility with DDR2 SDRAM device and host/  
controller offerings, each vendor's AMB will have a  
unique set of personality bytes contained in the SPD for  
setting up and ne tuning their device.  
Initialize northbound frames if the FBDIMM's AMB  
is the last, southern-most on the channel, initialize  
northbound frames.  
Detect errors on the channel and report them to the  
host memory controller  
The FBDIMM specication denes a number of options  
to support the requirements of different applications.  
The capabilities of the AMB are communicated to the  
host during the initialization process in the TS2 training  
pattern and in bits readable in the features register in  
the AMB.  
Support the FBDIMM configuration register set as  
defined in the FBDIMM AMB specification register  
chapter of the specification  
Act as a DRAM memory buffer for all read, write,  
and configuration accesses addressed to a specific  
FBDIMM's AMB  
The AMB is responsible for handling FBDIMM channel  
and memory requests to and from the local FBDIMM  
and for forwarding requests to other FBDIMMs on  
the channel. A complete and detailed description of  
the AMB is contained in the proposed FBDIMM AMB  
Specication. The AMB is a memory interface that  
connects an array of DDR2 SDRAM devices to the  
FBDIMM channel. The AMB is a slave device on  
the channel responding to channel commands and  
forwarding channel commands to other AMB devices.  
Provide a read and write buffer FIFO  
Supports an SMBus protocol interface for access to  
the AMB configuration registers  
Provide features to support MEMBIST and IBIST  
test functions  
Provide a register interface for the thermal sensor  
and status indicator  
All memory control for the DDR2 SDRAM resides in the  
host, including memory request initiation, timing, refresh,  
scrubbing, sparing, conguration access, and power-  
management.  
Function as a repeater to extend the maximum  
length of FBDIMM Links  
Reconfigures FBDIMM inputs from differential high-  
speed link receivers to two single-ended, low-speed  
receivers (~200 MHz). These inputs directly control  
DDR2 command/address and input data that is  
replicated to all DDR2 SDRAMs devices.  
The AMB is expected to perform the following functions:  
Support channel initialization procedures as  
defined in the initialization chapter of the FBDIMM  
Architecture and Protocol Specification to align the  
clocks and the frame boundaries and verify channel  
connectivity  
Bypass high-speed parallel serial circuitry and  
provide test results back to the tester, using low-  
speed FBDIMM outputs  
Support the forwarding of southbound and  
September 2007  
Rev. 3  
5
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED*  
AMB INTERFACE  
The northbound input link is 14 lanes wide. It carries  
read return data or status information from one FBDIMM  
to the next in the host direction and multiplexes in  
any internally generated READ return data or status  
information.  
Figure 2: The AMB Interface Block Diagram illustrates  
the AMB and all of its interfaces. They consist of two  
FBDIMM links, one DDR2 channel and an SMBus  
interface. Each FBDIMM link connects the AMB to a  
host memory controller or an adjacent FBDIMM. The  
DDR2 channel supports direct connection to the DDR2  
SDRAM on an FBDIMM.  
Data and commands sent to the DDR2 SDRAM devices  
travel southbound on 10 primary differential signal  
line pairs. Data and status information received from  
the DDR2 SDRAM devices travel northbound on 14  
primary differential pairs. Data and commands sent to  
the adjacent FBDIMM are repeated and travel further  
southbound on 10 secondary differential pairs. Data  
and status information received from the upstream  
adjacent FBDIMM travel further northbound on 14  
secondary differential parts.  
The FBDIMM channel uses a daisy-chain topology to  
proved expansion from a single FBDIMM per channel  
to up to eight FBDIMMs per channel. The host sends  
data on the southbound link to the first FBDIMM, where  
it is received and redriven to the second FBDIMM. On  
the southbound data path, each FBDIMM receives the  
data and redrives the data to the next FBDIMM, until the  
last FBDIMM receives the data. The last FBDIMM in the  
chain initiates the transmission of northbound data in  
the direction of the host. On the northbound data path,  
each FBDIMM receives the data and redrives the data  
to the next FBDIMM until the host is reached.  
DDR2 CHANNEL  
The AMB DDR2 channel on the advanced memory  
buffer supports direct connection to DDR2 SDRAM  
devices. The DDR2 channel supports two ranks of eight  
banks with 16 row/column-request, 64 data, and eight  
check-bit signals. There are two copies of address  
and command signals to support FBDIMM routing and  
electrical requirements. Four transfer burst are driven  
on the data and check-bit lines at 800 MHz.  
FIGURE 2: AMB Interface Block Diagram  
MEMORY INTERFACE  
Primary or  
Secondary direction or to  
(optional) next FBDIMM  
Host Direction  
Propagation delays can differ between read data/check-  
bit strobe lanes on a given channel. Each strobe  
can be calibrated by hardware state machines using  
WRITE/READ trial and error. Hardware aligns the  
read data and check-bits to a single core clock. The  
AMB provides four copies of the command clock phase  
reference (CLK[3:0]) and write data/check-bit strobes  
(DQS) for each DDR2 SDRAM device nibble.  
NB FBD  
Out Link  
NB FBD  
InLink  
AMB  
SB FBD  
InLink  
SB FBD  
Out Link  
SMBus  
SMBus SLAVE INTERFACE  
HIGH-SPEED, DIFFERENTIAL, POINT-  
TO-POINT LINK (AT 1.5V) INTERFACES  
The AMB supports a SMBus interface allows system  
access to configuration registers independent of the  
FBDIMM link. The AMB will never be a master on  
the SMBus, only a slave. Serial SMBus data transfer  
is supported at 100KHz. SMBus access to the AMB  
may be a requirement to boot and to set link strength,  
frequency and other parameters needed to ensure  
robust configurations. It is also required for diagnostic  
The AMB supports one FBDIMM channel consisting  
of two bidirectional link interfaces using high-speed  
differential point-to-point electrical signaling. The  
southbound input link is 10 lanes wide. It carries  
commands and write data from the host memory  
controller, or the adjacent FBDIMM in the host direction,  
to the next FBDIMM in the chain.  
September 2007  
Rev. 3  
6
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED*  
DDR2 SDRAM command clock because of the fixed  
6:1 ratio of the FBDIMM channel clock to the DDR2  
SDRAM command clock. Therefore, the northbound  
data connection will exhibit the same peak theoretical  
throughput as a single DDR2 SDRAM channel. For  
example, when using DDR2 533 componente, the peak  
theoretical bandwidth of the northbound data connection  
is 4.267 GB/sec.  
support when the high speed link is down. The SMBus  
address straps located on the FBDIMM connector are  
used to set the unique ID.  
CHANNEL LATENCY  
FBDIMM channel latency is measured from the time  
a read request is driven on the FBDIMM channel pins  
to the time when the first 16 bytes (2nd chunk) of read  
completion data is sampled by the memory controller.  
Write data is transferred on the southbound command  
and data connection, via Command + Wdata frames; 72  
bits of data are transferred per frame. Two Command  
+ Wdata frames match the 18-byte data transfer of  
an ECC DDR2 SDRAM in a single DDR2 SDRAM  
command clock.  
When not using variable READ latency, the latency  
for a specific FBDIMM on a channel is always equal  
to the latency for any other FBDIMM on that channel.  
However, the latency for each FBDIMM in a specific  
configuration with some number of FBDIMMs installed  
may not be equal to the latency for each FBDIMM in a  
configuration with some different number of FBDIMMs  
installed. As more FBDIMMs are added to the channel,  
additional latency is required to read from each FBDIMM  
on the channel.  
A DDR2 SDRAM burst of eight transfers from a single  
channel, or a burst of four from two lock-step channels,  
provides a total of 72 bytes of data (64 bytes plus 8  
bytes ECC). When the FBDIMM frame rate matches  
the DDR2 SDRAM command clock, the southbound  
command and data connection will exhibit one half the  
peak theoretical throughput of a single DDR2 SDRAM  
channel. For example, when using DDR2-533 SDRAMs,  
the peak theoretical bandwidth of the southbound  
command and data connection is 2.133 GB/sec.  
Because the channel is based on point-to-point  
interconnection of buffer components between  
FBDIMMs, memory requests are required to travel  
through N-1 buffers before reaching the Nth buffer. The  
result is that a four-FBDIMM channel configuration will  
have greater idle READ latency compared to a one  
FBDIMM channel configuration.  
The total peak-theoretical throughput for a single  
FBDIMM channel is defined as the sum of the  
peak-theoretical throughput of the northbound data  
connection and the southbound command and data  
connection. When the FBDIMM frame rate matches the  
DDR2 SDRAM command clock, it equals 1.5 times the  
peak-theoretical throughput of a single DDR2 SDRAM  
channel. For example, when using DDR2-533 SDRAMs,  
the peak theoretical throughput of a DDR2-533 channel  
would be 4.267 GB/sec, while the peak theoretical  
throughput of an FBDIMM-533 channel would be 6.4  
GB/sec.  
The variable READ latency capability can be used to  
reduce latency for FBDIMMs closer to the host. The  
idle latencies listed in this section are representative of  
what might be achieved in typical AMB designs. Actual  
implementations with latencies less than the values  
listed will have higher application performance and vice  
versa.  
PEAK THEORETICAL THROUGHPUT  
An FBDIMM channel transfers READ completion data  
on the northbound data connection; 144 bits of data  
are transferred for every northbound data frame. This  
matches the 18-byte data transfer of an ECC DDR2  
SDRAM device in a single DDR2 SDRAM command  
clock. A DDR2 SDRAM device burst of eight from a  
single channel, or burst of four from two lock-step  
channels, provides a total of 72 bytes of data (64 bytes  
plus 8 bytes ECC). The AMB frame rate matches the  
September 2007  
Rev. 3  
7
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
ABSOLUTE MAXIMUM RATINGS  
All voltages referenced to VSS  
Symbol  
VIN, VOUT  
VCC  
Parameter  
Voltage on any pin relative to VSS  
Voltage on VCC pin relative to VSS  
Voltage VCC pin relative to VSS  
Voltage on VTT pin relative to VSS  
Storage temperature  
Min  
-0.3  
-0.3  
-0.5  
-0.5  
-55  
Max  
1.75  
1.75  
2.3  
Units  
V
Notes  
V
VDD  
V
VTT  
2.3  
V
TSTG  
100  
95  
°C  
°C  
°C  
DDR2 SDRAM device operating temperature (Ambient)  
AMB device operating temperature (Ambient)  
0
0
1, 2  
TCASE  
110  
Stresses greater than those listed in absolute maximum rating table may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this specication is not implied. Exposure to absolute maximum rating conditions for extended periods  
may adversely affect reliability.  
NOTES:  
1. TCASE is specied at 95°C only when using 2X refresh timing (tREFI = 7.8μs at or below 85°C; tREFI = 3.9μs above 85°C);.DDR2 SDRAM component datasheet, though the  
FBDIMM does not have an IT option.  
2. See applicable DDR2 SDRAM component datasheet for tREFI and extended mode register setting. The tREFIIT parameter is used to specify the doubled refresh interval  
neceassary to sustain 95°C operation; however, the FBDIMM does not have an IT option.  
INPUT DC VOLTAGE AND OPERATING CONDITIONS  
Symbol Parameter  
Min  
1.455  
1.7  
Nom  
1.50  
Max  
1.575  
1.9  
Units  
V
Notes  
VCC  
VDD  
VTT  
AMB supply voltage  
DDR2 SDRAM supply voltage  
Termination voltage  
1.8  
V
0.48 x VDD  
3.0  
0.50 x VDD  
3.3  
0.52 x VDD  
3.6  
V
VDDSPD SPD supply voltage  
V
VIH(DC)  
VIL(DC)  
VIH(DC)  
VIL(DC)  
IL  
SPD Input HIGH (logic 1) voltage  
2.1  
VDDSPD  
0.8  
V
1
1
2
1
2
3
SPD Input LOW (logic 0) voltage  
RESET Input HIGH (logic 1) voltage  
RESET Input LOW (logic 0) voltage  
Leakage Current (RESET)  
V
1.0  
V
0.5  
90  
5
V
-90  
-5  
μA  
μA  
IL  
Leakage Current (link)  
NOTES:  
1. Applies for SMB and SPD bus signals.  
2. Applies for AMB CMOS signal RESET#.  
3. For all other AMB related DC parameters, please refer to the high-speed differential link interface specication.  
September 2007  
Rev. 3  
8
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
Timing Parameters  
Parameter  
Symbol  
tEl Propagate  
Min  
Typical  
Max  
4
Unit  
CK  
Notes  
El assertion pass-through timing  
El de assertion pass-through timing  
El assertion duration  
tEID  
tEI  
Bitlock  
CK  
2
1, 2  
3
100  
CK  
FBD command to DDR2 clock out that latches command  
FBD command to DDR2 WRITE  
DDR2 READ to FBD (last FBDIMM)  
Resample pass-through time  
8.1  
TBD  
5.0  
ns  
ns  
ns  
4
1.075  
2.075  
ns  
Resynch pass-through time  
ns  
Bitlock interval  
tBitlock  
tFramelock  
119  
154  
frames  
frames  
1
1
Framelock interval  
Note: 1. Dened in FBDIMM architecture and protocol specication.  
2. Clocks dened as core clocks - 2x SCK input  
3. For DDR2-667 (PC2-5300), this is measured from the beginning of the frame at the southbound input to the DDR2 clock output that latches the rst command of a frame  
to the DDR2 SDRAM devices  
4. For DDR2-667 (PC2-5300), this is measured from the latest DQS input to the AMB to the start of the matching data frame at the northbound FBDIMM outputs.  
AMB IDD SPECIFICATIONS AND CONDITIONS  
Symbol  
Condition  
806  
665  
534  
Units  
@1.5v  
@1.8v  
2.6  
2.2  
A
TBD  
Idle Current, single or last DIMM, LO state, idle (0 BW), Primary channel enabled,  
Secondary Channel disabled , CKE high. Command and address lines stable. DRAM  
clock active  
Idd_Idle_0  
0.9  
3.4  
0.9  
3.0  
A
A
TBD  
TBD  
@1.5v  
@1.8v  
Idle Current, rst DIMM, LO state, idle (0 BW), Primary and Secondary channels  
enabled CKE high, Command and address lines stable. DRAM clock active.  
Idd_Idle_1  
0.9  
0.9  
A
TBD  
@1.5v  
@1.8v  
@1.5v  
3.9  
1.7  
3.7  
3.4  
1.7  
3.2  
A
A
A
TBD  
TBD  
TBD  
Active Power, LO state. 50% DRAM BW, 67% read, 33% write. Primary and Secondary  
channels enabled. DRAM clock active, CKE high.  
Idd_Active_1  
Active Power, LO state. 50% DRAM BW, 67% read, 33% write. Primary and Secondary  
channels enabled. DRAM clock active, CKE high.  
Idd_Active_2  
Idd_Training  
@1.8v  
@1.5v  
@1.8v  
0.9  
4.0  
0.9  
0.9  
3.5  
0.9  
A
A
A
TBD  
TBD  
Training, Primary and Secondary channels enabled. 100% toggle on all channel lanes  
DRAMs idle. 0BW. CKE high, Command and address lines stable. DRAM clock active.  
TBD  
September 2007  
Rev. 3  
9
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
VTT CURRENTS  
Parameter  
Symbol  
Typ  
500  
500  
Max  
700  
700  
Unit  
mA  
mA  
Idle current, DDR2 SDRAM device power down  
Active power, 50% DDR2 BW  
ITT1  
ITT2  
REFERENCE CLOCK INPUT SPECIFICATIONS  
Values  
Parameter  
Symbol  
Unit  
Notes  
Min  
133.33  
175  
Max  
200  
700  
850  
Reference clock frequency  
Rise time, fall time  
fSCK  
TSCK-RISE, TSCK-FALL  
VSCK-HIGH  
VSCK-LOW  
MHz  
ps  
1, 2  
3
Voltage high  
600  
mV  
mV  
mV  
Voltage low  
-150  
250  
Absolute crossing point  
Relative crossing point  
Percent mismatch between rise and fall times  
Duty cycle of reference clock  
Clock leakage current  
VCROSS-ABS  
VCROSS-REL  
TSCK-RISE-FALL-MATCH  
TSCK-DUTYCYCLE  
Il-CK  
550  
4
calculated  
-
calculated  
4, 5  
10  
60  
10  
2
%
%
40  
-10  
μA  
pF  
6, 7  
7
Clock input capacitance  
Clock input capacitance delta  
Transport delay  
Cl-CK  
0.5  
Cl_CK (D)  
-0.25  
0.25  
5
pF  
8
T1  
ns  
9, 10  
11  
Phase jitter sample size  
Reference clock jitter, ltered  
Reference clock deterministic jitter  
NSAMPLE  
TREF-JITTER  
TREF-DJ  
1016  
Periods  
ps  
40  
12, 13  
TBD  
ps  
NOTES:  
10. The net transport delay is the difference in time of ight between  
associated data and clock paths. The data path is dened from  
the reference clock source, through the TX , to data arrival at the  
data sampling point in the RX. The clock path is dened from the  
reference clock source to clock arrival at the sampling point. The  
path delays are caused by copper trace routes, on-chip routing, on-  
chip buffering, etc. They include the time-of-ight of interpolators or  
other clock adjustment mechanisms. They do not include the phase  
delays caused by nite PLL loop bandwidth because these delays are  
modeled by the PLL transfer functions.  
1. 133 MHz for PC2-4200 and 166MHZ for PC2-5300  
2. Measured with SSC disabled.  
3. Measured differentially through the range of 0.175V to 0.525V.  
4. The crossing point must meet the absolute and relative crossing point  
specication simultaneously.  
5. VCROSS_REL_(MIN) and VCROSS_REL_(MAX) are derived using the following  
calculations: Min = 0.5 (Vhavg -0.710) + 0.250; and Max = 0.5 (Vhavg - 0.710) + 0.550, where  
Vhavg is the average of VSCK-HIGHM.  
6. Measured with a single-ended input voltage of 1V.  
7. Applies to reference clocks SCK and SCK#.  
11. Direct measurement of phase jitter records over 1016 periods is  
impractical. It is expected that the jitter will be measured over a  
smaller, yet statistically signicant, sample size and total jitter at 1016  
samples extrapolated from an estimated of the sigma of the random  
jitter components.  
8. Difference between SCK and SCK# input.  
9. T1 = |Tdatapath - Tclockpath| (excluding PLL loop delays). This  
parameter is not a direct clock output parameter but it indirectly  
determines the clock output parameter TREF-JITTER  
.
12. Measured with SSC enabled on reference clock generator.  
13. As measured after the phase jitter lter. This number is separate  
from the receiver jitter budget that is dened by the TRXTotal -Min  
parameters.  
September 2007  
Rev. 3  
10  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
DIFFERENTIAL TRANSMITTER OUTPUT SPECIFICATIONS  
Values  
Parameter  
Symbol  
Units  
Comments  
Min  
900  
800  
520  
Max  
Differential peak-to-peak output voltage for large voltage swing  
Differential peak-to-peak output voltage for regular voltage swing  
Differential peak-to-peak output voltage for small voltage swing  
DC common code output voltage for large voltage swing  
DC common code output voltage for small voltage swing  
De-emphasized differential output voltage ratio for -3.5 dB de-emphasis  
De-emphasized differential output voltage ratio for -6.0 dB de-emphasis  
AC peak-to-peak common mode output voltage for large swing  
AC peak-to-peak common mode output voltage for regular swing  
AC peak-to-peak common mode output voltage for small swing  
Maximum single-ended voltage in EI condition DC + AC  
Maximum single-ended voltage in EI condition DC + AC  
Maximum peak-to-peak differential voltage in EI condition  
Single-ended voltage (w.r.t. VSS) ON D+/D-  
V
TX-DIFF p-p_L  
1,300  
mV  
mV  
mV  
mV  
mV  
dB  
dB  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
Ul  
EQ 1, Note 1  
EQ 1, Note 1  
EQ 1, Note 1  
EQ 2, Note 1  
EQ 2, Note 1, 2  
1, 3, 4  
V
TX-DIFF p-p_R  
VTX-DIFFp-p_S  
VTX-CM_L  
375  
280  
-4.0  
-7.0  
90  
VTX-CM_S  
135  
-3.0  
-5.0  
VTX-CM-3.5-Ratio  
VTX-CM-6.0-Ratio  
VTX-CM-AC p-p-L  
1, 3, 4  
EQ3, Note 1, 5  
EQ3, Note 1, 5  
EQ3, Note 1, 5  
6
V
TX-CM-AC p-p-R  
80  
VTX-CM-AC p-p-S  
VTX-IDLE-SE-SE  
VTX-IDLE-SE-DC  
VTX-DIFF p-p  
VTX-SE  
70  
50  
20  
6
40  
-75  
0.7  
750  
1, 7  
1, 8  
Minimum TX eye width, 3.2 and 4.0 Gb/s  
TTX-EYE-MIN  
TTX-EYE-MIN 4.8  
TTX-DJ-DD  
Minimum TX eye width 4.8 Gb/s  
TBD  
Ul  
1, 8  
Maximum TX deterministic jitter, 3.2 and 4.8 Gb/s  
Maximum TX eye width 4.8 Gb/s  
0.2  
Ul  
1, 8, 9  
1, 8, 9  
10  
TTX-DJ-DD-4.8  
TTX-PULSE  
TBD  
Ul  
Instantaneous pulse width  
0.85  
30  
Ul  
20-80% voltage,  
Note 1  
Differential TX outout rise/fall time  
Mismatch between rise and fall times  
Differential return loss  
TTX-RISE TTX-FALL  
TTX-RF-MISMATCH  
RLTX-DIFF  
90  
20  
ps  
ps  
dB  
1GHz - 2.4GHz  
Note 11  
8
1GHz - 2.4GHz  
Note 11  
Common mode return loss  
RLTX-CM  
RTX  
6
dB  
Transmitter termination impender  
41  
55  
4
Ω
12  
EQ; 4 Boundaries  
are applied  
separately to high  
and low output  
voltage states  
D+/D- TX Impedance difference  
RTX-MATCH -DC  
%
Lane-to lane skew at Tx  
Lane-to lane skew at TX  
LTX-SKEW 1  
LTX-SKEW 2  
100 + 3Ul  
100 + 2Ul  
ps  
ps  
13, 15  
14, 15  
September 2007  
Rev. 3  
11  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
DIFFERENTIAL TRANSMITTER OUTPUT SPECIFICATIONS  
Values  
Parameter  
Symbol  
Units  
Comments  
Min  
Max  
240  
120  
Maximum TX Drift (resync mode)  
Maximum TX Drift (resample mode only)  
Bit Error Ratio  
TTX-DRIFT-RESYNC  
TTX-DRIFT-RESAMPLE  
BER  
ps  
ps  
16  
16  
17  
10-12  
NOTES:  
10. Pulse width measure at 0V differential.  
1. Specied at the package pins into a timing and voltage compliance  
test load as shown in Figure 4-2 and in steps outlined in 4.1.2.1 of the  
JEDEC specication. Common-mode measurements to be performed  
using a 101010 pattern.  
2. The transmitter designer should not articially elevate the common  
mode in order to meet this specication.  
3. This is the ration of the VTX-DIFFp-p of the second and following bits  
after a transition divided by the VTX-DIFFp-p of the rst bit after a  
transition.  
11. One of the components that contribute to the deterioration of the  
return loss is the ESB structure which needs to be carefully designed.  
12. The termination small signal resistance; tolerance across voltages  
from 100 mV to 400 mV shall not exceed +/- 5 W with regard to the  
average of the values measured at 100 mV and 400 mV for that pin.  
13. Lane to Lane skew at the Transmitter pins for an end component.  
14. Lane to Lane skew at the Transmitter pins or an intermediate  
component (assuming zero Lane to Lane skew at the Receiver pins  
of the incoming PORT).  
4. De-emphasis shall be disabled in the calibration state.  
5. Includes all sources of AC common mode noise.  
6. Sinlge-ended voltages below that value that are simultaneously  
detected on D+ and D- are interpreted as the Electrical Idle condition.  
7. The maximum value is specied to be at least (VTX-DIFFp-pL/4) +  
(VTX-CM-ACp-p2).  
15. This is a static skew. An FBDIMM component is not allowed to  
change its lane to lane phase relationship after initialization.  
16. Measured from the reference clock edge to the center of the output  
eye. This specication must be met across specied voltage and  
temperature ranges for a single component. Drift rate change is  
signicantly below the tracking capability of the receiver.  
17. BER per differential lane.  
8. This number does not include the effects of SSC or reference clock  
jitter.  
9. Dened as the expected maximum jitter for the given probability as  
measured in the system (JJ), less the unbounded jitter  
VTX-DIFFp-p = 2 x|VTX-D+ -VTX-D-  
VTX-CM = DC(avg) of (|VTX-D+ +VTX-D-|/2)  
VTX-CM-AC = ((Max|VTX-D+ +VTX-D-|)/2) - (Min |VTX-D++VTX-D-|)/2)  
RTX-MATCH-DC = 2x ((|RTX-D+ -RTX-D-|)/(RTX-D++RTX-D-|))  
|
(EQ 1)  
(EQ 2)  
(EQ 3)  
(EQ 4)  
September 2007  
Rev. 3  
12  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
DIFFERENTIAL RECEIVER INPUT SPECIFICATIONS  
Values  
Parameter  
Units  
Comments  
Symbol  
Min  
170  
Max  
TBD  
75  
Differential peak-to-peak input voltage for large voltage swing  
Maximum single-ended voltage in EI condition  
Maximum single-ended voltage in El condition (DC only)  
Maximum peak-to-peak differential voltage in El condition  
Sinlge-ended voltage (w.r.t. Vss on D+/D-  
Single-pulse peak differential input voltage  
Amplitude ratio between adjacent symbols  
Maximum RX inherent timing error, 3.2 and 4.0 Gb/s  
Maximum RX inherent deterministic timing error, 3.2 and 4.8 Gb/s  
Single-pulse width as zero-voltage crossing  
Single-pulse width at minimum-level crossing  
Differential RX input rise/fall time  
V
RX-DIFF p-p  
mV  
mV  
mV  
mV  
mV  
mV  
EQ 5, Note 1  
VRX-IDLE-SE  
2, 3  
VRX-IDLE-SE-DC  
50  
2, 3  
V
RX-IDLE-DIFF p-p  
VRX-SE  
65  
3
-300  
85  
900  
4
VRX-DIFF-PULSE  
VRX-DIFF-ADJ-RATIO  
TRX-TJ-MAX  
4, 5  
TBD  
0.4  
TBD  
0.3  
TBD  
4, 6  
UI  
4, 7, 8  
TRX-TJ-MAX 4.8  
VRX-DJ-DD  
VRX-DJ-DD-4.8  
TRX-PW-ZC  
UI  
4, 7, 8  
UI  
4, 7, 8, 9  
UI  
4, 7, 8, 9  
0.55  
UI  
4, 5  
Common mode of the input voltage  
TRX-PW-ML  
UI  
0.2  
50  
4, 5  
Differential RX outout rise/fall time  
T
RX-RISE TRX-FALL  
VRX-CM  
RX-CM-H-ACp-p  
VRX-CM-EH-RATOP  
RLRX-DIFF  
ps  
20-80% voltage  
Common mode of input voltage  
mV  
mV  
120  
400  
270  
45  
55  
4
EQ6, Note1, 10  
AC peak-to-peak common mode of input voltage  
Ratio of VRX-CM-ACp-p to minimum VRX-DIFFp-p  
Differential return loss  
V
EQ7, Note1  
9
%
dB  
dB  
Ω
11  
Meas. 0.1-2.4GHz, Note 12  
Common mode return loss  
RLRX-CM  
6
Meas. 0.1-2.4GHz, Note 12  
RX termination impedance  
RRX  
41  
13  
D+/D- RX Impedance difference  
RRX-MATCH-DC  
LRX-PCB-SKEW  
%
EQ 8  
Lane-to lane PCB skew at RX  
6
UI  
Lane-to-lane skew at the  
receiver that must be  
tolerated. Note 14  
Minimum RX drift tolerance  
Minim data tracking 3dB bandwidth  
Electrical idle entry detect time  
Electrical idle exit detect time  
Bit Error Ratio  
TRX-DRIFT  
FTRK  
400  
0.2  
ps  
MHz  
ns  
15  
16  
17  
TEI-ENTRY-DETECT  
TEI-EXIT-DETECT  
BER  
60  
30  
10-12  
ns  
18  
4.. Specic at the package pins into a timing and voltage compliance test  
setup  
5. The single-pulse mask provides sufcient symbol energy for reliable  
RX reception. Each symbol must comply with both the single-pulse  
mask and the cumulative eyemask .  
6. The relative amplitude ratio limit between adjacent symbols prevents  
excessive intersymbol interference in the RX. Each symbol must  
comply with the peak amplitude ratio with regard to both the preceding  
and subsequent symbols.  
NOTES:  
1. Specied at the package pins into a timing and voltage compliance  
test setup. Note that signal levels at the pad will be lower than at the  
pin.  
2. Single-ended voltages below that value that are simultaneously  
detected on D+ and D- are interpreted as the Electrical Idle condition.  
Worst- case margins are determined for the case with transmitter  
using small voltage swing.  
3. Multiple lanes need to detect the El condition before the device can act  
upon the El detection.  
September 2007  
Rev. 3  
13  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
7. This number does not include the effects of SSC or reference clock  
jitter.  
8. This number includes setup and hold of the RX sampling op.  
9. Dened as the dual-dirac deterministic timing error.  
14. This number represents the lane-to-lane skew between TX and  
RX pins and does not include the transmitter output skew from the  
component driving the signal to the receiver. This is one component  
of the end-to-end channel skew in the AMB specication.  
15. Measured from the reference clock edge to the center of the input  
eye. This specication must be met across specied voltage and  
temperature ranges for a single component. Drift rate of change is  
signicantly below the tracking capability of the receiver.  
16. This bandwidth number assumes the specied minimum data  
transition density. Maximum jitter at 0.2 MHz is 0.05 UI.  
17. The specied time includes the time required to forward the El entry  
condition.  
10. Allows for 15mV DC offset between transmit and receive devices.  
11. The received differential signal must satisfy both this ratio as well as  
the absolute maximum AC peak-to-peak common mode specication.  
For example, if VRX-DIFFp-p is 200mV, the maximum AC peak-  
to-peak common mode is the lesser of (200mV x 0.45=90mV) and  
VRX-CM-AC-p-p.  
12. One of the components that contribute to the deterioration of the  
return loss is the ESD structure which needs to be carefully designed.  
13. The termination small signal resistance; tolerance across voltages  
from 100mV to 400mV shell not exceed +/- 5W with regard to the  
average of the values measured at 100mV and at 400mV for that pin.  
18. BER per differential lane.  
VRX-DIFFp-p = 2 x|VRX-D+ -VRX-D-  
VRX-CM = DC(avg) of (|VRX-D+ +VRX-D-|/(2)  
VRX CD-AC = ((Max|VRX-D+ +VRX-D-|)/(2) - ((Min |VRX-D++VRX-D-|)/2)  
RRX-MATCH-DC = 2x ((|RRX-D+ -RRX-D-|)/(|RR-D++RRX-D-|))  
|
(EQ 5)  
(EQ 6)  
(EQ 7)  
(EQ 8)  
-
September 2007  
Rev. 3  
14  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
ORDERING INFORMATION FOR F1 (FmHS) Full metal Heat Spreader  
Part Number  
Speed  
CAS Latency  
tRCD  
6
tRP  
6
Height*  
W3HG128M72AEF806F1xxG**  
W3HG128M72AEF665F1xxG  
400MHz/800Mb/s  
333MHz/667Mb/s  
266MHz/533Mb/s  
6
5
4
30.35 (1.20") NOM  
30.35 (1.20") NOM  
30.35 (1.20") NOM  
5
5
W3HG128M72AEF534F1xxG  
4
4
** Consult factory for availability  
NOTES:  
• G = RoHS Compliant  
• Vendor specic part numbers are used to provide memory components for source control. The place holder for this is shown as a lower case “x” in the part numbers above  
and is to be replaced with the respective vendors code. Consult factory for qualied sourcing options. (M = Micron, S = Samsung & consult factory for others)  
• For the AMB, a specic character is used to provide component source control. The place holder for this is shown as lower case "x" (next to the G) in the part number above.  
PACKAGE DIMENSIONS FOR F1 (FmHS) Full metal Heat Spreader  
FRONT VIEW WITH HEAT SPREADER  
133.50 (5.256)  
133.20 (5.244)  
7.14 (0.281)  
MAX  
66.68 (2.63) TYP.  
0.595 (.0234) R  
1.45 (0.057)  
TYP.  
1.50 (0.059) R  
(4X)  
30.50 (1.201)  
30.20 (1.189)  
2.60 (0.102) D  
(2X)  
17.3 (0.681)  
TYP.  
9.50 (0.374)  
TYP.  
5.20 (0.205) TYP.  
1.25 (0.0492) TYP.  
PIN 1  
0.75 (0.0295) R  
3.90 (0.153)  
TYP.  
(X2)  
1.00 (.039)  
TYP.  
0.80 (0.031)  
TYP.  
1.37 (0.054)  
1.17 (0.0476)  
74.68 (2.94)  
TYP.  
PIN 120  
123.0 (4.843)  
TYP.  
BACK VIEW WITH HEAT SPREADER  
24.95 (0.982)  
TYP.  
3.05 (0.120) TYP.  
2.18 (0.086) TYP.  
120° (2X)  
PIN 121  
PIN 240  
5.0 (0.197) TYP.  
67.0 (2.638)  
TYP.  
51.0 (2.008)  
TYP.  
* ALL DIMENSIONS ARE IN MILLIMETERS AND (INCHES)  
September 2007  
Rev. 3  
15  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
PART NUMBERING GUIDE  
W 3 H G 128M 72 A E F x xxx Fx x x G  
WEDC  
MEMORY (DRAM)  
TECHNOLOGY(DDR 2)  
GOLD  
DEPTH  
BUS WIDTH  
COMPONENT WIDTH (x4)  
CORE VOLTAGE (1.8V)  
FULLY BUFFERED  
PRODUCT REVISION  
("BLANK" = Initial revision. For all other  
characters please see NOTES 1 & 2)  
SPEED (Mb/s)  
PACKAGE 240 PIN (30mm)  
(F1 = Fully metal Heat Spreader option)  
COMPONENT VENDOR NAME  
(M = Micron)  
(S = Samsung)  
(G = Qimonda)  
(See NOTES2)  
AMB CODES  
(IDT = A)  
(NEC = B)  
(Qimonda = C)  
(See NOTES2)  
G = RoHS COMPLIANT  
NOTE1: This character represents the general product revision that is used to control and record any changes in the AMB and  
memory die revision, as well as any other design changes.  
NOTE2: In order to obtain the most current revision, please contact the factory.  
September 2007  
Rev. 3  
16  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG128M72AEF-Fx  
White Electronic Designs  
ADVANCED  
Document Title  
1GB – 128Mx72 DDR2 SDRAM FBDIMM  
DRAM Options:  
SAMSUNG: C = DIE  
MICRON: D = DIE  
QIMONDA: F = DIE  
AMB OPTION:  
IDT = REV. A5  
NEC = REV. K (B5+)  
QIMONDA: TBD  
Revision History  
Rev #  
Rev 0  
History  
Release Date Status  
Created  
September 2006  
Concept  
Rev 1  
1.0 Update to part number guide  
September 2006  
Concept  
Rev 2  
Rev 3  
2.0 Corrected Package Spec  
October 2006  
Concept  
2.1 Updated Part Numbering Guide  
3.0 Update DC voltage and operating conditions  
3.1 Updated DDR2 IDD specs  
September 2007  
Advanced  
3.2 Moved from concept to advanced  
September 2007  
Rev. 3  
17  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  

相关型号:

W3HG128M72AEF534F1SCG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF665F1GAG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF665F1GBG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF665F1GCG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF665F1MAG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF665F1MCG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF665F1SAG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF665F1SBG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF806F1GAG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF806F1GBG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF806F1MAG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC

W3HG128M72AEF806F1MBG

DDR DRAM Module, 256MX4, CMOS, ROHS COMPLIANT, FBDIMM-240
WEDC