W19B320SBB9B [WINBOND]

Flash, 2MX16, 90ns, PBGA48, TFBGA-48;
W19B320SBB9B
型号: W19B320SBB9B
厂家: WINBOND    WINBOND
描述:

Flash, 2MX16, 90ns, PBGA48, TFBGA-48

文件: 总52页 (文件大小:1869K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W19B(L)320ST/B Data Sheet  
4M × 8/2M × 16 3V(3.3V) FLASH MEMORY  
Table of Contents-  
1.  
2.  
3.  
4.  
5.  
6.  
GENERAL DESCRIPTION ......................................................................................................... 4  
FEATURES................................................................................................................................. 4  
PIN CONFIGURATIONS ............................................................................................................ 5  
BLOCK DIAGRAM ...................................................................................................................... 5  
PIN DESCRIPTION..................................................................................................................... 5  
FUNCTIONAL DESCRIPTION ................................................................................................... 6  
6.1  
Device Bus Operation..................................................................................................... 6  
6.1.1 Word/Byte Configuration ..................................................................................................6  
6.1.2 Reading Array Data..........................................................................................................6  
6.1.3 Writing Commands/Command Sequences.......................................................................6  
6.1.4 Standby Mode ..................................................................................................................7  
6.1.5 Automatic Sleep Mode .....................................................................................................7  
6.1.6 #RESET: Hardware Reset Pin..........................................................................................7  
6.1.7 Output Disable Mode........................................................................................................8  
6.1.8 Autoselect Mode...............................................................................................................8  
6.1.9 Sector/Sector Block Protection and Unprotection.............................................................8  
6.1.10 Write Protect ( ) .......................................................................................................8  
#WP  
6.1.11 Temporary Sector Unprotect ..........................................................................................9  
6.1.12 Security Sector Flash Memory Region ...........................................................................9  
6.1.13 Hardware Data Protection ............................................................................................10  
Command Definitions ................................................................................................... 10  
6.2.1 Reading Array Data........................................................................................................11  
6.2.2 Reset Command.............................................................................................................11  
6.2.3 Autoselect Command Sequence ....................................................................................11  
6.2.4 Enter Security Sector/Exit Security Sector Command Sequence...................................12  
6.2.5 Byte/Word Program Command Sequence......................................................................12  
6.2.6 Unlock Bypass Command Sequence .............................................................................12  
6.2.7 Chip Erase Command Sequence ...................................................................................13  
6.2.8 Sector Erase Command Sequence ................................................................................13  
6.2.9 Erase Suspend/Erase Resume Commands ...................................................................14  
Write Operation Status ................................................................................................. 14  
6.3.1 DQ7: #Data Polling.........................................................................................................14  
6.3.2 RY/#BY: Ready/#Busy ...................................................................................................15  
6.3.3 DQ6: Toggle Bit I............................................................................................................15  
6.3.4 DQ2: Toggle Bit II...........................................................................................................16  
6.2  
6.3  
Publication Release Date: March 23, 2004  
- 1 -  
Revision A2  
W19B(L)320ST/B  
6.3.5 Reading Toggle Bits DQ6/DQ2 ......................................................................................16  
6.3.6 DQ5: Exceeded Timing Limits........................................................................................16  
6.3.7 DQ3: Sector Erase Timer ...............................................................................................17  
7.  
TABLE OF OPERATION MODES ............................................................................................ 18  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Device Bus Operations................................................................................................. 18  
Autoselect Codes (High Voltage Method) .................................................................... 19  
CFI Query Identification String...................................................................................... 26  
Command Definitions ................................................................................................... 29  
Write Operation Status ................................................................................................. 30  
Temporary Sector Unprotect Algorithm........................................................................ 31  
In-System Sector Protect/Unprotect Algorithms........................................................... 32  
Program Algorithm........................................................................................................ 33  
Erase Algorithm ............................................................................................................ 33  
7.10 Data Polling Algorithm .................................................................................................. 34  
7.11 Toggle Bit Algorithm ..................................................................................................... 35  
8.  
ELECRICAL CHARACTERISTICS........................................................................................... 36  
8.1  
8.2  
Absolute Maximum Ratings.......................................................................................... 36  
Operating Ranges......................................................................................................... 36  
1.1.1............................................................................................................................................36  
1.1.1............................................................................................................................................36  
DC Characteristics........................................................................................................ 37  
8.3.1 CMOS Compatible..........................................................................................................37  
AC Characteristics........................................................................................................ 38  
8.4.1 Test Condition ................................................................................................................38  
8.4.2 AC Test Load and Waveforms .......................................................................................38  
8.4.3 Read-Only Operations....................................................................................................39  
8.4.4 Hardware Reset (#RESET) ............................................................................................39  
8.4.5 Word/Byte Configuration (#BYTE)..................................................................................39  
8.4.6 Erase And Program Operation .......................................................................................40  
8.4.7 Temporary Sector Unprotect ..........................................................................................40  
8.4.8 Alternate #CE Controlled Erase and Program Operations..............................................41  
8.3  
8.4  
9.  
TIMING WAVEFORMS............................................................................................................. 42  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
AC Read Waveform...................................................................................................... 42  
Reset Waveform........................................................................................................... 42  
#BYTE Waveform for Read Operation ......................................................................... 43  
#BYTE Waveform for Write Operation ......................................................................... 43  
Programming Waveform............................................................................................... 44  
Accelerated Programming Waveform........................................................................... 44  
- 2 -  
W19B(L)320ST/B  
9.7  
9.8  
9.9  
Chip/Sector Erase Waveform....................................................................................... 45  
#Data Polling Waveform (During Embedded Algorithms)............................................ 45  
Toggle Bit Waveform (During Embedded Algorithms) ................................................. 46  
9.10 DQ 2 vs. DQ6 Waveform.............................................................................................. 46  
9.11 Temporary Sector Unprotect Timing Diagram.............................................................. 47  
9.12 Sector/Sector Block Protect and Unprotect Timing Diagram ....................................... 47  
9.13 Alternate #CE Controlled Write (Erase/Program) Operation Timing............................ 48  
10.  
11.  
12.  
13.  
LATCHUP CHARACTERISTICS .............................................................................................. 49  
CAPACITANCE......................................................................................................................... 49  
ORDERING INFORMATION .................................................................................................... 50  
PACKAGE DIMENSIONS......................................................................................................... 51  
13.1 48-Ball TFBGA (measurements in millimeters)............................................................ 51  
13.2 48-Pin Standard Thin Small Outline Package (measured in millimeters) .................... 51  
14.  
VERSION HISTORY................................................................................................................. 52  
Publication Release Date: March 23, 2004  
- 3 -  
Revision A2  
W19B(L)320ST/B  
1. GENERAL DESCRIPTION  
The W19B(L)320ST/B is a 32Mbit, 2.73.6(3.03.6) volt CMOS flash memory organized as 4M × 8 or  
2M × 16 bits. For flexible erase capability, the 32 Mbits of data are divided into eight 8KB, and sixty-  
three 64KB sectors. The word-wide (×16) data appears on DQ15DQ0, and byte-wide (×8) data  
appears on DQ7DQ0. The device can be programmed and erased in-system with a standard  
2.73.6V(3.03.6V) power supply. A 12-volt VPP is not required. The unique cell architecture of the  
W19B320ST/B results in fast program/erase operations with extremely low current consumption  
(compared to other comparable 3-volt flash memory products). The device can also be programmed  
and erased by using standard EPROM programmers.  
2. FEATURES  
Performance  
2.7~3.6-volt write (program and erase)  
TTL compatible I/O  
operations (W19B320S)  
Manufactured on WinStack 0.18µm process  
3.0~3.6-volt write (program and erase)  
technology  
operations (W19L320S)  
Available packages: 48-pin TSOP and 48-ball  
Fast write operation  
TFBGA (8x11mm)  
Software Features  
Sector erase time: 0.7 Sec (typ.)  
Chip erase time: 49 Sec (typ.)  
Byte programming time: 5 µS (typ.)  
Read access time: 90 nS  
Typical program/erase cycles:  
100K  
Twenty-year data retention  
Ultra low power consumption  
Active current (Read): 10 mA (typ.) at 5 MHz  
Standby current: 0.2 µA (typ.)  
Compatible with common Flash Memory  
Interface (CFI) specification  
Flash device parameters stored directly on  
the device  
Allows software driver to identify and use a  
variety of different current and future Flash  
products  
Erase Suspend/Erase Resume  
Suspends erase operations to allow  
programming in same bank  
End of program detection  
Architecture  
Software method: Toggle bit/Data polling  
Sector erase architecture  
Eight 8KB, and sixty-three 64KB sectors  
Unlock Bypass Program command  
Reduces overall programming time when  
issuing multiple program command  
sequences  
Top or bottom boot block configurations  
available  
Supports full chip erase  
Hardware Features  
Security Sector Size: 256 Bytes  
Ready/#Busy output (RY/#BY)  
Detect program or erase cycle completion  
Hardware reset pin (#RESET)  
The Security Sector is an OTP; once the sector  
is programmed, it cannot be erased  
JEDEC standard byte-wide and word-wide  
Reset the internal state machine to the read  
pinouts  
mode  
- 4 -  
 
W19B(L)320ST/B  
#WP/ACC input pin  
Sector Protection  
Write protect (#WP) function allows  
protection of two outermost boot sectors,  
regardless of sector protect status  
Sectors can be locked in-system or via  
programmer  
Temporary Sector Unprotect allows changing  
Acceleration (ACC) function accelerates  
data in protected sectors in-system  
program timing  
3. PIN CONFIGURATIONS  
4. BLOCK DIAGRAM  
V
DD  
V
SS  
#CE  
#OE  
#WE  
48-Ball TFBGA  
(Top View, Balls Face Down)  
DQ0  
OUTPUT  
BUFFER  
CONTROL  
.
#WP/ACC  
#BYTE  
.
A6  
A13  
B6  
D6  
A15  
E6  
A16  
F6  
#BYTE  
C6  
A14  
G6  
H6  
Vss  
DQ15/A-1  
#RESET  
A12  
DQ15/A-1  
A5  
A9  
B5  
A8  
D5  
A11  
E5  
DQ7  
F5  
DQ14  
C5  
A10  
G5  
DQ13  
H5  
DQ6  
DQ15/A-1  
A0  
.
A4  
#WE  
B4  
D4  
A19  
E4  
DQ5  
F4  
C4  
NC  
G4  
V DD  
H4  
DQ4  
#RESET  
DQ12  
.
.
DECODER  
BANK  
A3  
RY/#BY  
B3  
D3  
A20  
E3  
DQ2  
F3  
DQ10  
C3  
G3  
DQ11  
H3  
DQ3  
#WP/ACC A18  
A20  
A2  
A7  
B2  
A17  
D2  
A5  
E2  
DQ0  
F2  
DQ8  
C2  
A6  
G2  
DQ9  
H2  
DQ1  
A1  
A3  
B1  
A4  
D1  
A1  
E1  
A0  
F1  
#CE  
C1  
A2  
G1  
#OE  
H1  
Vss  
5. PIN DESCRIPTION  
SYMBOL  
A0A20  
DQ0DQ14  
PIN NAME  
Address Inputs  
Data Inputs/Outputs  
48  
A15  
A14  
A13  
A12  
A11  
1
2
3
4
5
6
7
8
A16  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
#BYTE  
Vss  
DQ15/A-1  
DQ7  
DQ14  
A10  
Word  
DQ15 is Data  
DQ6  
A9  
mode  
Inputs/Outputs  
DQ13  
DQ5  
DQ15/A-1  
A8  
A19  
A20  
#WE  
9
48-pin  
TSOP  
Byte mode A-1 is Address input  
Chip Enable  
Output Enable  
DQ12  
DQ4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
#CE  
#OE  
#WE  
DD  
V
#RESET  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
NC  
#WP/ACC  
RY/#BY  
Write Enable  
A18  
A17  
Hardware Write Protect/  
#WP/ACC  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
Acceleration Pin  
#BYTE  
#RESET  
RY/#BY  
VDD  
Byte Enable Input  
Hardware Reset  
Ready/Busy Status  
Power Supply  
Ground  
#OE  
21  
Vss  
22  
23  
24  
#CE  
A0  
Vss  
NC  
No Connection  
Publication Release Date: March 23, 2004  
Revision A2  
- 5 -  
 
W19B(L)320ST/B  
6. FUNCTIONAL DESCRIPTION  
6.1 Device Bus Operation  
6.1.1 Word/Byte Configuration  
The #BYTE pin controls the device data I/O pins operate whether in the byte or word configuration.  
When the #BYTE pin is ‘1’, the device is in word configuration; DQ0DQ15 are active and controlled  
by #CE and #OE.  
When the #BYTE pin is ‘0’, the device is in byte configuration, and only data I/O pins DQ0DQ7 are active  
and controlled by #CE and #OE. The data I/O pins DQ8DQ14 are tri-stated, and the DQ15 pin is  
used as an input for the LSB (A-1) address function.  
6.1.2 Reading Array Data  
To read array data from the outputs, the #CE and #OE pins must be set to VIL. #CE is the power  
control and used to select the device. #OE is the output control and gates array data to the output  
pins. #WE should stay at VIH. The #BYTE pin determines the device outputs array data whether in  
words or bytes.  
The internal state machine is set for reading array data when device power-up, or after a hardware  
reset. This ensures that no excess modification of the memory content occurs during the power  
transition. In this mode there is no command necessary to obtain array data. Standard microprocessor  
read cycles that assert valid addresses on the device address inputs produce valid data on the device  
data outputs. The device remains enabled for read access until the command register contents are  
changed.  
6.1.3 Writing Commands/Command Sequences  
In writhing a command or command sequence (which includes programming data to the device and  
erasing sectors of memory), the system must drive #WE and #CE to VIL, and #OE to VIH.  
For program operations, the #BYTE pin determines the device accepts program data whether in bytes  
or in words. Refer to “Word/Byte Configuration” for more information.  
The Unlock Bypass mode of device is to facilitate a faster programming. When the device enters into  
the Unlock Bypass mode, only two write cycles are required to program a word or byte. Please refer to  
"Word/Byte Configuration” section for details on programming data to the device using both standard  
and Unlock Bypass command sequences.  
The erase operation can erase a sector, multiple sectors, even the entire device. The “sector address”  
is the address bits required to solely select a sector.  
Accelerated Program Operation  
The device provides accelerated program operations through the ACC function. This is one of two  
functions provided by the #WP/ACC pin. This function is primarily intended to allow a faster  
manufacturing throughput in the factory.  
If #WP/ACC pin is set at VHH, the device automatically enters into the Unlock Bypass mode. Then the  
device will temporarily unprotect any protected sectors, and uses the higher voltage on this pin to  
reduce the time required for program operations. The system would use a two-cycle program  
command sequence required by the Unlock Bypass mode. When VHH is removed from the #WP/ACC  
pin, the device is back to a normal operation.  
- 6 -  
 
W19B(L)320ST/B  
Please note that the #WP/ACC pin can not be at VHH for operations excepts accelerated  
programming; otherwise, the device will be damaged. In addition, the #WP/ACC pin can not be left  
floating; otherwise, an unconnected inconsistent behavior will occur.  
Autoselect Functions  
When the system writes the autoselect command sequence, the device enters the autoselect mode.  
The system can then read autoselect codes from the internal register (which is separate from the  
memory array) on DQ0–DQ7. The standard read cycle timings is applied in this mode. Please refer to  
the Autoselect Mode and Autoselect Command Sequence sections for more information.  
6.1.4 Standby Mode  
When the system is not reading or writing to the device, the device will be in a standby mode. In this  
mode, current consumption is greatly reduced, and the outputs are in the high impedance state,  
independent from the #OE input.  
When the #CE and #RESET pins are both held at VDD ± 0.3V, the device enters into the CMOS standby  
mode (note that this is a more restricted voltage range than VIH.) When #CE and #RESET are held at VIH,  
but not within VDD ± 0.3V, the device will be in the standby mode, but the standby current will be greater.  
The device requires standard access time (tCE) for read access when the device is in either of these standby  
modes, before it is ready to read data.  
When the device is deselected during erasing or programming, the device initiates active current until  
the operation is completed.  
6.1.5 Automatic Sleep Mode  
The automatic sleep mode minimizes device's energy consumption. When addresses remain stable  
for tACC +30 nS, the device will enable this mode automatically. The automatic sleep mode is  
independent from the #CE #WE and #OE control signals. Standard address access timings provide  
,
,
new data when addresses are changed. In sleep mode, output data is latched and always available to  
the system.  
6.1.6 #RESET: Hardware Reset Pin  
The #RESET pin provides a hardware method to reset the device to reading array data. When the  
#RESET pin is set to low for at least a period of tRP, the device will immediately terminate every  
operations in progress, tri-states all output pins, and ignores all read/write commands for the duration  
of the #RESET pulse. The device also resets the internal state machine to reading array data mode.  
To ensure data integrity, the interrupted operation needs to be reinitiated when the device is ready to  
accept another command sequence.  
Current is reduced for the duration of the #RESET pulse. When #RESET is held at VSS ± 0.3V, the  
device initiates the CMOS standby current (ICC4). If #RESET is held at VIL but not within VSS ± 0.3V,  
the standby current will be greater.  
The #RESET pin may be tied to the system-reset circuitry. Thus the system reset would also reset the  
device, enabling the system to read the boot-up firmware from the device.  
If #RESET is asserted during the program or erase operation, the RY/#BY pin will be at “0” (busy) until  
the internal reset operation is complete. If #RESET is asserted when a program or erase operation is  
not processing (RY/#BY pin is “1”), the reset operation is completed within a time of tREADY (not during  
Embedded Algorithms). After the #RESET pin returns to VIH, the system can read data tRH.  
Publication Release Date: March 23, 2004  
- 7 -  
Revision A2  
 
W19B(L)320ST/B  
6.1.7 Output Disable Mode  
When the #OE input is at VIH, output from the device is disabled. The output pins are set in the high  
impedance state.  
6.1.8 Autoselect Mode  
The autoselect mode offers manufacturer and device identification, as well as sector protection  
verification, through identifier codes output on DQ0DQ7. This mode is primarily intended for  
programming equipment to automatically match a device to be programmed with its corresponding  
programming algorithm. However, the autoselect codes can also be accessed in-system through the  
command register.  
When using programming equipment, the autoselect mode requires VID (8.5 V to 12.5 V) on address  
pins A9. Address pins A6, A1, and A0 must be as shown in table. In addition, when verifying sector  
protection, the sector address must appear on the appropriate highest order address bits. When all  
necessary bits have been set as required, the programming equipment may then read the  
corresponding identifier code on DQ0DQ7.  
To access the autoselect codes in-system, the host system can issue the autoselect command  
through the command register. This method does not require VID. Also refer to the Autoselect  
Command Sequence section for more information.  
6.1.9 Sector/Sector Block Protection and Unprotection  
The hardware sector protection feature disables both program and erase operations in any sectors.  
The hardware sector unprotection feature re-enables both program and erase operations in previously  
protected sectors. Sector protection/unprotection can be implemented through two methods.  
The primary method requires VID on the #RESET pin, and can be implemented either in-system or through  
programming equipment. This method uses standard microprocessor bus cycle timing.  
The alternate method intended only for programming equipment requires VID on address pin A9 and #OE It  
is possible to determine whether a sector is protected or unprotected. See the Autoselect Mode section for  
details.  
6.1.10 Write Protect (  
#WP  
)
The Write Protect function provides a hardware method to protect the certain boot sectors without  
using VID. This function is one of two features provided by the #WP/ACC pin.  
When the #WP/ACC pin is set at VIL, the device disables program and erase functions in the two  
outermost 8 Kbyte boot sectors independently of whether those sectors were protected or unprotected  
using the method described in “Sector/Sector Block Protection and Unprotection.” The two outermost  
8 Kbyte boot sectors are the two sectors containing either the lowest addresses in a bottom-boot-  
configured device or the highest addresses in a top-boot-configured device.  
When the #WP/ACC pin is set at VIH, the device reverts to the two outermost 8K Byte boot sectors  
were last set either to be protected or unprotected. That is, sector protection or unprotection for these  
two sectors depends on whether they were last protected or unprotected using the method described  
in “Sector/Sector Block Protection and Unprotection”.  
Please note that the #WP/ACC pin must not be left floating or unconnected; otherwise, the  
inconsistent behavior of the device may occur.  
- 8 -  
 
W19B(L)320ST/B  
6.1.11 Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to change data in-system.  
When the #RESET pin is set to VID (8.5V12.5V), the Sector Unprotect mode is activated. During this  
mode, formerly protected sectors can be programmed or erased by selecting the sector addresses.  
What if VID is removed from the #RESET pin, all the previously protected sectors are protected again.  
6.1.12 Security Sector Flash Memory Region  
The Security Sector feature provides an OTP memory region that enables permanent device  
identification through an Electronic Serial Number (ESN). The Security Sector uses a Security Sector  
Indicator Bit (DQ7) to indicate whether the Security Sector is locked or not when shipped from the  
factory. The DQ7 is permanently set when it is in the factory and cannot be changed, which prevents  
copying of a factory locked device. This ensures the security of the ESN when the product is shipped  
to the field. This issue should be considered during system design. Winbond offers the device with the  
Security Sector either factory locked or customer lockable. The factory-locked version is always  
protected when shipped from the factory, and has the Security Sector Indicator Bit permanently set to  
“1.” The customer-lockable version is shipped with the Security Sector unprotected, which allowing  
customers to utilize the sector in any ways they choose. The customer-lockable version has the  
Security Sector Indicator Bit permanently set to “0.” Thus, the Security Sector Indicator Bit prevents  
customer-lockable devices from being used to replace devices that are factory locked.  
The system accesses the Security Sector through a command sequence (see “Enter Security  
Sector/Exit Security Sector Command Sequence”). After the system has written the Enter Security  
Sector command sequence, it may read the Security Sector by using the addresses normally  
occupied by the boot sectors. This mode of operation continues until the system issues the Exit  
Security Sector command sequence, or until power is removed from the device. On power-up, or  
following a hardware reset, the device reverts to sending commands to the boot sectors.  
Factory Locked: Security Sector Programmed and Protected At the Factory  
The device Security Sector is protected when it is shipped from the factory, and it cannot be modified  
in any way. The device is available to be preprogrammed by one of the following:  
A random, secure ESN only  
Customer code through the supplier's service  
Both a random, secure ESN and customer code through supplier's service.  
In devices with an ESN, the Bottom Boot device will be with the 16-byte ESN in the lowest  
addressable memory area at addresses 000000h–000007h in word mode (or 000000h–00000Fh in  
byte mode). In the Top Boot device the starting address of the ESN will be at the bottom of the lowest  
8 Kbyte boot sector at addresses 1FF000h–1FF007h in word mode (or addresses 3FE000h–3FE00Fh  
in byte mode). Customers may choose have their code programmed by Winbond. Winbond can  
program the customer’s code, with or without the random ESN. The devices are then shipped with the  
Security Sector permanently locked.  
Publication Release Date: March 23, 2004  
- 9 -  
Revision A2  
 
W19B(L)320ST/B  
Customer Lockable: Security Sector NOT Programmed or Protected At the Factory  
If the security feature is not necessary, the Security Sector can be seen as an additional OTP memory  
space. When in system design, this issue should be considered. The Security Sector can be read,  
programmed, but cannot be erased. Please note that when programming the Security Sector, the  
accelerated programming (ACC) and unlock bypass functions are not available. The Security Sector  
area can be protected using one of the following procedures:  
Write the three-cycle Enter Security Sector Region command sequence, and then follow the  
in-system sector protect algorithm, except that #RESET may be at either VIH or VID. This  
allows in-system protection of the Security Sector without raising any device pin to a high  
voltage.  
Please note that this method is only suitable for the Security Sector.  
Write the three-cycle Enter Security Sector Region command sequence, and then use the  
alternate method of sector protection described in the “Sector/ Sector Block Protection and  
Unprotection” section. When the Security Sector is locked and verified, the system must write  
the Exit Security Sector Region command sequence to return to reading and writing the  
remainder of the array.  
The Security Sector protection must be used with caution, since there is no procedure available for  
unprotecting the Security Sector area and none of the bits in the Security Sector memory space can  
be modified in any ways.  
6.1.13 Hardware Data Protection  
The command sequence requirements of unlock cycles for programming or erasing provides data  
protection against negligent writes. In addition, the following hardware data protection measures  
prevent inadvertent erasure or programming, which might be caused by spurious system level signals  
during VDD power-up and power-down transitions, or from system noise.  
Write Pulse “Glitch” Protection  
Noise pulses, which is less than 5 nS (typical) on #OE, #CE or #WE, do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of #OE = VIL, #CE = VIH or #WE = VIH. #CE and #WE  
must be a logical zero while #OE is a logical one to initiate a write cycle.  
Power-Up Write Inhibit  
During power up, if #WE = #CE = VIL and #OE = VIH, the device does not accept commands on the  
rising edge of #WE. The internal state machine is automatically reset to the read mode on power-up.  
6.2 Command Definitions  
The device operation can be initiated by writing specific address and data commands or sequences  
into the command register. The device will be reset to reading array data when writing incorrect  
address and data values or writing them in the improper sequence.  
The addresses will be latched on the falling edge of #WE or #CE, whichever happens later; while the  
data will be latched on the rising edge of #WE or #CE, whichever happens first. Please refer to timing  
waveforms.  
- 10 -  
 
W19B(L)320ST/B  
6.2.1 Reading Array Data  
After device power-up, it is automatically set to reading array data. There is no commands are  
required to retrieve data. After completing an Embedded Program or Embedded Erase algorithm, the  
device is ready to read array data.  
After the device accepts an Erase Suspend command, it enters the erase-suspend-read mode. After  
this the system can read data from any non-erase-suspended sector. And then, after completing a  
programming operation in the Erase Suspend mode, the system may once again read array data with  
the same exception. Please refer to Erase Suspend/Erase Resume Commands section for detail  
information.  
The system must initiate the reset command to return the device to read (or erase-suspend-read)  
mode if DQ5 goes high during an active program or erase operation; otherwise, the device is in the  
autoselect mode. See Reset Command section and Requirements for Reading Array Data in the  
Device Bus Operations section for more information.  
6.2.2 Reset Command  
The device will be to the read or erase-suspend-read mode when writing the reset command. For this  
command, the address bits are Don’t Care.  
The reset command may be written between the sequence cycles in an erase command sequence  
before erasing begins. This resets the device to which the system was writing to the read mode. Once  
erasure begins, however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program command sequence  
before programming begins. This resets the device, to which the system was writing to the read mode.  
If the program command sequence is written to the device, in the Erase Suspend mode, writing the  
reset command returns the device to the erase-suspend-read mode. When programming begins, the  
device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command  
sequence. When in the autoselect mode, the reset command must be written to return to the read  
mode. If the device entered into the autoselect mode while in the Erase Suspend mode, writing the  
reset command returns the device to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the device  
to the read mode (or erase-suspend-read mode if the device was in Erase Suspend).  
6.2.3 Autoselect Command Sequence  
The autoselect command sequence provides the host system to access the manufacturer and device  
codes, and determine whether a sector is protected or not. This is an alternative method, which is  
intended for PROM programmers and requires VID on address pin A9. The autoselect command  
sequence may be written to an address within the device that is either in the read or erase-suspend-  
read mode. When the device is actively programming or erasing, the autoselect command may not be  
written.  
The first writing two unlock cycles initiate the autoselect command sequence. This is followed by a  
third write cycle that contains the autoselect command. The device then enters into the autoselect  
mode. The system may read at any address without initiating another autoselect command sequence:  
A read cycle at address XX00h returns the manufacturer code.  
A read cycle at address XX01h in word mode(or XX02h in byte mode) returns the device code.  
Publication Release Date: March 23, 2004  
- 11 -  
Revision A2  
 
W19B(L)320ST/B  
A read cycle to an address containing a sector address (SA), and the address 02h on A7-A0 in  
word mode (or the address 04h on A6-A-1 in byte mode) returns 01h if the sector is protected, or  
00h if it is unprotected.  
To return to read mode (or erase-suspend-read mode if the device was previously in Erase Suspend),  
the system must write the reset command.  
6.2.4 Enter Security Sector/Exit Security Sector Command Sequence  
The Security Sector region provides a secured data area containing a random, sixteen-byte electronic  
serial number (ESN). The system can access the Security Sector region by issuing the three-cycle  
Enter Security Sector command sequence. The device continues to access the Security Sector region  
until the system issues the four-cycle Exit Security Sector command sequence. The Exit Security  
Sector command sequence returns the device to normal operation. See “Security Sector Flash  
Memory Region” for further information.  
6.2.5 Byte/Word Program Command Sequence  
The device can be programmed either by word or byte, which depending on the state of the #BYTE  
pin. Programming is a four-bus-cycle operation. The program command sequence is initiated by  
writing two unlock write cycles, followed by the program setup command. The program address and  
data are written next, which in turn initiate the Embedded Program algorithm. The device automatically  
provides internally generated program pulses and verifies the programmed cell margin.  
Once the Embedded Program algorithm is complete, the device then returns to the read mode and  
addresses are no longer latched. The system can determine the status of the program operation by  
using DQ7, DQ6, or RY/#BY. Please refer to the Write Operation Status section for bits' information.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Please  
note that a hardware reset will immediately stop the program operation. The program command  
sequence should be reinitiated when the device has returned to the read mode, in order to ensure  
data integrity.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed  
from “0” back to “1.” If trying to do so may cause that device to set DQ5 = 1, or cause the DQ7 and  
DQ6 status bits to indicate that the operation is successful. However, a succeeding read will show that  
the data is still “0.” Only erase operations can change “0” to “1.”  
6.2.6 Unlock Bypass Command Sequence  
The unlock bypass feature provides the system to program bytes or words to device which is faster  
than using the standard program command sequence. The unlock bypass command sequence is  
initiated by first writing two unlock cycles. And a third write cycle containing the unlock bypass  
command, 20h, is followed. Then, the device enters into the unlock bypass mode. A two-cycle unlock  
bypass program command sequence is all that required to program in this mode. The first cycle in this  
sequence contains the unlock bypass program command, A0h; the second cycle contains the  
program address and data. In the same manner, additional data is programmed. This mode dispenses  
with the initial two unlock cycles which required in the standard program command sequence,  
resulting in faster total programming time.  
All through the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset  
commands are valid. The system must issue the two-cycle unlock bypass reset command sequence  
to exit the unlock bypass mode. The first cycle must contain the data 90h. The second cycle need to  
contain the data 00h. Then, the device returns to the read mode.  
- 12 -  
 
W19B(L)320ST/B  
The device offers accelerated program operations by the #WP/ACC pin. When the VHH is set at the  
#WP/ACC pin, the device automatically enters into the Unlock Bypass mode. Then, the two-cycle  
Unlock Bypass program command sequence may be written. To accelerate the operation, the device  
must use the higher voltage on the #WP/ACC pin. Please note that the #WP/ACC pin must not be at  
VHH in any operation other than accelerated programming; otherwise the device may be damaged. In  
addition, the #WP/ACC pin must not be left floating or unconnected; otherwise the device inconsistent  
behavior may occur.  
6.2.7 Chip Erase Command Sequence  
Chip erase is a six-bus cycle operation. Writing two unlock cycles initiates the chip erase command  
sequence, which is followed by a set-up command. After chip erase command, two additional unlock  
write cycles are then followed, which in turn invokes the Embedded Erase algorithm. The system  
preprogram is not required prior to erase. Before electrical erase, the Embedded Erase algorithm  
automatically preprograms and verifies the entire memory for an all zero data pattern. Any controls or  
timings during these operations is not required in system.  
As the Embedded Erase algorithm is complete, the device returns to the read mode and addresses  
are no longer latched. The system can determine the status of the erase operation by using DQ7,  
DQ6, DQ2, or RY/#BY. Please refer to the Write Operation Status section for information on these  
status bits.  
Any commands written during the chip erase operation will be ignored. However, a hardware reset  
shall terminate the erase operation immediately. If this happens, to ensure data integrity, the chip  
erase command sequence should be reinitiated when the device has returned to reading array data.  
6.2.8 Sector Erase Command Sequence  
Sector erase is a six-bus cycle operation. Writing two unlock cycles initiates the sector erase  
command sequence, which is followed by a set-up command. Two additional unlock cycles are  
written, and are then followed by the address of the sector to be erased, and the sector erase  
command.  
The device does not require the system to preprogram before erase. Before electrical erase, the  
Embedded Erase algorithm automatically programs and verifies the entire memory for an all zero data  
pattern. Any controls or timings during these operations is not required in system.  
A sector erase time-out of 50 µS occurs after the command sequence is written. Additional sector  
addresses and sector erase commands may be written during the time-out period. Loading the sector  
erase buffer may be done in any sequence, and the number of sectors may be from one sector to all  
sectors. The time between these additional cycles must be less than 50 µS; otherwise, erasure may  
begin. Any sector erase address and command following the exceeded time-out may or may not be  
accepted. To ensure all commands are accepted, processor interrupts be disabled during this time is  
recommended. The interrupts can be re-enabled after the last Sector Erase command is written. Any  
command other than Sector Erase or Erase Suspend during the time-out period resets the device to  
the read mode. The system must rewrite the command sequence and any additional addresses and  
commands.  
The system can monitor DQ3 to determine whether or not the sector erase timer has timed out (See  
the section on DQ3: Sector Erase Timer.). The time-out begins from the rising edge of the final #WE  
pulse in the command sequence.  
Publication Release Date: March 23, 2004  
- 13 -  
Revision A2  
 
W19B(L)320ST/B  
As the Embedded Erase algorithm is complete, the device returns to reading array data and  
addresses are no longer latched. Please refer to the Write Operation Status section for information on  
these status bits.  
When the sector erase operation begins, only the Erase Suspend command is valid. All other  
commands are ignored. However, a hardware reset shall terminate the erase operation immediately. If  
this occurs, to ensure data integrity, the sector erase command sequence should be reinitiated once  
the device has returned to reading array data.  
6.2.9 Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then  
read data from, or program data to, any sector not selected for erasure. This command is valid only  
during the sector erase operation, which includes the 50 µS time-out period during the sector erase  
command sequence. If written during the chip erase operation or Embedded Program algorithm, the  
Erase Suspend command is ignored.  
As the Erase Suspend command is written during the sector erase operation, a maximum of 20 µs is  
required to suspend the erase operation. However, while the Erase Suspend command is written  
during the sector erase time-out, the device shall terminate the time-out period and suspends the  
erase operation immediately.  
The device enters into an erase-suspend-read mode after the erase operation has been suspended.  
The system can read data from, or program data to, any sector not selected for erasure. (In device  
“erase suspends” all sectors are selected for erasure.) The “reading at any address within erase-  
suspended sectors produces status” information is on DQ0DQ7. The system can use DQ7, or DQ6  
and DQ2 together, to determine whether a sector is actively erasing or is erase-suspended. Please  
refer to the Write Operation Status section for detail information on these status bits.  
After an erase-suspended program operation is complete, the device returns to the erase-suspend-  
read mode. Using the DQ7 or DQ6 status bits, the system can determine the status of the program  
operation, just as in the standard Byte Program operation. Please refer to the Write Operation Status  
section for more information.  
In the erase-suspend-read mode, the autoselect command sequence also can be issued. Please refer to  
the Autoselect Mode and Autoselect Command Sequence sections for details.  
The Erase Resume command must be written to resume the sector erase operation. Further writes of the  
Resume command are ignored. After the chip has resumed erasing, another Erase Suspend command can  
be written.  
6.3 Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3,  
DQ5, DQ6, and DQ7. Each of DQ7 and DQ6 provides a method for determining whether a program or  
erase operation is complete or in progress. The device also offers a hardware-based output signal,  
RY/#BY, to determine whether an Embedded Program or Erase operation is in progress or has been  
completed.  
6.3.1 DQ7: #Data Polling  
The #Data Polling bit, DQ7, indicates whether an Embedded Program or Erase algorithm is in  
progress or completed, or whether or not the device is in Erase Suspend. Data Polling is valid after  
the rising edge of the final #WE pulse in the command sequence.  
- 14 -  
 
W19B(L)320ST/B  
During the Embedded Program algorithm, the device outputs on DQ7 and the complement of the data  
programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. Once the  
Embedded Program algorithm has completed, the device outputs the data programmed to DQ7. The  
system must provide the program address to read valid status information on DQ7. If a program  
address falls within a protected sector, #Data Polling on DQ7 is active for about 1µS, and then the  
device returns to the read mode.  
During the Embedded Erase algorithm, #Data Polling produces “0” on DQ7. Once the Embedded  
Erase algorithm has completed, or when the device enters the Erase Suspend mode, #Data Polling  
produces “1” on DQ7. An address within any of the sectors selected for erasure must be provided to  
read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, #Data  
Polling on DQ7 is active for about 100 µS, and then the device returns to the read mode. If not all  
selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and  
ignores the selected sectors that are protected. However, if the system reads DQ7 at an address  
within a protected sector, the status may not be valid.  
Just before the completion of an Embedded Program or Erase operation, DQ7 may change  
asynchronously with DQ0DQ6 while Output Enable (#OE) is set to low. That is, the device may  
change from providing status information to valid data on DQ7. Depending on when it samples the  
DQ7 output, the system may read the status or valid data. Even if the device has completed the  
program or erase operation and DQ7 has valid data, the data outputs on DQ0DQ6 may be still  
invalid. Valid data on DQ0-DQ7 will appear on successive read cycles.  
6.3.2 RY/#BY: Ready/#Busy  
The RY/#BY is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is  
in progress or complete. The RY/#BY status is valid after the rising edge of the final #WE pulse in the  
command sequence. Since RY/#BY is an open-drain output, several RY/#BY pins can be tied together  
in parallel with a pull-up resistor to VDD.  
When the output is low (Busy), the device is actively erasing or programming. (This includes  
programming in the Erase Suspend mode.) When the output is high (Ready), the device is in the read  
mode, the standby mode is in the erase-suspend-read mode.  
6.3.3 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or  
complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at  
any address, and is valid after the rising edge of the final #WE pulse in the command sequence  
(before the program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address  
cause DQ6 to toggle. The system may use either #OE or #CE to control the read cycles. Once the  
operation has completed, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6  
toggles for about 100 µS, and then returns to reading array data. If not all selected sectors are  
protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors which are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is  
erase-suspended. If the device is actively erasing (i.e., the Embedded Erase algorithm is in progress),  
Publication Release Date: March 23, 2004  
- 15 -  
Revision A2  
 
W19B(L)320ST/B  
DQ6 toggles. While if the device enters the Erase Suspend mode, DQ6 stops toggling. However, the  
system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively,  
the system can use DQ7 (see DQ7: #Data Polling).  
If a program address falls within a protected sector, DQ6 toggles for about 1 µs after the program  
command sequence is written, and then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling when the Embedded  
Program algorithm is complete.  
Please also refer to DQ2: Toggle Bit II.  
6.3.4 DQ2: Toggle Bit II  
When used with DQ6, the “Toggle Bit II” on DQ2 indicates whether a particular sector is actively  
erasing (i.e., the Embedded Erase algorithm is in progress), or the sector is erase-suspended. Toggle  
Bit II is valid after the rising edge of the final #WE pulse in the command sequence.  
DQ2 toggles as the system reads at addresses within those sectors that have been selected for  
erasure. (The system may use either #OE or #CE to control the read cycles.) But DQ2 cannot  
distinguish that whether the sector is actively erasing or is erase-suspended. By comparison, DQ6  
indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Therefore, both status bits are required for sector and mode  
information.  
6.3.5 Reading Toggle Bits DQ6/DQ2  
Whenever the system initially starts to read toggle bit status, it must read DQ0DQ7 at least twice in a  
row to determine whether a toggle bit is toggling or not. Typically, the system would note and store the  
value of the toggle bit after the first read. While after the second read, the system would compare the  
new value of the toggle bit with the first one. If the toggle bit is not toggling, the device has completed  
the program or erase operation. The system can read array data on DQ0DQ7 on the following read  
cycle.  
However, if after the initial two read cycles, the system finds that the toggle bit is still toggling, the  
system also should note whether the value of DQ5 is high or not(see the section on DQ5). If DQ5 is  
high, the system should then determine again whether the toggle bit is toggling or not, since the toggle  
bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase operation. If it is still toggling, the device did not  
completed the operation, and the system must write the reset command to return to reading array  
data.  
Then the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The  
system may continue to monitor the toggle bit and DQ5 through successive read cycles, and  
determines the status as described in the previous paragraph. Alternatively, the system may choose  
to perform other system tasks. In this case, the system must start at the beginning of the algorithm  
while it returns to determine the status of the operation.  
6.3.6 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit.  
DQ5 produces “1” under these conditions which indicates that the program or erase cycle was not  
successfully completed.  
- 16 -  
 
W19B(L)320ST/B  
The device may output “1” on DQ5 if the system tries to program “1” to a location that was previously  
programmed to “0.” Only the erase operation can change “0” back to “1.” Under this condition, the device  
stops the operation, and while the timing limit has been exceeded, DQ5 produces “1.”  
Under both these conditions, the system must write the reset command to return to the read mode (or  
to the erase-suspend-read mode if the device was previously in the erase-suspend-program mode).  
6.3.7 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether  
erasure has begun or not. (The sector erase timer does not apply to the chip erase command.) The  
entire time-out applies after each additional sector erase command if additional sectors are selected  
for erasure. Once the timeout period has completed, DQ3 switches from “0” to “1.” If the time between  
additional sector erase commands from the system can be assumed to be less than 50 µS, the  
system need not monitor, DQ3 does not need to be monitored. Please also refer to Sector Erase  
Command Sequence section.  
After the sector erase command is written, the system should read the status of DQ7 (#Data Polling)  
or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and then read  
DQ3. If DQ3 is“1,” the Embedded Erase algorithm has begun; all further commands (except Erase  
Suspend) are ignored until the erase operation is complete. If DQ3 is “0,” the device will accept  
additional sector erase commands.  
The system software should check the status of DQ3 before and following each subsequent sector  
erase command to ensure the command has been accepted. If DQ3 is high on the second status  
check, the last command might not have been accepted.  
Publication Release Date: March 23, 2004  
- 17 -  
Revision A2  
 
W19B(L)320ST/B  
7. TABLE OF OPERATION MODES  
7.1 Device Bus Operations  
ADDRESSES  
DQ8-DQ15  
DQ0-DQ7  
MODE  
#CE  
#OE #WE #RESET #WP/ACC  
(Note2)  
AIN  
#BYTE =VIH #BYTE =VIL  
Read  
Write  
L
L
L
L
H
H
H
L
L
H
H
H
L/H  
(Note3)  
VHH  
DOUT  
DOUT  
DQ8-DQ14  
= High-Z,  
AIN  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
DQ15=A-1  
Accelerated Program  
AIN  
VDD  
VDD  
Standby  
X
X
H
X
High-Z  
High-Z  
High-Z  
± 0.3V  
± 0.3V  
Output Disable  
Reset  
L
H
X
H
X
H
L
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
X
SA, A6 = L,  
Sector Protect (note2)  
L
L
H
H
X
L
L
VID  
VID  
VID  
L/H  
(Note 4)  
(Note 4)  
(Note 4)  
X
X
X
X
A1 = H, A0 = L  
SA, A6 = H,  
Sector Unprotect (note2)  
(Note3)  
(Note3)  
A1 = H, A0 = L  
Temporary Sector  
Unprotect  
X
X
AIN  
(Note 4)  
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 8.5-12.5V, VHH = 9.0±0.5V, X = Don’t Care, SA = Sector Address, AIN  
= Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Addresses are A20:A0 in word mode (#BYTE = VIH), A20: A-1 in byte mode (#BYTE = VIL).  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the”  
Sector/Sector Block Protection and Unprotect ion” section.  
3. If #WP/ACC = VIL, the two outermost boot sectors remain protected. If #WP/ACC = VIH, the two outermost boot sector  
protection depends on whether they were last protected or unprotected using the method described in “Sector/Sector  
Block Protection and Unprotect ion”. If #WP/ACC = VHH, all sectors will be unprotected.  
4. DIN or DOUT as required by command sequence, data polling, or sector protection algorithm.  
- 18 -  
 
W19B(L)320ST/B  
7.2 Autoselect Codes (High Voltage Method)  
DQ8 TO  
A20 A11  
A8  
A5  
DQ7  
A9  
DQ15  
DESCRIPTION  
#CE #OE #WE TO  
TO  
TO A6 TO A1 A0  
TO  
#BYTE #BYTE  
= VIH = VIL  
A12 A10  
A7  
A2  
DQ0  
Manufacturer ID:  
Winbond  
VIL  
VIL  
VIL VIL  
VIL VIL  
VIH  
VIH  
X
X
X
X
VID  
VID  
X
X
VIL  
VIL  
X
X
DAh  
BAh  
Device ID:  
W19B(L)320ST  
(Top Boot Block)  
X
X
X
X
VIL VIH 22h  
VIL VIH 22h  
X
Device ID:  
W19B(L)320SB  
(Bottom Boot Block)  
VIL VIL  
VIL VIL  
VIH  
VIH  
X
X
X
VID  
VID  
VIL  
VIL  
X
2Ah  
01h  
(protected)  
00h  
Sector Protection  
Verification  
X
VIH VIL  
X
X
X
SA  
X
X
X
X
(unprotected)  
99h  
(factory  
locked)  
19h (not  
factory  
locked)  
Security Indicator Bit  
(DQ7)  
VIL  
VIL VIL  
VIH  
X
X
VID  
VIH VIH  
X
X
Legend: SA = Sector Address, X = Don't Care.  
Publication Release Date: March 23, 2004  
Revision A2  
- 19 -  
 
W19B(L)320ST/B  
Sector Address Table (Top Boot Block)  
SECTOR ADDRESS  
A20-A12  
(X8)  
(X16)  
SECTOR SIZE  
SECTOR  
(Kbytes/Kwords)  
ADDRESS RANGE  
000000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
ADDRESS RANGE  
000000h-07FFFh  
008000h-0FFFFh  
010000h-17FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
140000h-147FFFh  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
000000XXX  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
011111XXX  
100000XXX  
100001XXX  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
- 20 -  
W19B(L)320ST/B  
Sector Address Table (Top Boot Block), continued  
SECTOR ADDRESS  
(X8)  
(X16)  
SECTOR SIZE  
SECTOR  
(Kbytes/Kwords)  
A20-A12  
ADDRESS RANGE  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3F1FFFh  
3F2000h-3F3FFFh  
3F4000h-3F5FFFh  
3F6000h-3F7FFFh  
3F8000h-3F9FFFh  
3FA000h-3FBFFFh  
3FC000h-3FDFFFh  
3FE000h-3FFFFFh  
ADDRESS RANGE  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-167FFFh  
168000h-16FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1F8FFFh  
1F9000h-1F9FFFh  
1FA000h-1FAFFFh  
1FB000h-1FBFFFh  
1FC000h-1FCFFFh  
1FD000h-1FDFFFh  
1FE000h-1FEFFFh  
1FF000h-1FFFFFh  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
110000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note: The address range is [A20: A-1] in byte mode (#BYTE =VIL) or [A20:A0] in word mode (#BYTE = VIH).  
Security Sector Addresses for Top Boot Devices  
SECTOR ADDRESS  
A20-A12  
(X 8)  
(X 16)  
ADDRESS RANGE  
1FF000h-1FF07Fh  
SECTOR SIZE  
(bytes/words)  
DEVICE  
ADDRESS RANGE  
3FE000h-3FE0FFh  
W19B320ST  
111111XXX  
256/128  
Publication Release Date: March 23, 2004  
Revision A2  
- 21 -  
W19B(L)320ST/B  
Sector Address Table (Bottom Boot Block)  
SECTOR ADDRESS  
A20-A12  
(X8)  
(X16)  
SECTOR SIZE  
SECTOR  
(Kbytes/Kwords)  
ADDRESS RANGE  
000000h-001FFFh  
002000h-003FFFh  
004000h-005FFFh  
006000h-007FFFh  
008000h-009FFFh  
00A000h-00BFFFh  
00C000h-00DFFFh  
00E000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
ADDRESS RANGE  
000000h-000FFFh  
001000h-001FFFh  
002000h-002FFFh  
003000h-003FFFh  
004000h-004FFFh  
005000h-005FFFh  
006000h-006FFFh  
007000h-007FFFh  
008000h-00FFFFh  
010000h-017FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
011111XXX  
100000XXX  
100001XXX  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
- 22 -  
W19B(L)320ST/B  
Sector Address Table (Bottom Boot Block), continued  
SECTOR ADDRESS  
A20-A12  
(X8)  
(X16)  
SECTOR SIZE  
SECTOR  
(Kbytes/Kwords)  
ADDRESS RANGE  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
ADDRESS RANGE  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
140000h-147FFFh  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-167FFFh  
168000h-16FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1FFFFFh  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA65  
SA67  
SA68  
SA69  
SA70  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
111000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111XXX  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
Note: The address range is [A20: A-1] in byte mode (#BYTE =VIL) or [A20:A0] in word mode (#BYTE =VIH).  
Security Sector Addresses for Bottom Boot Devices  
SECTOR ADDRESS  
A20-A12  
(X8)  
(X16)  
ADDRESS RANGE  
000000h-00007Fh  
SECTOR SIZE  
(bytes/words)  
DEVICE  
ADDRESS RANGE  
000000h-0000FFh  
W19B320SB  
000000XXX  
256/128  
Publication Release Date: March 23, 2004  
Revision A2  
- 23 -  
W19B(L)320ST/B  
Top Boot Sector/Sector Block Address for Protection/Unprotection)  
SECTOR  
A20-A12  
SECTOR/SECTOR BLOCK SIZE  
000000XXX  
000001XXX  
000010XXX  
000011XXX  
SA0-SA3  
256(4x64) K bytes  
SA4-SA7  
SA8-SA11  
0001XXXXX  
0010XXXXX  
0011XXXXX  
0100XXXXX  
0101XXXXX  
0110XXXXX  
0111XXXXX  
1000XXXXX  
1001XXXXX  
1010XXXXX  
1011XXXXX  
1100XXXXX  
1101XXXXX  
1110XXXXX  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
SA12-SA15  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32-SA35  
SA36-SA39  
SA40-SA43  
SA44-SA47  
SA48-SA51  
SA52-SA55  
SA56-SA59  
111100XXX  
111101XXX  
111110XXX  
SA60-SA62  
192(3x64) K bytes  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
- 24 -  
W19B(L)320ST/B  
Bottom Boot Sector/Sector Block Address for Protection/Unprotection)  
SECTOR  
A20-A12  
SECTOR/SECTOR BLOCK SIZE  
111111XXX  
111110XXX  
111101XXX  
111100XXX  
SA70-SA67  
256(4x64) K bytes  
SA66-SA63  
SA62-SA59  
SA58-SA55  
SA54-SA51  
SA50-SA47  
SA46-SA43  
SA42-SA39  
SA38-SA35  
SA34-SA31  
SA30-SA27  
SA26-SA23  
SA22-SA19  
SA18-SA15  
SA14-SA11  
1110XXXXX  
1101XXXXX  
1100XXXXX  
1011XXXXX  
1010XXXXX  
1001XXXXX  
1000XXXXX  
0111XXXXX  
0110XXXXX  
0101XXXXX  
0100XXXXX  
0011XXXXX  
0010XXXXX  
0001XXXXX  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
256(4x64) K bytes  
000011XXX  
000010XXX  
000001XXX  
SA10-SA8  
192(3x64) K bytes  
SA7  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
000000111  
000000110  
000000101  
000000100  
000000011  
000000010  
000000001  
000000000  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
8 K bytes  
Publication Release Date: March 23, 2004  
Revision A2  
- 25 -  
W19B(L)320ST/B  
7.3 CFI Query Identification String  
ADDRESS  
(Word Mode)  
10h  
ADDRESS  
(Byte Mode)  
20h  
DESCRIPTION  
DATA  
0051h  
0052h  
0059h  
0006h  
0000h  
0040h  
0000h  
0000h  
0000h  
0000h  
0000h  
Query-unique ASCII string "QRY"  
11h  
12h  
22h  
24h  
13h  
14h  
26h  
28h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
Alternate OEM Command set (00h = none exists)  
Address for Alternate OEM Extended table (00h = none exists)  
19h  
1Ah  
32h  
34h  
System Interface String  
DESCRIPTION  
ADDRESS  
(Word Mode)  
ADDRESS  
(Byte Mode)  
DATA  
0027h  
0036h  
VDD Min. (write/erase)  
D7-D4: volt, D3-D0: 100 mV  
1Bh  
1Ch  
36h  
38h  
VDD Max. (write/erase)  
D7-D4: volt, D3-D0: 100 mV  
VPP Min. voltage (00h = no Vpp pin present)  
1Dh  
1Eh  
1Fh  
0000h  
0000h  
0004h  
3Ah  
3Ch  
3Eh  
VPP Max. voltage (00h = no Vpp pin present)  
Typical timeout per single byte/word write 2N µS  
Typical timeout for Min. size buffer write 2N µS (00h = not  
20h  
0000h  
40h  
supported)  
Typical timeout for individual block erase 2N mS  
Typical timeout for full chip erase 2N mS (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
21h  
22h  
23h  
24h  
25h  
000Ah  
0000h  
0005h  
0000h  
0004h  
42h  
44h  
46h  
48h  
4Ah  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical ( 00h = not  
26h  
0000h  
4Ch  
supported)  
- 26 -  
 
W19B(L)320ST/B  
Device Geometry Definition  
ADDRESS  
(Write Mode)  
27h  
DATA  
ADDRESS  
(Byte Mode)  
4Eh  
DESCRIPTION  
Device size =2N bytes  
0016h  
0002h  
0000h  
0000h  
0000h  
0002h  
0007h  
0000h  
0020h  
0000h  
003Eh  
0000h  
0000h  
0001h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
28h  
29h  
50h  
52h  
Flash device interface description (refer to CFI publication 100)  
Max. number of bytes in multi-byte write=2N (00h = not  
supported)  
2Ah  
2Bh  
54h  
56h  
Number Of Erase Block Regions Within Devices  
2Ch  
58h  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
Erase block region 1 information  
(refer to the CFI specification or CFI publication 100 )  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
Publication Release Date: March 23, 2004  
Revision A2  
- 27 -  
W19B(L)320ST/B  
Primary Vendor-Specific Extended Query  
DESCRIPTION  
ADDRESS  
(Word Mode)  
ADDRESS  
(Byte Mode)  
80h  
DATA  
40h  
41h  
42h  
43h  
44h  
0050h  
0052h  
0049h  
0031h  
0031h  
Query-unique ASCII string "PRI"  
82h  
84h  
Major version number, ASCII  
Minor version number, ASCII  
86h  
88h  
Address sensitive unlock (Bits 10)  
0 = required, 1 = not required  
45h  
0000h  
8Ah  
Silicon Revision Number (Bit 7-2)  
Erase suspend  
0 = Not supported, 1 = To read only; 2 = To read & write  
Sector protect  
0 = Note supported, 1 = Supported  
Sector Temporary Unprotect  
00 = Not supported, 01 = Supported  
Sector protect/unprotect scheme  
Simultaneous operation  
46h  
47h  
0002h  
0001h  
8Ch  
8Eh  
48h  
49h  
4Ah  
0001h  
0004h  
0000h  
90h  
92h  
94h  
00 = Not supported  
Burst mode type  
00 = Not supported, 01 = Supported  
Page mode type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7D4; Volt, D3D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7D4; Volt, D3D0: 100 mV  
Top/bottom boot Sector Flag  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
0000h  
0000h  
0085h  
0095h  
000Xh  
96h  
98h  
9Ah  
9Ch  
9Eh  
02h=Bottom Boot Device, 03h = Top Boot Device  
- 28 -  
W19B(L)320ST/B  
7.4 Command Definitions  
BUS CYCLES (NOTE 2-5)  
THIRD FOURTH  
ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA  
COMMAND SEQUENCE  
CYCLE  
FIRST  
SECOND  
FIFTH  
SIXTH  
(NOTE 1)  
RA  
XXX  
555  
AAA  
555  
RD  
F0  
Read (note 6)  
Reset (note 7)  
1
1
2AA  
555  
2AA  
555  
555  
AAA  
555  
Word  
Byte  
Word  
Byte  
AA  
AA  
55  
55  
A0  
20  
PA  
PD  
Normal Program  
4
Unlock Bypass  
3
AAA  
AAA  
Unlock Bypass Program  
XXX  
XXX  
A0  
90  
PA  
PD  
00  
2
2
6
(Note 11)  
Unlock Bypass Reset  
(note12)  
XXX  
555  
AAA  
555  
AAA  
XXX  
XXX  
555  
AAA  
555  
AAA  
555  
2AA  
555  
2AA  
555  
555  
AAA  
555  
555  
AAA  
555  
2AA  
555  
2AA  
555  
555  
AAA  
Word  
Byte  
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
Chip Erase  
Word  
Sector Erase  
Byte  
Erase Suspend (note 13)  
Erase Resume (note 14)  
SA  
6
AAA  
AAA  
B0  
30  
1
1
2AA  
555  
2AA  
555  
2AA  
555  
AAA  
55  
AAA  
555  
Word  
Byte  
DA  
Manufacturer  
AA  
AA  
55  
55  
90  
90  
X00  
4
Code  
X01  
X02  
X03  
Word  
Device Code  
Byte  
(note 16)  
99/19  
4
Security Sector Word  
AA  
55  
90  
4
4
Factory Protect  
AAA  
555  
AAA  
X06  
Byte  
(Note 9)  
Sector/Secto  
Word  
555  
2AA  
555  
X02  
r Block  
AA  
55  
90  
00/01  
Protect  
Verify (note  
AAA  
555  
AAA  
X04  
10)  
Byte  
555  
AAA  
555  
AAA  
55  
2AA  
555  
2AA  
555  
555  
AAA  
555  
Word  
Byte  
Word  
Byte  
Enter Security  
Sector Region  
AA  
AA  
55  
55  
88  
90  
3
4
Exit Security  
XXX  
00  
Sector Region  
AAA  
Common Flash  
Interface (CFI)  
Query (note 15)  
Word  
98  
1
AA  
Byte  
Legend:  
X = Don’t Care  
RA = Address of the memory location to be read.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the #WE or #CE pulse, whichever happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of #WE or #CE pulse, whichever happens first.  
RD = Data read from location RA during read operation.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A20-A12 uniquely select any sector.  
Publication Release Date: March 23, 2004  
- 29 -  
Revision A2  
 
W19B(L)320ST/B  
Notes:  
1. See Bus Operations Table for details.  
2. All values are in hexadecimal  
3. Except for the read cycle and the fourth cycle of the autoselect command sequence, all bus cycles are write cycles.  
4. Data bits DQ15DQ8 are don’t care in command sequences, except for RD and PD.  
5. Unless otherwise noted, address bits A20A11 are don’t cares.  
6. No unlock or command cycles required when device is in read mode.  
7. The Reset command is required to return to the read mode (or to the erase-suspend-read mode if previously in Erase  
Suspend) when the device is in the autoselect mode, or if DQ5 goes high (while the device is providing status  
information).  
8. The fourth cycle of the autoselect command sequence is a read cycle. Data bits DQ15DQ8 are don’t care. See the  
Autoselect Command Sequence section for more information.  
9. The data is 99h for factory locked and 19h for not factory locked.  
10. The data is 00h for an unprotected sector/sector block and 01h for a protected sector/sector block.  
11. The Unlock Bypass command is required prior to the Unlock Bypass Program command.  
12. The Unlock Bypass Reset command is required to return to the read mode when the device is in the unlock bypass  
mode.  
13. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend  
mode. The Erase Suspend command is valid only during a sector erase operation.  
14. The Erase Resume command is valid only during the Erase Suspend mode.  
15. Command is valid when device is ready to read array data or when device is in autoselect mode.  
16. See Autoselect Codes table for device ID information  
7.5 Write Operation Status  
DQ7  
DQ5  
DQ2  
STATUS  
DQ6  
DQ3  
RY/#BY  
(Note 2)  
(Note1)  
(Note 2)  
Embedded Program Algorithm  
Embedded Erase Algorithm  
#DQ7  
Toggle  
Toggle  
0
0
0
N/A  
1
No toggle  
Toggle  
0
0
1
Standard  
Mode  
0
1
Erase Suspended Sector  
No toggle  
N/A  
Toggle  
Erase-  
Suspend-  
Read  
Erase  
Non-Erase Suspended  
Sector  
Suspend  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Mode  
Erase-Suspend-Program  
#DQ7  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 requires a valid address when reading status information. Please refer to related sections for details.  
- 30 -  
 
W19B(L)320ST/B  
7.6 Temporary Sector Unprotect Algorithm  
START  
#RESET = V  
(Note 1)ID  
Perform Erase or  
Program Operations  
#RESET = V  
IH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If #WP/ACC = VIL, outermost boot sectors will remain protected).  
2. All previously protected sectors are protected once again.  
Publication Release Date: March 23, 2004  
Revision A2  
- 31 -  
 
W19B(L)320ST/B  
7.7 In-System Sector Protect/Unprotect Algorithms  
START  
START  
Protect all sectors  
The indicated portion  
PLSCNT=1  
PLSCNT=1  
#RESET=VID  
Wait 1  
of the sector protect  
algorithm must be  
performed for all  
#RESET=VID  
unprotected sectors  
prior to issuing the  
s
Wait 1 µ  
µ
s
first sector  
unprotect address  
No  
First Write  
Cycle=60h?  
No  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
First Write  
Cycle=60h?  
Yes  
Yes  
Set up sector  
address  
All sector  
protected?  
No  
Sector Protect:  
Write 60h to sector  
Yes  
address with  
A6=0,A1=1,A0=0  
Set up first  
sector address  
µ
Wait 150  
s
Sector Unrotect:  
Write 60h to sector  
address with  
A6=1,A1=1,A0=0  
Verity Sector  
Protect:Write 40h  
Reset  
PLSCNT=1  
to sector address  
Increment  
PLSCNT  
Wait 15 mS  
with A6=0,  
A1=1,A0=0  
Increment  
PLSCNT  
Verity Sector  
Unprotect:Write 40h  
Read from  
to sector address  
sector address  
No  
with A6=0,  
A1=1,A0=0  
with A6=1,  
A1=1,A0=0  
Read from  
No  
sector address  
with A6=1,  
A1=1,A0=0  
PLSCNT  
=25?  
Data=01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
PLSCNT  
=1000?  
No  
Data=00h?  
Yes  
Protect another  
sector?  
Device failed  
Yes  
No  
Yes  
Remove V  
ID  
No  
from #RESET  
Last sector  
verified  
Device failed  
Write reset  
command  
Yes  
Sector Protect  
Algorithm  
Sector Unprotect  
Algorithm  
Remove V  
ID  
from #RESET  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotectt  
complete  
- 32 -  
 
W19B(L)320ST/B  
7.8 Program Algorithm  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
7.9 Erase Algorithm  
START  
Write Program  
Command Sequence  
(Note1,2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
No  
in progress  
Data=FFh?  
Yes  
Erase Completed  
Notes:  
1. See Command Definitions Table for erase command sequence details.  
2. See DQ3 section for the sector erase timer details.  
Publication Release Date: March 23, 2004  
Revision A2  
- 33 -  
 
W19B(L)320ST/B  
7.10 Data Polling Algorithm  
START  
Read DQ7-DQ0  
Addr=VA  
Yes  
DQ7=Data?  
No  
No  
DQ5=1?  
Yes  
Read DQ7-DQ0  
Addr=VA  
Yes  
DQ7=Data?  
No  
FAIL  
PASS  
Notes:  
1. VA = Valid address for programming. During a sector erase operation; a valid address is any sector address within the  
sector being erased. During chip erase, a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5.  
- 34 -  
 
W19B(L)320ST/B  
7.11 Toggle Bit Algorithm  
START  
Read DQ7-DQ0  
Read DQ7-DQ0  
No  
Toggle Bit  
=Toggle?  
Yes  
No  
DQ5=1?  
Yes  
Read DQ7-DQ0  
Twice  
No  
Toggle Bit  
=Toggle?  
Yes  
Program/Erase  
Operation Not  
Program/Erase  
Complete  
Complete,Write  
Reset Command  
Note: The system should recheck the toggle bit even if DQ5 =”1” because the toggle bit may stop toggling as DQ5 changes to  
“1”. See the subsections on DQ6 and DQ2 for more information  
Publication Release Date: March 23, 2004  
- 35 -  
Revision A2  
 
W19B(L)320ST/B  
8. ELECRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
PARAMETER  
Storage Temperature Plastic Packages  
Ambient Temperature with Power Applied  
Voltage with Respect to Ground VDD (Note 1)  
A9, #OE, and #RESET (Note 2)  
#WP/ACC  
All other pins (Note 1)  
Output Short Circuit Current (Note 3)  
Notes:  
RATING  
-65 to +150  
-65 to +125  
-0.5 to +4.0  
-0.5 to +12.5  
-0.5 to +10.5  
-0.5 to VDD +0.5  
200  
UNIT  
°C  
°C  
V
V
V
V
mA  
1. Minimum DC voltage on input or I/O pins is -0.5 V. During voltage transitions, input or I/O pins may overshoot VSS to  
-2.0 V for periods of up to 20 nS. Maximum DC voltage on input or I/O pins is VDD +0.5 V. During voltage transitions,  
input or I/O pins may overshoot to VDD +2.0 V for periods up to 20 nS.  
2. Minimum DC input voltage on pins A9, #OE, #RESET, and #WP/ACC is -0.5 V. During voltage transitions, A9, #OE,  
#WP/ACC, and #RESET may overshoot VSS to -2.0 V for periods of up to 20 nS. Maximum DC input voltage on pin A9  
is +12.5 V which may overshoot to +14.0 V for periods up to 20 nS. Maximum DC input voltage on #WP/ACC is +9.5 V  
which may overshoot to +12.0 V for periods up to 20 nS.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than  
one second.  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only; functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum  
rating conditions for extended periods may affect device reliability.  
8.2 Operating Ranges  
PARAMETER  
RATING  
-40 to +85  
0 to +70  
-20 to +85  
2.7 to 3.6  
3.0 to 3.6  
UNIT  
Industrial  
Commercial  
Extend  
W19B320S  
W19L320S  
Ambient Temperature (TA)  
°C  
VDD Supply Voltages  
V
Operating ranges define those limits between which the functionality of the device is guaranteed.  
- 36 -  
 
W19B(L)320ST/B  
8.3 DC Characteristics  
8.3.1 CMOS Compatible  
LIMITS  
PARAMETER  
SYM.  
TEST CONDITIONS  
UNIT  
MIN. TYP. MAX.  
Input Load Current  
ILI VIN =VSS to VDD, VDD = VDD (Max.)  
ILIT VDD = VDD (Max.), A9 = 12.5 V  
-
-
-
-
-
-
-
±3.0  
35  
35  
±1.0  
16  
4
µA  
µA  
A9 Input Load Current  
#RESET Input Load Current  
Output Leakage Current  
ILR VDD = VDD (Max.), #RESET = 12.5 V  
ILO VOUT =VSS to VDD, VDD =VDD (Max.)  
-
µA  
-
µA  
5 MHz  
1 MHz  
5 MHz  
1 MHz  
10  
2
mA  
mA  
mA  
mA  
mA  
#CE = VIL, #OE = VIH  
Byte Mode  
VDD Active Read Current (Note 1, 2)  
ICC1  
10  
2
16  
4
#CE = VIL, #OE = VIH  
Word Mode  
VDD Active Write Current (Note 2, 3)  
VDD Standby Current (Note 2)  
VDD Reset Current (Note 2)  
ICC2  
ICC3  
ICC4  
-
-
-
15  
0.2  
0.2  
45  
5
#CE = VIL, #OE = VIH, #WE = VIL  
#CE, #RESET = VDD ±0.3V  
#RESET = VSS ±0.3V  
µA  
µA  
5
Automatic Sleep Mode Current  
(note 2, 4)  
Input Low Voltage  
ICC5  
-
0.2  
5
VIH = VDD ±0.3V, VIL = VSS ± 0.3V  
µA  
V
VIL  
-
-
-0.5  
-
-
0.8  
0.7 x  
VDD  
VDD  
Input High Voltage  
VIH  
V
+0.3  
Voltage for Autoselect and Temporary  
VDD = 3.0V ±10% (W19B320S) or  
VDD = 3.3V ±10% (W19L320S)  
Sector protect/ Unprotect and Program VHH  
Acceleration  
8.5  
-
9.5  
V
Voltage for Autoselect and Temporary  
VDD = 3.0V ±10% (W19B320S) or  
VDD = 3.3V ±10% (W19L320S)  
VID  
8.5  
-
-
-
-
12.5  
0.45  
-
V
V
V
Sector Unprotected  
Output Low Voltage  
VOL IOL = 4.0 mA, VDD = VDD (Min.)  
0.85 x  
VDD  
VOH1 IOH = -2.0 mA, VDD = VDD (Min.)  
Output High Voltage  
VDD-  
0.4  
VOH2  
-
-
IOH = -100 µA, VDD = VDD (Min.)  
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with #OE at VIH.  
2. Maximum ICC specifications are tested with VDD = VDD max.  
3.  
ICC active while Embedded Erase or Embedded Program is in progress.  
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 nS. Typical sleep mode  
current is 200 nA.  
Publication Release Date: March 23, 2004  
- 37 -  
Revision A2  
 
W19B(L)320ST/B  
8.4 AC Characteristics  
8.4.1 Test Condition  
TEST CONDITION  
90 nS  
1 TTL gate  
UNIT  
Output Load  
Output Load Capacitance, CL (including jig capacitance)  
Input Rise and Fall Times  
Input Pulse Levels  
Input Timing Measurement Reference Levels  
Output Timing Measurement Reference Levels  
100  
5
pF  
nS  
V
V
V
0 3.0  
1.5  
1.5  
8.4.2 AC Test Load and Waveforms  
+3.3V  
2.7K  
DOUT  
6.2K  
100 pF  
(Including Jig and Scope)  
Input  
Output  
3V  
1.5V  
1.5V  
0V  
Test Point  
Test Point  
- 38 -  
 
W19B(L)320ST/B  
8.4.3 Read-Only Operations  
PARAMETER  
90 nS  
UNIT  
SYM.  
TEST SETUP  
MIN.  
MAX.  
-
Read Cycle Time  
TRC  
TACC  
TCE  
TOE  
TDF  
90  
-
-
-
-
nS  
nS  
nS  
nS  
nS  
nS  
Address to Output Delay  
Chip Enable to Output Delay  
Output Enable to Output Delay  
Chip Enable to Output High Z  
Output Enable to Output High Z  
#CE, #OE =VIL  
#OE, = VIL  
90  
90  
40  
16  
16  
TDF  
-
Output Hold Time From Address. #OE or  
#CE Whichever Occurs First  
TOH  
0
0
-
-
-
nS  
nS  
nS  
Read  
Toggle and  
Output Enable Hold Time  
TOEH  
10  
#Data polling  
Note: Not 100 % tested  
8.4.4 Hardware Reset (#RESET)  
PARAMETER  
SYM.  
MIN.  
MAX.  
UNIT  
#RESET PIN Low (During Embedded Algorithms) to Read  
Mode  
#RESET Pin Low (Not During Embedded Algorithms) to  
Read Mode  
TReady  
TReady  
-
20  
µS  
-
500  
nS  
#RESET Pulse Width  
TRP  
TRH  
500  
50  
20  
0
-
-
-
-
nS  
nS  
µS  
nS  
Reset High Time Before Read  
#RESET Low to Standby Mode  
RY/#BY Recovery Time  
Note: Not 100 % tested  
TRPD  
TRB  
8.4.5 Word/Byte Configuration (#BYTE)  
90 nS  
PARAMETER  
SYM.  
UNIT  
MIN.  
MAX.  
#CE to #BYTE Switching Low or High  
#BYTE Switching Low to Output High Z  
#BYTE Switching High to Output Active  
TELFL/TELFH  
TFLQZ  
TFHQV  
-
-
90  
5
16  
-
nS  
nS  
nS  
Publication Release Date: March 23, 2004  
Revision A2  
- 39 -  
 
W19B(L)320ST/B  
8.4.6 Erase And Program Operation  
PARAMETER  
90 nS  
UNIT  
SYM.  
MIN.  
90  
0
TYP. MAX.  
Write Cycle Timing  
Address setup Time  
TWC  
TAS  
-
-
-
-
nS  
nS  
nS  
Address Setup Timing to #OE low during toggle bit polling TASO  
15  
-
-
Address Hold Time  
TAH  
45  
0
-
-
-
-
nS  
nS  
Address Hold Time From #CE or #OE high during toggle  
TAHT  
bit polling  
Data Setup Time  
Data Hold Time  
Output Enable High During toggle bit polling  
TDS  
TDH  
TOEPH  
45  
0
20  
-
-
-
-
-
-
nS  
nS  
nS  
Read Recovery Time Before Write (#OE High to #WE  
TGHWL  
0
-
-
nS  
Low)  
#CE Setup Time  
#CE HOLD Time  
Write Pulse Width  
Write Pulse Width High  
Latency Between Read and Write Operation  
TCS  
TCH  
TWP  
TWPH  
TSR/W  
TPB  
0
0
35  
30  
0
-
-
-
-
-
-
-
5
7
-
-
-
-
-
-
-
nS  
nS  
nS  
nS  
nS  
µS  
µS  
Byte  
Programming Time  
Word  
TPW  
Byte  
Accelerated Programming Time  
Word  
TACCP  
-
4
-
µS  
Sector Erase Time  
VDD Setup Time (Note 1)  
Write Recovery Time from RY/#BY  
Program/Erase Valid to RY/#BY Delay  
Note: Not 100 % tested  
TSE  
TVCS  
TRB  
-
50  
0
0.7  
-
-
-
-
sec  
µS  
nS  
nS  
-
-
-
TBUSY  
90  
8.4.7 Temporary Sector Unprotect  
PARAMETER  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
#RESET setup Time for Temporary Sector Unprotect  
SYM.  
TVIDR  
TVHH  
TRSP  
MIN.  
MAX.  
UNIT  
nS  
nS  
500  
250  
4
-
-
-
µS  
#RESET Hold Time from RY/#BY High for Temporary  
TRRB  
4
-
µS  
Sector Unprotect  
Note: Not 100 % tested  
- 40 -  
 
W19B(L)320ST/B  
8.4.8 Alternate #CE Controlled Erase and Program Operations  
90 nS  
UNIT  
PARAMETER  
SYM.  
TYP.  
MAX.  
MIN.  
(Note3)  
(Note4)  
Write Cycle Time (Note 1)  
TWC  
TAS  
TAH  
TDS  
TDH  
90  
0
45  
45  
0
-
-
-
-
-
-
-
-
-
-
nS  
nS  
nS  
nS  
nS  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Read Recover Time Before Write (#OE High to #WE  
Low)  
TGHEL  
0
-
-
nS  
#WE Setup Time  
#WE Hold Time  
#CE Pulse Width  
#CE Pulse Width High  
TWS  
TWH  
TCP  
TCPH  
TPB  
0
0
35  
30  
-
-
-
-
-
5
7
-
-
-
nS  
nS  
nS  
nS  
-
Byte  
150  
210  
Programming Time (Note 6)  
Word  
Byte  
Accelerated Programming Time (Note 6)  
Word  
µS  
µS  
TPW  
-
TACCP  
-
4
120  
Sector Erase Time (Note 2)  
Chip Erase Time (Note 2)  
TSE  
TCE  
TCPB  
TCPW  
-
-
-
-
0.7  
49  
21  
14  
15  
-
63  
42  
Sec  
Sec  
Byte  
Chip Program Time (Note 5)  
Word  
Sec  
Notes:  
1. Not 100 % tested.  
2. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
3. Typical program and erase time assume the following conditions :25°C, 3.0 V VDD, 10,000 or 100,000  
cycles .Additionally, programming typicals assume checkerboard pattern.  
4. Under worst case conditions of 90°C, VDD = 2.7V for W19B320S or VDD = 3.0V for W19L320S, 10,000 or 100,000  
cycles.  
5. The typical chip programming time is considerably less than the maximun chip programming time listed,since most  
bytes program faster than maximun program times listed.  
6. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command.  
7. The device has a minimum erase and program cycle endurance of 10,000 or100,000 cycles.  
Publication Release Date: March 23, 2004  
- 41 -  
Revision A2  
 
W19B(L)320ST/B  
9. TIMING WAVEFORMS  
9.1 AC Read Waveform  
TRC  
Address  
Addresses Stable  
TACC  
#CE  
TRH  
TRH  
TOE  
#OE  
#WE  
TDF  
TOEH  
High-Z  
TCE  
TOH  
High-Z  
Outputs  
Output Vaild  
#RESET  
RY/#BY  
0V  
9.2 Reset Waveform  
RY/#BY  
#OE,#CE  
RH  
T
#RESET  
T
RP  
Ready  
T
Reset Timing NOT during Embedded Algorithms  
T
Ready  
RY/#BY  
T
RB  
#OE,#CE  
#RESET  
TRP  
Reset Timings during Embedded Algorithms  
- 42 -  
 
W19B(L)320ST/B  
9.3 #BYTE Waveform for Read Operation  
#CE  
#OE  
#BYTE  
#BYTE  
T
ELFL  
Switching  
Data Output  
(DQ0-DQ14)  
Data Output  
(DQ0-DQ7)  
from word  
DQ0-DQ14  
DQ15/A-1  
to byte  
mode  
DQ15  
Output  
Address  
Input  
TFLQZ  
T
ELFH  
#BYTE  
#BYTE  
Data Output  
(DQ0-DQ7)  
Data Output  
(DQ0-DQ14)  
DQ0-DQ14  
Switching  
from byte  
to word  
mode  
Address  
Input  
DQ15  
DQ15/A-1  
Output  
T
FHQV  
9.4 #BYTE Waveform for Write Operation  
#CE  
The falling edge of the last #WE signal  
#WE  
#BYTE  
T
SET  
(T  
)
AS  
T
HOLD  
(T  
AH  
)
Note: Refer to the Erase /Program Operations table for TAS and TAH Specifications.  
Publication Release Date: March 23, 2004  
Revision A2  
- 43 -  
 
W19B(L)320ST/B  
9.5 Programming Waveform  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
TWC  
T
AS  
PA  
Address  
PA  
555h  
PA  
T
AH  
#CE  
#OE  
T
CH  
TWP  
T
PW  
TWPH  
T
DH  
#WE  
T
CS  
DS  
T
D
Status  
OUT  
A0h  
PD  
Data  
T
BUSY  
T
RB  
RY/#BY  
VDD  
T
VCS  
Notes:  
1. PA = program address, PD = program data, Dout is the true data at the program address.  
2. Illustration shows device in word mode.  
9.6 Accelerated Programming Waveform  
V
HH  
V
or  
IL  
V
IH  
V
or  
IL  
V
IH  
#WP/ACC  
T
VHH  
T
VHH  
- 44 -  
 
W19B(L)320ST/B  
9.7 Chip/Sector Erase Waveform  
Erase Command Sequence (last two cycles)  
Read Status Data  
TWC  
T
AS  
VA  
VA  
Address  
2AAh  
SA  
555h for chip erase  
T
AH  
#CE  
#OE  
T
CH  
TWP  
TWPH  
TSE  
#WE  
TCS  
TDS  
T
DH  
In  
Complete  
TRB  
Data  
30h  
55h  
Progress  
10 for Chip Erase  
T
BUSY  
RY/#BY  
TVCS  
VDD  
Notes:  
1. SA= sector address (for Sector Erase), VA= Valid Address for reading status data (see “Write operation Status”).  
2. These waveforms are for the word mode  
9.8 #Data Polling Waveform (During Embedded Algorithms)  
T
RC  
Addresses  
VA  
VA  
VA  
ACC  
T
T
CE  
#CE  
#OE  
T
CH  
T
OE  
T
DF  
TOEH  
#WE  
T
OH  
Complement  
Status Data  
High Z  
High Z  
Complement  
Status Data  
Valid Data  
Valid Data  
True  
True  
DQ7  
DQ0-DQ6  
T
BUSY  
RY/#BY  
Note: VA= Valid Address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Publication Release Date: March 23, 2004  
- 45 -  
Revision A2  
 
W19B(L)320ST/B  
9.9 Toggle Bit Waveform (During Embedded Algorithms)  
TAHT  
TAS  
Addresses  
TAHT  
TASO  
#CE  
TCEPH  
T
OEH  
#WE  
TOEPH  
#OE  
TDH  
TOE  
Valid  
Valid  
Valid  
Valid Data  
Status  
Valid Data  
DQ6/DQ2  
RY/#BY  
Status  
Status  
(stop toggling)  
(first read)  
(second read)  
Note: VA = Valid address;not requires for DQ6. Illustration shows first two status cycle after command sequence, last status  
read cycle, and array data read cycle.  
9.10 DQ 2 vs. DQ6 Waveform  
Enter  
Enter Erase  
Erase  
Embedded  
Erasing  
Erase  
Suspend  
Suspend Program  
Resume  
#WE  
DQ6  
Erase  
Erase  
Erase  
Erase Suspend  
Read  
Erase Suspend  
Read  
Complete  
Erase  
Suspend  
Program  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The sysytem may use #OE or #CE to  
toggle DQ2 and DQ6.  
- 46 -  
 
W19B(L)320ST/B  
9.11 Temporary Sector Unprotect Timing Diagram  
V
ID  
V
ID  
VSS  
VSS  
,
VIL  
,
VIL  
,
,
or  
or  
V
V
IH  
IH  
#RESET  
T
VIDR  
TVIDR  
Program or Erase Command Sequence  
#CE  
#WE  
TRSP  
RRB  
T
RY/#BY  
9.12 Sector/Sector Block Protect and Unprotect Timing Diagram  
VID  
V
IH  
#RESET  
SA,A6,  
Valid*  
Status  
Valid*  
Valid*  
Verify  
A1,A0  
Sector/sector Block Protect or Unprotect  
60h  
60h  
40h  
μ
DATA  
Sector/Sector Block Protect:150 s,  
Sector/Sector Block Unprotect:15ms  
μ
s
1
#CE  
#WE  
#OE  
*For sector protect,A6=0,A1=1,A0=0.For sector unprotect ,A6=1,A1=1,A0=0  
Publication Release Date: March 23, 2004  
Revision A2  
- 47 -  
 
W19B(L)320ST/B  
9.13 Alternate #CE Controlled Write (Erase/Program) Operation Timing  
#Data Polling  
PA for program  
SA for sector erase  
555 for chip erase  
555 for program  
2AA for erase  
PA  
Address  
TWC  
TWH  
t GHEL  
T
AH  
T
AS  
#WE  
#OE  
#CE  
T
CP  
TPB,TPW, TACCP, or  
TSE  
T
T
CPH  
TWS  
DS T  
T
BUSY  
DH  
.
.
OUT  
D
#DQ7  
DATA  
PD for program  
30 for sector erase  
10 for chip erase  
A0 for program  
55 for erase  
T
RH  
#RESET  
RY/#BY  
Notes:  
1. Firgure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. #DQ7 is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
- 48 -  
 
W19B(L)320ST/B  
10. LATCHUP CHARACTERISTICS  
PARAMETER  
MIN.  
MAX.  
Input voltage with respect to Vss on all pins except I/O pins  
(including A9, #OE, and #RESET)  
-1.0V  
12.5 V  
Input voltage with respect to Vss on all I/O pins  
VDD Current  
-1.0V  
-100 mA  
VDD +1.0V  
+100 mA  
Note: Includes all pins except VDD. Test conditions: VDD = 3.0 V, one pin at a time.  
11. CAPACITANCE  
TSOP  
TYP. MAX.  
TFBGA  
PARAMETER  
SYM.  
TEST SETUP  
UNIT  
TYP.  
MAX.  
5.0  
Input Capacitance  
Output Capacitance  
Control Pin Capacitance  
CIN  
COUT  
CIN2  
VIN = 0  
VOUT = 0  
VIN = 0  
6
7.5  
12  
9
4.2  
5.4  
3.9  
pF  
pF  
pF  
8.5  
7.5  
6.5  
4.7  
Notes:  
1. Sampled, not 100 % tested.  
2. Test condition TA = 25°C, f = 1.0 MHz.  
Publication Release Date: March 23, 2004  
Revision A2  
- 49 -  
 
W19B(L)320ST/B  
12. ORDERING INFORMATION  
W AA X YY Y Z P Q S T  
Cycling  
Winbond Standard Product  
C:100K, 0~+70C  
G:100K, -20~+85C  
L:100K, -40~+85C  
B:10K, 0~+70C  
F:10K, -20~+85C  
K:10K, -40~+85C  
W: Winbond standard quality  
Product Line  
Access Time  
9: 90ns  
19:WinStack Flash Memory  
Product Category Mark  
Package  
B:2.7~3.6V  
L:3.0~3.6V  
Density  
B: TFBGA  
T: TSOP  
Product Characteristic  
32:32M  
T: TOP BOOT  
Mulitiple Bank Architectures  
0: Single Bank  
B: BOTTOM BOOT  
Bank Category  
S: Single Bank  
Notes:  
1. Winbond reserves the right to make changes to its products without prior notice.  
2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in  
applications where personal injury might occur as a consequence of product failure.  
- 50 -  
 
W19B(L)320ST/B  
13. PACKAGE DIMENSIONS  
13.1 48-Ball TFBGA (measurements in millimeters)  
CONTROL DIMENSIONS ARE IN MILLIMETERS  
MILLIMETER  
INCH  
SYMBOL  
MIN NOM MAX MIN NOM MAX  
1.20  
A
0.048  
A1  
D
0.30 0.008  
0.012  
0.20  
0.433 0.435  
0.431  
10.95  
11.00 11.05  
D2  
E
0.220  
5.6 BASIC  
0.317  
0.315  
8.05 0.313  
7.95 8.00  
4.0 BASIC  
0.10 BASIC  
E2  
0.157 BASIC  
0.004 BASIC  
0.016 0.018 0.020  
0.031  
y
b
0.45  
0.40  
0.50  
e
0.80 BASIC  
13.2 48-Pin Standard Thin Small Outline Package (measured in millimeters)  
1
48  
MILLIMETER  
INCH  
NOM.  
Sym.  
MIN.  
NOM.  
MAX.  
0.047  
MAX. MIN.  
1.20  
e
A
A1  
0.05  
0.002  
A2 0.95 1.00 1.05 0.037 0.039 0.041  
E
18.4 18.5  
0.724 0.728  
18.3  
19.8  
11.9  
0.720  
0.780  
0.468  
D
b
0.795  
0.476  
20.0 20.2  
0.787  
0.472  
0.009  
HD  
E
12.1  
12.0  
0.011  
0.008  
0.17 0.22 0.27 0.007  
b
c
0.10  
0.004  
0.21  
c
0.020  
0.50  
D
e
0.024  
0.031  
0.50  
L
0.60 0.70 0.020  
0.80  
0.028  
HD  
A2  
A1  
L1  
Y
0.004  
5
0.10  
A
θ
L
θ
0
0
5
L1  
Y
Publication Release Date: March 23, 2004  
Revision A2  
- 51 -  
 
W19B(L)320ST/B  
14. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A1  
Jan. 29, 2004  
-
Initial Issued  
Change Typical Program/ Erase Cycle from  
10K/100K to 100K  
A2  
Mar. 23, 2004  
4
Headquarters  
Winbond Electronics Corporation America Winbond Electronics (Shanghai) Ltd.  
27F, 2299 Yan An W. Rd. Shanghai,  
200336 China  
2727 North First Street, San Jose,  
CA 95134, U.S.A.  
No. 4, Creation Rd. III,  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 1-408-9436666  
TEL: 86-21-62365999  
FAX: 86-21-62365998  
TEL: 886-3-5770066  
FAX: 1-408-5441798  
FAX: 886-3-5665577  
http://www.winbond.com.tw/  
Taipei Office  
Winbond Electronics Corporation Japan  
7F Daini-ueno BLDG, 3-7-18  
Shinyokohama Kohoku-ku,  
Yokohama, 222-0033  
Winbond Electronics (H.K.) Ltd.  
Unit 9-15, 22F, Millennium City,  
No. 378 Kwun Tong Rd.,  
Kowloon, Hong Kong  
9F, No.480, Rueiguang Rd.,  
Neihu District, Taipei, 114,  
Taiwan, R.O.C.  
TEL: 886-2-8177-7168  
FAX: 886-2-8751-3579  
TEL: 81-45-4781881  
TEL: 852-27513100  
FAX: 81-45-4781800  
FAX: 852-27552064  
Please note that all data and specifications are subject to change without notice.  
All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.  
- 52 -  
 

相关型号:

W19B320SBB9C

Flash, 2MX16, 90ns, PBGA48, TFBGA-48
WINBOND

W19B320SBB9G

Flash, 2MX16, 90ns, PBGA48, TFBGA-48
WINBOND

W19B320SBB9K

Flash, 2MX16, 90ns, PBGA48, TFBGA-48
WINBOND

W19B320SBB9L

Flash, 2MX16, 90ns, PBGA48, TFBGA-48
WINBOND

W19B320SBT9C

Flash, 2MX16, 90ns, PDSO48, TSOP-48
WINBOND

W19B320SBT9K

Flash, 2MX16, 90ns, PDSO48, TSOP-48
WINBOND

W19B320SBT9L

Flash, 2MX16, 90ns, PDSO48, TSOP-48
WINBOND

W19B320STB9G

Flash, 2MX16, 90ns, PBGA48, TFBGA-48
WINBOND

W19B320STB9K

Flash, 2MX16, 90ns, PBGA48, TFBGA-48
WINBOND

W19B320STT9B

Flash, 2MX16, 90ns, PDSO48, TSOP-48
WINBOND

W19B320STT9G

Flash, 2MX16, 90ns, PDSO48, TSOP-48
WINBOND

W19B320STT9L

Flash, 2MX16, 90ns, PDSO48, TSOP-48
WINBOND