W39V040FAQZ [WINBOND]

暂无描述;
W39V040FAQZ
型号: W39V040FAQZ
厂家: WINBOND    WINBOND
描述:

暂无描述

存储 闪光灯 PC
文件: 总34页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W39V040A  
512K × 8 CMOS FLASH MEMORY  
WITH LPC INTERFACE  
1. GENERAL DESCRIPTION  
The W39V040A is a 4-megabit, 3.3-volt only CMOS flash memory organized as 512K × 8 bits. For  
flexible erase capability, the 4Mbits of data are divided into 8 uniform sectors of 64 Kbytes, which are  
composed of 16 smaller even pages with 4 Kbytes. The device can be programmed and erased  
in-system with a standard 3.3V power supply. A 12-volt VPP is not required. The unique cell architecture  
of the W39V040A results in fast program/erase operations with extremely low current consumption. This  
device can operate at two modes, Programmer bus interface mode and LPC bus interface mode. As in  
the Programmer interface mode, it acts like the traditional flash but with a multiplexed address inputs.  
But in the LPC interface mode, this device complies with the Intel LPC specification. The device can also  
be programmed and erased using standard EPROM programmers.  
2. FEATURES  
Single 3.3-volt Operations:  
3.3-volt Read  
3.3-volt Erase  
3.3-volt Program  
Fast Program Operation:  
Byte-by-Byte programming: 35 µS (typ.)  
Hardware protection:  
Optional 16K byte or 64K byte Top Boot Block  
with lockout protection  
#TBL & #WP support the whole chip hardware  
protection  
Flexible 4K-page size can be used as Parameter  
Blocks  
Low power consumption  
Fast Erase Operation:  
Active current: 12.5 mA (typ. for LPC mode)  
Chip erase 100 mS (max.)  
Sector erase 25 mS (max.)  
Page erase 25 mS (max.)  
Automatic program and erase timing with  
internal VPP generation  
End of program or erase detection  
Toggle bit  
Data polling  
Fast Read access time: Tkq 11 nS  
Endurance: 10K cycles (typ.)  
Twenty-year data retention  
Latched address and data  
TTL compatible I/O  
Available packages: 32L PLCC, 32L STSOP  
8 Even sectors with 64K bytes each, which is  
composed of 16 flexible pages with 4K bytes  
Any individual sector or page can be erased  
Publication Release Date: December 19, 2002  
- 1 -  
Revision A2  
W39V040A  
3. PIN CONFIGURATIONS  
4. BLOCK DIAGRAM  
#WP  
7FFFF  
BOOT BLOCK,  
16K BYTES  
7C000  
#TBL  
LPC  
CLK  
7BFFF  
PARAMETER BLOCK1,  
Interface  
MAIN MEMORY  
SECTOR7,  
8K BYTES  
LAD[3:0]  
#LFRAM  
7A000  
79FFF  
64K BYTES  
PARAMETER BLOCK2,  
8K BYTES  
78000  
MODE  
77FFF  
MEMORY BLOCK,  
32K BYTES  
70000  
6FFFF  
#RESET  
MAIN MEMORY SECTOR6, 64K BYTES  
MAIN MEMORY SECTOR5, 64K BYTES  
MAIN MEMORY SECTOR4, 64K BYTES  
MAIN MEMORY SECTOR3, 64K BYTES  
A
1
0
^
R
/
A
8
^
A
9
^
60000  
#
C
^
5FFFF  
#
R
E
S
E
T
G
P
I
G
P
I
G
P
I
50000  
4FFFF  
R/#C  
C
L
K
v
V
D
D
40000  
2
v
3
v
N
C
4
v
A[10:0]  
Program-  
mer  
3FFFF  
30000  
2FFFF  
DQ[7:0]  
Interface  
4
3
2
1
32 31 30  
MAIN MEMORY SECTOR2, 64K BYTES  
MAIN MEMORY SECTOR1, 64K BYTES  
MAIN MEMORY SECTOR0, 64K BYTES  
20000  
#OE  
#WE  
1FFFF  
A7(GPI1)  
A6(GPI0)  
5
6
29  
28  
27  
26  
25  
24  
23  
22  
21  
MODE  
Vss  
10000  
0FFFF  
00000  
7
NC  
A5(#WP)  
A4(#TBL)  
A3(RSV)  
A2(RSV)  
A1(RSV)  
A0(RSV)  
DQ0(LAD0)  
8
NC  
32L PLCC  
9
VDD  
#OE(#INIT)  
10  
11  
12  
13  
#WE(#LFRAM)  
NC  
5. PIN DESCRIPTION  
DQ7(RSV)  
14 15 16 17 18 19 20  
INTERFACE  
D
Q
1
D
Q
2
D
Q
5
V
S
S
D
Q
4
D
Q
6
D
Q
3
SYM.  
PIN NAME  
PGM  
LPC  
^
^
^
^
^
^
L
L
R
S
V
v
R
S
V
v
R
S
V
v
L
A
D
1
A
D
2
A
D
3
MODE  
#RESET  
#INIT  
#TBL  
#WP  
*
*
*
*
*
*
*
*
*
*
*
*
Interface Mode Selection  
Reset  
Initialize  
Top Boot Block Lock  
Write Protect  
CLK Input  
General Purpose Inputs  
Identification Inputs  
Address/Data Inputs  
LPC Cycle Initial  
Row/Column Select  
Address Inputs  
Data Inputs/Outputs  
Output Enable  
Write Enable  
v
v
v
NC  
NC  
#OE(#INIT)  
#WE(#LFRAM  
1
2
3
4
5
32  
CLK  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
NC  
SS  
DD  
GPI[4:0]  
ID[3:0]  
LAD[3:0]  
#LFRAM  
R/#C  
A[10:0]  
DQ[7:0]  
#OE  
#WE  
VDD  
VSS  
RSV  
DQ7(RSV)  
DQ6(RSV)  
DQ5(RSV)  
DQ4(RSV)  
DQ3(LAD3)  
V
MODE  
A10(GPI4)  
R/#C(CLK)  
VDD  
6
7
8
32L STSOP  
NC  
#RESET  
A9(GPI3)  
A8(GPI2)  
A7(GPI1)  
A6(GPI0)  
VSS  
9
10  
DQ2(LAD2)  
DQ1(LAD1)  
DQ0(LAD0)  
A0(RSV)  
A1(RSV)  
A2(RSV)  
A3(RSV)  
11  
12  
13  
14  
15  
16  
*
*
*
*
*
*
*
*
*
A5(#WP)  
A4(#TBL)  
*
*
*
*
Power Supply  
Ground  
Reserve Pins  
No Connection  
NC  
- 2 -  
W39V040A  
6. FUNCTIONAL DESCRIPTION  
Interface Mode Selection And Description  
This device can be operated in two interface modes, one is Programmer interface mode, and the other is  
LPC interface mode. The MODE pin of the device provides the control between these two interface  
modes. These interface modes need to be configured before power up or return from #RESET. When  
MODE pin is set to high position, the device is in the Programmer mode; while the MODE pin is set to  
low position, it is in the LPC mode. In Programmer mode, this device just behaves like traditional flash  
parts with 8 data lines. But the row and column address inputs are multiplexed. The row address is  
mapped to the higher internal address A[18:11]. And the column address is mapped to the lower internal  
address A[10:0]. For LPC mode, It complies with the LPC Interface Specification Revision 1.0. Through  
the LAD[3:0] and #LFRAM to communicate with the system chipset .  
Read(Write) Mode  
In Programmer interface mode, the read(write) operation of the W39V040A is controlled by #OE (#WE).  
The #OE (#WE) is held low for the host to obtain(write) data from(to) the outputs(inputs). #OE is the  
output control and is used to gate data from the output pins. The data bus is in high impedance state  
when #OE is high. As in the LPC interface the "bit 1 of CYCLE TYPE+DIR" determines mode, the read  
or write. Refer to the timing waveforms for further details.  
Reset Operation  
The #RESET input pin can be used in some application. When #RESET pin is at high state, the device is  
in normal operation mode. When #RESET pin is at low state, it will halt the device and all outputs will be  
at high impedance state. As the high state re-asserted to the #RESET pin, the device will return to read  
or standby mode, it depends on the control signals.  
Boot Block Operation and Hardware Protection at Initial - #TBL and #WP  
There are two alternatives to set the boot block. Either 16K-byte or 64K-byte in the top location of this  
device can be locked as boot block, which can be used to store boot codes. It is located in the last  
16K/64K bytes of the memory with the address range from 7C000(hex)/70000(hex) to 7FFFF(hex).  
See Command Codes for Boot Block Lockout Enable for the specific code. Once this feature is set the  
data for the designated block cannot be erased or programmed (programming lockout), other memory  
locations can be changed by the regular programming method.  
Besides the software method, there is a hardware method to protect the top boot block and other  
sectors. Before power on programmer, tie the #TBL pin to low state and then the top boot block will not  
be programmed/erased. If #WP pin is tied to low state before power on, the other sectors will not be  
programmed/erased.  
In order to detect whether the boot block feature is set on or not, users can perform software command  
sequence: enter the product identification mode (see Command Codes for Identification/Boot Block  
Lockout Detection for specific code), and then read from address 7FFF2(hex). If the DQ0/DQ1 output  
data is "1," the 64Kbytes/16Kbytes boot block programming lockout feature will be activated; if the  
DQ0/DQ1 output data is "0," the lockout feature will be inactivated and the boot block can be  
erased/programmed. But the hardware protection will override the software lock setting, i.e., while the  
#TBL pin is trapped at low state, the top boot block cannot be programmed/erased whether the output  
data, DQ0/DQ1 at the address 7FFF2, is "0" or "1". The #TBL will lock the whole 64Kbytes top boot  
Publication Release Date: December 19, 2002  
- 3 -  
Revision A2  
W39V040A  
block, it will not partially lock the 16Kbytes boot block. You can check the DQ2/DQ3 at the address  
7FFF2 to see whether the #TBL/#WP pin is in low or high state. If the DQ2 is "0", it means the #TBL pin  
is tied to high state. In such condition, whether boot block can be programmed/erased or not will depend  
on software setting. On the other hand, if the DQ2 is "1", it means the #TBL pin is tied to low state, then  
boot block is locked no matter how the software is set. Like the DQ2, the DQ3 inversely mirrors the #WP  
state. If the DQ3 is "0", it means the #WP pin is in high state, then all the sectors except the boot block  
can be programmed/erased. On the other hand, if the DQ3 is "1", then all the sectors except the boot  
block are programmed/erased inhibited.  
To return to normal operation, perform a three-byte command sequence (or an alternate single-byte  
command) to exit the identification mode. For the specific code, see Command Codes for  
Identification/Boot Block Lockout Detection.  
Chip Erase Operation  
The chip-erase mode can be initiated by a six-byte command sequence. After the command loading  
cycle, the device enters the internal chip erase mode, which is automatically timed and will be completed  
within fast 100 mS (max). The host system is not required to provide any control or timing during this  
operation. If the boot block programming lockout is activated, only the data in the other memory sectors  
will be erased to FF(hex) while the data in the boot block will not be erased (remains as the same state  
before the chip erase operation). The entire memory array will be erased to FF(hex) by the chip erase  
operation if the “boot block programming lockout feature” is not activated. The device will automatically  
return to normal read mode after the erase operation completed. Data polling and/or Toggle Bits can be  
used to detect end of erase cycle.  
Sector/Page Erase Operation  
Sector/page erase is a six-bus cycles operation. There are two "unlock" write cycles, followed by writing  
the "set-up" command. Two more "unlock" write cycles then follows by the sector/page erase command.  
The sector/page address (any address location within the desired sector/page) is latched on the rising  
edge of R/C, while the command (30H/50H) is latched on the rising edge of #WE in programmer mode.  
Sector/page erase does not require the user to program the device prior to erase. When erasing a  
sector/page or sectors/pages the remaining unselected sectors/pages are not affected. The system is  
not required to provide any controls or timings during these operations.  
The automatic sector/page erase begins after the erase command is completed, right from the rising  
edge of the #WE pulse for the last sector/page erase command pulse and terminates when the data on  
DQ7, Data Polling, is "1" at which time the device returns to the read mode. Data Polling must be  
performed at an address within any of the sectors/pages being erased.  
Refer to the Erase Command flow Chart using typical command strings and bus operations.  
Program Operation  
The W39V040A is programmed on a byte-by-byte basis. Program operation can only change logical  
data "1" to logical data "0." The erase operation, which changed entire data in main memory and/or boot  
block from "0" to "1", is needed before programming.  
The program operation is initiated by a 4-byte command cycle (see Command Codes for Byte  
Programming). The device will internally enter the program operation immediately after the  
byte-program command is entered. The internal program timer will automatically time-out (50 µS max. -  
TBP) once it is completed and then return to normal read mode. Data polling and/or Toggle Bits can be  
used to detect end of program cycle.  
- 4 -  
W39V040A  
Hardware Data Protection  
The integrity of the data stored in the W39V040A is also hardware protected in the following ways:  
(1) Noise/Glitch Protection: A #WE pulse of less than 15 nS in duration will not initiate a write cycle.  
(2) VDD Power Up/Down Detection: The programming and read operation is inhibited when VDD is less  
than 1.5V typical.  
(3) Write Inhibit Mode: Forcing #OE low or #WE high will inhibit the write operation. This prevents  
inadvertent writes during power-up or power-down periods.  
(4) VDD power-on delay: When VDD has reached its sense level, the devices will automatically time-out 5  
mS before any write (erase/program) operation.  
Data Polling (DQ7)- Write Status Detection  
The W39V040A includes a data polling feature to indicate the end of a program or erase cycle. When  
the W39V040A is in the internal program or erase cycle, any attempts to read DQ7 of the last byte  
loaded will receive the complement of the true data. Once the program or erase cycle is completed, DQ7  
will show the true data. Note that DQ7 will show logical "0" during the erase cycle, and become logical  
"1" or true data when the erase cycle has been completed.  
Toggle Bit (DQ6)- Write Status Detection  
In addition to data polling, the W39V040A provides another method for determining the end of a  
program cycle. During the internal program or erase cycle, any consecutive attempts to read DQ6 will  
produce alternating 0's and 1's. When the program or erase cycle is completed, this toggling between  
0's and 1's will stop. The device is then ready for the next operation.  
Multi-Chip Operation  
Multiple devices can be wired on the single LPC bus. There are four ID pins can be used to support up to  
16 devices. But in order not to violate the BIOS ROM memory space defined by Intel, Winbond  
W39V040A will only used 3 ID pins to allow up to 8 devices, 4Mbytes for BIOS code and 4Mbytes for  
registers memory space.  
Register  
There are two kinds of registers on this device, the General Purpose Input Registers and Product  
Identification Registers. Users can access these registers through respective address in the 4Gbytes  
memory map. There are detail descriptions in the sections below.  
General Purpose Inputs Register  
This register reads the states of GPI[4:0] pins on the W39V040A. This is a pass-through register, which  
can be read via memory address FFBxE100(hex). The "x" in the addresses represents the ID [3:0] pin  
straps. Since it is pass-through register, there is no default value.  
Publication Release Date: December 19, 2002  
- 5 -  
Revision A2  
W39V040A  
GPI Register  
BIT  
7 5  
FUNCTION  
Reserved  
4
3
2
1
0
Read GPI4 pin status  
Read GPI3 pin status  
Read GPI2 pin status  
Read GPI1 pin status  
Read GPI0 pin status  
Product Identification Registers  
There is an alternative software method (six commands bytes) to read out the Product Identification in  
both the Programmer interface mode and the LPC interface mode. Thus, the programming equipment  
can automatically matches the device with its proper erase and programming algorithms.  
In the software access mode, a six-byte (or JEDEC 3-byte) command sequence can be used to access  
the product ID for programmer interface mode. A read from address 0000(hex) outputs the  
manufacturer code, DA(hex). A read from address 0001(hex) outputs the device code, 3D(hex).” The  
product ID operation can be terminated by a three-byte command sequence or an alternate one-byte  
command sequence (see Command Definition table for detail).  
Identification Input Pins ID[3:0]  
These pins are part of mechanism that allows multiple parts to be used on the same bus. The boot  
device should be 0000b. And all the subsequent parts should use the up-count strapping. Note that a 1M  
byte ROM will occupy two Ids. For example: a 1MByte ROM's ID is 0000b, the next ROM's ID is 0010b.  
These pins all are pulled down with internal resistor.  
Memory Address Map  
There are 8M bytes space reserved for BIOS Addressing. The 8M bytes are mapped into a single 4M  
system address by dividing the ROMs into two 4M byte pages. For accessing the 4M byte BIOS storage  
space, the ID[2:0] pins are inverted in the ROM and are compared to address lines [21:19]. ID[3] can be  
used as like active low chip-select pin.  
The 32Mbit address space is as below:  
BLOCK  
LOCK  
ADDRESS RANGE  
4M Byte BIOS ROM  
None  
FFFF, FFFFh: FFC0, 0000h  
The ROM responds to 640K (top 512K + bottom 128K) byte pages based on the ID pins strapping  
according to the following table:  
ID[2:0] PINS  
ROM BASED ADDRESS RANGE  
FFFF, FFFFh: FFF8, 0000h & 000F, FFFFh: 000E, 00000h  
FFF7, FFFFh: FFF0, 0000h  
FFEF, FFFFh: FFE8, 0000h  
FFE7, FFFFh: FFE0, 0000h  
000  
001  
010  
011  
- 6 -  
W39V040A  
Continued  
100  
FFDF, FFFFh: FFD8, 0000h  
FFD7, FFFFh: FFD0, 0000h  
FFCF, FFFFh: FFC8, 0000h  
FFC7, FFFFh: FFC0, 0000h  
101  
110  
111  
Table of Operating Modes  
Operating Mode Selection - Programmer Mode  
PINS  
ADDRESS  
MODE  
#OE  
VIL  
VIH  
X
VIL  
X
#WE #RESET  
DQ.  
Read  
Write  
VIH  
VIL  
X
VIH  
VIH  
VIL  
VIH  
VIH  
VIH  
AIN  
AIN  
X
X
X
Dout  
Din  
Standby  
High Z  
X
High Z/DOUT  
High Z/DOUT  
High Z  
Write Inhibit  
Output Disable  
VIH  
VIH  
X
X
Operating Mode Selection - LPC Mode  
Operation modes in LPC interface mode are determined by "cycle type" when it is selected. When it is  
not selected, its outputs (LAD[3:0]) will be disable. Please reference to the "Standard LPC Memory  
Cycle Definition".  
Standard LPC Memory Cycle Definition  
NO. OF  
FIELD  
DESCRIPTION  
CLOCKS  
"0000b" appears on LPC bus to indicate the initial  
Start  
1
"010Xb" indicates memory read cycle; while "011xb" indicates memory write  
cycle. "X" mean don't have to care.  
Cycle Type & Dir  
TAR  
1
2
Turned Around Time  
Address Phase for Memory Cycle. LPC supports the 32 bits address protocol.  
The addresses transfer most significant nibble first and least significant nibble  
last. (i.e. Address[31:28] on LAD[3:0] first , and Address[3:0] on LAD[3:0] last.)  
Synchronous to add wait state. "0000b" means Ready, "0101b" means Short  
Wait, "0110b" means Long Wait, "1001b" for DMA only, "1010b" means error,  
other values are reserved.  
Addr.  
Sync.  
Data  
8
N
2
Data Phase for Memory Cycle. The data transfer least significant nibble first  
and most significant nibble last. (i.e. DQ[3:0] on LAD[3:0] first , then DQ[7:4] on  
LAD[3:0] last.)  
Publication Release Date: December 19, 2002  
- 7 -  
Revision A2  
W39V040A  
Table of Command Definition  
COMMAND  
NO. OF 1ST CYCLE 2ND CYCLE 3RD CYCLE 4TH CYCLE 5TH CYCLE 6TH CYCLE  
DESCRIPTION  
Read  
Cycles  
Addr. Data  
AIN DOUT  
5555 AA  
5555 AA  
5555 AA  
5555 AA  
Addr. Data  
Addr. Data  
Addr. Data  
Addr. Data  
Addr. Data  
1
6
6
6
4
Chip Erase  
2AAA 55  
2AAA 55  
2AAA 55  
2AAA 55  
5555 80  
5555 80  
5555 80  
5555 A0  
5555 AA  
5555 AA  
5555 AA  
2AAA 55  
2AAA 55  
2AAA 55  
5555 10  
SA(3) 30  
PA(4) 50  
Sector Erase  
Page Erase  
Byte Program  
AIN  
DIN  
Top Boot Block Lockout  
– 64K/16KByte  
6
5555 AA  
2AAA 55  
5555 80  
5555 AA  
2AAA 55  
5555 40/70  
Product ID Entry  
Product ID Exit (1)  
Product ID Exit (1)  
3
3
1
5555 AA  
5555 AA  
XXXX F0  
2AAA 55  
2AAA 55  
5555 90  
5555 F0  
Notes:  
1. The cycle means the write command cycle not the LPC clock cycle.  
2. The Column Address / Row Address are mapped to the Low / High order Internal Address. i.e. Column Address  
A[10:0] are mapped to the internal A[10:0], Row Address A[7:0] are mapped to the internal A[18:11]  
3. Address Format: A14 A0 (Hex); Data Format: DQ7 DQ0 (Hex)  
4. Either one of the two Product ID Exit commands can be used.  
5. SA: Sector Address  
SA = 7XXXXh for Unique Sector7 (Boot Sector)  
SA = 6XXXXh for Unique Sector6  
SA = 3XXXXh for Unique Sector3  
SA = 2XXXXh for Unique Sector2  
SA = 1XXXXh for Unique Sector1  
SA = 0XXXXh for Unique Sector0  
SA = 5XXXXh for Unique Sector5  
SA = 4XXXXh for Unique Sector4  
6. PA: Page Address  
PA = 7FXXXh for Page 15 in Sector 7  
PA = 7EXXXh for Page 14 in Sector 7  
PA = 7DXXXh for Page 13 in Sector 7  
PA = 7CXXXh for Page 12 in Sector 7  
PA = 7BXXXh for Page 11 in Sector 7  
PA = 7AXXXh for Page 10 in Sector 7  
PA = 79XXXh for Page 9 in Sector 7  
PA = 78XXXh for Page 8 in Sector 7  
PA = 77XXXh for Page 7 in Sector 7  
PA = 76XXXh for Page 6 in Sector 7  
PA = 75XXXh for Page 5 in Sector 7  
PA = 74XXXh for Page 4 in Sector 7  
PA = 73XXXh for Page 3 in Sector 7  
PA = 72XXXh for Page 2 in Sector 7  
PA = 71XXXh for Page 1 in Sector 7  
PA = 70XXXh for Page 0 in Sector 7  
PA =  
6FXXXh  
to  
60XXXh  
for  
PA =  
5FXXXh  
to  
50XXXh  
for  
PA =  
4FXXXh  
to  
40XXXh  
for  
PA =  
3FXXXh  
to  
30XXXh  
for  
PA =  
2FXXXh  
to  
20XXXh  
for  
PA =  
1FXXXh  
to  
10XXXh  
for  
PA =  
0FXXXh  
to  
00XXXh  
for  
Page 15  
Page 15  
Page 15  
Page 15  
Page 15  
Page 15  
Page 15  
to  
to  
to  
to  
to  
to  
to  
Page 0  
In  
Sector 6  
Page 0  
In  
Sector 5  
Page 0  
In  
Sector 4  
Page 0  
In  
Sector 3  
Page 0  
In  
Sector 2  
Page 0  
In  
Sector 1  
Page 0  
In  
Sector 0  
(Reference (Reference (Reference (Reference (Reference (Reference (Reference  
to the  
first  
to the  
first  
to the  
first  
to the  
first  
to the  
firs  
to the  
first  
to the  
first  
column)  
column)  
column)  
column)  
column)  
column)  
column)  
- 8 -  
W39V040A  
Embedded Programming Algorithm  
Start  
Write Program Command Sequence  
(see below)  
Pause  
BP  
T
#Data Polling/ Toggle bit  
No  
Last Address  
?
Increment Address  
Yes  
Programming Completed  
Program Command Sequence (Address/Command):  
5555H/AAH  
2AAAH/55H  
5555H/A0H  
Program Address/Program Data  
Publication Release Date: December 19, 2002  
Revision A2  
- 9 -  
W39V040A  
Embedded Erase Algorithm  
Start  
Write Erase Command Sequence  
(see below)  
#Data Polling or Toggle Bit  
Successfully Completed  
EC SEC PEC  
Pause T /T  
/T  
Erasure Completed  
Chip Erase Command Sequence  
Individual Page Erase  
Command Sequence  
(Address/Command):  
Individual Sector Erase  
Command Sequence  
(Address/Command):  
(Address/Command):  
5555H/AAH  
5555H/AAH  
2AAAH/55H  
5555H/80H  
5555H/AAH  
2AAAH/55H  
5555H/80H  
2AAAH/55H  
5555H/80H  
5555H/AAH  
2AAAH/55H  
5555H/10H  
5555H/AAH  
2AAAH/55H  
5555H/AAH  
2AAAH/55H  
PageAddress/50H  
Sector Address/30H  
- 10 -  
W39V040A  
Embedded #Data Polling Algorithm  
Start  
VA = Byte address for programming  
= Any of the sector addresses within  
the sector being erased during sector  
erase operation  
Read Byte  
(DQ0 - DQ7)  
Address = VA  
= Any of the page addresses within  
the sector being erased during page  
erase operation  
= Any of the device addresses within  
the chip being erased during chip  
erase operation  
No  
DQ7 = Data  
?
Yes  
Pass  
Embedded Toggle Bit Algorithm  
Start  
Read Byte  
(DQ0 - DQ7)  
Address = Don't Care  
No  
DQ6 = Toggle  
?
Yes  
Fail  
Publication Release Date: December 19, 2002  
Revision A2  
- 11 -  
W39V040A  
Software Product Identification and Boot Block Lockout Detection Acquisition Flow  
Product  
Product  
Identification  
Entry (1)  
Product  
Identification  
and Boot Block  
Lockout Detection  
Mode (3)  
Identification Exit (6)  
Load data AA  
to  
Load data AA  
to  
address 5555  
address 5555  
(2)  
Load data 55  
to  
Load data 55  
to  
Read address = 00000  
data = DA  
address 2AAA  
address 2AAA  
(2)  
(4)  
Load data 90  
to  
Load data F0  
to  
Read address = 00001  
data = 3D  
address 5555  
address 5555  
Read address = 00002  
DQ0/DQ1 of data outputs  
Pause 10 S  
Pause 10 S  
µ
µ
= 1/0  
(5)  
Normal Mode  
Notes for software product identification/boot block lockout detection:  
(1) Data Format: DQ7 DQ0 (Hex); Address Format: A14 A0 (Hex)  
(2) A1 A18 = VIL; manufacture code is read for A0 = VIL; device code is read for A0 = VIH.  
(3) The device does not remain in “identification and boot block lockout detection” mode if power down.  
(4) The DQ[3:0] to indicate the sectors protect status as below:  
DQ0  
DQ1  
DQ2  
DQ3  
64Kbytes Boot Block  
Unlocked by Software  
16Kbytes Boot Block  
Unlocked by Software  
64Kbytes Boot Block Unlocked  
by #TBL hardware trapping  
Whole Chip Unlocked by #WP hardware  
trapping Except Boot Block  
0
1
64Kbytes Boot Block  
Locked by Software  
16Kbytes Boot Block  
Locked by Software  
64Kbytes Boot Block Locked by  
#TBL hardware trapping  
Whole Chip Locked by #WP hardware  
trapping Except Boot Block  
(5) The device returns to standard operation mode.  
(6) Optional 1-write cycle (write F0 hex at XXXX address) can be used to exit the “product identification/boot block lockout  
detection.”  
- 12 -  
W39V040A  
Boot Block Lockout Enable Acquisition Flow  
Boot Block Lockout  
Feature Set Flow  
Load data AA  
to  
address 5555  
Load data 55  
to  
Pause T BP  
Exit  
address 2AAA  
Load data 80  
to  
address 5555  
Load data AA  
to  
address 5555  
Load data 55  
to  
address 2AAA  
Load data 40/70  
to  
40 to lock 64K Boot Block  
70 to lcok 16K Boot Block  
address 5555  
Publication Release Date: December 19, 2002  
Revision A2  
- 13 -  
W39V040A  
7. DC CHARACTERISTICS  
Absolute Maximum Ratings  
PARAMETER  
RATING  
UNIT  
Power Supply Voltage to VSS Potential  
Operating Temperature  
-0.5 to +4.6  
0 to +70  
V
°C  
°C  
V
Storage Temperature  
D.C. Voltage on Any Pin to Ground Potential  
Transient Voltage (<20 nS) on Any Pin to Ground Potential  
-65 to +150  
-0.5 to VDD +0.5  
-1.0 to VDD +0.5  
V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
Programmer Interface Mode DC Operating Characteristics  
(VDD = 3.3V ± 0.3V, VSS= 0V, TA = 0 to 70° C)  
LIMITS  
MIN. TYP.  
PARAMETER  
SYM.  
TEST CONDITIONS  
UNIT  
MAX.  
In Read or Write mode, all DQs open  
Address inputs = 3.0V/0V, at f = 3 MHz  
mA  
Power Supply  
Current  
ICC  
ILI  
-
10  
20  
Input Leakage  
Current  
Output Leakage  
Current  
VIN = VSS to VDD  
-
-
-
-
90  
90  
µA  
µA  
ILO VOUT = VSS to VDD  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
VIL  
VIH  
-
-
-0.3  
2.0  
-
-
-
-
-
0.8  
VDD +0.5  
0.45  
V
V
V
V
VOL IOL = 2.1 mA  
Output High Voltage VOH IOH = -0.1mA  
2.4  
-
- 14 -  
W39V040A  
LPC Interface Mode DC Operating Characteristics  
(VDD = 3.3V ± 0.3V, VSS= 0V, TA = 0 to 70° C)  
LIMITS  
MIN. TYP.  
PARAMETER  
SYM.  
ICC  
TEST CONDITIONS  
UNIT  
MAX.  
All Iout = 0A, CLK = 33 MHz,  
in LPC mode operation.  
mA  
Power Supply Current  
-
-
-
12.5  
5
20  
#LFRAM = 0.9 VDD, CLK = 33 MHz,  
all inputs = 0.9 VDD / 0.1 VDD  
#LFRAM = 0.1 VDD, CLK = 33 MHz,  
all inputs = 0.9 VDD / 0.1 VDD  
-
µA  
CMOS Standby  
Current  
Isb1  
Isb2  
25  
10  
mA  
TTL Standby Current  
Input Low Voltage  
Input Low Voltage of  
#INIT Pin  
3
VIL  
-0.5  
-0.5  
-
-
0.3 VDD  
0.2 VDD  
V
V
VILI  
-
-
-
0.5  
VDD  
+0.5  
VDD  
+0.5  
Input High Voltage  
VIH  
-
-
-
-
V
V
V
V
VDD  
Input High Voltage of  
#INIT Pin  
VIHI  
1.35V  
-
0.1  
Output Low Voltage  
Output High Voltage  
VOL1 IOL = 1.5 mA  
VOH1 IOH = -0.5 mA  
VDD  
0.9  
VDD  
VDD  
Power-up Timing  
PARAMETER  
Power-up to Read Operation  
Power-up to Write Operation  
SYMBOL  
TPU. READ  
TPU. WRITE  
TYPICAL  
UNIT  
µS  
mS  
100  
5
Capacitance  
(VDD = 3.3V, TA = 25° C, f = 1 MHz)  
PARAMETER  
I/O Pin Capacitance  
Input Capacitance  
SYMBOL  
CI/O  
CONDITIONS  
VI/O = 0V  
VIN = 0V  
MAX.  
12  
6
UNIT  
pF  
pF  
CIN  
Publication Release Date: December 19, 2002  
Revision A2  
- 15 -  
W39V040A  
8. PROGRAMMER INTERFACE MODE AC CHARACTERISTICS  
AC Test Conditions  
PARAMETER  
Input Pulse Levels  
Input Rise/Fall Time  
Input/Output Timing Level  
Output Load  
CONDITIONS  
0V to 0.9 VDD  
< 5 nS  
1.5V/1.5V  
1 TTL Gate and CL = 30 pF  
AC Test Load and Waveform  
+3.3V  
1.8K  
D
OUT  
Input  
Output  
30 pF  
(Including Jig and  
Scope)  
0.9VDD  
1.5V  
0V  
1.3K  
1.5V  
Test Point  
Test Point  
- 16 -  
W39V040A  
AC Characteristics  
Read Cycle Timing Parameters  
(VDD = 3.3V ±0.3V, VSS = 0V, TA = 0 to 70° C)  
W39V040A  
MAX.  
PARAMETER  
SYMBOL  
UNIT  
MIN.  
Read Cycle Time  
TRC  
TAS  
300  
50  
50  
-
-
0
-
-
-
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
Row/Column Address Set Up Time  
Row/Column Address Hold Time  
Address Access Time  
Output Enable Access Time  
#OE Low to Act Output  
TAH  
TAA  
TOE  
TOLZ  
TOHZ  
TOH  
175  
75  
-
35  
-
#OE High to High-Z Output  
Output Hold from Address Change  
-
0
Write Cycle Timing Parameters  
PARAMETER  
Reset Time  
SYMBOL  
TRST  
TAS  
MIN.  
TYP.  
-
-
-
-
-
-
-
-
MAX.  
-
UNIT  
µS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
1
50  
50  
50  
100  
100  
50  
50  
0
Address Setup Time  
Address Hold Time  
R/#C to Write Enable High Time  
#WE Pulse Width  
#WE High Width  
Data Setup Time  
-
-
-
-
-
-
-
-
TAH  
TCWH  
TWP  
TWPH  
TDS  
Data Hold Time  
#OE Hold Time  
TDH  
TOEH  
TBP  
-
nS  
Byte Programming Time  
Sector/Page Erase Cycle Time  
Chip Erase Cycle Time  
-
35  
20  
75  
50  
25  
100  
µS  
mS  
mS  
TPEC  
TEC  
-
-
Note: All AC timing signals observe the following guidelines for determining setup and hold times:  
(a) High level signal's reference level is input high and (b) low level signal's reference level is input low.  
Ref. to the AC testing condition.  
Data Polling and Toggle Bit Timing Parameters  
W39V040A  
PARAMETER  
SYMBOL  
UNIT  
MIN.  
-
-
MAX.  
40  
#OE to Data Polling Output Delay  
#OE to Toggle Bit Output Delay  
TOEP  
TOET  
nS  
nS  
40  
Publication Release Date: December 19, 2002  
Revision A2  
- 17 -  
W39V040A  
9. TIMING WAVEFORMS FOR PROGRAMMER INTERFACE MODE  
Read Cycle Timing Diagram  
#RESET  
TRST  
TRC  
Row Address  
Column Address  
Column Address  
TAH  
Row Address  
A[10:0]  
R/#C  
TAH  
TAS  
TAS  
V
IH  
#WE  
#OE  
TAA  
TOH  
TOE  
TOHZ  
TOLZ  
High-Z  
High-Z  
DQ[7:0]  
Data Valid  
Write Cycle Timing Diagram  
T
RST  
#RESET  
A[10:0]  
Column Address  
Row Address  
T
AS  
T
AS  
T
AH  
T
AH  
R/#C  
#OE  
T
CWH  
T
OEH  
T
WP  
T
WPH  
#WE  
T
DH  
T
DS  
DQ[7:0]  
Data Valid  
- 18 -  
W39V040A  
Timing Waveforms for Programmer Interface Mode, continued  
Program Cycle Timing Diagram  
Byte Program Cycle  
A[10:0]  
Programmed Address  
2AAA  
55  
5555  
(Internal A[18:0])  
DQ[7:0]  
5555  
A0  
Data-In  
AA  
R/#C  
#OE  
TWPH  
BP  
T
WP  
T
#WE  
Internal Write Start  
Byte 1  
Byte 0  
Byte 2  
Byte 3  
Note: The internal address A[18:0] are converted from external Column/Row address  
Column/Row Address are mapped to the Low/High order internal address.  
i.e. Column Address A[10:0] are mapped to the internal A[10:0],  
Row Address A[7:0] are mapped to the internal A[18:11].  
#DATA Polling Timing Diagram  
A[10:0]  
(Internal A[18:0])  
An  
An  
An  
An  
R/#C  
#WE  
#OE  
DQ7  
TOEP  
X
X
X
X
T
BP or TEC  
Publication Release Date: December 19, 2002  
Revision A2  
- 19 -  
W39V040A  
Timing Waveforms for Programmer Interface Mode, continued  
Toggle Bit Timing Diagram  
A[10:0]  
R/#C  
#WE  
#OE  
TOET  
DQ6  
TBP or  
TEC  
Boot Block Lockout Enable Timing Diagram  
SIX-byte code for Boot Block Lockout command  
A[10:0]  
2AAA  
55  
5555  
AA  
5555  
AA  
5555  
80  
2AAA  
55  
5555  
(Internal A[18:0])  
DQ[7:0]  
40/70  
R/#C  
#OE  
WP  
T
WC  
T
#WE  
WPH  
T
SB0  
SB2  
SB3  
SB5  
SB4  
SB1  
Note: The internal address A[18:0] are converted from external Column/Row address.  
Column/Row Address are mapped to the Low/High order internal address.  
i.e. Column Address A[10:0] are mapped to the internal A[10:0],  
Row Address A[7:0] are mapped to the internal A[18:11].  
When 40(hex) is loaded, the 64KByte are locked; while 70(hex) is loaded, the 16KByte is locked.  
- 20 -  
W39V040A  
Timing Waveforms for Programmer Interface Mode, continued  
Chip Erase Diagram  
Six-byte code for 3.3V-only software chip erase  
A[10:0]  
2AAA  
5555  
5555  
5555  
2AAA  
5555  
(Internal A[18:0])  
AA  
55  
80  
55  
AA  
10  
DQ[7:0]  
R/#C  
#OE  
TWP  
SB0  
TEC  
#WE  
TWPH  
Internal Erasure Starts  
SB2  
SB3  
SB5  
SB4  
SB1  
Note: The internal address A[18:0] are converted from external Column/Row address.  
Column/Row Address are mapped to the Low/High order internal address.  
i.e. Column Address A[10:0] are mapped to the internal A[10:0],  
Row Address A[7:0] are mapped to the internal A[18:11].  
Sector/Page Erase Timing Diagram  
Six-byte code for 3.3V-only  
Sector/Page Erase  
A[10:0]  
5555  
AA  
2AAA  
55  
(Internal A[18:0])  
DQ[7:0]  
5555  
80  
5555  
AA  
2AAA  
55  
SA/PA  
30/50  
R/#C  
#OE  
TWP  
SB0  
TEC  
#WE  
TWPH  
Internal Erase starts  
SB2  
SB3  
SB5  
SB4  
SB1  
Note: The internal address A[18:0] are converted from external Column/Row address.  
Column/Row Address are mapped to the Low/High order internal address.  
i.e. Column Address A[10:0] are mapped to the internal A[10:0],  
Row Address A[7:0] are mapped to the internal A[18:11].  
SA = Sector Address and PA = Page Address, Please ref. to the "Table of Command Definition"  
Publication Release Date: December 19, 2002  
Revision A2  
- 21 -  
W39V040A  
10. LPC INTERFACE MODE AC CHARACTERISTICS  
AC Test Conditions  
PARAMETER  
Input Pulse Levels  
Input Rise/Fall Slew Rate  
Input/Output Timing Level  
Output Load  
CONDITIONS  
0.6 VDD to 0.2 VDD  
1 V/nS  
0.4 VDD / 0.4 VDD  
1 TTL Gate and CL = 10 pF  
Read/Write Cycle Timing Parameters  
(VDD = 3.3V ±0.3V, VSS = 0V, TA = 0 to 70° C)  
W39V040A  
MAX.  
PARAMETER  
Clock Cycle Time  
Input Set Up Time  
Input Hold Time  
SYMBOL  
UNIT  
MIN.  
30  
7
0
2
TCYC  
TSU  
THD  
TKQ  
-
-
-
nS  
nS  
nS  
nS  
Clock to Data Valid  
11  
Note: Minimum and Maximum time has different loads. Please refer to PCI specification.  
Reset Timing Parameters  
PARAMETER  
VDD Stable to Reset Active  
Clock Stable to Reset Active  
Reset Pulse Width  
Reset Active to Output Float  
Reset Inactive to Input Active  
SYMBOL  
TPRST  
TKRST  
TRSTP  
TRSTF  
TRST  
MIN.  
1
TYP.  
MAX.  
UNIT  
mS  
µS  
nS  
nS  
-
-
-
-
-
-
-
100  
100  
-
-
50  
-
1
µS  
Note: All AC timing signals observe the following guidelines for determining setup and hold times:  
(a) High level signal's reference level is input high and (b) low level signal's reference level is input low.  
Ref. to the AC testing condition.  
- 22 -  
W39V040A  
11. TIMING WAVEFORMS FOR LPC INTERFACE MODE  
Read Cycle Timing Diagram  
T
CYC  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
T
T
T
KQ  
SU HD  
Memory  
Read  
Address  
A[31:28] A[27:24] A[23:20] A[19:16]  
TAR  
1111b Tri-State 0000b  
2 Clocks  
Next Start  
0000b  
Start  
Data  
D[3:0]  
Sync  
Cycle  
0000b  
TAR  
010Xb  
A[15:12] A[11:8] A[7:4]  
Load Address in 8 Clocks  
A[3:0]  
D[7:4]  
1 Clock Data out 2 Clocks  
1 Clock 1 Clock  
1 Clock  
Write Cycle Timing Diagram  
T
CYC  
CLK  
#RESET  
T
T
#LFRAM  
SU HD  
Memory  
Write  
TAR  
Sync  
0000b  
Address  
Next Start  
0000b  
Start  
Data  
D[7:4]  
Cycle  
0000b  
011Xb A[31:28] A[27:24] A[23:20] A[19:16]  
A[7:4]  
1111b  
TAR  
A[15:12] A[11:8]  
Load Address in 8 Clocks  
A[3:0]  
Tri-State  
LAD[3:0]  
D[3:0]  
Load Data in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
1 Clock  
Publication Release Date: December 19, 2002  
Revision A2  
- 23 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
Program Cycle Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Start next  
Data  
TAR  
Sync  
Address  
XXXXb  
Load Address "5555" in 8 Clocks  
Cycle  
command  
1st Start  
0000b  
TAR  
XXXXb  
1111b  
0000b  
Tri-State  
LAD[3:0]  
011Xb  
XXXXb  
0101b  
0101b  
0101b  
1010b  
1010b  
XXXXb  
X101b  
Load Data "AA" in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
1 Clock  
Write the 1st command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
TAR  
Address  
XXXXb  
Sync  
0000b  
Cycle  
2nd Start  
0000b  
TAR  
XXXXb  
1111b  
2 Clocks  
011Xb  
XXXXb  
1010b  
1010b  
1010b  
0101b  
0101b  
Tri-State  
XXXXb  
X010b  
Load Data "55"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "2AAA" in 8 Clocks  
1 Clock  
Write the 2nd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
TAR  
Sync  
0000b  
Address  
Cycle  
3rd Start  
0000b  
TAR  
XXXXb  
0000b  
1010b  
1111b  
Tri-State  
011Xb  
XXXXb  
0101b  
0101b  
0101b  
XXXXb  
XXXXb  
X101b  
Load Data "A0"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
Write the 3rd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Internal  
program start  
Memory  
Write  
Address  
A[19:16]  
Data  
TAR  
Sync  
0000b  
4th Start Cycle  
0000b  
011Xb  
A[31:28]  
A[27:24]  
A[23:20]  
TAR  
Internal  
D[3:0]  
D[7:4]  
1111b  
2 Clocks  
A[15:12]  
A[11:8]  
A[7:4]  
A[3:0]  
Tri-State  
program start  
Load Din in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Ain in 8 Clocks  
Write the 4th command(target location to be programmed) to the device in LPC mode.  
- 24 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
#DATA Polling Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Start next  
Data  
TAR  
Sync  
Address  
Cycle  
command  
1st Start  
0000b  
0000b  
Dn[3:0] Dn[7:4]  
TAR  
TAR  
TAR  
An[15:12]  
An[7:4]  
An[3:0]  
1111b  
2 Clocks  
0000b  
LAD[3:0]  
011Xb  
A[31:28]  
XXXXb  
An[31:28]  
A[27:24]  
XXXXb  
An[27:24]  
A[23:20]  
A[19:16]  
An[11:8]  
Tri-State  
Load Data "Dn"  
in 2 Clocks  
1 Clock  
1 Clock  
1 Clock 1 Clock  
Load Address "An" in 8 Clocks  
Write the last command(program or erase) to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Read  
Address  
TAR  
Tri-State  
Next Start  
0000b  
Start  
Data  
Sync  
Cycle  
0000b  
010Xb  
XXAn[17:16]  
An[3:0]  
An[15:12]  
An[11:8]  
An[7:4]  
XXXXb  
1111b  
0000b  
XXXXb Dn7,xxx  
2 Clocks  
Read the DQ7 to see if the internal write complete or not.  
1 Clock  
Data out 2 Clocks  
1 Clock 1 Clock  
Load Address in 8 Clocks  
1 Clock  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Read  
Start  
Address  
An[19:16]  
TAR  
1111b  
Tri-State 0000b  
Next Start  
0000b  
Sync  
Data  
Cycle  
0000b  
010Xb  
XXXXb  
1 Clock  
Data out 2 Clocks  
Dn7,xxx  
An[23:20]  
An[15:12]  
An[11:8]  
An[7:4]  
An[3:0]  
1 Clock  
1 Clock  
2 Clocks  
When internal write complete, the DQ7 will equal to Dn7.  
Load Address in 8 Clocks  
1 Clock  
Publication Release Date: December 19, 2002  
Revision A2  
- 25 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
Toggle Bit Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Start next  
Data  
Dn[3:0] Dn[7:4]  
TAR  
Sync  
Address  
Cycle  
command  
1st Start  
0000b  
XXAn[17:16]  
An[7:4]  
An[3:0]  
An[15:12]  
TAR  
TAR  
TAR  
LAD[3:0]  
011Xb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
An[11:8]  
1111b  
Tri-State  
0000b  
XXXXb  
Load Data "Dn"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "An" in 8 Clocks  
1 Clock  
Write the last command(program or erase) to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Read  
Address  
XXXXb  
TAR  
Tri-State  
Next Start  
0000b  
Start  
Data  
X,D6,XXb  
XXXXb  
Sync  
Cycle  
0000b  
010Xb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
1111b  
0000b  
2 Clocks  
Read the DQ6 to see if the internal write complete or not.  
1 Clock Data out 2 Clocks  
1 Clock 1 Clock  
Load Address in 8 Clocks  
1 Clock  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Read  
Start  
Address  
XXXXb  
TAR  
Tri-State  
Next Start  
0000b  
Sync  
Data  
X,D6,XXb  
XXXXb  
Cycle  
0000b  
010Xb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
1111b  
0000b  
1 Clock  
1 Clock  
2 Clocks  
1 Clock Data out 2 Clocks  
Load Address in 8 Clocks  
1 Clock  
When internal write complete, the DQ6 will stop toggle.  
- 26 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
Boot Block Lockout Enable Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Start next  
Data  
1010b 1010b  
TAR  
Sync  
Cycle  
Address  
XXXXb  
command  
1st Start  
1111b  
2 Clocks  
0000b  
TAR  
TAR  
TAR  
0000b  
LAD[3:0  
XXXXb  
XXXXb  
XXXXb  
Tri-State  
011Xb  
XXXXb  
XXXXb  
XXXXb  
0101b  
0101b  
0101b  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
Write the 1st command to the device in LPC mode.  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
CLK  
#RESET  
#LFRAM  
LAD[3:0  
Memory  
Write  
Start next  
command  
Address  
XXXXb  
Data  
0101b 0101b  
TAR  
Sync  
0000b  
Cycle  
2nd Start  
0000b  
1111b  
2 Clocks  
Tri-State  
011Xb  
1010b  
1010b  
1010b  
XXXXb  
X010b  
Load Data "55"  
in 2 Clocks  
Write the 2nd command to the device in LPC mode.  
1 Clocks  
1 Clock 1 Clock  
Load Address "2AAA" in 8 Clocks  
1 Clock  
CLK  
#RESET  
#LFRAM  
LAD[3:0  
Memory  
Write  
Start next  
command  
Data  
TAR  
Cycle  
Sync  
0000b  
Address  
3rd Start  
0000b  
011Xb  
1111b  
0000b  
1000b  
Tri-State  
0101b  
Load Address "5555" in 8 Clocks  
0101b  
0101b  
XXXXb  
XXXXb  
X101b  
Load Data "80"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
1 Clock  
Write the 3rd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0  
Memory  
Write  
Start next  
command  
Data  
1010b 1010b  
TAR  
Address  
XXXXb  
Sync  
0000b  
Cycle  
4th Start  
0000b  
TAR  
XXXXb  
1111b  
2 Clocks  
Tri-State  
011Xb  
XXXXb  
0101b  
0101b  
0101b  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
Write the 4th command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0  
Memory  
Write  
Start next  
command  
Data  
TAR  
Sync  
Cycle  
Address  
5th Start  
TAR  
0000b  
011Xb  
1111b  
0000b  
XXXXb  
Tri-State  
XXXX  
1010b  
Load Address "2AAA" in 8 Clocks  
1010b  
1010b  
0101b  
0101b  
XXXXb  
XXXXb  
X010b  
Load Data "55"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
1 Clock  
Write the 5th command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Data  
Start next  
command  
Address  
TAR  
Cycle  
Sync  
0000b  
6th Start  
0000b  
0100b  
0111b  
0000b  
TAR  
XXXXb  
1111b  
Tri-State  
011Xb  
XXXXb  
X101  
b
0101  
b
0101b  
0101b  
XXXXb XXXXb  
LAD[3:0  
Load Data "40"  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" 8 Clocks  
1 Clock  
or "70" in 2 Clocks  
Write the 6th command to the device in LPC mode.  
Publication Release Date: December 19, 2002  
Revision A2  
- 27 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
Chip Erase Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Start next  
command  
Data  
1010b 1010b  
TAR  
Tri-State  
2 Clocks  
Sync  
Cycle  
Address  
XXXXb  
1st Start  
0000b  
1111b  
0000b  
TAR  
LAD[3:0]  
XXXXb  
011Xb  
XXXXb  
0101b  
0101b  
0101b  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
Write the 1st command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Address  
XXXXb  
Data  
0101b  
TAR  
Cycle  
Sync  
0000b  
2nd Start  
0000b  
011Xb  
TAR  
XXXXb  
1111b  
2 Clocks  
XXXXb  
1010b  
1010b  
1010b  
0101b  
Tri-State  
XXXXb  
X010b  
Load Data "55"  
in 2 Clocks  
1 Clock  
1 Clock  
Load Address "2AAA" in 8 Clocks  
1 Clock  
1 Clock  
Write the 2nd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
TAR  
Sync  
0000b  
Cycle  
Address  
3rd Start  
0000b  
TAR  
1000b  
1111b  
XXXXb  
0000b  
Tri-State  
011Xb  
XXXXb  
0101b  
Load Address "5555" in 8 Clocks  
0101b  
0101b  
XXXXb  
XXXXb  
X101b  
Load Data "80"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
1 Clock  
Write the 3rd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Address  
XXXXb  
Data  
1010b  
TAR  
Cycle  
Sync  
0000b  
4th Start  
0000b  
011Xb  
TAR  
XXXXb  
1111b  
2 Clocks  
XXXXb  
0101b  
0101b  
0101b  
1010b  
Tri-State  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
Write the 4th command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
0101b 0101b  
TAR  
Sync  
Cycle  
Address  
XXXXb  
5th Start  
0000b  
011Xb  
1111b  
0000b  
TAR  
XXXXb  
Tri-State  
XXXXb  
1010b  
1010b  
1010b  
XXXXb  
X010b  
Load Data "55"  
in 2 Clocks  
1 Clock  
Load Address "2AAA" in 8 Clocks  
2 Clocks  
1 Clock  
1 Clock  
1 Clock  
Write the 5th command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Internal  
erase start  
Memory  
Write  
Address  
Data  
TAR  
Sync  
6th Start Cycle  
Internal  
0000b  
011Xb  
0001b  
1111b  
2 Clocks  
0000b  
TAR  
XXXXb  
Tri-State  
X101b  
0000b  
XXXXb  
0101b  
0101b  
0101b  
XXXXb XXXXb  
erase start  
Load Data "10"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" in 8 Clocks  
Write the 6th command to the device in LPC mode.  
- 28 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
Sector Erase Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Start next  
command  
Data  
1010b 1010b  
TAR  
Tri-State  
2 Clocks  
Sync  
Cycle  
Address  
XXXXb  
1st Start  
0000b  
1111b  
0000b  
TAR  
LAD[3:0]  
XXXXb  
011Xb  
XXXXb  
0101b  
0101b  
0101b  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
Write the 1st command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Address  
XXXXb  
Data  
0101b  
TAR  
Sync  
Cycle  
2nd Start  
0000b  
TAR  
XXXXb  
1111b  
0000b  
011Xb  
XXXXb  
1010b  
1010b  
1010b  
0101b  
Tri-State  
XXXXb  
X010b  
Load Data "55"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "2AAA" in 8 Clocks  
1 Clock  
Write the 2nd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
TAR  
1111b  
2 Clocks  
Sync  
Cycle  
Address  
3rd Start  
0000b  
011Xb  
0000b  
TAR  
XXXXb  
Tri-State  
XXXXb  
0101b  
0101b  
0101b 0000b  
1000b  
XXXXb  
XXXXb  
X101b  
Load Data "80"  
in 2 Clocks  
1 Clocks  
1 Clocks1 Clocks  
Load Address "5555" in 8 Clocks  
1 Clocks  
Write the 3rd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Address  
XXXXb  
Data  
1010b 1010b  
TAR  
Sync  
4th Start Cycle  
0000b  
011Xb  
TAR  
XXXXb  
1111b  
2 Clocks  
0000b  
Tri-State  
XXXXb  
0101b  
0101b  
0101b  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
1 Clock  
1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
Write the 4th command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
TAR  
1111b  
2 Clocks  
Sync  
Address  
5th Start Cycle  
0000b  
TAR  
0000b  
XXXXb  
Tri-State  
XXXXb XXXXb  
011Xb  
XXXXb  
X010b  
1010b  
1010b  
0101b  
0101b  
1010b  
Load Data "55"  
in 2 Clocks  
Write the 5th command to the device in LPC mode.  
1 Clock  
1 Clock 1 Clock  
Load Address "2AAA" in 8 Clocks  
1 Clock  
CLK  
#RESET  
Internal  
#LFRAM  
LAD[3:0]  
erase start  
Memory  
Write  
Address  
SA[18:16]  
Data  
0011b  
TAR  
Sync  
Cycle  
6th Start  
0000b  
Internal  
TAR  
XXXXb  
0000b  
1111b  
Tri-State  
0000b  
XXXXb  
XXXXb XXXXb  
011Xb  
XXXXb  
XXXXb  
XXXXb  
erase start  
Load Data "30"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Sector Address in 8 Clocks  
Write the 6th command(target sector to be erased) to the device in LPC mode.  
Publication Release Date: December 19, 2002  
Revision A2  
- 29 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
Page Erase Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Write  
Start next  
command  
Data  
1010b 1010b  
TAR  
Tri-State  
2 Clocks  
Sync  
Cycle  
Address  
1st Start  
0000b  
1111b  
0000b  
TAR  
XXXXb  
LAD[3:0]  
011Xb  
XXXXb  
0101b  
Load Address "5555" in 8 Clocks  
0101b  
0101b  
XXXXb  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
1 Clock  
Write the 1st command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Address  
XXXXb  
Data  
0101b 0101b  
TAR  
Sync  
0000b  
Cycle  
2nd Start  
0000b  
TAR  
XXXXb  
1111b  
Tri-State  
011Xb  
XXXXb  
1010b  
1010b  
1010b  
XXXXb  
X010b  
Load Data "55"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "2AAA" in 8 Clocks  
1 Clock  
Write the 2nd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
TAR  
1111b  
2 Clocks  
Sync  
Cycle  
Address  
3rd Start  
TAR  
0000b  
011Xb  
0000b  
XXXXb  
Tri-State  
XXXXb  
0101b  
Load Address "5555" in 8 Clocks  
0101b  
0101b 0000b  
1000b  
XXXXb  
XXXXb  
X101b  
Load Data "80"  
in 2 Clocks  
1 Clocks  
1 Clocks1 Clocks  
1 Clocks  
Write the 3rd command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Address  
XXXXb  
Data  
1010b  
TAR  
Sync  
0000b  
4th Start Cycle  
TAR  
0000b  
011Xb  
XXXXb  
1111b  
XXXXb  
0101b  
0101b  
0101b  
1010b  
Tri-State  
XXXXb  
X101b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
2 Clocks  
1 Clock  
1 Clock  
Load Address "5555" in 8 Clocks  
1 Clock  
Write the 4th command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Memory  
Write  
Start next  
command  
Data  
TAR  
1111b  
2 Clocks  
Sync  
Address  
5th Start Cycle  
0000b  
TAR  
0000b  
XXXXb  
XXXXb  
Tri-State  
XXXXb  
011Xb  
XXXXb  
X010b  
1010b  
1010b  
0101b  
0101b  
1010b  
Load Data "55"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "2AAA" in 8 Clocks  
1 Clock  
Write the 5th command to the device in LPC mode.  
CLK  
#RESET  
#LFRAM  
LAD[3:0]  
Internal  
erase start  
Memory  
Write  
Address  
Data  
TAR  
Sync  
Cycle  
6th Start  
0000b  
Internal  
PA[18:16] PA[15:12]  
0101b  
TAR  
XXXXb  
0000b  
1111b  
Tri-State  
0000b  
XXXXb  
XXXXb XXXXb  
011Xb  
XXXXb  
XXXXb  
erase start  
Load Data "50"  
in 2 Clocks  
2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Page Address in 8 Clocks  
Write the 6th command(target page to be erased) to the device in LPC mode.  
- 30 -  
W39V040A  
Timing Waveforms for LPC Interface Mode, continued  
GPI Register Readout Timing Diagram  
CLK  
#RESET  
#LFRAM  
Memory  
Read  
Address  
XXXXb  
TAR  
Tri-State  
Next Start  
0000b  
Start  
Data  
Sync  
Cycle  
0000b  
0001b  
D[3:0]  
D[7:4]  
TAR  
1111b  
1110b  
0000b  
0000b  
LAD[3:0]  
010Xb  
1111b  
1011b  
1111b  
0000b  
Load Address "FFBXE100(hex)" in 8 Clocks  
2 Clocks  
1 Clock Data out 2 Clocks  
1 Clock 1 Clock  
1 Clock  
Note: Read the DQ[4:0] to capture the states(High or Low) of the GPI[4:0] input pins. The DQ[7:5] are reserved bits.  
Reset Timing Diagram  
VDD  
CLK  
TPRST  
TKRST  
TRSTP  
#RESET  
TRST  
TRST  
LAD[3:0]  
#LFRAM  
Publication Release Date: December 19, 2002  
Revision A2  
- 31 -  
W39V040A  
12. ORDERING INFORMATION  
ACCESS  
POWER SUPPLY  
CURRENT MAX.  
STANDBY VDD  
TIME  
(nS)  
11  
CURRENT MAX.  
PART NO.  
PACKAGE  
(mA)  
20  
(mA)  
10  
W39V040AP  
W39V040AQ  
32L PLCC  
11  
20  
10  
32L STSOP  
Notes:  
1. Winbond reserves the right to make changes to its products without prior notice.  
2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in  
applications where personal injury might occur as a consequence of product failure.  
13. HOW TO READ THE TOP MARKING  
Example: The top marking of 32-pin STSOP W39V040AQ  
W39V040AQ  
2138977A-A12  
149OBSA  
1st line: Winbond logo  
2nd line: the part number: W39V040AQ  
3rd line: the lot number  
4th line: the tracking code: 149 O B SA  
149: Packages made in '01, week 49  
O: Assembly house ID: A means ASE, O means OSE, ... etc.  
B: IC revision; A means version A, B means version B, ... etc.  
SA: Process code  
- 32 -  
W39V040A  
14. PACKAGE DIMENSIONS  
32L PLCC  
Dimension in Inches  
Min. Nom. Max. Min. Nom. Max.  
Dimension in mm  
Symbol  
H E  
E
0.140  
3.56  
A
0.020  
0.105  
0.026  
0.016  
0.008  
0.50  
2.67  
0.66  
0.41  
0.20  
A
A
b
1
2
1
4
1
32  
30  
0.110  
0.028  
0.018  
0.010  
0.550  
0.450  
0.050  
0.510  
0.410  
0.590  
0.490  
0.090  
0.115  
0.032  
0.022  
0.014  
2.80  
0.71  
2.93  
0.81  
0.56  
0.35  
0.46  
b
5
29  
0.25  
c
0.547  
0.447  
0.044  
0.490  
0.390  
0.585  
0.485  
0.075  
0.553  
0.453  
0.056  
0.530  
0.430  
0.595  
0.495  
0.095  
0.004  
13.89  
11.35  
1.12  
14.05  
11.51  
1.42  
13.97  
11.43  
1.27  
D
E
e
12.45  
9.91  
12.95  
13.46  
10.92  
15.11  
12.57  
2.41  
G
G
H
H
D
GD  
10.41  
14.99  
12.45  
2.29  
E
D
E
D
HD  
14.86  
12.32  
1.91  
L
0.10  
y
0
10  
0
10  
θ
21  
13  
Notes:  
1. Dimensions D & E do not include interlead flash.  
2. Dimension b1 does not include dambar protrusion/intrusio  
3. Controlling dimension: Inches  
14  
20  
c
4. General appearance spec. should be based on final  
visual inspection sepc.  
L
A2  
A
θ
e
1
b
b1  
A
Seating Plane  
y
E
G
32L STSOP  
HD  
D
c
Dimension in Inches Dimension in mm  
Symbol  
Max.  
1.20  
Min. Nom. Max. Min. Nom.  
e
0.047  
A
0.002  
0.035  
0.006  
0.041  
0.05  
0.95  
0.17  
0.10  
0.15  
1
A
E
0.040  
1.00  
0.22  
2
A
1.05  
0.27  
b
0.007 0.009 0.010  
b
c
0.004  
0.008  
-----  
12.40  
8.00  
0.21  
-----  
0.488  
D
E
0.315  
0.551  
0.020  
14.00  
D
H
0.50  
0.60  
0.80  
e
0.50  
0.70  
0.020 0.024 0.028  
0.031  
L
θ
1
L
A
A
1 A  
2
0.000  
0.004  
0.00  
0
0.10  
5
L
Y
Y
0
3
5
3
θ
L
1
Publication Release Date: December 19, 2002  
Revision A2  
- 33 -  
W39V040A  
15. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A1  
A2  
October 8, 2002  
Dec. 19, 2002  
-
14  
Initial Issued  
Modify PGM mode power supply current (Icc)  
parameter from 20 mA (typ.) to 10 mA (typ.)  
and 30 mA (max.) to 20 mA (max.)  
1, 15, 32  
15  
Modify LPC mode power supply current (Icc)  
parameter from 40 mA (typ.) to 12.5 mA (typ.)  
and 60 mA (max.) to 20 mA (max.)  
Modify CMOS standby current (Isb1) parameter  
from 20 µA (typ.) to 5 µA (typ.) and 100 µA (max.)  
to 25 µA (max.)  
Headquarters  
Winbond Electronics Corporation America Winbond Electronics (Shanghai) Ltd.  
27F, 2299 Yan An W. Rd. Shanghai,  
200336 China  
2727 North First Street, San Jose,  
CA 95134, U.S.A.  
No. 4, Creation Rd. III,  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 1-408-9436666  
TEL: 86-21-62365999  
FAX: 86-21-62365998  
TEL: 886-3-5770066  
FAX: 1-408-5441798  
FAX: 886-3-5665577  
http://www.winbond.com.tw/  
Taipei Office  
Winbond Electronics Corporation Japan  
7F Daini-ueno BLDG, 3-7-18  
Shinyokohama Kohoku-ku,  
Yokohama, 222-0033  
Winbond Electronics (H.K.) Ltd.  
Unit 9-15, 22F, Millennium City,  
No. 378 Kwun Tong Rd.,  
Kowloon, Hong Kong  
9F, No.480, Rueiguang Rd.,  
Neihu District, Taipei, 114,  
Taiwan, R.O.C.  
TEL: 886-2-8177-7168  
FAX: 886-2-8751-3579  
TEL: 81-45-4781881  
TEL: 852-27513100  
FAX: 81-45-4781800  
FAX: 852-27552064  
Please note that all data and specifications are subject to change without notice.  
All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.  
- 34 -  

相关型号:

W39V040FAT

512K X 8 CMOS FLASH MEMORY WITH FWH INERFACE
WINBOND

W39V040FATZ

Flash, 512KX8, 11ns, PDSO40, LEAD FREE, 10 X 20 MM, TSOP-40
WINBOND

W39V040FB

512K X 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FBP

512K X 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FBPZ

512K X 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FBQ

512K X 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FBQZ

512K X 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FB_07

512K × 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FC

512K 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FCP

512K 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FCPZ

512K 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V040FCQ

512K 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND