W39V080FA [WINBOND]

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE; 与FWH接口1M 】 8 CMOS FLASH MEMORY
W39V080FA
型号: W39V080FA
厂家: WINBOND    WINBOND
描述:

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
与FWH接口1M 】 8 CMOS FLASH MEMORY

文件: 总35页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W39V080FA Data Sheet  
1M × 8 CMOS FLASH MEMORY  
WITH FWH INTERFACE  
Table of Contents-  
1.  
2.  
3.  
4.  
5.  
6.  
GENERAL DESCRIPTION ......................................................................................................... 3  
FEATURES................................................................................................................................. 3  
PIN CONFIGURATIONS............................................................................................................. 4  
BLOCK DIAGRAM ...................................................................................................................... 4  
PIN DESCRIPTION..................................................................................................................... 4  
FUNCTIONAL DESCRIPTION.................................................................................................... 5  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Interface Mode Selection and Description...................................................................... 5  
Read (Write) Mode ......................................................................................................... 5  
Reset Operation.............................................................................................................. 5  
Accelerated Program Operation ..................................................................................... 5  
Boot Block Operation and Hardware Protection at Initial- #TBL & #WP ........................ 5  
Sector Erase Command ................................................................................................. 6  
Program Operation ......................................................................................................... 6  
Dual BIOS....................................................................................................................... 6  
Hardware Data Protection .............................................................................................. 6  
6.10 Write Operation Status ................................................................................................... 7  
6.10.1 DQ7: #Data Polling.........................................................................................................7  
6.10.2 RY/#BY: Ready/#Busy ...................................................................................................7  
6.10.3 DQ6: Toggle Bit..............................................................................................................7  
6.10.4 DQ5: Exceeded Timing Limits........................................................................................8  
6.11 Identification Input pin ID[3:0] ......................................................................................... 8  
6.12 Register........................................................................................................................... 8  
6.12.1 General Purpose Inputs Register ...................................................................................8  
6.12.2 Block Locking Registers .................................................................................................8  
6.12.3 Product Identification Registers....................................................................................10  
6.13 Table of Operating Modes ............................................................................................ 11  
6.13.1 Operating Mode Selection - Programmer Mode ...........................................................11  
6.13.2 Operating Mode Selection - FWH Mode.......................................................................11  
6.14 Fwh Cycle Definition..................................................................................................... 12  
6.15 Embedded Programming Algorithm.............................................................................. 13  
6.16 Embedded Erase Algorithm.......................................................................................... 14  
6.17 Embedded #Data Polling Algorithm.............................................................................. 15  
6.18 Embedded Toggle Bit Algorithm................................................................................... 16  
6.19 Software Product Identification and Boot Block Lockout Detection Acquisition Flow .. 17  
DC CHARACTERISTICS.......................................................................................................... 18  
7.  
7.1  
7.2  
7.3  
7.4  
7.5  
Absolute Maximum Ratings.......................................................................................... 18  
Programmer interface Mode DC Operating Characteristics......................................... 18  
FWH interface Mode DC Operating Characteristics..................................................... 19  
Power-up Timing........................................................................................................... 19  
Capacitance.................................................................................................................. 19  
Publication Release Date: Dec. 13, 2005  
- 1 -  
Revision A5  
W39V080FA  
8.  
9.  
PROGRAMMER INTERFACE MODE AC CHARACTERISTICS............................................. 20  
8.1  
8.2  
8.3  
8.4  
8.5  
AC Test Conditions....................................................................................................... 20  
AC Test Load and Waveform ....................................................................................... 20  
Read Cycle Timing Parameters.................................................................................... 21  
Write Cycle Timing Parameters.................................................................................... 21  
Data Polling and Toggle Bit Timing Parameters........................................................... 21  
TIMING WAVEFORMS FOR PROGRAMMER INTERFACE MODE ....................................... 22  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
Read Cycle Timing Diagram......................................................................................... 22  
Write Cycle Timing Diagram......................................................................................... 22  
Program Cycle Timing Diagram.................................................................................... 23  
#DATA Polling Timing Diagram.................................................................................... 23  
Toggle Bit Timing Diagram ........................................................................................... 24  
Sector Erase Timing Diagram....................................................................................... 24  
10.  
11.  
FWH INTERFACE MODE AC CHARACTERISTICS ............................................................... 25  
10.1 AC Test Conditions....................................................................................................... 25  
10.2 Read/Write Cycle Timing Parameters .......................................................................... 25  
10.3 Reset Timing Parameters............................................................................................. 25  
TIMING WAVEFORMS FOR FWH INTERFACE MODE.......................................................... 26  
11.1 Read Cycle Timing Diagram......................................................................................... 26  
11.2 Write Cycle Timing Diagram......................................................................................... 26  
11.3 Program Cycle Timing Diagram.................................................................................... 27  
11.4 #DATA Polling Timing Diagram.................................................................................... 28  
11.5 Toggle Bit Timing Diagram ........................................................................................... 29  
11.6 Sector Erase Timing Diagram....................................................................................... 30  
11.7 FGPI Register/Product ID Readout Timing Diagram.................................................... 31  
11.8 Reset Timing Diagram.................................................................................................. 31  
ORDERING INFORMATION..................................................................................................... 32  
HOW TO READ THE TOP MARKING...................................................................................... 32  
PACKAGE DIMENSIONS......................................................................................................... 33  
14.1 32L PLCC ..................................................................................................................... 33  
14.2 32L STSOP (8X14mm)................................................................................................. 33  
14.3 40L TSOP (10 mm x 20 mm)........................................................................................ 34  
VERSION HISTORY................................................................................................................. 35  
12.  
13.  
14.  
15.  
- 2 -  
W39V080FA  
1. GENERAL DESCRIPTION  
The W39V080FA is an 8-megabit, 3.3-volt only CMOS flash memory organized as 1M × 8 bits. For  
flexible erase capability, the 8Mbits of data are divided into 16 uniform sectors of 64 Kbytes. The device  
can be programmed and erased in-system with a standard 3.3V power supply. A 12-volt VPP is  
required for accelerated program. The unique cell architecture of the W39V080FA results in fast  
program/erase operations with extremely low current consumption. This device can operate at two  
modes, Programmer bus interface mode and FWH bus interface mode. As in the Programmer interface  
mode, it acts like the traditional flash but with a multiplexed address inputs. But in the FWH interface  
mode, this device complies with the Intel FWH specification. The device can also be programmed and  
erased using standard EPROM programmers.  
2. FEATURES  
Single 3.3-volt operations:  
Hardware Features  
Ready/#Busy output (RY/#BY)  
Detect program or erase cycle completion  
Hardware reset pin (#RESET)  
3.3-volt Read  
3.3-volt Erase  
3.3-volt Program  
Fast program operation:  
Reset the internal state machine to the read  
mode  
VPP = 12V  
Byte-by-Byte programming: 9 μS (typ.)  
Fast erase operation:  
VPP input pin  
Acceleration (ACC) function accelerates  
program timing  
Sector erase 0.9 Sec. (typ.)  
Fast read access time: Tkq 11 nS  
Endurance: 30K cycles (typ.)  
Twenty-year data retention  
16 Even sectors with 64K bytes  
Any individual sector can be erased  
Dual BIOS function  
Low power consumption  
Read Active current: 15 mA  
(typ. for FWH mode)  
Automatic program and erase timing with  
internal VPP generation  
End of program or erase detection  
Toggle bit  
Data polling  
Latched address and data  
TTL compatible I/O  
Full-chip partition with 8M-bit or dual-block  
partition with 4M-bit  
Hardware protection:  
#TBL supports 64-Kbyte Boot Block  
hardware protection  
Available packages: 32L PLCC, 32L STSOP,  
40L TSOP(10 x 20 mm), 32L PLCC Lead  
free, 32L STSOP Lead free and 40L TSOP  
(10 x 20 mm) Lead free  
#WP supports the whole chip except Boot  
Block hardware protection  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 3 -  
W39V080FA  
3. PIN CONFIGURATIONS  
4. BLOCK DIAGRAM  
0FFFFF  
#WP  
64K BYTES BLOCK 15  
64K BYTES BLOCK 14  
64K BYTES BLOCK 13  
0F0000  
0EFFFF  
#TBL  
FWH  
CLK  
Interface  
0E0000  
0DFFFF  
FWH[3:0]  
FWH4  
0D0000  
0CFFFF  
IC  
#INIT  
#RESET  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
#OE(#INIT)  
NC  
2
#WE(FWH4)  
RY/#BY(RSV)  
DQ7(U/#L)  
NC  
3
R/#C  
A[10:0]  
DQ[7:0]  
NC  
4
SS  
V
5
IC  
DQ6(D/#F)  
6
A10(FGPI4)  
DQ5(RSV)  
7
8
9
10  
11  
12  
13  
14  
15  
16  
Program-  
mer  
Interface  
R/#C(CLK)  
DQ4(RSV)  
030000  
02FFFF  
DD  
Vpp  
#RESET  
A9(FGPI3)  
A8(FGPI2)  
A7(FGPI1)  
A6(FGPI0)  
A5(#WP)  
A4(#TBL)  
V
DQ3(FWH3)  
32L STSOP  
64K BYTES BLOCK 2  
SS  
V
DQ2(FWH2)  
020000  
01FFFF  
DQ1(FWH1)  
#OE  
DQ0(FWH0)  
A0(ID0)  
A1(ID1)  
A2(ID2)  
A3(ID3)  
64K BYTES BLOCK 1  
64K BYTES BLOCK 0  
010000  
00FFFF  
#WE  
RY/#BY  
000000  
A
A
8
^
R
/
A
9
^
1
0
^
#
C
^
#
F
G
P
I
F
G
P
I
F
G
P
I
4
v
R
E
S
E
T
C
L
K
v
V
P
P
V
D
D
5. PIN DESCRIPTION  
2
v
3
v
INTERFACE  
4
3
2
1
32 31 30  
SYM.  
PIN NAME  
PGM FWH  
A7(FGPI1)  
A6(FGPI0)  
A5(#WP)  
A4(#TBL)  
A3(ID3)  
5
6
29  
28  
27  
26  
25  
24  
23  
22  
21  
IC  
SS  
V
NC  
IC  
*
*
*
*
Interface Mode Selection  
Reset  
7
8
NC  
#RESET  
9
DD  
V
32L PLCC  
10  
11  
12  
13  
A2(ID2)  
#OE(#INIT)  
#WE(FWH4)  
RY/#BY(RSV)  
DQ7(U/#L)  
#INIT  
#TBL  
*
*
*
*
*
Initialize  
A1(ID1)  
A0(ID0)  
Top Boot Block Lock  
Write Protect  
DQ0(FWH0)  
#WP  
14 15 16 17 18 19 20  
CLK  
CLK Input  
D
Q
1
D
Q
2
D
Q
5
D
Q
3
D
Q
4
D
Q
6
^
D
/
V
S
S
FGPI[4:0]  
General Purpose Inputs  
^
^
^
^
^
F
W
H
1
F
W
H
2
R
S
V
v
F
R
S
V
v
W
H
3
Identification Inputs  
Pull Down with Internal Resistors  
#
F
v
ID[3:0]  
*
v
v
v
FWH[3:0]  
FWH4  
*
*
Address/Data Inputs  
FWH Cycle Initial  
VSS  
VDD  
NC  
IC  
NC  
NC  
NC  
NC  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
3
4
5
6
7
#WE(FWH4)  
#OE(#INIT)  
Dual Bios/Full Chip  
Pull Down with Internal Resistors  
D/#F  
U/#L  
*
*
RY/#BY(RSV)  
DQ7(U/#L)  
DQ6(D/#F)  
DQ5(RSV)  
DQ4(RSV)  
VDD  
VSS  
VSS  
DQ3(FWH3)  
DQ2(FWH2)  
DQ1(FWH1)  
DQ0(FWH0)  
A0(ID0)  
A1(ID1)  
A2(ID2)  
A3(ID3)  
A10(FGPI4)  
NC  
8
9
Upper 4M/Lower 4M  
Pull Down with Internal Resistors  
CLK  
VDD  
Vpp  
10  
11  
12  
13  
14  
15  
16  
40L TSOP  
#RESET  
NC  
NC  
R/#C  
A[10:0]  
DQ[7:0]  
#OE  
*
*
*
*
*
*
*
*
*
*
*
Row/Column Select  
Address Inputs  
Data Inputs/Outputs  
Output Enable  
27  
26  
A9(FGPI3)  
A8(FGPI2)  
A7(FGPI1)  
A6(FGPI0)  
A5(#WP)  
A4(#TBL)  
25  
24  
23  
22  
21  
17  
18  
19  
20  
#WE  
Write Enable  
RY/#BY  
VDD  
Ready/ Busy  
*
*
*
*
*
Power Supply  
VSS  
Ground  
VPP  
Accelerate Program Power Supply  
Reserved Pins  
RSV  
NC  
No Connection  
- 4 -  
W39V080FA  
6. FUNCTIONAL DESCRIPTION  
6.1 Interface Mode Selection and Description  
This device can operate in two interface modes, one is Programmer interface mode, and the other is  
FWH interface mode. The IC pin of the device provides the control between these two interface  
modes. These interface modes need to be configured before power up or return from #RESET. When  
IC pin is set to high state, the device will be in the Programmer mode; while the IC pin is set to low state  
(or leaved no connection), it will be in the FWH mode. In Programmer mode, this device just behaves  
like traditional flash parts with 8 data lines. But the row and column address inputs are multiplexed. The  
row address are mapped to the higher internal address A[19:11]. And the column address are mapped  
to the lower internal address A[10:0]. For FWH mode, It complies with the FWH Interface Specification.  
Through the FWH[3:0] and FWH4 to communicate with the system chipset .  
6.2 Read (Write) Mode  
In Programmer interface mode, the read (write) operation of the W39V080FA is controlled by #OE  
(#WE). The #OE (#WE) is held low for the host to obtain (write) data from (to) the outputs (inputs).  
#OE is the output control and is used to gate data from the output pins. The data bus is in high  
impedance state when #OE is high. As for in the FWH interface mode, the read or write is determined  
by the "bit 0 & bit 1 of START CYCLE ". Refer to the FWH cycle definition and timing waveforms for  
further details.  
6.3 Reset Operation  
The #RESET input pin can be used in some application. When #RESET pin is at high state, the  
device is in normal operation mode. When #RESET pin is at low state, it will halt the device and all  
outputs will be at high impedance state. As the high state re-asserted to the #RESET pin, the device  
will return to read or standby mode, it depends on the control signals.  
6.4 Accelerated Program Operation  
The device provides accelerated program operations through the ACC function. This function is  
primarily intended to allow a faster manufacturing throughput in the factory.  
6.5 Boot Block Operation and Hardware Protection at Initial- #TBL & #WP  
There is a hardware method to protect the top boot block and other sectors. Before power on  
programmer, tie the #TBL pin to low state and then the top boot block will not be programmed/erased. If  
#WP pin is tied to low state before power on, the other sectors will not be programmed/erased.  
In order to detect whether the boot block feature is set on or not, users can perform software command  
sequence: enter the product identification mode (see Command Codes for Identification/Boot Block  
Lockout Detection for specific code), and then read from address FFFF2(hex). You can check the  
DQ2/DQ3 at the address FFFF2 to see whether the #TBL/#WP pin is in low or high state. If the DQ2 is  
“0”, it means the #TBL pin is tied to high state. In such condition, whether boot block can be  
programmed/erased or not will depend on software setting. On the other hand, if the DQ2 is “1”, it  
means the #TBL pin is tied to low state, then boot block is locked no matter how the software is set.  
Like the DQ2, the DQ3 inversely mirrors the #WP state. If the DQ3 is “0”, it means the #WP pin is in  
high state, then all the sectors except the boot block can be programmed/erased. On the other hand, if  
the DQ3 is “1”, then all the sectors except the boot block are programmed/erased inhibited.  
To return to normal operation, perform a three-byte command sequence (or an alternate single-byte  
command) to exit the identification mode. For the specific code, see Command Codes for  
Identification/Boot Block Lockout Detection.  
Publication Release Date: Dec. 13, 2005  
- 5 -  
Revision A5  
W39V080FA  
6.6 Sector Erase Command  
Sector erase is a six bus cycles operation. There are two "unlock" write cycles, followed by writing the  
"set-up" command. Two more "unlock" write cycles then follows by the Sector erase command. The  
Sector address (any address location within the desired Sector) is latched on the rising edge of R/#C in  
programmer mode, while the command (30H) is latched on the rising edge of #WE.  
Sector erase does not require the user to program the device prior to erase. When erasing a Sector,  
the remaining unselected sectors are not affected. The system is not required to provide any controls or  
timings during these operations.  
The automatic Sector erase begins after the erase command is completed, right from the rising edge of  
the #WE pulse for the last Sector erase command pulse and terminates when the data on DQ7, Data  
Polling, is "1" at which time the device returns to the read mode. Data Polling must be performed at an  
address within any of the sectors being erased.  
Refer to the Erase Command flow Chart using typical command strings and bus operations.  
6.7 Program Operation  
The W39V080FA is programmed on a byte-by-byte basis. Program operation can only change logical  
data "1" to logical data "0." The erase operation, which changed entire data in main memory and/or  
boot block from "0" to "1", is needed before programming.  
The program operation is initiated by a 4-byte command cycle (see Command Codes for Byte  
Programming). The device will internally enter the program operation immediately after the  
byte-program command is entered. The internal program timer will automatically time-out (9μS  
typ.-TBP) once it is completed and then return to normal read mode. Data polling and/or Toggle Bits can  
be used to detect end of program cycle.  
6.8 Dual BIOS  
The W39V080FA provides a solution for Dual-BIOS application. In FWH mode, when D/#F is low, the  
device functions as a full-chip partition of 8M-bit which address ranges from FFFFFh to 00000h with  
A[19:0]. If D/#F is driven high, the device functions as a dual-block partition that each block consists of  
4M-bit. For dual-block partition, there is only one 4M-bit block, either upper or lower, can be  
accessed. The U/#L pin selects either upper or lower 4M-bit block and its address ranges from  
7FFFFh to 00000h with A[19:0]. When U/#L is low, the lower 4M-bit block will be selected; while, U/#L  
is high, the upper 4M-bit block will be selected.  
6.9 Hardware Data Protection  
The integrity of the data stored in the W39V080FA is also hardware protected in the following ways:  
(1) Noise/Glitch Protection: A #WE pulse of less than 15 nS in duration will not initiate a write cycle.  
(2) VDD Power Up/Down Detection: The programming and read operation are inhibited when VDD is  
less than 2.0V typical.  
(3) Write Inhibit Mode: Forcing #OE low or #WE high will inhibit the write operation. This prevents  
inadvertent writes during power-up or power-down periods.  
- 6 -  
W39V080FA  
6.10 Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ5, DQ6,  
and DQ7. Each of DQ7 and DQ6 provides a method for determining whether a program or erase  
operation is complete or in progress. The device also offers a hardware-based output signal, RY/#BY in  
programmer mode, to determine whether an Embedded Program or Erase operation is in progress or  
has been completed.  
6.10.1 DQ7: #Data Polling  
The #Data Polling bit, DQ7, indicates whether an Embedded Program or Erase algorithm is in progress  
or completed. Data Polling is valid after the rising edge of the final #WE pulse in the command  
sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 and the complement of the data  
programmed to DQ7. Once the Embedded Program algorithm has completed, the device outputs the  
data programmed to DQ7. The system must provide the program address to read valid status  
information on DQ7. If a program address falls within a protected sector, #Data Polling on DQ7 is active  
for about 1μS, and then the device returns to the read mode.  
During the Embedded Erase algorithm, #Data Polling produces “0” on DQ7. Once the Embedded  
Erase algorithm has completed, #Data Polling produces “1” on DQ7. An address within any of the  
sectors selected for erasure must be provided to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, #Data  
Polling on DQ7 is active for about 100μS, and then the device returns to the read mode. If not all  
selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and  
ignores the selected sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
Just before the completion of an Embedded Program or Erase operation, DQ7 may change  
asynchronously with DQ0-DQ6 while Output Enable (#OE) is set to low. That is, the device may  
change from providing status information to valid data on DQ7. Depending on when it samples the DQ7  
output, the system may read the status or valid data. Even if the device has completed the program or  
erase operation and DQ7 has valid data, the data outputs on DQ0-DQ6 may be still invalid. Valid data  
on DQ7-DQ0 will appear on successive read cycles.  
6.10.2 RY/#BY: Ready/#Busy  
The RY/#BY is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/#BY status is valid after the rising edge of the final #WE pulse in the command  
sequence. Since RY/#BY is an open-drain output, several RY/#BY pins can be tied together in parallel with a  
pull-up resistor to VDD.  
When the output is low (Busy), the device is actively erasing or programming. When the output is high  
(Ready), the device is in the read mode or standby mode.  
6.10.3 DQ6: Toggle Bit  
Toggle Bit on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or  
complete. Toggle Bit I may be read at any address, and is valid after the rising edge of the final #WE  
pulse in the command sequence (before the program or erase operation), and during the sector erase  
time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address  
cause DQ6 to toggle. The system may use either #OE to control the read cycles. Once the operation  
has completed, DQ6 stops toggling.  
Publication Release Date: Dec. 13, 2005  
- 7 -  
Revision A5  
W39V080FA  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6  
toggles for about 100μS, and then returns to reading array data. If not all selected sectors are  
protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors which are protected.  
The system can use DQ6 to determine whether a sector is actively erasing. If the device is actively  
erasing (i.e., the Embedded Erase algorithm is in progress), DQ6 toggles. If a program address falls  
within a protected sector, DQ6 toggles for about 1 μs after the program command sequence is written,  
and then returns to reading array data.  
6.10.4 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit.  
DQ5 produces “1” under these conditions which indicates that the program or erase cycle was not  
successfully completed.  
The device may output “1” on DQ5 if the system tries to program “1” to a location that was previously  
programmed to “0.” Only the erase operation can change “0” back to “1.” Under this condition, the  
device stops the operation, and while the timing limit has been exceeded, DQ5 produces “1.”  
Under both these conditions, the system must hardware reset to return to the read mode.  
6.11 Identification Input pin ID[3:0]  
These pins are part of mechanism that allows multiple parts to be used on the same bus. The boot  
device should be 0000b. And all the subsequent parts should use the up-count strapping.  
6.12 Register  
There are three kinds of registers on this device, the General Purpose Input Registers, the Block Lock  
Control Registers and Product Identification Registers. Users can access these registers through  
respective address in the 4Gbytes memory map. There are detail descriptions in the sections below.  
6.12.1 General Purpose Inputs Register  
This register reads the FGPI[4:0] pins on the W39V080FA.This is a pass-through register which can  
read via memory address FFBC0100(hex). Since it is pass-through register, there is no default value.  
GPI Register Table  
BIT  
FUNCTION  
Reserved  
7 5  
4
3
2
1
0
Read FGPI4 pin status  
Read FGPI3 pin status  
Read FGPI2 pin status  
Read FGPI1 pin status  
Read FGPI0 pin status  
6.12.2 Block Locking Registers  
This part provides 16 even 64Kbytes blocks, and each block can be locked by register control. These  
control registers can be set or clear through memory address. Below is the detail description.  
- 8 -  
W39V080FA  
Block Locking Registers type and access memory map Table  
REGISTERS  
TYPE  
CONTROL  
BLOCK  
DEVICE PHYSICAL  
ADDRESS  
4GBYTES SYSTEM  
MEMORY ADDRESS  
REGISTERS  
BLR15  
BLR14  
BLR13  
BLR12  
BLR11  
BLR10  
BLR9  
BLR8  
BLR7  
BLR6  
BLR5  
BLR4  
BLR3  
BLR2  
BLR1  
BLR0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
15  
14  
13  
12  
11  
10  
9
0FFFFFh – 0F0000h  
0EFFFFh – 0E0000h  
0DFFFFh – 0D0000h  
0CFFFFh – 0C0000h  
0BFFFFh – 0B0000h  
0AFFFFh – 0A0000h  
09FFFFh – 090000h  
08FFFFh – 080000h  
07FFFFh – 070000h  
06FFFFh – 060000h  
05FFFFh – 050000h  
04FFFFh – 040000h  
03FFFFh – 030000h  
02FFFFh – 020000h  
01FFFFh – 010000h  
00FFFFh – 000000h  
FFBF0002h  
FFBE0002h  
FFBD0002h  
FFBC0002h  
FFBB0002h  
FFBA0002h  
FFB90002h  
FFB80002h  
FFB70002h  
FFB60002h  
FFB50002h  
FFB40002h  
FFB30002h  
FFB20002h  
FFB10002h  
FFB00002h  
8
7
6
5
4
3
2
1
0
Block Locking Register Bits Function Table  
BIT  
FUNCTION  
7 – 3  
2
Reserved  
Read Lock  
1: Prohibit to read in the block where set  
0: Normal read operation in the block where clear. This is default state.  
1
0
Lock Down  
1: Prohibit further to set or clear the Read Lock or Write Lock bits. This Lock Down  
Bit can only be set not clear. Only the device is reset or re-powered, the Lock Down  
Bit is cleared.  
0: Normal operation for Read Lock or Write Lock. This is the default state.  
Write Lock  
1: Prohibited to write in the block where set. This is default state.  
0: Normal programming/erase operation in the block where clear.  
Publication Release Date: Dec. 13, 2005  
- 9 -  
Revision A5  
W39V080FA  
Register Based Block Locking Value Definitions Table  
BIT [7:3]  
00000  
00000  
00000  
00000  
00000  
00000  
00000  
00000  
BIT 2  
BIT 1  
BIT 0  
RESULT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full Access.  
Write Lock. Default State.  
Locked Open (Full Access, Lock Down).  
Write Locked, Locked Down.  
Read Locked.  
Read & Write Locked.  
Read Locked, Locked Down.  
Read & Write Locked, Locked Down.  
Read Lock  
Any attempt to read the data of read locked block will result in “00H.” The default state of any block is  
unlocked upon power up. User can clear or set the write lock bit anytime as long as the lock down bit is  
not set.  
Write Lock  
This is the default state of blocks upon power up. Before any program or erase to the specified block,  
user should clear the write lock bit first. User can clear or set the write lock bit anytime as long as the  
lock down bit is not set. The write lock function is in conjunction with the hardware protect pins, #WP &  
TBL. When hardware protect pins are enabled, it will override the register block locking functions and  
write lock the blocks no matter how the status of the register bits. Reading the register bit will not reflect  
the status of the #WP or #TBL pins.  
Lock Down  
The default state of lock down bit for any block is unlocked. This bit can be set only once; any further  
attempt to set or clear is ignored. Only the reset from #RESET or #INIT can clear the lock down bit.  
Once the lock down bit is set for a block, then the write lock bit & read lock bit of that block will not be  
set or cleared, and keep its current state.  
6.12.3 Product Identification Registers  
There is an alternative software method to read out the Product Identification in both the Programmer  
interface mode and the FWH interface mode. Thus, the programming equipment can automatically  
matches the device with its proper erase and programming algorithms.  
In the full-chip(8Mb) FWH interface mode, a read from FFBC, 0000(hex) can output the manufacturer  
code, DA(hex). A read from FFBC, 0001(hex) can output the device code, D3(hex).  
For Dual-BIOS(4Mbx2) FWH mode , a read from FFBC, 0000(hex) can output the manufacturer code,  
DA(hex). A read from FFBC,0001(hex) can output the device code 93(hex).  
In the software access mode, a JEDEC 3-byte command sequence can be used to access the product  
ID for programmer interface mode. A read from address 0000(hex) outputs the manufacturer code,  
DA(hex). A read from address 0001(hex) outputs the device code, D3(hex).” The product ID operation  
can be terminated by a three-byte command sequence or an alternate one-byte command sequence  
(see Command Definition table for detail).  
- 10 -  
W39V080FA  
6.13 Table of Operating Modes  
6.13.1 Operating Mode Selection - Programmer Mode  
MODE  
PINS  
ADDRESS  
#OE  
VIL  
VIH  
X
#WE  
VIH  
VIL  
X
#RESET  
VIH  
DQ.  
Dout  
Read  
AIN  
AIN  
X
Write  
VIH  
Din  
Standby  
Write Inhibit  
VIL  
High Z  
VIL  
X
X
VIH  
X
High Z/DOUT  
High Z/DOUT  
High Z  
VIH  
X
VIH  
X
Output Disable  
VIH  
VIH  
X
6.13.2 Operating Mode Selection - FWH Mode  
Operation modes in FWH interface mode are determined by "START Cycle" when it is selected.  
When it is not selected, its outputs (FWH[3:0]) will be disable. Please reference to the "FWH Cycle  
Definition".  
Table of Command Definition  
COMMAND  
NO. OF  
1ST CYCLE  
Addr. Data  
2ND CYCLE 3RD CYCLE 4TH CYCLE 5TH CYCLE 6TH CYCLE  
Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data  
DESCRIPTION  
Cycles (1)  
Read  
1
6
4
3
3
1
AIN  
DOUT  
AA  
Sector Erase  
Byte Program  
Product ID Entry  
Product ID Exit (4)  
Product ID Exit (4)  
Notes:  
5555  
5555  
5555  
5555  
2AAA  
2AAA  
2AAA  
2AAA  
55  
55  
55  
55  
5555  
5555  
5555  
5555  
80  
5555  
AA  
DIN  
2AAA  
55  
SA(5)  
30  
AA  
A0 AIN  
90  
AA  
AA  
F0  
XXXX F0  
1. The cycle means the write command cycle not the FWH clock cycle.  
2. The Column Address / Row Address are mapped to the Low / High order Internal Address. i.e. Column Address  
A[10:0] are mapped to the internal A[10:0], Row Address A[7:0] are mapped to the internal A[19:11]  
3. Address Format: A14A0 (Hex); Data Format: DQ7-DQ0 (Hex)  
4. Either one of the two Product ID Exit commands can be used.  
5. SA: Sector Address  
SA = FXXXXh for Unique Sector15 (Boot Sector)  
SA = EXXXXh for Unique Sector14  
SA = DXXXXh for Unique Sector13  
SA = CXXXXh for Unique Sector12  
SA = BXXXXh for Unique Sector11  
SA = AXXXXh for Unique Sector10  
SA = 9XXXXh for Unique Sector9  
SA = 8XXXXh for Unique Sector8  
SA = 7XXXXh for Unique Sector7  
SA = 6XXXXh for Unique Sector6  
SA = 5XXXXh for Unique Sector5  
SA = 4XXXXh for Unique Sector4  
SA = 3XXXXh for Unique Sector3  
SA = 2XXXXh for Unique Sector2  
SA = 1XXXXh for Unique Sector1  
SA = 0XXXXh for Unique Sector0  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 11 -  
W39V080FA  
6.14 Fwh Cycle Definition  
NO. OF  
FIELD  
DESCRIPTION  
CLOCKS  
"1101b" indicates FWH Memory Read cycle; while "1110b" indicates FWH  
Memory Write cycle. 0000b" appears on FWH bus to indicate the initial  
START  
1
IDSEL  
MSIZE  
TAR  
1
1
2
This one clock field indicates which FWH component is being selected.  
Memory Size. There is always show “0000b” for single byte access.  
Turned Around Time  
Address Phase for Memory Cycle. FWH supports the 28 bits address  
protocol. The addresses transfer most significant nibble first and least  
significant nibble last. (i.e. Address[27:24] on FWH[3:0] first, and  
Address[3:0] on FWH[3:0] last.)  
ADDR  
7
Synchronous to add wait state. "0000b" means Ready, "0101b" means Short  
Wait, "0110b" means Long Wait, "1001b" for DMA only, "1010b" means  
error, and other values are reserved.  
SYNC  
DATA  
N
2
Data Phase for Memory Cycle. The data transfer least significant nibble first  
and most significant nibble last. (i.e. DQ[3:0] on FWH[3:0] first, then DQ[7:4]  
on FWH[3:0] last.)  
- 12 -  
W39V080FA  
6.15 Embedded Programming Algorithm  
Start  
Write Program Command Sequence  
(see below)  
#Data Polling/ Toggle bit  
Programming Completed  
Program Command Sequence (Address/Command):  
5555H/AAH  
2AAAH/55H  
5555H/A0H  
Program Address/Program Data  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 13 -  
W39V080FA  
6.16 Embedded Erase Algorithm  
Start  
Write Erase Command Sequence  
(see below)  
#Data Polling or Toggle Bit  
Erasure Completed  
Individual Sector Erase  
Command Sequence  
(Address/Command):  
5555H/AAH  
2AAAH/55H  
5555H/80H  
5555H/AAH  
2AAAH/55H  
Sector Address/30H  
- 14 -  
W39V080FA  
6.17 Embedded #Data Polling Algorithm  
Start  
Read Byte  
(DQ0 - DQ7)  
Address = SA  
Yes  
DQ7 = Data  
?
No  
No  
DQ5 = 1  
Yes  
Read Byte  
(DQ0 - DQ7)  
Address = SA  
Yes  
DQ7 = Data  
No  
Fail  
Pass  
Note: SA = Valid address for programming .During a sector erase  
operation, a valid address is an address within any sector  
selected for erasure.  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 15 -  
W39V080FA  
6.18 Embedded Toggle Bit Algorithm  
Start  
Read Byte  
(DQ0-DQ7)  
Read Byte  
(DQ0-DQ7)  
No  
Toggle Bit  
=Toggle ?  
Yes  
No  
DQ5 = 1 ?  
Yes  
Read Byte  
(DQ0-DQ7) Twin  
No  
Toggle Bit  
=Toggle ?  
Fail  
Pass  
Note: Recheck toggle bit because it may stop toggling as DQ5 changes to “1” .  
- 16 -  
W39V080FA  
6.19 Software Product Identification and Boot Block Lockout Detection Acquisition  
Flow  
Product  
Product  
Product  
Identification  
and Boot Block  
Lockout Detection  
Mode (3)  
Identification  
Entry (1)  
Identification Exit(6)  
Load data AA  
to  
address 5555  
Load data AA  
to  
address 5555  
(2)  
(2)  
(4)  
Load data 55  
to  
address 2AAA  
Load data 55  
to  
Read address = 00000  
data = DA  
address 2AAA  
Load data 90  
to  
address 5555  
Load data F0  
to  
address 5555  
Read address = 00001  
data = D3  
Read address = FFFF2  
Check DQ[3:0] of data  
outputs  
μ
μ
Pause 10  
S
Pause 10  
S
(5)  
Normal Mode  
Notes for software product identification/boot block lockout detection:  
(1) Data Format: DQ7DQ0 (Hex); Address Format: A14A0 (Hex)  
(2) A1A19 = VIL; manufacture code is read for A0 = VIL; device code is read for A0 = VIH.  
(3) The device does not remain in identification and boot block lockout detection mode if power down.  
(4) The DQ[3:2] to indicate the sectors protect status as below:  
DQ2  
DQ3  
64Kbytes Boot Block Unlocked by #TBL  
hardware trapping  
Whole Chip Unlocked by #WP hardware  
trapping Except Boot Block  
0
1
64Kbytes Boot Block Locked by #TBL  
hardware trapping  
Whole Chip Locked by #WP hardware trapping  
Except Boot Block  
(5) The device returns to standard operation mode.  
(6) Optional 1-write cycle (write F0 (hex.) at XXXX address) can be used to exit the product identification/boot block lockout  
detection.  
Publication Release Date: Dec. 13, 2005  
- 17 -  
Revision A5  
W39V080FA  
7. DC CHARACTERISTICS  
7.1 Absolute Maximum Ratings  
PARAMETER  
Power Supply Voltage to VSS Potential  
Operating Temperature  
RATING  
UNIT  
V
-0.5 to +4.0  
0 to +70  
°C  
°C  
V
Storage Temperature  
-65 to +150  
D.C. Voltage on Any Pin to Ground Potential  
VPP Voltage  
-0.5 to VDD +0.5  
-0.5 to +13  
V
Transient Voltage (<20 nS) on Any Pin to Ground Potential  
-1.0 to VDD +0.5  
V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings May adversely affect the life and reliability  
of the device.  
7.2 Programmer interface Mode DC Operating Characteristics  
(VDD = 3.3V ± 0.3V, VSS= 0V, TA = 0 to 70° C)  
LIMITS  
PARAMETER  
Power Supply  
SYM.  
TEST CONDITIONS  
UNIT  
MIN. TYP.  
MAX.  
In Read or Write mode, all DQs open  
Address inputs = 3.0V/0V, at f = 3 MHz  
ICC1  
ICC2  
ILI  
-
15  
20  
mA  
mA  
Current (read)  
In Read or Write mode, all DQs open  
Address inputs = 3.0V/0V, at f = 3 MHz  
Power Supply  
Current (erase/ write)  
-
-
-
35  
-
45  
90  
90  
Input Leakage  
Current  
VIN = VSS to VDD  
μA  
μA  
Output Leakage  
Current  
ILO VOUT = VSS to VDD  
-
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
VIL  
-
-
-0.5  
2.0  
-
-
-
-
-
0.8  
VDD +0.5  
0.45  
V
V
V
V
VIH  
VOL IOL = 2.1 mA  
Output High Voltage VOH IOH = -0.1mA  
2.4  
-
- 18 -  
W39V080FA  
7.3 FWH interface Mode DC Operating Characteristics  
(VDD = 3.3V ± 0.3V, VSS= 0V, TA = 0 to 70° C)  
LIMITS  
PARAMETER  
SYM.  
TEST CONDITIONS  
UNIT  
MIN.  
TYP.  
MAX.  
Power Supply Current  
(read)  
All Iout = 0A, CLK = 33 MHz,  
in FWH mode operation.  
mA  
ICC1  
ICC2  
-
15  
20  
Power Supply Current  
(erase/write)  
All Iout = 0A, CLK = 33 MHz,  
in FWH mode operation.  
-
-
35  
20  
45  
50  
mA  
uA  
FWH4 = 0.9 VDD, CLK = 33 MHz,  
Standby Current 1  
Isb1  
Isb2  
all inputs = 0.9 VDD / 0.1 VDD  
no internal operation  
FWH4 = 0.1 VDD, CLK = 33 MHz,  
mA  
Standby Current 2  
Input Low Voltage  
-
3
10  
all inputs = 0.9 VDD /0.1 VDD  
no internal operation.  
VIL  
VILI  
VIH  
VIHI  
-
-
-
-
-0.5  
-0.5  
-
-
-
-
0.3 VDD  
0.2 VDD  
V
V
V
V
Input Low Voltage of  
#INIT  
Input High Voltage  
0.5 VDD  
1.35 V  
VDD +0.5  
VDD +0.5  
Input High Voltage of  
#INIT Pin  
Output Low Voltage  
Output High Voltage  
VOL IOL = 1.5 mA  
VOH IOH = -0.5 mA  
-
-
-
0.1 VDD  
-
V
V
0.9 VDD  
7.4 Power-up Timing  
PARAMETER  
Power-up to Read Operation  
Power-up to Write Operation  
SYMBOL  
TPU. READ  
TPU. WRITE  
TYPICAL  
UNIT  
100  
5
μS  
mS  
7.5 Capacitance  
(VDD = 3.3V, TA = 25° C, f = 1 MHz)  
PARAMETER  
I/O Pin Capacitance  
Input Capacitance  
SYMBOL  
CI/O  
CONDITIONS  
VI/O = 0V  
MAX.  
12  
UNIT  
pf  
CIN  
VIN = 0V  
6
pf  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 19 -  
W39V080FA  
8. PROGRAMMER INTERFACE MODE AC CHARACTERISTICS  
8.1 AC Test Conditions  
PARAMETER  
Input Pulse Levels  
CONDITIONS  
0V to 0.9 VDD  
< 5 nS  
Input Rise/Fall Time  
Input/Output Timing Level  
Output Load  
1.5V/1.5V  
1 TTL Gate and CL = 30 pF  
8.2 AC Test Load and Waveform  
+3.3V  
1.8K  
Ω
DOUT  
Input  
Output  
30 pF  
(Including Jig and  
Scope)  
0.9VDD  
1.5V  
0V  
1.3K  
Ω
1.5V  
Test Point  
Test Point  
- 20 -  
W39V080FA  
Programmer Interface Mode AC Characteristics, continued  
8.3 Read Cycle Timing Parameters  
(VDD = 3.3V ± 0.3V, VSS = 0V, TA = 0 to 70° C)  
W39V080FA  
PARAMETER  
SYMBOL  
UNIT  
MIN.  
MAX.  
Read Cycle Time  
TRC  
TAS  
350  
50  
50  
-
-
-
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
Row / Column Address Set Up Time  
Row / Column Address Hold Time  
Address Access Time  
TAH  
TAA  
-
200  
75  
-
Output Enable Access Time  
#OE Low to Active Output  
#OE High to High-Z Output  
Output Hold from Address Change  
TOE  
TOLZ  
TOHZ  
TOH  
-
0
-
35  
-
0
8.4 Write Cycle Timing Parameters  
PARAMETER  
Reset Time  
SYMBOL  
TRST  
TAS  
MIN.  
TYP.  
MAX.  
UNIT  
μS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
μS  
S
1
50  
50  
50  
100  
100  
50  
50  
0
-
-
-
Address Setup Time  
Address Hold Time  
-
TAH  
-
-
R/#C to Write Enable High Time  
#WE Pulse Width  
TCWH  
TWP  
-
-
-
-
#WE High Width  
TWPH  
TDS  
-
-
Data Setup Time  
-
-
Data Hold Time  
TDH  
-
-
#OE Hold Time  
TOEH  
TBP  
-
-
250  
6
Byte programming Time  
Sector Erase Cycle Time (Note (c))  
Program/Erase Valid to RY/#BY Delay  
-
9
0.9  
-
TPEC  
TBUSY  
-
90  
-
nS  
Note: All AC timing signals observe the following guidelines for determining setup and hold times:  
(a) High level signal's reference level is input high and  
(b) low level signal's reference level is input low. Ref. to the AC testing condition.  
(c) Exclude 00H pre-program prior to erasure. (In the pre-programming step of the embedded erase algorithm, all bytes are  
programmed to 00H before erasure  
8.5 Data Polling and Toggle Bit Timing Parameters  
W39V080FA  
PARAMETER  
SYMBOL  
UNIT  
MIN.  
MAX.  
40  
#OE to Data Polling Output Delay  
#OE to Toggle Bit Output Delay  
Toggle or Polling interval  
TOEP  
TOET  
---  
-
-
nS  
nS  
40  
50  
-
mS  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 21 -  
W39V080FA  
9. TIMING WAVEFORMS FOR PROGRAMMER INTERFACE MODE  
9.1 Read Cycle Timing Diagram  
#RESET  
T
RST  
TRC  
Row Address  
Column Address  
Row Address  
A[10:0]  
R/#C  
Column Address  
T
AS  
T
T
AS  
T
AH  
AH  
VIH  
#WE  
#OE  
T
AA  
OH  
T
TOE  
TOHZ  
T
OLZ  
High-Z  
High-Z  
DQ[7:0]  
Data Valid  
9.2 Write Cycle Timing Diagram  
T
RST  
#RESET  
A[10:0]  
Column Address  
Row Address  
T
AS  
T
AS  
T
AH  
T
AH  
R/#C  
#OE  
T
CWH  
T
T
OEH  
T
WP  
WPH  
#WE  
T
DH  
T
DS  
DQ[7:0]  
Data Valid  
- 22 -  
W39V080FA  
Timing Waveforms for Programmer Interface Mode, continued  
9.3 Program Cycle Timing Diagram  
Byte Program Cycle  
A[10:0]  
Programmed Address  
2AAA  
55  
5555  
(Internal A[19:0])  
DQ[7:0]  
5555  
A0  
Data-In  
AA  
R/#C  
#OE  
#WE  
TWPH  
BP  
T
WP  
T
Internal Write Start  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
RY/#BY  
TBUSY  
Note: The internal address A[19:0] are converted from external Column/Row address.  
Column/Row Address are mapped to the Low/High order internal address.  
i.e. Column Address A[10:0] are mapped to the internal A[10:0],  
Row Address A[8:0] are mapped to the internal A[19:11].  
9.4 #DATA Polling Timing Diagram  
A[10:0]  
(Internal A[19:0])  
An  
An  
An  
An  
R/#C  
#WE  
#OE  
TOEP  
X
X
DQ7  
X
X
BP  
T
RY/#BY  
BUSY  
T
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 23 -  
W39V080FA  
Timing Waveforms for Programmer Interface Mode, continued  
9.5 Toggle Bit Timing Diagram  
A[10:0]  
R/#C  
#WE  
#OE  
TOET  
DQ6  
TBP  
RY/#BY  
9.6 Sector Erase Timing Diagram  
Six-byte code for 3.3V-only  
Sector Erase  
A[10:0]  
5555  
AA  
2AAA  
55  
(Internal A[19:0])  
DQ[7:0]  
5555  
80  
5555  
AA  
2AAA  
55  
SA  
30  
R/ #C  
#OE  
#WE  
T
WP  
T
PEC  
T
WPH  
Internal Erase starts  
SB0  
SB2  
SB3  
SB5  
SB4  
SB1  
RY/#BY  
Note: The internal address A[19:0] are converted from external Column/Row address.  
Column/Row Address are mapped to the Low/High order internal address.  
i.e. Column Address A[10:0] are mapped to the internal A[10:0],  
T
BUSY  
Row Address A[8:0] are mapped to the internal A[19:11].  
SA = Sector Address, Please ref. to the "Table of Command Definition"  
- 24 -  
W39V080FA  
10. FWH INTERFACE MODE AC CHARACTERISTICS  
10.1 AC Test Conditions  
PARAMETER  
Input Pulse Levels  
CONDITIONS  
0.6 VDD to 0.2 VDD  
1 V/nS  
Input Rise/Fall Slew Rate  
Input/Output Timing Level  
Output Load  
0.4VDD / 0.4VDD  
1 TTL Gate and CL = 10 pF  
10.2 Read/Write Cycle Timing Parameters  
(VDD = 3.3V ± 0.3V, VSS = 0V, TA = 0 to 70° C)  
W39V080FA  
MIN. MAX.  
PARAMETER  
Clock Cycle Time  
SYMBOL  
UNIT  
TCYC  
TSU  
THD  
TKQ  
30  
7
-
nS  
nS  
nS  
nS  
Input Set Up Time  
Input Hold Time  
-
-
0
Clock to Data Valid  
2
11  
Note: Minimum and Maximum time have different load. Please refer to PCI specification.  
10.3 Reset Timing Parameters  
PARAMETER  
VDD stable to Reset Active  
Clock Stable to Reset Active  
Reset Pulse Width  
SYMBOL  
TPRST  
TKRST  
TRSTP  
TRSTF  
TRST  
MIN.  
1
TYP.  
MAX.  
UNIT  
mS  
μS  
-
-
-
-
-
-
-
100  
100  
-
-
nS  
Reset Active to Output Float  
Reset Inactive to Input Active  
50  
-
nS  
10  
μS  
Note: All AC timing signals observe the following guidelines for determining setup and hold times:  
(a) High level signal's reference level is input high and  
(b) low level signal's reference level is input low.  
Please refer to the AC testing condition.  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 25 -  
W39V080FA  
11. TIMING WAVEFORMS FOR FWH INTERFACE MODE  
11.1 Read Cycle Timing Diagram  
TCYC  
CLK  
#RESET  
FWH4  
T
SU THD  
TSU THD  
TKQ  
Start  
FWH  
Read  
M Size  
IDSEL  
Address  
A[15:12] A[11:8] A[7:4]  
TAR  
1111b Tri-State 0000b  
2 Clocks 1 Clock Data out 2 Clocks  
Next Start  
0000b  
TAR  
Data  
Sync  
A[19:16]  
XA[22]XXb  
D[3:0]  
FWH[3:0]  
XXXXb  
A[3:0]  
0000  
b]  
D[7:4]  
1111b Tri-State  
2 Clocks  
1101b  
0000b  
Load Address in 7  
Clocks  
1 Clock  
1 Clock  
1 Clock  
Note: When A22 = high, the host will read the BIOS code from the FWH device.  
While A22 = low, the host will read the GPI (Add = FFBC0100) or  
Product ID (Add = FFBC0000/FFBC0001) from the FWH device  
11.2 Write Cycle Timing Diagram  
T
CYC  
CLK  
#RESET  
FWH4  
T
T
SU HD  
Start  
FWH  
TAR  
1111b  
2 Clocks  
TAR  
Sync  
0000b  
M Size  
Address  
Next Start  
IDSEL  
0000b  
Data  
D[7:4]  
Load Data in 2 Clocks  
Write  
XXXXb XXXXb  
A[15:12] A[11:8]  
A[7:4]  
Tri-State  
Tri-State 0000b  
FWH[3:0]  
1110b  
A[19:16]  
A[3:0]  
0000b  
D[3:0]  
1111b  
1 Clock  
2 Clocks  
1 Clock  
Load Address in 7 Clocks  
1 Clock  
1 Clock  
- 26 -  
W39V080FA  
Timing Waveforms, for FWH Interface Mode, continued  
11.3 Program Cycle Timing Diagram  
CLK  
#RESET  
FWH4  
Start next  
Data  
TAR  
Sync  
0000b  
TAR  
Address  
M Size  
IDSEL  
1st Start  
1110b  
command  
XXXXb  
XXXXb  
XXXXb  
0101b  
0101b  
0101b  
0000b  
X101b  
1111b  
FWH[3:0  
]
Tri-State  
1111b  
Tri-State  
1010b  
1010b  
0000b  
Load Data "AA" in 2 Clocks  
2 Clocks  
Load Address "5555" in 7 Clocks  
1 Clock  
1 Clock  
1 Clock  
2 Clocks  
1 Clock  
Write the 1st command to the device in FWH mode.  
CLK  
#RESET  
FWH4  
Start next  
command  
Address  
X010b  
Data  
TAR  
TAR  
M
Size  
Sync  
0000b  
IDSEL  
2nd Start  
1110b  
XXXXb  
1010b  
1010b  
1010b  
0000b  
XXXXb  
FWH[3:0  
]
1111b  
1111b  
XXXXb  
0101b  
0101b  
Tri-State  
Tri-State  
0000b  
Load Data "55"  
in 2 Clocks  
2 Clocks  
1 Clock  
Load Address "2AAA" in 7 Clocks  
1 Clock  
2 Clocks  
1 Clock  
1 Clock  
Write the 2nd command to the device in FWH mode.  
CLK  
#RESET  
FWH4  
Start next  
command  
Data  
TAR  
TAR  
Sync  
0000b  
IDSEL  
Address  
M Size  
3rd Start  
1110b  
XXXXb  
]
XXXXb  
0000b  
FWH[3:0  
XXXXb  
X101b  
0101b  
0101b  
0101b  
0000b  
1010b  
1111b  
1111b  
Tri-State  
Tri-State  
0000b  
Load Data "A0"  
in 2 Clocks  
2 Clocks  
1 Clock  
Load Address "5555" in 7 Clocks  
1 Clock  
2 Clocks  
1 Clock  
1 Clock  
Write the 3rd command to the device in FWH mode.  
CLK  
#RESET  
Internal  
FWH4  
program start  
Address  
Data  
TAR  
TAR  
IDSEL  
Sync  
0000b  
M
Size  
4th Start  
1110b  
XXXXb  
]
XXXXb  
A[19:16]  
A[15:12]  
A[11:8]  
A[7:4]  
FWH[3:0  
A[3:0]  
0000b  
D[3:0]  
D[7:4]  
1111b  
Tri-State  
1111b  
Tri-State  
Internal  
0000b  
program start  
Load Din in 2 Clocks  
2 Clocks  
1 Clock  
2 Clocks  
Load Ain in 7 Clocks  
1 Clock  
1 Clock  
Write the 4th command(target location to be programmed) to the device in FWH mode.  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 27 -  
W39V080FA  
Timing Waveforms for FWH Interface Mode, continued  
11.4 #DATA Polling Timing Diagram  
CLK  
#RESET  
FWH4  
Data  
TAR  
Sync  
0000b  
M Size  
TAR  
1111b  
2 Clocks  
Next Start  
1 Clock  
Address  
An[15:12]  
Start  
1110b  
IDSEL  
0000b  
XXXXb  
XXXXb  
An[19:16]  
Dn[3:0] Dn[7:4]  
An[7:4]  
An[3:0]  
0000b  
1111b  
2 Clocks  
FWH[3:0]  
An[11:8]  
Tri-State  
Tri-State  
Load Data "Dn"  
in 2 Clocks  
1 Clock  
Load Address "An" in 7 Clocks  
1 Clock  
1 Clock  
Write the last command(program or erase) to the device in FWH mode.  
CLK  
#RESET  
XXXXb  
FWH4  
M Size  
TAR  
1111b  
2 Clocks  
Next Start  
1 Clock  
Address  
An[15:12]  
TAR  
Tri-State 0000b  
1 Clock  
Start  
Sync  
Data  
IDSEL  
0000b  
XXXXb  
XXXXb  
An[19:16]  
An[11:8]  
An[7:4]  
An[3:0]  
0000b  
Tri-State  
FWH[3:0]  
1101b  
1111b  
XXXXb Dn7,xxx  
1 Clock  
2 Clocks  
Read the DQ7 to see if the internal write complete or not.  
Load Address in 7 Clocks  
1 Clock  
Data out 2 Clocks  
CLK  
#RESET  
FWH4  
TAR  
Next Start  
1 Clock  
Address  
An[15:12]  
TAR  
Tri-State 0000b  
1 Clock  
IDSEL  
0000b  
M Size  
Start  
1101b  
Sync  
Data  
XXXXb  
XXXXb  
FWH[3:0]  
An[A19:16]  
An[11:8]  
An[7:4]  
An[3:0]  
1111b  
2 Clocks  
XXXXb  
Dn7,xxx 1111b  
Tri-State  
0000b  
Load Address in 7 Clocks  
Data out 2 Clocks  
2 Clocks  
1 Clock  
1 Clock  
When internal write complete, the DQ7 will equal to Dn7.  
- 28 -  
W39V080FA  
Timing Waveforms for FWH Interface Mode, continued  
11.5 Toggle Bit Timing Diagram  
CLK  
#RESET  
FWH4  
Data  
D[7:4]  
TAR  
TAR  
1111b  
2 Clocks  
Next Start  
1 Clock  
Sync  
0000b  
Address  
A[19:16] A[15:12]  
M Size  
Start  
IDSEL  
0000b  
XXXXb  
XXXXb  
A[7:4]  
A[3:0]  
0000b  
Tri-State  
D[3:0]  
1111b  
2 Clocks  
FWH[3:0]  
1110b  
A[11:8]  
Tri-State  
Load Data "Dn"  
in 2 Clocks  
1 Clock  
Load Address "An" in 7 Clocks  
1 Clock  
1 Clock  
Write the last command(program or erase) to the device in FWH mode.  
CLK  
#RESET  
FWH4  
TAR  
1111b  
Next Start  
1 Clock  
Address  
XXXXb  
TAR  
Tri-State 0000b  
1 Clock Data out 2 Clocks  
Start IDSEL  
M Size  
Sync  
Data  
0000b  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
XXXXb XXXXb  
0000b  
XXXXb  
1101b  
1111b  
FWH[3:0]  
Tri-State  
2 Clocks  
X,D6,XXb  
1 Clock  
2 Clocks  
Read the DQ6 to see if the internal write complete or not.  
1 Clock  
Load Address in 7 Clocks  
CLK  
#RESET  
FWH4  
TAR  
1111b  
2 Clocks  
Next Start  
1 Clock  
Address  
TAR  
Tri-State 0000b  
2 Clocks 1 Clock Data out 2 Clocks  
When internal write complete, the DQ6 will stop toggle.  
Start  
1101b  
Sync  
Data  
IDSEL  
0000b  
M Size  
XXXXb  
XXXXb  
0000b  
1111b  
FWH[3:0]  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
Tri-State  
XXXXb  
XXXXb  
X,D6,XXb  
Load Address in 7 Clocks  
1 Clock  
1 Clock  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 29 -  
W39V080FA  
Timing Waveforms for FWH Interface Mode, continued  
11.6 Sector Erase Timing Diagram  
CLK  
#RESET  
FWH4  
Start next  
command  
Data  
1010b 1010b  
TAR  
1111b  
TAR  
M Size  
0000b  
Sync  
Address  
X101b  
Load Address "5555" in 7 Clocks  
1st Start IDSEL  
XXXXb  
XXXXb  
FWH[3:0]  
0000b  
1110b  
XXXXb  
0000b  
Tri-State  
2 Clocks  
0101b  
0101b  
0101b  
1111b  
Tri-State  
Load Data "AA"  
in 2 Clocks  
1 Clock  
2 Clocks  
1 Clock 1 Clock  
1 Clock  
Write the 1st command to the device in FWH mode.  
CLK  
#RESET  
FWH4  
Start next  
command  
Address  
X010b  
Data  
0101b 0101b  
TAR  
1111b  
2 Clocks  
TAR  
1111b  
2 Clocks  
Sync  
0000b  
IDSEL  
0000b  
M
2nd Start  
1110b  
Size  
XXXXb  
XXXXb  
FWH[3:0]  
XXXXb  
0000b  
Tri-State  
1010b  
1010b  
1010b  
Tri-State  
Load Data "55"  
in 2 Clocks  
1 Clock  
1 Clock 1 Clock  
Load Address "2AAA" in 7 Clocks  
1 Clock  
Write the 2nd command to the device in FWH mode.  
CLK  
#RESET  
FWH4  
Start next  
command  
Data  
0000b 1000b  
TAR  
Tri-State  
2 Clocks  
TAR  
M Size  
0000b  
Sync  
Address  
X101b  
Load Address "5555" in 7 Clocks  
3rd Start IDSEL  
1110b 0000b  
XXXXb  
XXXXb  
FWH[3:0]  
0000b  
XXXXb  
1111b  
Tri-State  
2 Clocks  
0101b  
0101b  
0101b  
1111b  
Load Data "80"  
in 2 Clocks  
1 Clocks  
1 Clocks1 Clocks  
1 Clocks  
Write the 3rd command to the device in FWH mode.  
CLK  
#RESET  
FWH4  
Start next  
command  
Address  
X101b  
M Size  
0000b  
Data  
1010b  
TAR  
1111b  
Tri-State 0000b  
2 Clocks  
1 Clock  
TAR  
1111b Tri-State  
2 Clocks  
Sync  
IDSEL  
0000b  
4th Start  
1110b  
FWH[3:0]  
XXXXb  
XXXXb  
XXXXb  
0101b  
0101b  
0101b  
1010b  
Load Data "AA"  
in 2 Clocks  
1 Clock  
Load Address "5555" in 7 Clocks  
1 Clock  
1 Clock  
Write the 4th command to the device in FWH mode.  
CLK  
#RESET  
FWH4  
Start next  
command  
Data  
0101b  
TAR  
1111b  
Tri-State 0000b  
2 Clocks  
TAR  
1111b  
Tri-State  
M Size  
0000b  
Sync  
Address  
X010b  
5th Start IDSEL  
FWH[3:0]  
XXXXb  
XXXXb  
XXXXb  
1110b  
0000b  
1010b  
1010b  
1010b  
0101b  
Load Data "55"  
in 2 Clocks  
2 Clocks  
1 Clock  
Load Address "2AAA" in 7 Clocks  
1 Clock 1 Clock  
1 Clock  
Write the 5th command to the device in FWH mode.  
CLK  
#RESET  
FWH4  
Internal  
erase start  
Address  
Data  
0011b  
TAR  
1111b  
2 Clocks  
TAR  
Sync  
0000b  
M Size  
0000b  
IDSEL  
0000b  
6th Start  
1110b  
FWH[3:0]  
Internal  
XXXXb  
XXXXb  
1111b Tri-State  
2 Clocks  
A[19:16]  
XXXXb XXXXb XXXXb XXXXb  
0000b  
Tri-State  
erase start  
Load Din  
in 2 Clocks  
1 Clock  
1 Clock  
Load Sector Address in 7 Clocks  
1 Clock  
Write the 6th command(target sector to be erased) to the device in FWH mode.  
- 30 -  
W39V080FA  
Timing Waveforms for FWH Interface Mode, continued  
11.7 FGPI Register/Product ID Readout Timing Diagram  
CLK  
#RESET  
FWH4  
M Size  
0000b  
IDSEL  
0000b  
Address  
0000b  
TAR  
Next Sta  
1 Clock  
TAR  
Start  
Sync  
Data  
FWH[3:0]  
0001b  
/0000b  
0000b  
/0001b  
1101b  
Tri-State 1111b  
D[3:0]  
D[7:4]  
A[27:24]  
Tri-State 1111b  
A[23:20] A[19:16]  
0000b  
0000b  
Load Address "FFBC0100(hex)" in 7 Clocks for GPI Register  
& "FFBC0000(hex)/FFBC0001(hex) for Product ID  
2 Clocks  
1 Clock Data out 2 Clocks  
1 Clock 1 Clock  
2 Clocks  
Note: During the GPI read out mode, the DQ[4:0] will capture the states(High or Low) of the FGPI[4:0] input pins. The DQ[7:5] are reserved pins  
11.8 Reset Timing Diagram  
VDD  
CLK  
TPRST  
TKRST  
TRSTP  
#RESET  
FWH[3:0]  
TRST  
TRSTF  
FWH4  
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 31 -  
W39V080FA  
12. ORDERING INFORMATION  
FWH MODE  
STANDBY VDD  
CURRENT TYP.  
FWH MODE  
POWER SUPPLY  
CURRENT TYP.  
ACCESS  
TIME  
PART NO.  
PACKAGE  
(nS)  
(mA)  
(uA )  
20  
W39V080FAP  
W39V080FAQ  
W39V080FAT  
W39V080FAPZ  
W39V080FAQZ  
W39V080FATZ  
11  
11  
11  
11  
11  
11  
15  
32L PLCC  
15  
20  
32L STSOP  
15  
20  
40L TSOP  
15  
20  
32L PLCC Lead free  
32L STSOP Lead free  
40L TSOP Lead free  
15  
20  
15  
20  
Notes:  
1. Winbond reserves the right to make changes to its products without prior notice.  
2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in  
applications where personal injury might occur as a consequence of product failure.  
13. HOW TO READ THE TOP MARKING  
Example: The top marking of 32-pin STSOP W39V080FAQZ  
W39V080FAQZ  
2138977A-A12  
149OBSA  
1st line: Winbond logo  
2nd line: the part number: W39V080FAQZ  
3rd line: the lot number  
4th line: the tracking code: 149 O B SA  
149: Packages made in ’01, week 49  
O: Assembly house ID: A means ASE, O means OSE, ...etc.  
B: IC revision; A means version A, B means version B, ...etc.  
SA: Process code  
Z: Lead free  
- 32 -  
W39V080FA  
14. PACKAGE DIMENSIONS  
14.1 32L PLCC  
Dimension in Inches  
Dimension in mm  
Symbol  
Min. Nom. Max. Min. Nom. Max.  
H E  
E
0.140  
3.56  
A
0.020  
0.105  
0.026  
0.016  
0.008  
0.547  
0.447  
0.044  
0.490  
0.390  
0.585  
0.485  
0.50  
2.67  
A
A
b
b
c
D
E
e
G
G
H
H
L
y
1
2
1
4
1
32  
30  
0.110  
0.028  
0.018  
0.010  
0.550  
0.450  
0.050  
0.510  
0.410  
0.590  
0.490  
0.090  
0.115  
0.032  
0.022  
0.014  
0.553  
0.453  
0.056  
0.530  
0.430  
0.595  
0.495  
2.80  
0.71  
2.93  
0.81  
0.66  
0.41  
0.56  
0.46  
5
29  
0.20  
0.35  
0.25  
13.89  
11.35  
1.12  
14.05  
11.51  
1.42  
13.97  
11.43  
1.27  
12.45  
9.91  
12.95  
13.46  
10.92  
15.11  
12.57  
D
G D  
10.41  
14.99  
12.45  
2.29  
E
D
E
D
HD  
14.86  
12.32  
0.075  
0.095  
0.004  
1.91  
2.41  
0.10  
0
10  
0
10  
θ
21  
13  
Notes:  
1. Dimensions D & E do not include interlead flash.  
2. Dimension b1 does not include dambar protrusion/intrusio  
3. Controlling dimension: Inches  
14  
20  
c
4. General appearance spec. should be based on final  
visual inspection sepc.  
L
A2  
A
θ
e
1
b
A
b1  
Seating Plane  
y
E
G
14.2 32L STSOP (8X14mm)  
HD  
D
c
Dimension in Inches Dimension in mm  
Symbol  
Max.  
Min. Nom. Max. Min. Nom.  
e
0.047  
1.20  
A
0.002  
0.035  
0.006  
0.041  
0.05  
0.95  
0.17  
0.10  
0.15  
1
A
E
0.040  
1.00  
0.22  
A2  
1.05  
0.27  
b
0.007 0.009 0.010  
b
c
0.004  
0.008  
-----  
12.40  
8.00  
0.21  
-----  
0.488  
D
E
0.315  
0.551  
0.020  
14.00  
D
H
e
0.50  
0.60  
0.80  
0.50  
0.70  
0.020 0.024 0.028  
0.031  
L
L
θ
1
A
A
1 A  
2
0.000  
0.004  
0.00  
0
0.10  
5
L
Y
Y
0
3
5
3
θ
L
1
Publication Release Date: Dec. 13, 2005  
Revision A5  
- 33 -  
W39V080FA  
Package Dimensions, continued  
14.3 40L TSOP (10 mm x 20 mm)  
- 34 -  
W39V080FA  
15. VERSION HISTORY  
VERSION  
A1  
DATE  
PAGE  
DESCRIPTION  
Nov. 25, 2004  
Jan. 05, 2005  
-
Initial Issued  
A2  
8
Add 6.11 Identification Input pin ID[3:0] item  
Add 6.12.3 Product Identification Registers  
Dual bios device ID 93(hex)  
A3  
A4  
April 14, 2005  
Oct. 3, 2005  
35  
3
Add important notice  
Revise endurance 10K cycles to 30K cycles  
Revise 6.10.4 DQ5: Exceeded Timing Limits description,  
and page16 Embedded Toggle Bit Algorithm  
A5  
Dec. 13, 2005  
8, 16  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control instruments,  
airplane or spaceship instruments, transportation instruments, traffic signal instruments,  
combustion control instruments, or for other applications intended to support or sustain life.  
Further more, Winbond products are not intended for applications wherein failure of Winbond  
products could result or lead to a situation wherein personal injury, death or severe property or  
environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
Publication Release Date: Dec. 13, 2005  
- 35 -  
Revision A5  

相关型号:

W39V080FAP

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V080FAPZ

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V080FAQ

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V080FAQZ

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V080FAT

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W39V080FATZ

1M 】 8 CMOS FLASH MEMORY WITH FWH INTERFACE
WINBOND

W3A41A100KAT2A

Array/Network Capacitor, 100V, C0G, 0.00001uF, Surface Mount, CHIP-8, CHIP, ROHS COMPLIANT
KYOCERA AVX

W3A41A101JAT2F

CAP ARRAY 100PF 100V NP0 0612
KYOCERA AVX

W3A41A101KAT2A

Array/Network Capacitor, 100V, C0G, 0.0001uF, Surface Mount, CHIP-8, CHIP, ROHS COMPLIANT
KYOCERA AVX

W3A41A101KAT4A

Array/Network Capacitor, 100V, C0G, 0.0001uF, Surface Mount, CHIP-8, CHIP, ROHS COMPLIANT
KYOCERA AVX

W3A41A104J4B2A

Capacitor Array (IPC)
KYOCERA AVX

W3A41A104J4B2F

Capacitor Array (IPC)
KYOCERA AVX