W78LE52 [WINBOND]

8-BIT MTP MICROCONTROLLER; 8位MTP单片机
W78LE52
型号: W78LE52
厂家: WINBOND    WINBOND
描述:

8-BIT MTP MICROCONTROLLER
8位MTP单片机

文件: 总22页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary W78LE52  
8-BIT MTP MICROCONTROLLER  
GENERAL DESCRIPTION  
The W78LE52 is an 8-bit microcontroller which can accommodate a wider frequency range with low  
power consumption. The instruction set for the W78LE52 is fully compatible with the standard 8051.  
The W78LE52 contains an 8K bytes MTP ROM (Multiple-Time Programmable ROM); a 256 bytes  
RAM; four 8-bit bi-directional and bit-addressable I/O ports; an additional 4-bit I/O port P4; three 16-  
bit timer/counters; a hardware watchdog timer and a serial port. These peripherals are supported by  
eight sources two-level interrupt capability. To facilitate programming and verification, the MTP-ROM  
inside the W78LE52 allows the program memory to be programmed and read electronically. Once the  
code is confirmed, the user can protect the code for security.  
The W78LE52 microcontroller has two power reduction modes, idle mode and power-down mode,  
both of which are software selectable. The idle mode turns off the processor clock but allows for  
continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power  
consumption. The external clock can be stopped at any time and in any state without affecting the  
processor.  
FEATURES  
· Fully static design 8-bit CMOS microcontroller  
· Wide supply voltage of 2.4V to 5.5V  
· 256 bytes of on-chip scratchpad RAM  
· 8 KB electrically erasable/programmable MTP-ROM  
· 64 KB program memory address space  
· 64 KB data memory address space  
· Four 8-bit bi-directional ports  
· One extra 4-bit bit-addressable I/O port, additional INT2 / INT3  
(available on 44-pin PLCC/QFP package)  
· Three 16-bit timer/counters  
· One full duplex serial port(UART)  
· Watchdog Timer  
· Eight sources, two-level interrupt capability  
· EMI reduction mode  
· Built-in power management  
· Code protection mechanism  
· Packages:  
- DIP 40: W78LE52-24  
- PLCC 44: W78LE52P-24  
- PQFP 44: W78LE52F-24  
Publication Release Date: January 1999  
- 1 -  
Revision A1  
Preliminary W78LE52  
PIN CONFIGURATIONS  
40-Pin DIP (W78LE52)  
1
VDD  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
T2, P1.0  
2
T2EX, P1.1  
P0.0, AD0  
P0.1, AD1  
P0.2, AD2  
P0.3, AD3  
P0.4, AD4  
P0.5, AD5  
P0.6, AD6  
P0.7, AD7  
3
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
RST  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RXD, P3.0  
TXD, P3.1  
EA  
ALE  
INT0, P3.2  
PSEN  
P2.7, A15  
INT1, P3.3  
T0, P3.4  
T1, P3.5  
P2.6, A14  
P2.5, A13  
P2.4, A12  
P2.3, A11  
P2.2, A10  
P2.1, A9  
WR, P3.6  
RD, P3.7  
XTAL2  
XTAL1  
VSS  
P2.0, A8  
44-Pin PLCC (W78LE52P)  
44-Pin QFP (W78LE52F)  
/
/
T
2
E
X
,
I
T
2
E
X
,
I
A
D
3
,
A
D
0
,
A
D
1
,
A
D
2
,
N
T
3
,
A
D
1
,
A
D
3
,
A
D
0
,
A
D
2
,
N
T
3
,
T
2
,
T
2
,
P
0
.
P
1
.
P
1
.
P
1
.
P
1
.
P
1
.
P
0
.
P
0
.
P
0
.
P
4
.
P
1
.
P
1
.
P
0
.
P
1
.
P
1
.
P
1
.
P
0
.
P
0
.
P
0
.
P
4
.
V
D
D
V
D
D
1
0
3
4
3
2
0
1
2
2
4
3
2
1
0
1
3
0
2
2
34  
33  
43 42 41 40 39 38 37 36  
44  
35  
40  
39  
38  
6
5
4
3
2
1
44 43 42  
41  
P0.4, AD4  
P0.5, AD5  
P0.6, AD6  
P0.7, AD7  
1
2
7
8
9
P1.5  
P1.6  
P1.7  
RST  
P0.4, AD4  
P0.5, AD5  
P0.6, AD6  
P0.7, AD7  
P1.5  
P1.6  
P1.7  
32  
31  
30  
29  
28  
27  
26  
25  
3
4
5
6
7
8
9
37  
36  
35  
34  
33  
32  
31  
10  
11  
12  
13  
14  
15  
RST  
RXD, P3.0  
INT2, P4.3  
TXD, P3.1  
RXD, P3.0  
INT2, P4.3  
TXD, P3.1  
EA  
EA  
P4.1  
P4.1  
ALE  
ALE  
INT0, P3.2  
INT0, P3.2  
PSEN  
P2.7, A15  
PSEN  
P2.7, A15  
INT1,  
INT1, P3.3  
T0, P3.4  
T1, P3.5  
10  
11  
12  
24  
23  
P2.6, A14  
P2.5, A13  
T0, P3.4  
T1, P3.5  
16  
17  
30  
29  
P2.6, A14  
P2.5, A13  
13 14 15 16 17 18 19 20 21 22  
18 19 20 21 22 23 24 25 26 27 28  
P
3
.
P
3
.
X
T
A
L
2
X
T
A
L
1
V
S
S
P
2
.
P
2
.
P
2
.
P
2
.
P
2
.
P
4
.
P
3
.
P
3
.
X
T
A
L
2
X
T
A
L
1
V
S
S
P
2
.
P
2
.
P
2
.
P
2
.
P
2
.
2
,
A
1
0
P
4
.
6
,
7
,
0
,
1
,
3
,
4
,
2
,
0
6
,
7
,
0
,
1
,
3
,
4
,
0
/
/
A
8
A
9
A
1
0
A
1
1
A
1
2
/
/
A
8
A
9
A
1
1
A
1
2
W R  
W R  
R
D
R
D
- 2 -  
Preliminary W78LE52  
PIN DESCRIPTION  
SYMBOL  
DESCRIPTIONS  
EXTERNAL ACCESS ENABLE: This pin forces the processor to execute out of  
external ROM. It should be kept high to access internal ROM. The ROM address and  
EA  
data will not be presented on the bus if EA pin is high and the program counter is  
within on-chip ROM area.  
PSEN  
PROGRAM STORE ENABLE: PSEN enables the external ROM data onto the Port 0  
address/ data bus during fetch and MOVC operations. When internal ROM access is  
performed, no PSEN strobe signal outputs from this pin.  
ALE  
ADDRESS LATCH ENABLE: ALE is used to enable the address latch that separates  
the address from the data on Port 0.  
RST  
RESET: A high on this pin for two machine cycles while the oscillator is running resets  
the device.  
XTAL1  
CRYSTAL1: This is the crystal oscillator input. This pin may be driven by an external  
clock.  
XTAL2  
VSS  
CRYSTAL2: This is the crystal oscillator output. It is the inversion of XTAL1.  
GROUND: Ground potential  
VDD  
POWER SUPPLY: Supply voltage for operation.  
PORT 0: Port 0 is a bi-directional I/O port which also provides a multiplexed low order  
address/data bus during accesses to external memory. The pins of Port 0 can be  
individually configured to open-drain or standard port with internal pull-ups.  
P0.0- P0.7  
PORT 1: Port 1 is a bi-directional I/O port with internal pull-ups. The bits have alternate  
P1.0- P1.7  
functions which are described below:  
T2(P1.0): Timer/Counter 2 external count input  
T2EX(P1.1): Timer/Counter 2 Reload/Capture control  
PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides  
the upper address bits for accesses to external memory.  
P2.0- P2.7  
P3.0- P3.7  
PORT 3: Port 3 is a bi-directional I/O port with internal pull-ups. All bits have alternate  
functions, which are described below:  
RXD(P3.0) : Serial Port receiver input  
TXD(P3.1) : Serial Port transmitter output  
INT0 (P3.2) : External Interrupt 0  
INT1(P3.3) : External Interrupt 1  
T0(P3.4) : Timer 0 External Input  
T1(P3.5) : Timer 1 External Input  
WR (P3.6) :External Data Memory Write Strobe  
RD(P3.7) : External Data Memory Read Strobe  
PORT 4: Another bit-addressable bidirectional I/O port P4. P4.3 and P4.2 are  
P4.0- P4.3  
alternative function pins. It can be used as general I/O port or external interrupt input  
sources (INT2 /INT3 ).  
Publication Release Date: January 1999  
- 3 -  
Revision A1  
Preliminary W78LE52  
BLOCK DIAGRAM  
P1.0  
Port  
1
~
Port 1  
Latch  
P1.7  
ACC  
B
INT2  
INT3  
P0.0  
~
P0.7  
Port 0  
Latch  
Interrupt  
Port  
0
T2  
T1  
Timer  
2
DPTR  
Timer  
0
Stack  
Pointer  
PSW  
Temp Reg.  
PC  
ALU  
Timer  
1
Incrementor  
Addr. Reg.  
UART  
P3.0  
~
P3.7  
Port 3  
Latch  
Port  
3
SFR RAM  
Address  
Instruction  
Decoder  
&
Sequencer  
256 bytes  
RAM & SFR  
P2.0  
~
P2.7  
Port  
2
Port 2  
Latch  
ROM  
Bus & Clock  
Controller  
Port 4  
Latch  
P4.0  
~
P4.3  
Port  
4
Watchdog  
Timer  
Oscillator  
Reset Block  
Power control  
Vss  
Vcc  
ALE PSEN  
XTAL2  
RST  
XTAL1  
FUNCTIONAL DESCRIPTION  
The W78LE52 architecture consists of a core controller surrounded by various registers, five general  
purpose I/O ports, 256 bytes of RAM, three timer/counters, and a serial port. The processor supports  
111 different opcodes and references both a 64K program address space and a 64K data storage  
space.  
Timers 0, 1, and 2  
Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0,  
TL1 and TH1 for Timer 1, and TL2 and TH2 for Timer 2. The TCON and TMOD registers provide  
control functions for timers 0 and 1. The T2CON register provides control functions for Timer 2.  
RCAP2H and RCAP2L are used as reload/capture registers for Timer 2.  
The operations of Timer 0 and Timer 1 are the same as in the W78C51. Timer 2 is a special feature  
of the W78LE52: it is a 16-bit timer/counter that is configured and controlled by the T2CON register.  
- 4 -  
Preliminary W78LE52  
Like Timers 0 and 1, Timer 2 can operate as either an external event counter or as an internal timer,  
depending on the setting of bit C/T2 in T2CON. Timer 2 has three operating modes: capture, auto-  
reload, and baud rate generator. The clock speed at capture or auto-reload mode is the same as that  
of Timers 0 and 1.  
New Defined Peripheral  
In order to be more suitable for I/O, an extra 4-bit bit-addressable port P4 and two external interrupt  
INT2 , INT3 has been added to either the PLCC or QFP 44 pin package. And description follows:  
1. INT2 / INT3  
Two additional external interrupts, INT2 and INT3 , whose functions are similar to those of external  
interrupt 0 and 1 in the standard 80C52. The functions/status of these interrupts are  
determined/shown by the bits in the XICON (External Interrupt Control) register. The XICON register  
is bit-addressable but is not a standard register in the standard 80C52. Its address is at 0C0H. To  
set/clear bits in the XICON register, one can use the "SETB (/CLR) bit" instruction. For example,  
"SETB 0C2H" sets the EX2 bit of XICON.  
XICON - external interrupt control (C0H)  
PX3  
EX3  
IE3  
IT3  
PX2  
EX2  
IE2  
IT2  
PX3: External interrupt 3 priority high if set  
EX3: External interrupt 3 enable if set  
IE3: If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is detected/serviced  
IT3: External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software  
PX2: External interrupt 2 priority high if set  
EX2: External interrupt 2 enable if set  
IE2: If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is detected/serviced  
IT2: External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software  
Eight-source interrupt informations:  
INTERRUPT  
SOURCE  
VECTOR  
ADDRESS SEQUENCE WITHIN  
PRIORITY LEVEL  
POLLING  
ENABLE  
REQUIRED  
SETTINGS  
INTERRUPT  
TYPE  
EDGE/LEVEL  
External Interrupt 0  
Timer/Counter 0  
External Interrupt 1  
Timer/Counter 1  
Serial Port  
03H  
0BH  
13H  
1BH  
23H  
2BH  
33H  
3BH  
0 (highest)  
IE.0  
TCON.0  
1
IE.1  
-
2
IE.2  
TCON.2  
3
IE.3  
-
4
IE.4  
-
Timer/Counter 2  
External Interrupt 2  
External Interrupt 3  
5
IE.5  
-
6
XICON.2  
XICON.6  
XICON.0  
XICON.3  
7 (lowest)  
Publication Release Date: January 1999  
Revision A1  
- 5 -  
Preliminary W78LE52  
2. PORT4  
Another bit-addressable port P4 is also available and only 4 bits (P4<3:0>) can be used. This port  
address is located at 0D8H with the same function as that of port P1, except the P4.3 and P4.2 are  
alternative function pins. It can be used as general I/O pins or external interrupt input sources (INT2 ,  
INT3 ).  
Example:  
P4  
REG 0D8H  
P4, #0AH  
A, P4  
P4.0  
P4.1  
MOV  
MOV  
SETB  
CLR  
; Output data "A" through P4.0- P4.3.  
; Read P4 status to Accumulator.  
; Set bit P4.0  
; Clear bit P4.1  
3. Reduce EMI Emission  
Because of on-chip MTP-ROM, when a program is running in internal ROM space, the ALE will be  
unused. The transition of ALE will cause noise, so it can be turned off to reduce the EMI emission if it  
is useless. Turning off the ALE signal transition only requires setting the bit 0 of the AUXR SFR,  
which is located at 08Eh. When ALE is turned off, it will be reactivated when the program accesses  
external ROM/RAM data or jumps to execute an external ROM code. The ALE signal will turn off  
again after it has been completely accessed or the program returns to internal ROM code space. The  
AO bit in the AUXR register, when set, disables the ALE output. In order to reduce EMI emission from  
oscillation circuitry, W78LE52 allows user to diminish the gain of on-chip oscillator amplifiers by using  
programmer to clear the B7 bit of security register. Once B7 is set to 0, a half of gain will be  
decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a  
half of gain may affect the external crystal operating improperly at high frequency above 24MHz. The  
value of R and C1,C2 may need some adjustment while running at lower gain.  
***AUXR - Auxiliary register (8EH)  
-
-
-
-
-
-
-
AO  
AO: Turn off ALE output.  
4. Power-off Flag  
***PCON - Power control (87H)  
-
GF1  
GF0  
PD  
IDL  
-
-
POF  
POF:  
Power off flag. Bit is set by hardware when power on reset. It can be cleared by software  
to determine chip reset is a warm boot or cold boot.  
GF1, GF0: These two bits are general-purpose flag bits for the user.  
PD:  
Power down mode bit. Set it to enter power down mode.  
Idle mode bit. Set it to enter idle mode.  
IDL:  
The power-off flag is located at PCON.4. This bit is set when VDD has been applied to the part. It can  
be used to determine if a reset is a warm boot or a cold boot if it is subsequently reset by software.  
- 6 -  
Preliminary W78LE52  
Watchdog Timer  
The Watchdog timer is a free-running timer which can be programmed by the user to serve as a  
system monitor, a time-base generator or an event timer. It is basically a set of dividers that divide  
the system clock. The divider output is selectable and determines the time-out interval. When the  
time-out occurs a system reset can also be caused if it is enabled. The main use of the Watchdog  
timer is as a system monitor. This is important in real-time control applications. In case of power  
glitches or electro-magnetic interference, the processor may begin to execute errant code. If this is  
left unchecked the entire system may crash. The watchdog time-out selection will result in different  
time-out values depending on the clock speed. The Watchdog timer will de disabled on reset. In  
general, software should restart the Watchdog timer to put it into a known state. The control bits that  
support the Watchdog timer are discussed below.  
Watchdog Timer Control Register  
Bit:  
7
6
5
4
-
3
-
2
1
0
ENW CLRW WIDL  
Mnemonic: WDTC  
PS2  
PS1  
PS0  
Address: 8FH  
ENW : Enable watch-dog if set.  
CLRW : Clear watch-dog timer and prescaler if set. This flag will be cleared automatically  
WIDL : If this bit is set, watch-dog is enabled under IDLE mode. If cleared, watch-dog is disabled  
under IDLE mode. Default is cleared.  
PS2, PS1, PS0 : Watch-dog prescaler timer select. Prescaler is selected when set PS2- 0 as follows:  
PS2 PS1 PS0  
PRESCALER SELECT  
0
0
0
0
1
1
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
2
4
8
16  
32  
64  
128  
256  
The time-out period is obtained using the following equation:  
1
´ 214 ´ PRESCALER´ 1000´ 12 mS  
OSC  
Before Watchdog time-out occurs, the program must clear the 14-bit timer by writing 1 to WDTC.6  
(CLRW). After 1 is written to this bit, the 14-bit timer, prescaler and this bit will be reset on the next  
instruction cycle. The Watchdog timer is cleared on reset.  
Publication Release Date: January 1999  
- 7 -  
Revision A1  
Preliminary W78LE52  
ENW  
WIDL  
IDLE  
EXTERNAL  
RESET  
INTERNAL  
RESET  
14-BIT TIMER  
CLEAR  
PRESCALER  
OSC  
1/12  
CLRW  
Watchdog Timer Block Diagram  
Typical Watch-Dog time-out period when OSC = 20 MHz  
PS2 PS1 PS0  
WATCHDOG TIME-OUT PERIOD  
0
0
0
0
1
1
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
19.66 mS  
39.32 mS  
78.64 mS  
157.28 mS  
314.57 mS  
629.14 mS  
1.25 S  
2.50 S  
Clock  
The W78LE52 is designed to be used with either a crystal oscillator or an external clock. Internally,  
the clock is divided by two before it is used. This makes the W78LE52 relatively insensitive to duty  
cycle variations in the clock. The W78LE52 incorporates a built-in crystal oscillator. To make the  
oscillator work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load  
capacitor must be connected from each pin to ground. An external clock source should be connected  
to pin XTAL1. Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as  
required by the crystal oscillator.  
Power Management  
Idle Mode  
The idle mode is entered by setting the IDL bit in the PCON register. In the idle mode, the internal  
clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The  
processor will exit idle mode when either an interrupt or a reset occurs.  
Power-down Mode  
When the PD bit of the PCON register is set, the processor enters the power-down mode. In this  
mode all of the clocks are stopped, including the oscillator. The only way to exit power-down mode is  
by a reset.  
- 8 -  
Preliminary W78LE52  
Reset  
The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two  
machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to  
deglitch the reset line when the W78LE52 is used with an external RC network. The reset logic also  
has a special glitch removal circuit that ignores glitches on the reset line.  
During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of  
bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.  
ON-CHIP MTP ROM CHARACTERISTICS  
The W78LE52 has several modes to program the on-chip MTP-ROM. All these operations are  
configured by the pins RST, ALE, PSEN , A9CTRL(P3.0), A13CTRL(P3.1), A14CTRL(P3.2),  
OECTRL(P3.3), CE(P3.6), OE (P3.7), A0(P1.0) and VPP(EA ). Moreover, the A15- A0(P2.7- P2.0,  
P1.7- P1.0) and the D7- D0(P0.7- P0.0) serve as the address and data bus respectively for these  
operations.  
Read Operation  
This operation is supported for customer to read their code and the Security bits. The data will not be  
valid if the Lock bit is programmed to low.  
Output Disable Condition  
When the OE is set to high, no data output appears on the D7..D0.  
Program Operation  
This operation is used to program the data to MTP ROM and the security bits. Program operation is  
done when the Vpp is reach to Vcp (12.5V) level, CE set to low, and OE set to high.  
Program Verify Operation  
All the programming data must be checked after program operations. This operation should be  
performed after each byte is programmed; it will ensure a substantial program margin.  
Erase Operation  
An erase operation is the only way to change data from 0 to 1. This operation will erase all the MTP  
ROM cells and the security bits from 0 to 1. This erase operation is done when the Vpp is reach to  
Vep level, CE set to low, and OE set to high.  
Erase Verify Operation  
After an erase operation, all of the bytes in the chip must be verified to check whether they have been  
successfully erased to 1 or not. The erase verify operation automatically ensures a substantial erase  
margin. This operation will be done after the erase operation if Vpp = Vep(14.5V), CE is high and  
OE is low.  
Publication Release Date: January 1999  
- 9 -  
Revision A1  
Preliminary W78LE52  
PROGRAM/ERASE INHIBIT OPERATION  
This operation allows parallel erasing or programming of multiple chips with different data. When  
P3.6(CE) = VIH, P3.7( OE ) = VIH, erasing or programming of non-targeted chips is inhibited. So,  
except for the P3.6 and P3.7 pins, the individual chips may have common inputs.  
COMPANY/DEVICE ID READ OPERATION  
This operation is supported for MTP ROM programmer to get the company ID or device ID on the  
W78LE52.  
OPERATIONS P3.0 P3.1 P3.2 P3.3 P3.6 P3.7  
(A9 (A13 (A14 (OE  
CTRL) CTRL) CTRL) CTRL)  
P2,P1  
P0  
NOTE  
EA  
(A15..A0) (D7..D0)  
(VPP)  
(CE) ( OE )  
Read  
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
1
Address Data Out  
Output Disable  
Program  
1
X
Hi-Z  
Address Data In  
Address Data Out @3  
VCP  
VCP  
VEP  
Program Verify  
Erase  
A0:0,  
others: X  
Data In  
0FFH  
@4  
Erase Verify  
1
0
0
0
0
0
0
1
1
0
1
VEP  
Address Data Out @5  
Program/Erase  
Inhibit  
X
VCP/  
VEP  
X
X
Company ID  
Device ID  
Notes:  
1
1
0
0
0
0
0
0
0
0
0
0
1
1
A0 = 0 Data Out  
A0 = 1 Data Out  
1. All these operations happen in RST = VIH, ALE = VIL and  
2. VCP = 12.5V, VEP = 14.5V, VIH = VDD, VIL = Vss.  
= VIH.  
PSEN  
3. The program verify operation follows behind the program operation.  
4. This erase operation will erase all the on-chip MTP-ROM cells and the Security bits.  
5. The erase verify operation follows behind the erase operation.  
SECURITY BITS  
During the on-chip MTP-ROM operation mode, the MTP-ROM can be programmed and verified  
repeatedly. Until the code inside the MTP-ROM is confirmed OK, the code can be protected. The  
protection of MTP ROM and those operations on it are described below.  
The W78LE52 has several Special Setting Registers, including the Security Register and  
Company/Device ID Registers, which can not be accessed in normal mode. These registers can only  
be accessed from the MTP-ROM operation mode. Those bits of the Security Registers can not be  
changed once they have been programmed from high to low. They can only be reset through erase-  
all operation. The contents of the Company ID and Device ID registers have been set in factory. Both  
registers are addressed by the A0 address line during the same specific condition. The Security  
Register is addressed in the MTP-ROM operation mode by address #0FFFFh.  
- 10 -  
Preliminary W78LE52  
D7 D6 D5 D4 D3 D2 D1 D0  
Company ID (#DAH)  
Device ID (#E0H)  
Security Bits  
0000h  
1
1
0
1
1
0
1
0
8KB MTP ROM  
Program Memory  
1
1
1
0
0
0
0
0
1FFFh  
Reserved  
B2 B1 B0  
B7  
Reserved  
B0 : Lock bit, logic 0 : active  
B1 : MOVC inhibit,  
logic 0 : the MOVC instruction in external memory  
cannot access the code in internal memory.  
logic 1 : no restriction.  
B2 : Encryption  
Security Register  
0FFFFh  
logic 0 : the encryption logic enable  
logic 1 : the encryption logic disable  
B7 : Osillator Control  
logic 0 : 1/2 gain  
logic 1 : Full gain  
Default 1 for all security bits.  
Reserved bits must be kept in logic 1.  
Special Setting Registers  
Lock bit  
This bit is used to protect the customer's program code in the W78LE52. It may be set after the  
programmer finishes the programming and verifies sequence. Once this bit is set to logic 0, both the  
MTP ROM data and Special Setting Registers can not be accessed again.  
MOVC Inhibit  
This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC  
instruction in external program memory from reading the internal program code. When this bit is set  
to logic 0, a MOVC instruction in external program memory space will be able to access code only in  
the external memory, not in the internal memory. A MOVC instruction in internal program memory  
space will always be able to access the ROM data in both internal and external memory. If this bit is  
logic 1, there are no restrictions on the MOVC instruction.  
Encryption  
This bit is used to enable/disable the encryption logic for code protection. Once encryption feature is  
enabled, the data presented on port 0 will be encoded via encryption logic. Only whole chip erase will  
reset this bit.  
Publication Release Date: January 1999  
- 11 -  
Revision A1  
Preliminary W78LE52  
+5V  
+5V  
V
DD  
V
DD  
PGM DATA  
PGM DATA  
A0 to A7  
P1  
P0  
A0 to A7  
P1  
P0  
EA/Vpp  
V
IL  
V
P3.0  
P3.1  
P3.2  
P3.3  
P3.6  
P3.7  
EA/Vpp  
ALE  
P3.0  
P3.1  
P3.2  
P3.3  
P3.6  
P3.7  
IL  
V
V
CP  
CP  
V
IL  
V
IL  
V
IL  
ALE  
RST  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
RST  
V
IH  
V
IH  
V
IL  
V
IH  
V
IH  
V
IH  
PSEN  
V
IH  
PSEN  
V
IL  
X'tal1  
X'tal2  
Vss  
X'tal1  
X'tal2  
Vss  
A8 to A15  
A8 to A15  
P2  
P2  
Programming Configuration  
Programming Verification  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
DC Power Supply  
SYMBOL  
MIN.  
-0.3  
MAX.  
+7.0  
UNIT  
V
VDD- VSS  
VIN  
Input Voltage  
VSS -0.3  
0
VDD +0.3  
70  
V
Operating Temperature  
Storage Temperature  
TA  
°C  
°C  
TST  
-55  
+150  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the  
device.  
DC CHARACTERISTICS  
VSS = 0V, TA = 25° C, unless otherwise specified.  
PARAMETER  
SYM.  
SPECIFICATION  
UNIT  
TEST CONDITIONS  
MIN.  
MAX.  
5.5  
20  
Operating Voltage  
Operating Current  
VDD  
IDD  
2.4  
V
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
No load VDD = 5.5V  
-
3
No load VDD = 2.4V  
Idle Current  
IIDLE  
-
6
VDD = 5.5V, Fosc = 20 MHz  
VDD = 2.4V, Fosc = 12 MHz  
VDD = 5.5V, Fosc = 20 MHz  
VDD = 2.4V, Fosc = 12 MHz  
-
-
1.5  
50  
Power Down Current  
IPWDN  
-
20  
Input Current  
P1, P2, P3, P4  
Input Current  
RST  
IIN1  
IIN2  
-50  
+10  
VDD = 5.5V  
VIN = 0V or VDD  
VDD = 5.5V  
-10  
+300  
mA  
0 < VIN < VDD  
- 12 -  
Preliminary W78LE52  
DC Characteristics, continued  
PARAMETER  
SYM.  
PECIFICATION  
UNIT  
TEST CONDITIONS  
MIN.  
MAX.  
Input Leakage Current  
ILK  
-10  
+10  
VDD = 5.5V  
0V < VIN < VDD  
mA  
mA  
P0, EA  
[*4]  
Logic 1 to 0 Transition Current  
P1, P2, P3, P4  
ITL  
-500  
-
VDD = 5.5V  
VIN = 2.0V  
VDD = 4.5V  
VDD = 2.4V  
Input Low Voltage  
VIL1  
0
0
0.8  
0.5  
V
V
P0, P1, P2, P3, P4, EA  
Input Low Voltage  
RST[*1]  
VIL2  
VIL3  
VIH1  
0
0
0.8  
0.3  
V
V
V
V
V
V
VDD = 4.5V  
VDD = 2.4V  
VDD = 4.5V  
VDD = 2.4V  
VDD = 5.5V  
VDD = 2.4V  
Input Low Voltage  
XTAL1 [*3]  
0
0.8  
0
0.6  
Input High Voltage  
2.4  
1.4  
VDD +0.2  
VDD +0.2  
P0, P1, P2, P3, P4,EA  
Input High Voltage  
RST[*1]  
VIH2  
VIH3  
VOL1  
VOL2  
3.5  
1.7  
3.5  
1.6  
-
VDD +0.2  
VDD +0.2  
VDD +0.2  
VDD +0.2  
0.45  
V
V
V
V
V
V
V
V
VDD = 5.5V  
VDD = 2.4V  
Input High Voltage  
XTAL1 [*3]  
VDD = 5.5V  
VDD = 2.4V  
Output Low Voltage  
P1, P2, P3, P4  
VDD = 4.5V, IOL = +2 mA  
VDD = 2.4V, IOL = +1 mA  
VDD = 4.5V, IOL = +4 mA  
VDD = 2.4V, IOL = +2 mA  
-
0.25  
Output Low Voltage  
-
0.45  
-
0.25  
P0, ALE, PSEN [*2]  
Sink Current  
ISK1  
ISK2  
4
1.8  
8
12  
5.4  
16  
9
mA  
mA  
mA  
mA  
VDD = 4.5V, Vin = 0.45V  
VDD = 2.4V, Vin = 0.45V  
VDD = 4.5V, Vin = 0.45V  
VDD = 2.4V, Vin = 0.45V  
P1, P2, P3, P4  
Sink Current  
4.0  
P0, ALE, PSEN  
Output High Voltage  
P1, P2, P3, P4  
VOH1  
VOH2  
2.4  
1.4  
2.4  
1.4  
-
-
-
-
V
V
V
V
VDD = 4.5V, IOH = -100 mA  
VDD = 2.4V, IOH = -8 mA  
VDD = 4.5V, IOH = -400 mA  
VDD = 2.4V, IOH = -200 mA  
Output High Voltage  
P0, ALE, PSEN [*2]  
Source Current  
P1, P2, P3, P4  
ISR1  
ISR2  
-100  
-10  
-8  
-250  
-30  
VDD = 4.5V, Vin = 2.4V  
VDD = 2.4V, Vin = 1.4V  
VDD = 4.5V, Vin = 2.4V  
VDD = 2.4V, Vin = 1.4V  
mA  
mA  
Source Current  
-14  
mA  
mA  
-1.0  
-2.4  
P0, ALE, PSEN  
Notes:  
*1. RST pin is a Schmitt trigger input.  
*2. P0, ALE and /PSEN are tested in the external access mode.  
*3. XTAL1 is a CMOS input.  
*4. Pins of P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0.  
Publication Release Date: January 1999  
Revision A1  
- 13 -  
Preliminary W78LE52  
AC CHARACTERISTICS  
The AC specifications are a function of the particular process used to manufacture the part, the  
ratings of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the  
specifications can be expressed in terms of multiple input clock periods (TCP), and actual parts will  
usually experience less than a ±20 nS variation. The numbers below represent the performance  
expected from a 0.6micron CMOS process when using 2 and 4 mA output buffers.  
Clock Input Waveform  
XTAL1  
TCH  
TCL  
FOP,  
TCP  
PARAMETER  
Operating Speed  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
NOTES  
FOP  
TCP  
TCH  
TCL  
0
-
-
-
-
24  
-
MHz  
nS  
1
2
3
3
Clock Period  
Clock High  
Clock Low  
25  
10  
10  
-
nS  
-
nS  
Notes:  
1. The clock may be stopped indefinitely in either state.  
2. The TCP specification is used as a reference in other specifications.  
3. There are no duty cycle requirements on the XTAL1 input.  
Program Fetch Cycle  
PARAMETER  
SYMBOL  
TAAS  
MIN.  
TYP.  
MAX.  
UNIT  
nS  
NOTES  
Address Valid to ALE Low  
Address Hold from ALE Low  
-
-
-
-
-
-
4
1, 4  
4
1 TCP -D  
1 TCP -D  
1 TCP -D  
-
TAAH  
nS  
TAPL  
nS  
ALE Low to PSEN Low  
PSEN Low to Data Valid  
Data Hold after PSEN High  
TPDA  
-
2 TCP  
nS  
2
3
TPDH  
TPDZ  
TALW  
TPSW  
0
0
-
1 TCP  
nS  
nS  
nS  
nS  
-
1 TCP  
Data Float after PSEN High  
ALE Pulse Width  
2 TCP  
3 TCP  
-
-
4
4
2 TCP -D  
3 TCP -D  
PSEN Pulse Width  
Notes:  
1. P0.0- P0.7, P2.0- P2.7 remain stable throughout entire memory cycle.  
2. Memory access time is 3 TCP.  
3. Data have been latched internally prior to PSEN going high.  
4. "D" (due to buffer driving delay and wire loading) is 20 nS.  
- 14 -  
Preliminary W78LE52  
Data Read Cycle  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
3 TCP +D  
4 TCP  
2 TCP  
2 TCP  
-
UNIT  
nS  
NOTES  
1, 2  
TDAR  
-
3 TCP -D  
ALE Low to RD Low  
RD Low to Data Valid  
Data Hold from RD High  
Data Float from RD High  
RD Pulse Width  
TDDA  
TDDH  
TDDZ  
TDRD  
-
-
nS  
1
0
0
-
-
nS  
nS  
6 TCP  
nS  
2
6 TCP -D  
Notes:  
1. Data memory access time is 8 TCP.  
2. "D" (due to buffer driving delay and wire loading) is 20 nS.  
Data Write Cycle  
PARAMETER  
ALE Low to WR Low  
Data Valid to WR Low  
Data Hold from WR High  
WR Pulse Width  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
TDAW  
-
nS  
nS  
nS  
nS  
3 TCP -D  
1 TCP -D  
1 TCP -D  
6 TCP -D  
3 TCP +D  
TDAD  
TDWD  
TDWR  
-
-
-
-
-
6 TCP  
Note: "D" (due to buffer driving delay and wire loading) is 20 nS.  
Port Access Cycle  
PARAMETER  
Port Input Setup to ALE Low  
Port Input Hold from ALE Low  
Port Output to ALE  
SYMBOL  
TPDS  
MIN.  
TYP.  
MAX.  
UNIT  
nS  
1 TCP  
0
-
-
-
-
-
-
TPDH  
nS  
TPDA  
1 TCP  
nS  
Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to  
ALE, since it provides a convenient reference.  
Program Operation  
PARAMETER  
VPP Setup Time  
SYMBOL  
TVPS  
TDS  
MIN.  
2.0  
TYP.  
MAX.  
UNIT  
mS  
-
-
-
-
-
-
-
-
Data Setup Time  
Data Hold Time  
2.0  
mS  
TDH  
2.0  
mS  
Address Setup Time  
TAS  
2.0  
mS  
Publication Release Date: January 1999  
Revision A1  
- 15 -  
Preliminary W78LE52  
Program Operation, continued  
PARAMETER  
SYMBOL  
TAH  
MIN.  
0
TYP.  
-
MAX.  
-
UNIT  
mS  
Address Hold Time  
TPWP  
290  
300  
310  
mS  
CE Program Pulse Width for  
Program Operation  
TOCS  
TOCH  
TOES  
2.0  
2.0  
2.0  
-
-
-
-
-
-
mS  
mS  
mS  
nS  
OECTRL Setup Time  
OECTRL Hold Time  
OE Setup Time  
TDFP  
TOEV  
0
-
-
-
130  
150  
OE High to Output Float  
Data Valid from OE  
nS  
Note: Flash data can be accessed only in flash mode. The RST pin must pull in VIH status, the ALE pin must pull in VIL status, and  
the PSEN pin must pull in VIH status.  
TIMING WAVEFORMS  
Program Fetch Cycle  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
XTAL1  
ALE  
TALW  
TAPL  
PSEN  
TPSW  
TAAS  
PORT 2  
PORT 0  
TPDA  
TAAH  
TPDH, TPDZ  
A0-A7  
A0-A7  
Code  
A0-A7  
Code  
Data  
Data  
A0-A7  
- 16 -  
Preliminary W78LE52  
Timing Waveforms, continued  
Data Read Cycle  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
XTAL1  
ALE  
PSEN  
PORT 2  
A8-A15  
DATA  
A0-A7  
PORT 0  
RD  
TDAR  
TDDA  
TDDH, TDDZ  
TDRD  
Data Write Cycle  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
XTAL1  
ALE  
PSEN  
A8-A15  
PORT 2  
PORT 0  
WR  
A0-A7  
DATA OUT  
TDWD  
TDAD  
TDWR  
TDAW  
Publication Release Date: January 1999  
Revision A1  
- 17 -  
Preliminary W78LE52  
Timing Waveforms, continued  
Port Access Cycle  
S5  
S6  
S1  
XTAL1  
ALE  
TPDS  
TPDA  
TPDH  
DATA OUT  
PORT  
INPUT  
SAMPLE  
Program Operation  
Program  
Program  
Verify  
Read Verify  
V
IH  
P2, P1  
(A15... A0)  
Address Stable  
Address Valid  
V
IL  
TAS  
V
P3.6  
(CE)  
IH  
T
PWP  
V
IL  
TAH  
V
P3.3  
(OECTRL)  
IH  
T
OCS  
V
TOCH  
IL  
P3.7  
(OE)  
V
IH  
T
OES  
V
IL  
TDFP  
TDH  
V
P0  
(A7... A0)  
IH  
OUT  
D
Data In  
Data Out  
V
IL  
TDS  
Vcp  
TOEV  
Vpp  
V
IH  
T
VPS  
- 18 -  
Preliminary W78LE52  
TYPICAL APPLICATION CIRCUITS  
Expanded External Program Memory and Crystal  
V
DD  
V
DD  
31  
19  
AD0  
AD1  
39  
38  
3
11  
AD0  
AD1  
AD2  
AD3  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
2
5
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8 25  
A9 24  
A10  
A11  
A12  
A13  
A14  
A15  
A0  
A1  
A2  
A3  
A4  
10  
9
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
A0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
EA  
4
7
8
12  
13  
15  
16  
17  
18  
19  
A1  
37 AD2  
6
8
A2  
XTAL1  
36 AD3  
9
12  
10 u  
7
A3  
AD4  
AD5  
AD6  
AD7  
35  
34  
33  
32  
AD4 13  
6
A4  
R
18  
9
14  
17  
18  
15 A5  
16 A6  
AD5  
AD6  
AD7  
5
XTAL2  
RST  
A5  
CRYSTAL  
4
A6  
19  
3
A7  
A7  
8.2 K  
A8  
1
GND  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
21  
22  
23  
24  
25  
26  
27  
28  
OC  
G
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
A9  
C1  
C2  
21  
23  
2
26  
27  
1
11  
A10  
A11  
A12  
A13  
A14  
A15  
INT0  
12  
13  
14  
15  
INT1  
T0  
T1  
74373  
1
2
3
4
5
6
7
8
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
GND  
20  
22  
CE  
OE  
RD  
WR  
17  
16  
29  
30  
11  
10  
27512  
PSEN  
ALE  
TXD  
RXD  
W78LE52  
Figure A  
CRYSTAL  
16 MHz  
24 MHz  
33 MHz  
40 MHz  
C1  
30P  
15P  
10P  
5P  
C2  
R
30P  
15P  
10P  
5P  
-
-
6.8K  
4.7K  
Above table shows the reference values for crystal applications (full gain).  
Note: C1, C2, R components refer to Figure A.  
Publication Release Date: January 1999  
Revision A1  
- 19 -  
Preliminary W78LE52  
Typical Application Circuits, continued  
Expanded External Data Memory and Oscillator  
V
DD  
V
DD  
31  
19  
AD0  
AD1  
AD2  
AD3  
AD4 13  
AD5 14  
A0  
A1  
A2  
A3  
3
4
7
8
2
5
6
9
10  
9
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
11  
12  
13  
15  
16  
17  
18  
19  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
39 AD0  
AD1  
37 AD2  
36 AD3  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
EA  
38  
8
XTAL1  
7
6
5
4
3
25  
OSCILLATOR  
10 u  
12 A4  
AD4  
AD5  
AD6  
AD7  
35  
34  
33  
32  
18  
9
15 A5  
A6  
19 A7  
XTAL2  
17  
AD6  
AD7 18  
16  
8.2 K  
RST  
INT0  
GND  
1
21  
A9 24  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
A8  
A9  
OC  
G
21  
11  
A10  
A11 23  
A12  
A13 26  
22  
23  
24  
25  
26  
27  
28  
A10  
A11  
A12  
A13  
12  
13  
14  
15  
A10  
A11  
A12  
A13  
A14  
2
74373  
INT1  
T0  
T1  
1
A14  
A14  
GND 20  
CE  
OE  
1
2
3
4
5
6
7
8
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
22  
27  
RD  
17  
16  
29  
30  
11  
10  
WR  
WR  
20256  
PSEN  
ALE  
TXD  
RXD  
W78LE52  
Figure B  
- 20 -  
Preliminary W78LE52  
PACKAGE DIMENSIONS  
40-pin DIP  
Dimension in inch  
Dimension in mm  
Symbol  
A
Nom.  
Nom.  
Min.  
Max. Min.  
0.210  
Max.  
5.334  
0.010  
0.150  
0.016  
0.048  
0.008  
0.254  
1
A
0.155  
0.018  
0.050  
0.010  
2.055  
0.160  
0.022  
0.054  
0.014  
2.070  
0.610  
3.81  
3.937 4.064  
0.457 0.559  
2
A
0.406  
1.219  
0.203  
B
1.27  
1.372  
0.356  
1
B
0.254  
c
D
E
D
52.20 52.58  
40  
21  
15.494  
13.97  
2.794  
15.24  
13.84  
2.54  
0.590 0.600  
14.986  
13.72  
0.540  
0.090  
0.120  
0
0.545  
0.100  
0.550  
0.110  
1
E
2.286  
1
e
0.140 3.048  
3.302  
0.130  
3.556  
15  
1
E
L
a
15  
0
17.01  
0.630 0.650  
0.670  
0.090  
16.00  
16.51  
A
e
S
2.286  
1
20  
Notes:  
E
1. Dimension D Max. & S include mold flash or  
tie bar burrs.  
S
c
2. Dimension E1 does not include interlead flash.  
3. Dimension D & E1 include mold mismatch and  
are determined at the mold parting line.  
4. Dimension B1 does not include dambar  
protrusion/intrusion.  
5. Controlling dimension: Inches.  
6. General appearance spec. should be based on  
final visual inspection spec.  
A2  
A
Base Plane  
1
A
.
L
Seating Plane  
B
e1  
e
A
a
B 1  
44-pin PLCC  
H D  
D
6
1
44  
40  
Dimension in inch Dimension in mm  
Symbol  
A
Nom.  
Nom.  
Min.  
Max. Min.  
0.185  
Max.  
7
39  
4.699  
0.020  
0.145  
0.508  
A
1
0.150  
3.81  
0.711  
0.457  
0.155 3.683  
3.937  
0.813  
0.559  
0.356  
A2  
0.026 0.028 0.032  
0.022  
0.66  
b
b
c
1
0.406  
0.016 0.018  
H E  
GE  
E
0.008 0.010 0.014 0.203 0.254  
16.46 16.59 16.71  
16.46 16.59 16.71  
1.27 BSC  
0.648 0.653 0.658  
0.648 0.653 0.658  
0.050 BSC  
D
E
e
0.590  
0.590  
0.680  
0.680  
14.99 15.49 16.00  
0.610 0.630  
0.610 0.630  
0.690 0.700  
17  
29  
GD  
16.00  
17.27 17.53 17.78  
14.99 15.49  
E
G
18  
28  
D
H
c
17.27  
0.700  
17.53 17.78  
2.54 2.794  
0.10  
0.690  
H
L
y
E
0.090 0.100  
0.110 2.296  
0.004  
L
Notes:  
A 2  
A
1. Dimension D & E do not include interlead  
flash.  
2. Dimension b1 does not include dambar  
protrusion/intrusion.  
q
e
b
A1  
3. Controlling dimension: Inches  
4. General appearance spec. should be based  
on final visual inspection spec.  
b 1  
Seating Plane  
y
G D  
Publication Release Date: January 1999  
Revision A1  
- 21 -  
Preliminary W78LE52  
Package Dimensions, continued  
44-pin PQFP  
H D  
D
Dimension in mm  
Dimension in inch  
Symbol  
A
Nom.  
---  
Nom.  
---  
Min.  
---  
Max. Min.  
Max.  
---  
34  
44  
---  
---  
0.002  
0.075  
0.01  
0.01  
0.02  
0.25  
2.05  
0.05  
1.90  
0.25  
0.5  
1
A
0.081 0.087  
2.20  
0.45  
A
b
c
2
33  
1
0.014  
0.006  
0.394  
0.394  
0.031  
0.520  
0.520  
0.031  
0.018  
0.010  
0.398  
0.35  
0.101  
9.9  
0.152  
10.00  
0.254  
0.004  
0.390  
10.1  
10.1  
0.952  
13.45  
13.45  
0.95  
1.905  
0.08  
7
D
E
e
9.9  
0.398  
0.036  
0.530  
0.530  
0.037  
10.00  
0.80  
0.390  
0.025  
0.510  
E
HE  
0.635  
12.95  
12.95  
0.65  
13.2  
13.2  
D
E
H
0.510  
0.025  
H
L
L
y
11  
0.8  
1.6  
0.051 0.063 0.075  
0.003  
1.295  
1
12  
22  
e
b
7
q
0
0
Notes:  
1. Dimension D & E do not include interlead  
flash.  
c
2. Dimension b does not include dambar  
protrusion/intrusion.  
A
A 2  
3. Controlling dimension: Millimeter  
4. General appearance spec. should be based  
on final visual inspection spec.  
q
A 1  
L
See Detail F  
y
Seating Plane  
L
1
Detail F  
Winbond Electronics (H.K.) Ltd.  
Winbond Electronics North America Corp.  
Headquarters  
Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.  
No. 4, Creation Rd. III,  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 886-3-5770066  
FAX: 886-3-5792766  
123 Hoi Bun Rd., Kwun Tong,  
Winbond Microelectronics Corp.  
Kowloon, Hong Kong  
TEL: 852-27513100  
FAX: 852-27552064  
Winbond Systems Lab.  
2727 N. First Street, San Jose,  
CA 95134, U.S.A.  
http://www.winbond.com.tw/  
TEL: 408-9436666  
Voice & Fax-on-demand: 886-2-27197006  
FAX: 408-5441798  
Taipei Office  
11F, No. 115, Sec. 3, Min-Sheng East Rd.,  
Taipei, Taiwan  
TEL: 886-2-27190505  
FAX: 886-2-27197502  
Note: All data and specifications are subject to change without notice.  
- 22 -  

相关型号:

W78LE52-24

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE52C

8-BIT MICROCONTROLLER
WINBOND

W78LE52C-24

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PDIP40, DIP-40
WINBOND

W78LE52C24DL

Microcontroller, 8-Bit, FLASH, 8051 CPU, 12MHz, CMOS, PDIP40
WINBOND

W78LE52C24FL

Microcontroller, 8-Bit, FLASH, 8051 CPU, 12MHz, CMOS, PQFP44
WINBOND

W78LE52C24PL

Microcontroller, 8-Bit, FLASH, 8051 CPU, 12MHz, CMOS, PQCC44
WINBOND

W78LE52CF-24

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PQFP44, PLASTIC, QFP-44
WINBOND

W78LE52F-24

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE52P-24

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE52_06

8-BIT MICROCONTROLLER
WINBOND

W78LE54

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE54-24

8-BIT MTP MICROCONTROLLER
WINBOND