W83L517D [WINBOND]

LPC I/O for Notebook; LPC I / O的笔记本电脑
W83L517D
型号: W83L517D
厂家: WINBOND    WINBOND
描述:

LPC I/O for Notebook
LPC I / O的笔记本电脑

多功能外围设备 微控制器和处理器 电脑 PC
文件: 总133页 (文件大小:848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W83L517D/W83L517D-F  
Winbond LPC I/O  
for Notebook  
W83L517D/  
W83L517D-F  
Date: May 23, 2005. Version: 1.0  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 1 -  
W83L517D/W83L517D-F  
Table of Contents-  
1. GENERAL DESCRIPTION.............................................................................................................. 6  
2. FEATURES...................................................................................................................................... 7  
3. PIN CONFIGURATION FOR W83L517D........................................................................................ 9  
4. PIN DESCRIPTION ....................................................................................................................... 10  
4.1 LPC Interface....................................................................................................................... 10  
4.2 FDC Interface ...................................................................................................................... 11  
4.3 Multi-Mode Parallel Port...................................................................................................... 12  
4.4 Serial Port Interface and Infrared Port ................................................................................ 17  
4.5 KBC and FLASH ROM Interface......................................................................................... 19  
4.6 POWER PINS...................................................................................................................... 20  
5. LPC (LOW PIN COUNT) INTERFACE.......................................................................................... 21  
6. FDC FUNCTIONAL DESCRIPTION.............................................................................................. 21  
6.1 W83L517D FDC.................................................................................................................. 21  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
AT interface..........................................................................................................................21  
FIFO (Data) ..........................................................................................................................21  
Data Separator.....................................................................................................................22  
Write Precompensation ........................................................................................................23  
Perpendicular Recording Mode ............................................................................................23  
FDC Core .............................................................................................................................23  
FDC Commands...................................................................................................................23  
6.2 Register Descriptions .......................................................................................................... 34  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
Status Register A (SA Register) (Read base address + 0)...................................................34  
Status Register B (SB Register) (Read base address + 1)...................................................36  
Digital Output Register (DO Register) (Write base address + 2) ..........................................38  
Tape Drive Register (TD Register) (Read base address + 3)...............................................38  
Main Status Register (MS Register) (Read base address + 4).............................................39  
Data Rate Register (DR Register) (Write base address + 4)................................................39  
FIFO Register (R/W base address + 5)................................................................................41  
Digital Input Register (DI Register) (Read base address + 7)...............................................43  
Configuration Control Register (CC Register) (Write base address + 7) ..............................44  
7. UART PORT.................................................................................................................................. 45  
7.1 Universal Asynchronous Receiver/Transmitter (UART A).................................................. 45  
7.2 Register Address................................................................................................................. 45  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
UART Control Register (UCR) (Read/Write) ........................................................................45  
UART Status Register (USR) (Read/Write)..........................................................................48  
Handshake Control Register (HCR) (Read/Write) ................................................................49  
Handshake Status Register (HSR) (Read/Write)..................................................................50  
UART FIFO Control Register (UFR) (Write only)..................................................................51  
Interrupt Status Register (ISR) (Read only)..........................................................................52  
- 2 -  
W83L517D/W83L517D-F  
7.2.7  
7.2.8  
7.2.9  
Interrupt Control Register (ICR) (Read/Write) ......................................................................53  
Programmable Baud Generator (BLL/BHL) (Read/Write).....................................................54  
User-defined Register (UDR) (Read/Write) ..........................................................................54  
8. INFRARED (IR) PORT .................................................................................................................. 55  
8.1 IR Register Description ....................................................................................................... 55  
8.2 Set0-Legacy/Advanced IR Control and Status Registers ................................................... 57  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
Set0.Reg0 - Receiver/Transmitter Buffer Registers (RBR/TBR) (Read/Write) .....................57  
Set0.Reg1 - Interrupt Control Register (ICR)........................................................................57  
Set0.Reg2 - Interrupt Status Register/IR FIFO Control Register (ISR/UFR) ........................59  
Set0.Reg3 - IR Control Register/Set Select Register (UCR/SSR):.......................................62  
Set0.Reg4 - Handshake Control Register (HCR) .................................................................63  
Set0.Reg5 - IR Status Register (USR) .................................................................................65  
Set0.Reg6 - Reserved..........................................................................................................66  
8.3 Set1 - Legacy Baud Rate Divisor Register.......................................................................... 67  
8.3.1  
8.3.2  
Set1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL).............................................................67  
Set1.Reg 2~7 .......................................................................................................................68  
8.4 Set2 - Interrupt Status or IR FIFO Control Register (ISR/UFR).......................................... 68  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
Reg0, 1 - Advanced Baud Rate Divisor Latch (ABLL/ABHL)................................................68  
Reg2 - Advanced IR Control Register 1 (ADCR1)................................................................68  
Reg3 - Sets Select Register (SSR).......................................................................................69  
Reg4 - Advanced IR Control Register 2 (ADCR2)................................................................70  
Reg6 - Transmitter FIFO Depth (TXFDTH) (Read Only) ......................................................72  
Reg7 - Receiver FIFO Depth (RXFDTH) (Read Only)..........................................................72  
8.5 Set3 - Version ID and Mapped Control Registers............................................................... 72  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
Reg0 - Advanced IR ID (AUID).............................................................................................72  
Reg1 - Mapped IR Control Register (MP_UCR)...................................................................73  
Reg2 - Mapped IR FIFO Control Register (MP_UFR) ..........................................................73  
Reg3 - Sets Select Register (SSR).......................................................................................73  
8.6 Set4 - TX/RX/Timer counter registers and IR control registers. ......................................... 73  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
Set4.Reg0, 1 - Timer Value Register (TMRL/TMRH) ...........................................................74  
Set4.Reg2 - Infrared Mode Select (IR_MSL)........................................................................74  
Set4.Reg3 - Set Select Register (SSR)................................................................................74  
Set4.Reg4, 5 - Transmitter Frame Length (TFRLL/TFRLH) .................................................75  
Set4.Reg6, 7 - Receiver Frame Length (RFRLL/RFRLH) ....................................................75  
8.7 Set 5 - Flow control and IR control and Frame Status FIFO registers................................ 75  
8.7.1  
8.7.2  
8.7.3  
8.7.4  
8.7.5  
Set5.Reg0, 1 - Flow Control Baud Rate Divisor Latch Register (FCDLL/ FCDHL)...............76  
Set5.Reg2 - Flow Control Mode Operation (FC_MD)...........................................................76  
Set5.Reg3 - Sets Select Register (SSR) ..............................................................................76  
Set5.Reg4 - Infrared Configure Register 1 (IRCFG1)...........................................................77  
Set5.Reg5 - Frame Status FIFO Register (FS_FO) .............................................................77  
Publication Release Date: May 23, 2005  
- 3 -  
Revision 1.0  
W83L517D/W83L517D-F  
8.7.6  
Set5.Reg6, 7 - Receiver Frame Length FIFO (RFLFL/RFLFH) or Lost Frame Number  
(LST_NU) ...........................................................................................................................................78  
8.8 Set6 - IR Physical Layer Control Registers......................................................................... 79  
8.8.1  
8.8.2  
8.8.3  
8.8.4  
8.8.5  
8.8.6  
8.8.7  
8.8.8  
Set6.Reg0 - Infrared Configure Register 2 (IR_CFG2).........................................................79  
Set6.Reg1 - MIR (1.152M/0.576M bps) Pulse Width............................................................80  
Set6.Reg2 - SIR Pulse Width ...............................................................................................80  
Set6.Reg3 - Set Select Register...........................................................................................81  
Set6.Reg4 - High Speed Infrared Beginning Flag Number (HIR_FNU)...............................81  
Set6.Reg5 – Winbond infrared ID Register 1........................................................................82  
Set6.Reg6 – Winbond infrared ID Register 2........................................................................82  
Set6.Reg7 – High Speed infrared ID Select Register...........................................................82  
8.9 Set7 - Remote control and IR module selection registers................................................... 83  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
8.9.6  
8.9.7  
8.9.8  
Set7.Reg0 - Remote Infrared Receiver Control (RIR_RXC).................................................83  
Set7.Reg1 - Remote Infrared Transmitter Control (RIR_TXC) .............................................85  
Set7.Reg2 - Remote Infrared Config Register (RIR_CFG)...................................................86  
Set7.Reg3 - Sets Select Register (SSR) ..............................................................................87  
Set7.Reg4 - Infrared Module (Front End) Select 1 (IRM_SL1) .............................................87  
Set7.Reg5 - Infrared Module (Front End) Select 2 (IRM_SL2) .............................................88  
Set7.Reg6 - Infrared Module (Front End) Select 3 (IRM_SL3) .............................................88  
Set7.Reg7 - Infrared Module Control Register (IRM_CR) ....................................................89  
9. PARALLEL PORT......................................................................................................................... 90  
9.1 Printer Interface Logic ......................................................................................................... 90  
9.2 Enhanced Parallel Port (EPP)............................................................................................. 91  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
Data Swapper.......................................................................................................................92  
Printer Status Buffer .............................................................................................................92  
Printer Control Latch and Printer Control Swapper...............................................................92  
EPP Address Port ................................................................................................................93  
EPP Data Port 0-3................................................................................................................94  
Bit Map of Parallel Port and EPP Registers..........................................................................94  
EPP Pin Descriptions ...........................................................................................................95  
EPP Operation .....................................................................................................................95  
9.3 Extended Capabilities Parallel (ECP) Port.......................................................................... 96  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
9.3.7  
9.3.8  
9.3.9  
ECP Register and Mode Definitions .....................................................................................96  
Data and ecpAFifo Port ........................................................................................................97  
Device Status Register (DSR)..............................................................................................97  
Device Control Register (DCR).............................................................................................98  
cFifo (Parallel Port Data FIFO) Mode = 010.........................................................................98  
ecpDFifo (ECP Data FIFO) Mode = 011...............................................................................99  
tFifo (Test FIFO Mode) Mode = 110.....................................................................................99  
cnfgA (Configuration Register A) Mode = 111......................................................................99  
cnfgB (Configuration Register B) Mode = 111......................................................................99  
9.3.10 ecr (Extended Control Register) Mode = all........................................................................100  
- 4 -  
W83L517D/W83L517D-F  
9.3.11 Bit Map of ECP Port Registers ...........................................................................................101  
9.3.12 ECP Pin Descriptions .........................................................................................................102  
9.3.13 ECP Operation ...................................................................................................................102  
9.3.14 FIFO Operation ..................................................................................................................103  
9.3.15 DMA Transfers ...................................................................................................................103  
9.3.16 Programmed I/O (NON-DMA) Mode...................................................................................103  
9.4 Extension FDD Mode (EXTFDD) ...................................................................................... 104  
9.5 Extension 2FDD Mode (EXT2FDD) .................................................................................. 104  
10. GENERAL PURPOSE I/O ........................................................................................................... 104  
11. ACPI REGISTERS FEATURES .................................................................................................. 107  
12. CONFIGURATION REGISTER................................................................................................... 107  
12.1 Plug and Play Configuration.............................................................................................. 107  
12.2 Compatible PnP................................................................................................................. 108  
12.2.1 Extended Function Registers..............................................................................................108  
12.2.2 Extended Functions Enable Registers (EFERs).................................................................109  
12.2.3 Extended Function Index Registers (EFIRs), Extended Function Data Registers(EFDRs) 109  
12.3 Configuration Sequence.................................................................................................... 109  
12.3.1 Enter the extended function mode......................................................................................109  
12.3.2 Configurate the configuration registers...............................................................................109  
12.3.3 Exit the extended function mode ........................................................................................109  
12.3.4 Software programming example.........................................................................................110  
12.4 Chip (Global) Control Register.......................................................................................... 111  
12.5 Logical Device 0 (FDC) ..................................................................................................... 116  
12.6 Logical Device 1 (Parallel Port)......................................................................................... 119  
12.7 Logical Device 2 (UART A) ............................................................................................... 120  
12.8 Logical Device 6 (FIR)....................................................................................................... 121  
12.9 Logical Device 7 ( GPIO Port 1)........................................................................................ 122  
12.10 Logical Device 8 ( GPIO Port 2)........................................................................................ 124  
12.11 Logical Device 9 (GPIO Port 3 ~ GPIO Port 5 )................................................................ 124  
12.12 Logical Device A (ACPI).................................................................................................... 125  
13. ORDERING INSTRUCTION........................................................................................................ 128  
14. HOW TO READ THE TOP MARKING ........................................................................................ 129  
15. PACKAGE DIMENSIONS............................................................................................................ 130  
16. RECOMMENDED CIRCUIT........................................................................................................ 131  
17. REVISION HISTORY................................................................................................................... 133  
Publication Release Date: May 23, 2005  
- 5 -  
Revision 1.0  
W83L517D/W83L517D-F  
1. GENERAL DESCRIPTION  
The W83L517D is evolving product from Winbond's most popular I/O family. They feature a whole  
new interface, namely LPC (Low Pin Count) interface, which will be supported in the new generation  
chip-set. This interface as its name suggests is to provide an economical implementation of I/O's  
interface with lower pin count and still maintains equivalent performance as its ISA interface  
counterpart. Approximately 40 pin counts are saved in LPC I/O comparing to ISA implementation.  
With this additional freedom, we can implement more devices on a single chip as demonstrated in  
W83L517D's integration of Flash ROM Interface. It is fully transparent in terms of software which  
means no BIOS or device driver update is needed except chip-specific configuration.  
The disk drive adapter functions of W83L517D include a floppy disk drive controller compatible with  
the industry standard 82077/ 765, data separator, write pre-compensation circuit, decode logic, data  
rate selection, clock generator, drive interface control logic, and interrupt and DMA logic. The wide  
range of functions integrated onto the W83L517D greatly reduces the number of components required  
for interfacing with floppy disk drives. The W83L517D supports four 360K, 720K, 1.2M, 1.44M, or  
2.88M disk drives and data transfer rates of 250 Kb/s, 300 Kb/s, 500 Kb/s,1 Mb/s, and 2 Mb/s.  
The W83L517D provides one high-speed serial communication ports (UARTs), one of which supports  
serial Infrared communication. The UART includes a 16-byte send/receive FIFO, a programmable  
baud rate generator, complete modem control capability, and a processor interrupt system. The UART  
provides legacy speed with baud rate up to 115.2k bps and also advanced speed with baud rates of  
230k, 460k, or 921k bps which support higher speed modems. In addition, the W83L517D provides  
IR functions: IrDA 1.0 (SIR for 1.152K bps) and IrDA 1.1 (MIR for 1.152M bps or FIR for 4M bps), TV  
remote IR, (Consumer IR, supporting NEC, RC-5, extended RC-5, and RECS-80 protocols).  
The W83L517D supports one PC-compatible printer port (SPP), Bi-directional Printer port (BPP) and  
also Enhanced Parallel Port (EPP) and Extended Capabilities Port (ECP). Through the printer port  
interface pins, also available are: Extension FDD Mode and Extension 2FDD Mode allowing one or  
two external floppy disk drives to be connected.  
The configuration registers support mode selection, function enable/disable, and power down function  
selection. Furthermore, the configurable PnP features are compatible with the plug-and-play feature  
demand of Windows 95/98TM, which makes system resource allocation more efficient than ever.  
The W83L517D provides a set of flexible I/O control functions to the system designer through a set of  
General Purpose I/O ports. These GPIO ports may serve as simple I/O or may be individually  
configured to provide a predefined alternate function. General Purpose Port 1 is designed to be  
functional even in power down mode (VCC is off).  
The W83L517D is made to fully comply with Microsoft© PC98 and PC99 Hardware Design Guide, and  
meet the requirements of ACPI.  
The W83L517D provides two important interfaces -- “Flash ROM interface and ISA keyboard  
controller interface”. The Flash ROM interface can support up to 4M legacy flash ROM. The ISA KBC  
interface can supports legacy KBC such as Mitsubishi H8 and Intel 8xC51.  
- 6 -  
W83L517D/W83L517D-F  
2. FEATURES  
General  
Meet LPC Spec. 1.01  
Support LDRQ#(LPC DMA), SERIRQ (serial IRQ)  
Include all the features of Winbond I/O W83877ATF  
Compliant with Microsoft PC98/PC99 Hardware Design Guide  
Support DPM (Device Power Management), ACPI  
Support hardware power down mode  
Support printer port/floppy hardware auto-detect and auto-swap  
Programmable configuration settings  
Single 24 or 48 MHz clock input  
FDC  
Compatible with IBM PC AT disk drive systems  
Variable write pre-compensation with track selectable capability  
Support vertical recording format  
DMA enable logic  
16-byte data FIFOs  
Support floppy disk drives and tape drives  
Detects all overrun and underrun conditions  
Built-in address mark detection circuit to simplify the read electronics  
FDD anti-virus functions with software write protect and FDD write enable signal (write data signal  
was forced to be inactive)  
Support up to four 3.5-inch or 5.25-inch floppy disk drives  
Completely compatible with industry standard 82077  
360K/720K/1.2M/1.44M/2.88M format; 250K, 300K, 500K, 1M, 2M bps data transfer rate  
Support 3-mode FDD, and its Win95/98 driver  
UART  
High-speed 16550 compatible UARTs with 16-byte send/receive FIFOs  
MIDI compatible  
Fully programmable serial-interface characteristics:  
--- 5, 6, 7 or 8-bit characters  
--- Even, odd or no parity bit generation/detection  
--- 1, 1.5 or 2 stop bits generation  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 7 -  
W83L517D/W83L517D-F  
Internal diagnostic capabilities:  
--- Loop-back controls for communications link fault isolation  
--- Break, parity, overrun, framing error simulation  
Programmable baud generator allows division of 1.8461 MHz and 24 MHz by 1 to (216-1)  
Maximum baud rate up to 921k bps for 14.769 MHz and 1.5M bps for 24 MhzInfrared  
Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps  
Support SHARP ASK-IR protocol with maximum baud rate up to 57,600 bps  
Support IrDA version 1.1 MIR (1.152M bps) and FIR (4M bps) protocol  
--- Single DMA channel for transmitter or receiver  
--- 32-byte FIFO is supported in both FIR TX/RX transmission  
--- 8-byte status FIFO is supported to store received frame status (such as overrun, CRC error,  
etc.)  
Support auto-config SIR and FIR  
Support full Customer IR  
Support driver for MicrosoftTM Windows 95TM and Windows 98TM (Memphis TM)  
Parallel Port  
Compatible with IBMTM parallel port  
Support PS/2 compatible bi-directional parallel port  
Support Enhanced Parallel Port (EPP) Compatible with IEEE 1284 specification  
Support Extended Capabilities Port (ECP) Compatible with IEEE 1284 specification  
Extension FDD mode supports disk drive B; and Extension 2FDD mode supports disk drives  
A and B through parallel port  
Enhanced printer port back-drive current protection  
Flash ROM Interface  
Support up to 4M flash ROM  
Keyboard Controller Interface  
Support Legacy ISA keyboard controller  
General Purpose I/O Ports  
38 programmable general purpose I/O ports  
General purpose I/O ports can serve as simple I/O ports, watch dog timer output, power LED  
output, infrared I/O pins, suspend LED output, Beep output  
Functional in power down mode  
Package  
100-pin LQFP  
- 8 -  
W83L517D/W83L517D-F  
3. PIN CONFIGURATION FOR W83L517D  
7 7 7 7 7 7 6  
6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5  
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1  
5 4 3 2 1 0 9  
8 7 6  
50  
49  
48  
XA6/GP43  
XA7/GP44  
XA8/GP45  
XA9/GP46  
XA10/GP47  
XA11/GP50  
XA12/GP51  
XA13/GP52  
XA14/GP53  
GND  
XA15/GP54  
XA16/GP55  
XA17/GP56  
XA18/GP57  
VCC  
HEAD#  
RDATA#  
WP#  
TRAK0#  
WE#  
WD#  
STEP#  
DIR#  
MOA#  
IRSEL0_IRRXH  
IRTX  
IRRX  
76  
77  
78  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
RIA#  
DCDA#  
SOUTA/PEN48  
SINA  
DTRA#/PNPCSv#  
RTSA#/HEFRAS  
DSR#  
VCC  
CTSA#  
STB#  
AFD#  
ERR#  
GND  
INIT#  
SLIN#  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
W83L517D  
DSKCHG#  
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2  
1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5  
P8  
0C  
S#  
/G  
P1  
0
Publication Release Date: May 23, 2005  
Revision 1.0  
- 9 -  
W83L517D/W83L517D-F  
4. PIN DESCRIPTION  
Note: Please refer to Section 13.2 DC CHARACTERISTICS for details.  
I/O  
I/O  
I/O  
- TTL level bi-directional pin with 8 mA source-sink capability  
8t  
- TTL level bi-directional pin with 12 mA source-sink capability  
- 3.3V TTL level bi-directional pin with 12 mA source-sink capability  
- TTL level bi-directional pin open drain output with 12 mA sink capability  
- TTL level bi-directional pin with 24 mA source-sink capability  
- TTL level output pin with 12 mA source-sink capability  
- 3.3V TTL level output pin with 12 mA source-sink capability  
- Open-drain output pin with 12 mA sink capability  
- Open-drain output pin with 24 mA sink capability  
- CMOS level Schmitt-trigger input pin  
12t  
12tp3  
I/OD  
12t  
I/O  
24t  
OUT  
OUT  
12t  
12tp3  
OD  
OD  
12  
24  
IN  
IN  
IN  
IN  
IN  
cs  
- TTL level input pin  
t
- TTL level input pin with internal pull down resistor  
- TTL level Schmitt-trigger input pin  
td  
ts  
- 3.3V TTL level Schmitt-trigger input pin  
tsp3  
4.1 LPC Interface  
SYMBOL  
PIN  
I/O  
FUNCTION  
System clock input. According to the input frequency 24MHz or  
48MHz, it is selectable through register. Default is 24MHz input.  
INt  
CLKIN  
6
OD12  
INtsp3  
O12tp3  
PME#  
PCICLK  
LDRQ#  
SERIRQ  
7
Generated PME event.  
PCI clock input.  
12  
13  
Encoded DMA Request signal.  
11  
14,  
I/OD12t Serial IRQ input/Output.  
These signal lines communicate address, control, and data  
information over the LPC bus between a host and a peripheral.  
I/O12tp3  
LAD[0:3]  
16-18  
INtsp3  
INtsp3  
LFRAME#  
LRESET#  
19  
8
Indicates start of a new cycle or termination of a broken cycle.  
Reset signal. It can connect to PCIRST# signal on the host.  
Hardware power down input pin for chip power down.  
Programmable control by registers.  
INtsp3  
PDCTL#  
9
- 10 -  
W83L517D/W83L517D-F  
4.2 FDC Interface  
SYMBOL  
PIN  
I/O  
FUNCTION  
OD24  
DRVDEN0  
3
Drive Density Select bit 0.  
This Schmitt-triggered input from the disk drive is active low  
when the head is positioned over the beginning of a track  
marked by an index hole. This input pin is pulled up internally  
by a 1 KΩ resistor. The resistor can be disabled by bit 7 of L0-  
CRF0 (FIPURDWN).  
INcs  
INDEX#  
2
Drive Select A. When set to 0, this pin enables disk drive A.  
This is an open drain output.  
OD24  
INcs  
DSA#  
DSKCHG#  
MOA#  
1
100  
99  
Diskette change. This signal is active low at power on and  
whenever the diskette is removed. This input pin is pulled up  
internally by a 1 KΩ resistor. The resistor can be disabled by bit  
7 of L0-CRF0 (FIPURDWN).  
Motor A On. When set to 0, this pin enables disk drive 0. This  
is an open drain output.  
OD24  
OD24  
OD24  
Direction of the head step motor. An open drain output.  
Logic 1 = outward motion  
DIR#  
98  
Logic 0 = inward motion  
Step output pulses. This active low open drain output produces  
a pulse to move the head to another track.  
STEP#  
97  
Write data. This logic low open drain writes pre-compensation  
serial data to the selected FDD. An open drain output.  
OD24  
OD24  
WD#  
WE#  
96  
95  
Write enable. An open drain output.  
Track 0. This Schmitt-triggered input from the disk drive is  
active low when the head is positioned over the outermost  
track. This input pin is pulled up internally by a 1 KΩ resistor.  
The resistor can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
INcs  
TRAK0#  
94  
Write protected. This active low Schmitt input from the disk  
drive indicates that the diskette is write-protected. This input  
pin is pulled up internally by a 1 KΩ resistor. The resistor can  
be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
INcs  
INcs  
WP#  
93  
92  
The read data input signal from the FDD. This input pin is  
pulled up internally by a 1 KΩ resistor. The resistor can be  
disabled by bit 7 of L0-CRF0 (FIPURDWN).  
RDATA#  
Head select. This open drain output determines which disk  
drive head is active.  
OD24  
HEAD#  
91  
Logic 1 = side 0  
Logic 0 = side 1  
Publication Release Date: May 23, 2005  
- 11 -  
Revision 1.0  
W83L517D/W83L517D-F  
4.3 Multi-Mode Parallel Port  
The following pins have alternate functions, which are controlled by CR28 and L3-CRF0.  
SYMBOL  
PIN  
I/O  
FUNCTION  
PRT_NFDD#  
20  
INtsp3  
PRT_NFDD# is the printer Not Floppy signal. It  
indicated the connected device as Printer or Floppy  
Disk on printer port. If the default function(Printer  
mode) is used, it must connect to low level.  
SLCT  
21  
INt  
PRINTER MODE:  
An active high input on this pin indicates that the  
printer is selected. This pin is pulled high internally.  
Refer to the description of the parallel port for  
definition of this pin in ECP and EPP mode.  
(WE2#)  
OD12  
OD12  
EXTENSION FDD MODE: WE2#  
This pin is for Extension FDD B; its function is the  
same as the  
pin of FDC.  
WE#  
EXTENSION 2FDD MODE: WE2#  
This pin is for Extension FDD A and B; its function is  
the same as the  
pin of FDC.  
WE#  
PE  
22  
INt  
PRINTER MODE:  
An active high input on this pin indicates that the  
printer has detected the end of the paper. This pin is  
pulled high internally. Refer to the description of the  
parallel port for the definition of this pin in ECP and  
EPP mode.  
(WD2#)  
OD12  
EXTENSION FDD MODE: WD2#  
This pin is for Extension FDD B; its function is the  
same as the  
pin of FDC.  
WD#  
OD  
EXTENSION 2FDD MODE: WD2#  
12  
This pin is for Extension FDD A and B; its function is  
the same as the  
pin of FDC.  
WD#  
- 12 -  
W83L517D/W83L517D-F  
Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
BUSY  
23  
INt  
PRINTER MODE:  
An active high input indicates that the printer is not  
ready to receive data. This pin is pulled high internally.  
Refer to the description of the parallel port for definition  
of this pin in ECP and EPP mode.  
(MOB2#)  
OD12  
EXTENSION FDD MODE: MOB2#  
This pin is for Extension FDD B; its function is the  
same as the MOB# pin of FDC.  
OD  
EXTENSION 2FDD MODE: MOB2#  
12  
This pin is for Extension FDD A and B; its function is  
the same as the MOB# pin of FDC.  
ACK#  
24  
INt  
PRINTER MODE: ACK#  
An active low input on this pin indicates that the printer  
has received data and is ready to accept more data.  
This pin is pulled high internally.  
Refer to the  
description of the parallel port for the definition of this  
pin in ECP and EPP mode.  
(DSB#)  
OD12  
EXTENSION FDD MODE: DSB2#  
This pin is for the Extension FDD B; its functions is the  
same as the DSB# pin of FDC.  
EXTENSION 2FDD MODE: DSB2#  
OD  
12  
This pin is for Extension FDD A and B; its function is  
the same as the DSB# pin of FDC.  
PD0  
25  
I/O12t  
PRINTER MODE: PD0  
Parallel port data bus bit 0. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
(INDEX2#)  
INt  
EXTENSION FDD MODE: INDEX2#  
This pin is for Extension FDD B; its function is the  
same as the INDEX# pin of FDC. It is pulled high  
internally.  
INt  
EXTENSION 2FDD MODE: INDEX2#  
This pin is for Extension FDD A and B; its function is  
the same as the INDEX# pin of FDC. It is pulled high  
internally.  
Publication Release Date: May 23, 2005  
- 13 -  
Revision 1.0  
W83L517D/W83L517D-F  
Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
PD1  
26  
I/O12t  
PRINTER MODE: PD1  
Parallel port data bus bit 1. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
(TRAK02#)  
INt  
INt  
EXTENSION FDD MODE: TRAK02#  
This pin is for Extension FDD B; its function is the  
same as the TRAK0# pin of FDC. It is pulled high  
internally.  
EXTENSION. 2FDD MODE: TRAK02#  
This pin is for Extension FDD A and B; its function is  
the same as the TRAK0# pin of FDC. It is pulled high  
internally.  
PD2  
27  
I/O12t  
PRINTER MODE: PD2  
Parallel port data bus bit 2. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
(WP2#)  
INt  
EXTENSION FDD MODE: WP2#  
This pin is for Extension FDD B; its function is the  
same as the WP# pin of FDC. It is pulled high  
internally.  
INt  
EXTENSION. 2FDD MODE: WP2#  
This pin is for Extension FDD A and B; its function is  
the same as the WP# pin of FDC. It is pulled high  
internally.  
PD3  
28  
I/O12t  
PRINTER MODE: PD3  
Parallel port data bus bit 3. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
(RDATA2#)  
INt  
EXTENSION FDD MODE: RDATA2#  
This pin is for Extension FDD B; its function is the  
same as the RDATA# pin of FDC. It is pulled high  
internally.  
INt  
EXTENSION 2FDD MODE: RDATA2#  
This pin is for Extension FDD A and B; its function is  
the same as the RDATA# pin of FDC. It is pulled high  
internally.  
- 14 -  
W83L517D/W83L517D-F  
Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
PD4  
29  
I/O12t  
PRINTER MODE: PD4  
Parallel port data bus bit 4. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
(DSKCHG2#)  
INt  
Int  
EXTENSION FDD MODE: DSKCHG2#  
This pin is for Extension FDD B; the function of this pin  
is the same as the DSKCHG# pin of FDC. It is pulled  
high internally.  
EXTENSION 2FDD MODE: DSKCHG2#  
This pin is for Extension FDD A and B; this function of  
this pin is the same as the DSKCHG# pin of FDC. It is  
pulled high internally.  
PD5  
30  
31  
I/O12t  
PRINTER MODE: PD5  
Parallel port data bus bit 5. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
-
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state  
output.  
PD6  
I/OD12t  
PRINTER MODE: PD6  
Parallel port data bus bit 6. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
(MOA2#)  
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION. 2FDD MODE: MOA2#  
OD12  
This pin is for Extension FDD A; its function is the  
same as the MOA# pin of FDC.  
PD7  
32  
I/OD12t  
PRINTER MODE: PD7  
Parallel port data bus bit 7. Refer to the description of  
the parallel port for the definition of this pin in ECP and  
EPP mode.  
(DSA2#)  
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: DSA2#  
OD12  
This pin is for Extension FDD A; its function is the  
same as the DSA# pin of FDC.  
Publication Release Date: May 23, 2005  
- 15 -  
Revision 1.0  
W83L517D/W83L517D-F  
Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
SLIN#  
33  
OD12  
PRINTER MODE: SLIN#  
Output line for detection of printer selection. This pin is  
pulled high internally. Refer to the description of the  
parallel port for the definition of this pin in ECP and  
EPP mode.  
(STEP2#)  
EXTENSION FDD MODE: STEP2#  
OD12  
OD12  
This pin is for Extension FDD B; its function is the  
same as the STEP# pin of FDC.  
EXTENSION 2FDD MODE: STEP2#  
This pin is for Extension FDD A and B; its function is  
the same as the STEP# pin of FDC.  
INIT#  
34  
OD12  
PRINTER MODE: INIT#  
Output line for the printer initialization. This pin is  
pulled high internally. Refer to the description of the  
parallel port for the definition of this pin in ECP and  
EPP mode.  
(DIR2#)  
EXTENSION FDD MODE: DIR2#  
OD12  
OD12  
This pin is for Extension FDD B; its function is the  
same as the DIR# pin of FDC.  
EXTENSION 2FDD MODE: DIR2#  
This pin is for Extension FDD A and B; its function is  
the same as the DIR# pin of FDC.  
ERR#  
36  
INt  
PRINTER MODE: ERR#  
An active low input on this pin indicates that the printer  
has encountered an error condition. This pin is pulled  
high internally. Refer to the description of the parallel  
port for the definition of this pin in ECP and EPP mode.  
OD12  
OD12  
(HEAD2#)  
EXTENSION FDD MODE: HEAD2#  
This pin is for Extension FDD B; its function is the  
same as the HEAD# pin of FDC.  
EXTENSION 2FDD MODE: HEAD2#  
This pin is for Extension FDD A and B; its function is  
the same as the HEAD# pin of FDC.  
- 16 -  
W83L517D/W83L517D-F  
Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
AFD#  
37  
OD12  
PRINTER MODE: AFD#  
An active low output from this pin causes the printer to  
auto feed a line after a line is printed. This pin is pulled  
high internally. Refer to the description of the parallel  
port for the definition of this pin in ECP and EPP mode.  
(DRVDEN0)  
EXTENSION FDD MODE: DRVDEN0  
OD12  
OD12  
This pin is for Extension FDD B; its function is the  
same as the DRVDEN0 pin of FDC.  
EXTENSION 2FDD MODE: DRVDEN0  
This pin is for Extension FDD A and B; its function is  
the same as the DRVDEN0 pin of FDC.  
STB#  
38  
OD12  
PRINTER MODE: STB#  
An active low output is used to latch the parallel data  
into the printer. This pin is pulled high internally. Refer  
to the description of the parallel port for the definition of  
this pin in ECP and EPP mode.  
-
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state  
output.  
4.4 Serial Port Interface and Infrared Port  
SYMBOL  
PIN  
I/O  
FUNCTION  
CTSA#  
39  
Int  
Clear To Send. It is the modem control input.  
The function of these pins can be tested by reading bit 4 of  
the handshake status register.  
DSRA#  
41  
42  
Int  
Data Set Ready. An active low signal indicates the modem  
or data set is ready to establish a communication link and  
transfer data to the UART.  
RTSA#  
I/O8t  
UART A Request To Send. An active low signal informs the  
modem or data set that the controller is ready to send data.  
(HEFRAS)  
During power-on reset, this pin is pulled down internally and  
is defined as HEFRAS and configuration port’s address is  
slected to 2Eh, which provides the power-on value for CRXX  
bit X (HEFRAS). A 4.7 kΩ resistor is recommended if intends  
to pull up and selects 4EH as configuration I/O ports  
address)  
Publication Release Date: May 23, 2005  
- 17 -  
Revision 1.0  
W83L517D/W83L517D-F  
Serial Port Interface, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
DTRA#  
43  
I/O8t  
UART A Data Terminal Ready. An active low signal informs  
the modem or data set that the controller is ready to  
communicate.  
During power-on reset, this pin is pulled down internally and  
(PNPCSV#)  
is defined as  
, which provides the power-on value  
PNPCSV#  
for CR24 bit 0 (  
). A 4.7 kΩ is recommended if  
PNPCSV#  
intends to pull up. (clear the default value of FDC, UARTs,  
and PRT)  
SINA  
44  
45  
INt  
Serial Input. It is used to receive serial data through the  
communication link.  
SOUTA  
I/O8  
UART A Serial Output. It is used to transmit serial data out to  
the communication link.  
(PEN48)  
During power-on reset, this pin is pulled down internally and  
is defined as PEN48 and the clock input (Pin 6) should be  
48MHz, which provides the power-on value for CRxx bit x  
(EN48). A 4.7 kΩ resistor is recommended if intends to pull  
up and 24MHz input is slected.  
INt  
DCDA#  
RIA#  
46  
47  
INt  
INt  
Data Carrier Detect. An active low signal indicates the  
modem or data set has detected a data carrier.  
Ring Indicator. An active low signal indicates that a ring  
signal is being received from the modem or data set.  
IRRX  
IRTX  
48  
49  
INts  
Alternate Function Input: Infrared Receiver input.(For  
W83L517D only)  
OUT12t  
Alternate Function Output: Infrared Transmitter Output. (For  
W83L517D only)  
IRSEL0_ IRRXH 50  
I/O12t  
After reset, this pin is Infrared Control Signal 0 , this signal is  
output and selecte FIR or SIR mode for IR module . This pin  
can be set as IRRXH , the signal is high speed infrared  
receiver input . (For W83L517D only)  
- 18 -  
W83L517D/W83L517D-F  
4.5 KBC and FLASH ROM Interface  
SYMBOL  
PIN  
I/O  
FUNCTION  
P80CS#  
Decoded I/O write asserted and the address 0x80h to output  
selected signal.  
4
I/OD  
General purpose I/O PORT 1 ,  
(GP10)  
(PLED)  
RTCCS#  
(GP11)  
(WDTO)  
KBCS#  
12  
Programmable Power LED.  
Decoded the address 0x70h and 0x71h to output selected signal .  
General purpose I/O PORT 1 ,  
5
I/OD  
12  
Programmable watch dog timer.  
OD  
Decode the address 60h and 64h to output selected signal.  
Enable by PENKB# signal with Low-level during power-on setting.  
General purpose I/O PORT 2 ,  
12  
(GP20)  
I/O  
12  
52  
(PENKB#)  
INt  
During power-on reset, this pin is pulled down internally and is  
defined as PENKB# and all the K/B interface will be active, which  
provides the power on value for CR24 bit 7. A 4.7kΩ resistor is  
recommended if intends to pull up and disable K/B functions.  
MCCS#  
OD  
Decode the address 62h and 66h to output selected signal  
Enable by PENKB# signal with Lo-level during power-on setting.  
General purpose I/O PORT 2 ,  
12  
53  
(GP21)  
IRQ1IN  
I/O  
In  
12  
Parallel Interrupt Requested Input 1. This interrupt request is used  
for specific K/B functions.  
t
54  
55  
56  
57  
General purpose I/O PORT 2 ,  
(GP22)  
I/O  
12  
IRQ12IN  
In  
Parallel Interrupt Requested Input 12. This interrupt request is  
used for specific K/B functions.  
t
General purpose I/O PORT 2 ,  
(GP23)  
IOR#  
I/O  
O
12  
I/O Read. IOR# is the command to an ISA I/O slave device that  
the slave may drive data on to the ISA data bus (XD[0:7]).  
12t  
(GP24)  
IOW#  
General purpose I/O PORT 2 ,.  
I/O  
12t  
O
I/O Write. IOW# is the command to an ISA I/O slave device that  
the slave may latch data from the ISA data bus (XD[0:7]).  
12t  
(GP25)  
XD[0:7]  
General purpose I/O PORT 2 ,  
I/O  
12t  
58-60  
62-66  
I/O12t  
XData BUS. XD[0:7] provide the 8-bit data path for KBC and ROM  
devices residing on the ISA Bus.  
I/O12t  
(GP30-  
GP37)  
General purpose I/O PORT 3 ,  
Publication Release Date: May 23, 2005  
- 19 -  
Revision 1.0  
W83L517D/W83L517D-F  
KBC and FLASH ROM Interface, continued  
SYMBOL  
MEMR#  
(GP12)  
PIN  
I/O  
FUNCTION  
67  
O
Flash ROM interface Memory Read Enable  
12t  
General purpose I/O PORT 1 ,  
I/O  
12t  
12t  
MEMW#  
(GP13)  
68  
69  
O
Flash ROM interface Memory Write Enable  
General purpose I/O PORT 1 ,  
I/O  
12t  
ROMCS#  
(GP14)  
OD  
Flash ROM interface Chip Select  
General purpose I/O PORT 1 ,  
12  
I/OD  
12  
(PENROM#)  
During power-on reset , this pin is pulled down internally and is  
defined as PENROM# and decoded memory address of BIOS  
to output selected signal, which provides the power on value  
for CR24 bit 1. A 4.7kΩ is recommended if intends to pull up  
and disable BIOS ROM function .  
INt  
XA0  
70  
71  
O
Flash ROM interface Address 0.  
General purpose I/O PORT 1 ,  
(GP15)  
I/O12t  
XA1  
O
Flash ROM interface Address 1.  
General purpose I/O PORT 2 ,  
(GP26)  
I/O12t  
XA2  
72  
O
Flash ROM interface Address 2.  
General purpose I/O PORT 2 ,  
(GP27)  
I/O12t  
XA3-XA10  
73-80  
O
Flash ROM interface Address [3:10].  
General purpose I/O PORT 4 ,  
(GP40-  
GP47)  
I/O12t  
XA11-XA18  
81-84  
86-89  
O
Flash ROM interface Address [11:18].  
General purpose I/O PORT 5 ,  
(GP50-  
GP57)  
I/O12t  
4.6 POWER PINS  
SYMBOL  
PIN  
FUNCTION  
+3.3V power supply for core logic and driving 3V on host  
interface.  
VCC3V  
15, 51  
40, 90  
VCC  
GND  
+5V or +3.3V power supply for device output pad.  
Ground.  
10, 35, 61, 85  
- 20 -  
W83L517D/W83L517D-F  
5. LPC (LOW PIN COUNT) INTERFACE  
LPC interface is to replace ISA interface serving as a bus interface between host (chip-set) and  
peripheral (Winbond I/O). Data transfer on the LPC bus are serialized over a 4 bit bus. The general  
characteristics of the interface implemented in Winbond LPC I/O are:  
One control line, namely LFRAME#, which is used by the host to start or stop transfers. No  
peripherals drive this signal.  
The LAD[3:0] bus, which communicates information serially. The information conveyed are cycle  
type, cycle direction, chip selection, address, data, and wait states.  
MR (master reset) of Winbond ISA I/O is replaced with a active low reset signal, namely  
LRESET#, in Winbond LPC I/O.  
An additional 33 MHz PCI clock is needed in Winbond LPC I/O for synchronization.  
DMA requests are issued through LDRQ#.  
Interrupt requests are issued through SERIRQ.  
Power management events are issued through PME#.  
Comparing to its ISA counterpart, LPC implementation saves up to 40 pin counts free for integrating  
more devices on a single chip.  
The transition from ISA to LPC is transparent in terms of software which means no BIOS or device  
driver update is needed except chip-specific configuration.  
6. FDC FUNCTIONAL DESCRIPTION  
6.1 W83L517D FDC  
The floppy disk controller of the W8369L517D integrates all of the logic required for floppy disk  
control. The FDC implements a PC/AT or PS/2 solution. All programmable options default to  
compatible values. The FIFO provides better system performance in multi-master systems. The  
digital data separator supports up to 2 M bits/sec data rate.  
The FDC includes the following blocks: AT interface, Precompensation, Data Rate Selection, Digital  
Data Separator, FIFO, and FDC Core.  
6.1.1 AT interface  
The interface consists of the standard asynchronous signals:  
, WR#, A0-A3, IRQ, DMA control,  
RD#  
and a data bus. The address lines select between the configuration registers, the FIFO and  
control/status registers. This interface can be switched between PC/AT, Model 30, or PS/2 normal  
modes. The PS/2 register sets are a superset of the registers found in a PC/AT.  
6.1.2 FIFO (Data)  
The FIFO is 16 bytes in size and has programmable threshold values. All command parameter  
information and disk data transfers go through the FIFO. Data transfers are governed by the RQM and  
DIO bits in the Main Status Register.  
The FIFO defaults to disabled mode after any form of reset. This maintains PC/AT hardware  
compatibility. The default values can be changed through the CONFIGURE command. The advantage  
of the FIFO is that it allows the system a larger DMA latency without causing disk errors. The following  
tables give several examples of the delays with a FIFO. The data are based upon the following  
formula:  
Publication Release Date: May 23, 2005  
- 21 -  
Revision 1.0  
W83L517D/W83L517D-F  
THRESHOLD # × (1/DATA/RATE) *8 - 1.5 μS = DELAY  
FIFO THRESHOLD  
MAXIMUM DELAY TO SERVICING AT 500K BPS  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 × 16 μS - 1.5 μS = 14.5 μS  
2 × 16 μS - 1.5 μS = 30.5 μS  
8 × 16 μS - 1.5 μS = 6.5 μS  
15 × 16 μS - 1.5 μS = 238.5 μS  
MAXIMUM DELAY TO SERVICING AT 1M BPS  
Data Rate  
FIFO THRESHOLD  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 × 8 μS - 1.5 μS = 6.5 μS  
2 × 8 μS - 1.5 μS = 14.5 μS  
8 × 8 μS - 1.5 μS = 62.5 μS  
15 × 8 μS - 1.5 μS = 118.5 μS  
At the start of a command the FIFO is always disabled and command parameters must be sent based  
upon the RQM and DIO bit settings in the main status register. When the FDC enters the command  
execution phase, it clears the FIFO of any data to ensure that invalid data are not transferred.  
An overrun and underrun will terminate the current command and the data transfer. Disk writes will  
complete the current sector by generating a 00 pattern and valid CRC. Reads require the host to  
remove the remaining data so that the result phase may be entered.  
DMA transfers are enabled with the SPECIFY command and are initiated by the FDC by activating the  
DRQ pin during a data transfer command. The FIFO is enabled directly by asserting DACK# and  
addresses need not be valid.  
Note that if the DMA controller is programmed to function in verify mode a pseudo read is performed  
by the FDC based only on DACK#. This mode is only available when the FDC has been configured  
into byte mode (FIFO disabled) and is programmed to do a read. With the FIFO enabled the above  
operation is performed by using the new VERIFY command. No DMA operation is needed.  
6.1.3 Data Separator  
The function of the data separator is to lock onto the incoming serial read data. When a lock is  
achieved the serial front end logic of the chip is provided with a clock which is synchronized to the  
read data. The synchronized clock, called the Data Window, is used to internally sample the serial  
data portion of the bit cell, and the alternate state samples the clock portion. Serial to parallel  
conversion logic separates the read data into clock and data bytes.  
The Digital Data Separator (DDS) has three parts: control logic, error adjustment, and speed tracking.  
The DDS circuit cycles once every 12 clock cycles ideally. Any data pulse input will be synchronized  
and then adjusted by immediate error adjustment. The control logic will generate RDD and RWD for  
every pulse input. During any cycle where no data pulse is present, the DDS cycles are based on  
speed. A digital integrator is used to keep track of the speed changes in the input data stream.  
- 22 -  
W83L517D/W83L517D-F  
6.1.4 Write Precompensation  
The write precompensation logic is used to minimize bit shifts in the RDDATA stream from the disk  
drive. Shifting of bits is a known phenomenon in magnetic media and is dependent on the disk media  
and the floppy drive.  
The FDC monitors the bit stream that is being sent to the drive. The data patterns that require  
precompensation are well known. Depending upon the pattern, the bit is shifted either early or late  
relative to the surrounding bits.  
6.1.5 Perpendicular Recording Mode  
The FDC is also capable of interfacing directly to perpendicular recording floppy drives. Perpendicular  
recording differs from the traditional longitudinal method in that the magnetic bits are oriented  
vertically. This scheme packs more data bits into the same area.  
FDCs with perpendicular recording drives can read standard 3.5" floppy disks and can read and write  
perpendicular media. Some manufacturers offer drives that can read and write standard and  
perpendicular media in a perpendicular media drive.  
A single command puts the FDC into perpendicular mode. All other commands operate as they  
normally do. The perpendicular mode requires a 1 Mbps data rate for the FDC. At this data rate the  
FIFO eases the host interface bottleneck due to the speed of data transfer to or from the disk.  
6.1.6 FDC Core  
The W83L517D FDC is capable of performing twenty commands. Each command is initiated by a  
multi-byte transfer from the microprocessor. The result can also be a multi-byte transfer back to the  
microprocessor. Each command consists of three phases: command, execution, and result.  
Command  
The microprocessor issues all required information to the controller to perform a specific operation.  
Execution  
The controller performs the specified operation.  
Result  
After the operation is completed, status information and other housekeeping information is provided to  
the microprocessor.  
6.1.7 FDC Commands  
Command Symbol Descriptions:  
C:  
Cylinder number 0 - 256  
Data Pattern  
D:  
DIR:  
Step Direction  
DIR = 0, step out  
DIR = 1, step in  
Disk Drive Select 0  
DS0:  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 23 -  
W83L517D/W83L517D-F  
DS1:  
DTL:  
EC:  
Disk Drive Select 1  
Data Length  
Enable Count  
EOT:  
EFIFO:  
EIS:  
End of Track  
Enable FIFO  
Enable Implied Seek  
End of track  
EOT:  
FIFOTHR:  
GAP:  
GPL:  
H:  
FIFO Threshold  
Gap length selection  
Gap Length  
Head number  
HDS:  
HLT:  
HUT:  
LOCK:  
MFM:  
MT:  
Head number select  
Head Load Time  
Head Unload Time  
Lock EFIFO, FIFOTHR, PTRTRK bits prevent affected by software reset  
MFM or FM Mode  
Multitrack  
N:  
The number of data bytes written in a sector  
New Cylinder Number  
Non-DMA Mode  
NCN:  
ND:  
OW:  
Overwritten  
PCN:  
POLL:  
PRETRK:  
R:  
Present Cylinder Number  
Polling Disable  
Precompensation Start Track Number  
Record  
RCN:  
R/W:  
SC:  
Relative Cylinder Number  
Read/Write  
Sector/per cylinder  
SK:  
Skip deleted data address mark  
Step Rate Time  
SRT:  
ST0:  
ST1:  
ST2:  
ST3:  
WG:  
Status Register 0  
Status Register 1  
Status Register 2  
Status Register 3  
Write gate alters timing of WE  
- 24 -  
W83L517D/W83L517D-F  
(1) Read Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7  
D6 D5 D4  
D3  
0
D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
1
1
0
Command codes  
0
0
0
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
R
R
R
Sector ID information after  
command execution  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 25 -  
W83L517D/W83L517D-F  
(2) Read Deleted Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
0
1
0
0
Command codes  
0
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
- 26 -  
W83L517D/W83L517D-F  
(3) Read A Track  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
W
W
W
W
W
W
W
0
0
MFM  
0
0
0
0
0
0
0
0
1
0
Command codes  
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system; FDD  
reads contents of all  
cylinders from index hole to  
EOT  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 27 -  
W83L517D/W83L517D-F  
(4) Read ID  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
0
1
0
Command codes  
W
HDS DS1 DS0  
Execution  
Result  
The first correct ID  
information on the cylinder  
is stored in Data Register  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
Disk status after the  
command has been  
completed  
R
R
(5) Verify  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
EC  
1
0
0
0
1
1
0
Command codes  
W
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL/SC -------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
Execution  
Result  
No data transfer takes  
place  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
- 28 -  
W83L517D/W83L517D-F  
(6) Version  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
Result  
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
Command code  
Enhanced controller  
R
(7) Write Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
0
0
1
0
1
Command codes  
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to Command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
Command execution  
Sector ID information after  
Command execution  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 29 -  
W83L517D/W83L517D-F  
(8) Write Deleted Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
1
0
0
0
1
Command codes  
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
- 30 -  
W83L517D/W83L517D-F  
(9) Format A Track  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
1
0
1
Command codes  
HDS DS1 DS0  
---------------------- N ------------------------  
--------------------- SC -----------------------  
--------------------- GPL ---------------------  
---------------------- D ------------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
Bytes/Sector  
Sectors/Cylinder  
Gap 3  
Filler Byte  
Execution  
for Each  
Sector  
Input Sector Parameters  
Repeat:  
Result  
Status information after  
command execution  
R
R
R
R
R
R
(10) Recalibrate  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
0
0
0
0
0
1
1
1
Command codes  
0
0
0
0
0
0
DS1 DS0  
Head retracted to Track 0  
Interrupt  
Execution  
(11) Sense Interrupt Status  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
0
0
0
0
1
0
0
0
Command code  
R
---------------- ST0 -------------------------  
---------------- PCN -------------------------  
Status information at the end  
of each seek operation  
R
Publication Release Date: May 23, 2005  
Revision 1.0  
- 31 -  
W83L517D/W83L517D-F  
(12) Specify  
PHASE  
R/W  
W
D7  
D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
1
1
Command codes  
W
| ---------SRT ----------- | --------- HUT ---------- |  
|------------ HLT ----------------------------------| ND  
W
(13) Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
1
1
1
1
Command codes  
W
0
0
0
0
0
HDS DS1 DS0  
W
-------------------- NCN -----------------------  
Head positioned over proper  
cylinder on diskette  
Execution  
R
(14) Configure  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
W
W
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
Configure information  
0
0
EIS EFIFO POLL | ------ FIFOTHR ----|  
| --------------------PRETRK ----------------------- |  
Execution  
Internal registers written  
(15) Relative Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
1
DIR  
0
0
1
1
1
1
Command codes  
W
0
0
0
0
0
HDS DS1 DS0  
W
| -------------------- RCN ---------------------------- |  
- 32 -  
W83L517D/W83L517D-F  
(16) Dumpreg  
PHASE  
R/W  
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
1
1
1
0
Registers placed in FIFO  
----------------------- PCN-Drive 0--------------------  
----------------------- PCN-Drive 1 -------------------  
----------------------- PCN-Drive 2--------------------  
----------------------- PCN-Drive 3 -------------------  
--------SRT ------------------ | --------- HUT --------  
----------- HLT -----------------------------------| ND  
------------------------ SC/EOT ----------------------  
LOCK 0 D3 D2 D1 D0 GAP WG  
0 EIS EFIFO POLL | ------ FIFOTHR --------  
-----------------------PRETRK -------------------------  
R
R
R
Result  
R
R
R
R
R
R
(17) Perpendicular Mode  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
1
0
0
1
0
Command Code  
W
OW  
0
D3  
D2 D1 D0 GAP WG  
(18) Lock  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
Result  
LOCK 0  
0
1
0
1
0
0
0
Command Code  
R
0
0
0
LOCK  
0
0
0
(19) Sense Drive Status  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
0
0
0
1
0
0
Command Code  
W
0
HDS DS1 DS0  
Result  
R
Status information about  
disk drive  
---------------- ST3 -------------------------  
(20) Invalid  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
------------- Invalid Codes -----------------  
-------------------- ST0 ----------------------  
REMARKS  
Invalid codes (no operation-  
FDC goes to standby state)  
Command  
Result  
R
ST0 = 80H  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 33 -  
W83L517D/W83L517D-F  
6.2  
Register Descriptions  
There are several status, data, and control registers in W83L517D. These registers are defined below:  
ADDRESS  
REGISTER  
OFFSET  
READ  
WRITE  
base address + 0  
base address + 1  
base address + 2  
base address + 3  
base address + 4  
base address + 5  
base address + 7  
SA REGISTER  
SB REGISTER  
DO REGISTER  
TD REGISTER  
TD REGISTER  
MS REGISTER  
DR REGISTER  
DT (FIFO) REGISTER  
DI REGISTER  
DT (FIFO) REGISTER  
CC REGISTER  
6.2.1 Status Register A (SA Register) (Read base address + 0)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP  
DRV2  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
(Bit 6):  
DRV2#  
0
1
A second drive has been installed  
A second drive has not been installed  
STEP (Bit 5):  
This bit indicates the complement of STEP# output.  
(Bit 4):  
TRAK0#  
This bit indicates the value of TRAK0# input.  
- 34 -  
W83L517D/W83L517D-F  
HEAD (Bit 3):  
This bit indicates the complement of HEAD# output.  
0
side 0  
side 1  
(Bit 2):  
1
INDEX#  
This bit indicates the value of  
WP# (Bit 1):  
output.  
INDEX#  
0
1
disk is write-protected  
disk is not write-protected  
DIR (Bit 0)  
This bit indicates the direction of head movement.  
0
1
outward direction  
inward direction  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP F/F  
DRQ  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRQ (Bit 6):  
This bit indicates the value of DRQ output pin.  
STEP F/F (Bit 5):  
This bit indicates the complement of latched STEP# output.  
TRAK0 (Bit 4):  
This bit indicates the complement of TRAK0# input.  
(Bit 3):  
HEAD#  
This bit indicates the value of  
output.  
HEAD#  
0
side 1  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 35 -  
W83L517D/W83L517D-F  
1
side 0  
INDEX (Bit 2):  
This bit indicates the complement of INDEX# output.  
WP (Bit 1):  
0
disk is not write-protected  
disk is write-protected  
1
(Bit 0)  
DIR#  
This bit indicates the direction of head movement.  
0
1
inward direction  
outward direction  
6.2.2 Status Register B (SB Register) (Read base address + 1)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
1
6
5
4
3
0
1
MOT EN A  
MOT EN B  
WE  
RDATA Toggle  
WDATA Toggle  
Drive SEL0  
Drive SEL0 (Bit 5):  
This bit indicates the status of DO REGISTER bit 0 (drive select bit 0).  
WDATA Toggle (Bit 4):  
This bit changes state at every rising edge of the  
RDATA Toggle (Bit 3):  
output pin.  
WD#  
This bit changes state at every rising edge of the  
WE (Bit 2):  
output pin.  
RDATA#  
This bit indicates the complement of the  
MOT EN B (Bit 1)  
output pin.  
WE#  
This bit indicates the complement of the  
MOT EN A (Bit 0)  
output pin.  
MOB#  
This bit indicates the complement of the  
output pin.  
MOA#  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
- 36 -  
W83L517D/W83L517D-F  
2
1
7
6
5
4
3
0
DSC  
DSD  
WE F/F  
RDATA F/F  
WD F/F  
DSA  
DSB  
DRV2  
(Bit 7):  
DRV2#  
0
A second drive has been installed  
1
A second drive has not been installed  
(Bit 6):  
DSB#  
This bit indicates the status of  
DSA# (Bit 5):  
output pin.  
DSB#  
This bit indicates the status of DSA# output pin.  
WD F/F(Bit 4):  
This bit indicates the complement of the latched WD# output pin at every rising edge of the WD#  
output pin.  
RDATA F/F(Bit 3):  
This bit indicates the complement of the latched RDATA# output pin .  
WE F/F (Bit 2):  
This bit indicates the complement of latched WE# output pin.  
(Bit 1):  
DSD#  
0
Drive D has been selected  
1
Drive D has not been selected  
(Bit 0):  
DSC#  
0
1
Drive C has been selected  
Drive C has not been selected  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 37 -  
W83L517D/W83L517D-F  
6.2.3 Digital Output Register (DO Register) (Write base address + 2)  
The Digital Output Register is a write-only register controlling drive motors, drive selection, DRQ/IRQ  
enable, and FDC resetting. All the bits in this register are cleared by the MR pin. The bit definitions are  
as follows:  
7
6
3
1-0  
5
4
2
Drive Select: 00 select drive A  
01 select drive B  
10 select drive C  
11 select drive D  
Floppy Disk Controller Reset  
Active low resets FDC  
DMA and INT Enable  
Active high enable DRQ/IRQ  
Motor Enable A. Motor A on when active high  
Motor Enable B. Motor B on when active high  
Motor Enable C. Motor C on when active high  
Motor Enable D. Motor D on when active high  
6.2.4 Tape Drive Register (TD Register) (Read base address + 3)  
This register is used to assign a particular drive number to the tape drive support mode of the data  
separator. This register also holds the media ID, drive type, and floppy boot drive information of the  
floppy disk drive. In normal floppy mode, this register includes only bit 0 and 1. The bit definitions are  
as follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
X
Tape sel 0  
Tape sel 1  
If three mode FDD function is enabled (EN3MODE = 1 in CR9), the bit definitions are as follows:  
2
1
7
6
5
4
3
0
Tape Sel 0  
Tape Sel 1  
Floppy boot drive 0  
Floppy boot drive 1  
Drive type ID0  
Drive type ID1  
Media ID0  
Media ID1  
- 38 -  
W83L517D/W83L517D-F  
Media ID1 Media ID0 (Bit 7, 6):  
These two bits are read only. These two bits reflect the value of CR8 bit 3, 2.  
Drive type ID1 Drive type ID0 (Bit 5, 4):  
These two bits reflect two of the bits of CR7. Which two bits are reflected depends on the last drive  
selected in the DO REGISTER.  
Floppy Boot drive 1, 0 (Bit 3, 2):  
These two bits reflect the value of CR8 bit 1, 0.  
Tape Sel 1, Tape Sel 0 (Bit 1, 0):  
These two bits assign a logical drive number to the tape drive. Drive 0 is not available as a tape drive  
and is reserved as the floppy disk boot drive.  
TAPE SEL 1  
TAPE SEL 0  
DRIVE SELECTED  
0
0
1
1
0
1
0
1
None  
1
2
3
6.2.5 Main Status Register (MS Register) (Read base address + 4)  
The Main Status Register is used to control the flow of data between the microprocessor and the  
controller. The bit definitions for this register are as follows:  
6
0
7
5
4
3
2
1
FDD 0 Busy, (D0B = 1), FDD number 0 is in the SEEK mode.  
FDD 1 Busy, (D1B = 1), FDD number 1 is in the SEEK mode.  
FDD 2 Busy, (D2B = 1), FDD number 2 is in the SEEK mode.  
FDD 3 Busy, (D3B = 1), FDD number 3 is in the SEEK mode.  
FDC Busy, (CB). A read or write command is in the process when CB = HIGH.  
Non-DMA mode, the FDC is in the non-DMA mode, this bit is set only during the  
execution phase in non-DMA mode.  
Transition to LOW state indicates execution phase has ended.  
DATA INPUT/OUTPUT, (DIO). If DIO= HIGH then transfer is from Data Register to the processor.  
If DIO = LOW then transfer is from processor to Data Register.  
Request for Master (RQM). A high on this bit indicates Data Register is ready to send or receive data to or from the processor.  
6.2.6 Data Rate Register (DR Register) (Write base address + 4)  
The Data Rate Register is used to set the transfer rate and write precompensation. The data rate of  
the FDC is programmed by the CC REGISTER for PC-AT and PS/2 Model 30 and PS/2 mode, and  
not by the DR REGISTER. The real data rate is determined by the most recent write to either of the  
DR REGISTER or CC REGISTER.  
Publication Release Date: May 23, 2005  
- 39 -  
Revision 1.0  
W83L517D/W83L517D-F  
1
7
6
5
0
4
3
2
0
DRATE0  
DRATE1  
PRECOMP0  
PRECOMP1  
PRECOMP2  
POWER DOWN  
S/W RESET  
S/W RESET (Bit 7):  
This bit is the software reset bit.  
POWER-DOWN (Bit 6):  
0
1
FDC in normal mode  
FDC in power-down mode  
PRECOMP2 PRECOMP1 PRECOMP0 (Bit 4, 3, 2):  
These three bits select the value of write precompensation. The following tables show the  
precompensation values for the combination of these bits.  
PRECOMP  
PRECOMPENSATION DELAY  
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
250K - 1 Mbps  
2 Mbps Tape drive  
Default Delays  
20.8 nS  
Default Delays  
41.67 nS  
83.34 nS  
41.17 nS  
125.00 nS  
62.5nS  
166.67 nS  
83.3 nS  
208.33 nS  
104.2 nS  
250.00 nS  
125.00 nS  
0.00 nS (disabled)  
0.00 nS (disabled)  
DATA RATE  
250 KB/S  
300 KB/S  
500 KB/S  
1 MB/S  
DEFAULT PRECOMPENSATION DELAYS  
125 nS  
125 nS  
125 nS  
41.67nS  
20.8 nS  
2 MB/S  
- 40 -  
W83L517D/W83L517D-F  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC and reduced write current control.  
00 500 KB/S (MFM), 250 KB/S (FM), RWC = 1  
01 300 KB/S (MFM), 150 KB/S (FM), RWC = 0  
10 250 KB/S (MFM), 125 KB/S (FM), RWC = 0  
11 1 MB/S (MFM), Illegal (FM), RWC = 1  
The 2 MB/S data rate for Tape drive is only supported by setting 01 to DRATE1 and DRATE0 bits, as  
well as setting 10 to DRT1 and DRT0 bits which are two of the Configure Register CRF4 or CRF5 bits  
in logic device 0. Please refer to the function description of CRF4 or CRF5 and data rate table for  
individual data rates setting.  
6.2.7 FIFO Register (R/W base address + 5)  
The Data Register consists of four status registers in a stack with only one register presented to the  
data bus at a time. This register stores data, commands, and parameters and provides diskette-drive  
status information. Data bytes are passed through the data register to program or obtain results after  
a command. In the W83697HF, this register defaults to FIFO disabled mode after reset. The FIFO can  
change its value and enable its operation through the CONFIGURE command.  
Status Register 0 (ST0)  
7-6  
5
3
2
1-0  
4
US1, US0 Drive Select:  
00 Drive A selected  
01 Drive B selected  
10 Drive C selected  
11 Drive D selected  
HD Head address:  
1 Head selected  
0 Head selected  
NR Not Ready:  
1 Drive is not ready  
0 Drive is ready  
EC Equipment Check:  
1 When a fault signal is received from the FDD or the track  
0 signal fails to occur after 77 step pulses  
0 No error  
SE Seek end:  
1 seek end  
0 seek error  
IC Interrupt Code:  
00 Normal termination of command  
01 Abnormal termination of command  
10 Invalid command issue  
11 Abnormal termination because the ready signal from FDD changed state during command executio  
Publication Release Date: May 23, 2005  
- 41 -  
Revision 1.0  
W83L517D/W83L517D-F  
Status Register 1 (ST1)  
7
6
5
4
3
2
1
0
Missing Address Mark. 1 When the FDC cannot detect the data address mark  
or the data address mark has been deleted.  
NW (Not Writable). 1 If a write Protect signal is detected from the diskette drive during  
execution of write data.  
ND (No DATA). 1 If specified sector cannot be found during execution of a read, write or verifly data.  
Not used. This bit is always 0.  
OR (Over Rum). 1 If the FDC is not serviced by the host system within a certain time interval during data transfer.  
DE (data Error).1 When the FDC detects a CRC error in either the ID field or the data field.  
Not used. This bit is always 0.  
EN (End of track). 1 When the FDC tries to access a sector beyond the final sector of a cylinder.  
Status Register 2 (ST2)  
7
1
0
4
3
2
6
5
MD (Missing Address Mark in Data Field).  
1 If the FDC cannot find a data address mark  
(or the address mark has been deleted)  
when reading data from the media  
0 No error  
BC (Bad Cylinder)  
1 Bad Cylinder  
0 No error  
SN (Scan Not satisfied)  
1 During execution of the Scan command  
0 No error  
SH (Scan Equal Hit)  
1 During execution of the Scan command, if the equal condition is satisfied  
0 No error  
WC (Wrong Cylinder)  
1 Indicates wrong Cylinder  
DD (Data error in the Data field)  
1 If the FDC detects a CRC error in the data field  
0 No error  
CM (Control Mark)  
1 During execution of the read data or scan command  
0 No error  
Not used. This bit is always 0  
Status Register 3 (ST3)  
6
4
2
1
0
7
5
3
US0 Unit Select 0  
US1 Unit Select 1  
HD Head Address  
TS Two-Side  
TO Track 0  
RY Ready  
WP Write Protected  
FT Fault  
- 42 -  
W83L517D/W83L517D-F  
6.2.8 Digital Input Register (DI Register) (Read base address + 7)  
The Digital Input Register is an 8-bit read-only register used for diagnostic purposes. In a PC/XT or AT  
only Bit 7 is checked by the BIOS. When the register is read, Bit 7 shows the complement of  
DSKCHG#, while other bits of the data bus remain in tri-state. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
x x x  
x x x  
x
Reserved for the hard disk controller  
x
During a read of this register, these bits are in tri-stat  
DSKCHG  
In the PS/2 mode, the bit definitions are as follows:  
7
6
1
5
4
3
1
2
0
1
1
1
HIGH DENS  
DRATE0  
DRATE1  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the complement of the DSKCHG# input.  
Bit 6-3: These bits are always a logic 1 during a read.  
DRATE1 DRATE0 (Bit 2, 1):  
These two bits select the data rate of the FDC. Refer to the DR register bits 1 and 0 for the settings  
corresponding to the individual data rates.  
(Bit 0):  
HIGH DENS#  
0
1
500 KB/S or 1 MB/S data rate (high density FDD)  
250 KB/S or 300 KB/S data rate  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 43 -  
W83L517D/W83L517D-F  
7
6
0
5
0
4
3
2
0
1
0
DRATE0  
DRATE1  
NOPREC  
DMAEN  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the status of DSKCHG# input.  
Bit 6-4: These bits are always a logic 1 during a read.  
DMAEN (Bit 3):  
This bit indicates the value of DO REGISTER bit 3.  
NOPREC (Bit 2):  
This bit indicates the value of CC REGISTER NOPREC bit.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
6.2.9 Configuration Control Register (CC Register) (Write base address + 7)  
This register is used to control the data rate. In the PC/AT and PS/2 mode, the bit definitions are as  
follows:  
4
2
3
1
6
5
0
7
x
x
x
x
x
x
DRATE0  
DRATE1  
X: Reserved  
Bit 7-2: Reserved. These bits should be set to 0.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
DRATE0  
DRATE1  
NOPREC  
X: Reserved  
- 44 -  
W83L517D/W83L517D-F  
Bit 7-3: Reserved. These bits should be set to 0.  
NOPREC (Bit 2):  
This bit indicates no precompensation. It has no function and can be set by software.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
7. UART PORT  
7.1 Universal Asynchronous Receiver/Transmitter (UART A)  
The UARTs are used to convert parallel data into serial format on the transmit side and convert serial  
data to parallel format on the receiver side. The serial format, in order of transmission and reception,  
is a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and half (five-  
bit format only) or two stop bits. The UARTs are capable of handling divisors of 1 to 65535 and  
producing a 16x clock for driving the internal transmitter logic. Provisions are also included to use this  
16x clock to drive the receiver logic. The UARTs also support the MIDI data rate. Furthermore, the  
UARTs also include complete modem control capability and a processor interrupt system that may be  
software trailed to the computing time required to handle the communication link. The UARTs have a  
FIFO mode to reduce the number of interrupts presented to the CPU. In each UART, there are 16-  
byte FIFOs for both receive and transmit mode.  
7.2 Register Address  
7.2.1 UART Control Register (UCR) (Read/Write)  
The UART Control Register controls and defines the protocol for asynchronous data communications,  
including data length, stop bit, parity, and baud rate selection.  
5
4
2
7
6
3
0
1
Data length select bit 0 (DLS0)  
Data length select bit 1(DLS1)  
Multiple stop bits enable (MSBE)  
Parity bit enable (PBE)  
Even parity enable (EPE)  
Parity bit fixed enable (PBFE)  
Set silence enable (SSE)  
Baudrate divisor latch access bit (BDLAB)  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 45 -  
W83L517D/W83L517D-F  
Bit 7: BDLAB. When this bit is set to a logical 1, designers can access the divisor (in 16-bit binary  
format) from the divisor latches of the baudrate generator during a read or write operation. When this  
bit is reset, the Receiver Buffer Register, the Transmitter Buffer Register, or the Interrupt Control  
Register can be accessed.  
Bit 6: SSE. A logical 1 forces the Serial Output (SOUT) to a silent state (a logical 0). Only IRTX is  
affected by this bit; the transmitter is not affected.  
Bit 5: PBFE. When PBE and PBFE of UCR are both set to a logical 1,  
(1) if EPE is logical 1, the parity bit is fixed as logical 0 to transmit and check.  
(2) if EPE is logical 0, the parity bit is fixed as logical 1 to transmit and check.  
TABLE 7-1 UART Register Bit Map  
BIT NUMBER  
REGISTER  
ADDRESS BASE  
0
1
2
3
4
5
6
7
RX  
Data  
RX  
Data  
Receiver  
+ 0  
RX Data RX Data RX Data RX Data  
Bit 0 Bit 1 Bit 2  
Bit 3  
RX Data RX Data  
Bit 6 Bit 7  
Buffer  
RBR  
TBR  
BDLAB  
= 0  
Bit 4  
Bit 5  
Register  
(Read Only)  
Transmitter  
+ 0  
TX  
Data  
TX  
Data  
TX Data TX Data TX Data TX Data  
TX Data TX Data  
Buffer  
Register  
(Write Only)  
BDLAB  
= 0  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 6  
Bit 7  
Bit 4  
Bit 5  
RBR  
Data  
Ready  
Interrupt  
Enable  
(ERDRI)  
TBR  
Empty  
Interrupt  
Enable  
USR  
Interrupt Interrupt  
Enable Enable  
HSR  
+ 1  
Interrupt  
Control  
Register  
ICR  
0
0
0
0
BDLAB  
= 0  
(EUSRI) (EHSRI)  
(ETBREI)  
Interrupt  
Status  
Register  
(Read Only)  
FIFOs  
FIFOs  
Interrupt Interrupt Interrupt  
"0" if  
ISR Interrupt  
Status  
Status  
Status  
+ 2  
+ 2  
0
0
Enabled Enabled  
Pending  
Bit (0)  
Bit (1)  
Bit (2)**  
**  
**  
RX  
RX  
UART FIFO  
Control  
Register  
RCVR  
FIFO  
Reset  
XMIT  
FIFO  
Reset  
DMA  
Mode  
Select  
Interrupt Interrupt  
FIFO  
UFR  
Reserved Reversed  
Active  
Level  
(LSB)  
Active  
Level  
(MSB)  
Enable  
(Write Only)  
Baudrate  
Divisor  
Latch  
Access  
Bit  
Parity  
Even  
Data  
Length  
UCR Select  
Bit 0  
Data  
Length  
Select  
Bit 1  
Multiple  
Stop Bits  
Enable  
Parity  
Bit  
Set  
Silence  
Enable  
Bit  
UART  
Control  
Register  
Parity  
Enable Enable  
Fixed  
Enable  
+ 3  
+ 4  
(MSBE)  
(PBE)  
(EPE)  
(SSE)  
0
(DLS0)  
(DLS1)  
PBFE)  
(BDLAB)  
Data  
Terminal  
Ready  
(DTR)  
Request  
to  
Send  
(RTS)  
Internal  
Loopba  
ck  
Handshake  
Control  
Register  
Loopback  
RI  
Input  
IRQ  
Enable  
0
0
HCR  
Enable  
- 46 -  
W83L517D/W83L517D-F  
UART Register Bit Map, continued.  
BIT NUMBER  
2
REGISTER  
ADDRESS BASE  
0
1
3
4
5
6
7
Silent  
Byte  
Detecte  
d
RX FIFO  
Error  
Indicatio  
n (RFEI)  
**  
RBR  
Data  
Ready  
No Stop  
Bit  
Error  
Overrun Parity Bit  
TBR  
Empty Empty  
TSR  
UART  
Status  
Register  
Error  
Error  
+ 5  
+ 6  
USR  
HSR  
(OER)  
(PBER)  
(TBRE) (TSRE)  
(NSER)  
(RDR)  
(SBD)  
Data  
Ring  
Data  
CTS  
DSR  
RI Falling  
Edge  
DCD  
Clear  
Toggling to Send  
Handshake  
Status  
Register  
Set  
Carrier  
Detect  
(DCD)  
Toggling Toggling  
Indicator  
Ready  
(TCTS)  
(TDSR)  
(FERI)  
(TDCD) (CTS)  
(RI)  
(DSR)  
User  
+ 7  
+ 0  
Defined  
Register  
UDR  
BLL  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 3  
Bit 4  
Bit 4  
Bit 5  
Bit 5  
Bit 6  
Bit 6  
Bit 7  
Bit 7  
Baudrate  
Divisor  
Latch Low  
Bit 0  
Bit 8  
Bit 1  
Bit 9  
Bit 2  
BDLAB  
= 1  
+ 1  
Baudrate  
Divisor  
Latch High  
BHL  
Bit 10  
Bit 11  
Bit 12 Bit 13  
Bit 14  
Bit 15  
BDLAB  
= 1  
*: Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.  
**: These bits are always 0 in 16450 Mode.  
Bit 4: EPE. This bit describes the number of logic 1's in the data word bits and parity bit only when bit  
3 is programmed. When this bit is set, an even number of logic 1's are sent or checked. When the bit  
is reset, an odd number of logic 1's are sent or checked.  
Bit 3: PBE. When this bit is set, the position between the last data bit and the stop bit of the SOUT will  
be stuffed with the parity bit at the transmitter. For the receiver, the parity bit in the same position as  
the transmitter will be detected.  
Bit 2: MSBE. This bit defines the number of stop bits in each serial character that is transmitted or  
received.  
(1) If MSBE is set to a logical 0, one stop bit is sent and checked.  
(2) If MSBE is set to a logical 1, and data length is 5 bits, one and a half stop bits are sent and  
checked.  
(3) If MSBE is set to a logical 1, and data length is 6, 7, or 8 bits, two stop bits are sent and checked.  
Bits 0 and 1: DLS0, DLS1. These two bits define the number of data bits that are sent or checked in  
each serial character.  
Publication Release Date: May 23, 2005  
- 47 -  
Revision 1.0  
W83L517D/W83L517D-F  
TABLE 7-2 WORD LENGTH DEFINITION  
DLS1  
DLS0  
DATA LENGTH  
5 bits  
0
0
1
1
0
1
0
1
6 bits  
7 bits  
8 bits  
7.2.2 UART Status Register (USR) (Read/Write)  
This 8-bit register provides information about the status of the data transfer during communication.  
2
7
6
4
3
1
0
5
RBR Data ready (RDR)  
Overrun error (OER)  
Parity bit error (PBER)  
No stop bit error (NSER)  
Silent byte detected (SBD)  
Transmitter Buffer Register empty (TBRE)  
Transmitter Shift Register empty (TSRE)  
RX FIFO Error Indication (RFEI)  
Bit 7: RFEI. In 16450 mode, this bit is always set to a logic 0. In 16550 mode, this bit is set to a logic 1  
when there is at least one parity bit error, no stop bit error or silent byte detected in the FIFO. In 16550  
mode, this bit is cleared by reading from the USR if there are no remaining errors left in the FIFO.  
Bit 6: TSRE. In 16450 mode, when TBR and TSR are both empty, this bit will be set to a logical 1. In  
16550 mode, if the transmit FIFO and TSR are both empty, it will be set to a logical 1. Other thanthese  
two cases, this bit will be reset to a logical 0.  
Bit 5: TBRE. In 16450 mode, when a data character is transferred from TBR to TSR, this bit will be set  
to a logical 1. If ETREI of ICR is a logical 1, an interrupt will be generated to notify the CPU to write  
the next data. In 16550 mode, this bit will be set to a logical 1 when the transmit FIFO is empty. It will  
be reset to a logical 0 when the CPU writes data into TBR or FIFO.  
Bit 4: SBD. This bit is set to a logical 1 to indicate that received data are kept in silent state for a full  
word time, including start bit, data bits, parity bit, and stop bits. In 16550 mode, it indicates the same  
condition for the data on top of the FIFO. When the CPU reads USR, it will clear this bit to a logical 0.  
Bit 3: NSER. This bit is set to a logical 1 to indicate that the received data have no stop bit. In 16550  
mode, it indicates the same condition for the data on top of the FIFO. When the CPU reads USR, it  
will clear this bit to a logical 0.  
Bit 2: PBER. This bit is set to a logical 1 to indicate that the parity bit of received data is wrong. In  
16550 mode, it indicates the same condition for the data on top of the FIFO. When the CPU reads  
USR, it will clear this bit to a logical 0.  
- 48 -  
W83L517D/W83L517D-F  
Bit 1: OER. This bit is set to a logical 1 to indicate received data have been overwritten by the next  
received data before they were read by the CPU. In 16550 mode, it indicates the same condition  
instead of FIFO full. When the CPU reads USR, it will clear this bit to a logical 0.  
Bit 0: RDR. This bit is set to a logical 1 to indicate received data are ready to be read by the CPU in  
the RBR or FIFO. After no data are left in the RBR or FIFO, the bit will be reset to a logical 0.  
7.2.3 Handshake Control Register (HCR) (Read/Write)  
This register controls the pins of the UART used for handshaking peripherals such as modem, and  
controls the diagnostic mode of the UART.  
2
7
0
5
0
4
3
1
0
6
0
Data terminal ready (DTR)  
Request to send (RTS)  
Loopback RI input  
IRQ enable  
Internal loopback enable  
Bit 4: When this bit is set to a logical 1, the UART enters diagnostic mode by an internal loopback, as  
follows:  
(1) SOUT is forced to logical 1, and SIN is isolated from the communication link instead of the  
TSR.  
(2) Modem output pins are set to their inactive state.  
(3) Modem input pins are isolated from the communication link and connect internally as DTR  
(bit 0 of HCR) DSR, RTS ( bit 1 of HCR) CTS, Loopback RI input ( bit 2 of HCR) RI  
and IRQ enable ( bit 3 of HCR) DCD.  
Aside from the above connections, the UART operates normally. This method allows the CPU  
to test the UART in a convenient way.  
Bit 3: The UART interrupt output is enabled by setting this bit to a logic 1. In the diagnostic mode this  
bit is internally connected to the modem control input DCD .  
Bit 2: This bit is used only in the diagnostic mode. In the diagnostic mode this bit is internally  
connected to the modem control input RI .  
Bit 1: This bit controls the RTS output. The value of this bit is inverted and output to RTS .  
Bit 0: This bit controls the DTR output. The value of this bit is inverted and output to DTR.  
Publication Release Date: May 23, 2005  
- 49 -  
Revision 1.0  
W83L517D/W83L517D-F  
7.2.4 Handshake Status Register (HSR) (Read/Write)  
This register reflects the current state of four input pins for handshake peripherals such as a modem  
and records changes on these pins.  
7
6
5
4
3
2
1
0
toggling (TCTS)  
toggling (TDSR)  
CTS  
DSR  
RI falling edge (FERI)  
toggling (TDCD)  
DCD  
Clear to send (CTS)  
Data set ready (DSR)  
Ring indicator (RI)  
Data carrier detect (DCD)  
Bit 7: This bit is the opposite of the DCD input. This bit is equivalent to bit 3 of HCR in loopback  
mode.  
Bit 6: This bit is the opposite of the RI input. This bit is equivalent to bit 2 of HCR in loopback mode.  
Bit 5: This bit is the opposite of the DSR input. This bit is equivalent to bit 0 of HCR in loopback  
mode.  
Bit 4: This bit is the opposite of the CTS input. This bit is equivalent to bit 1 of HCR in loopback  
mode.  
Bit 3: TDCD. This bit indicates that the DCD pin has changed state after HSR was read by the  
CPU.  
Bit 2: FERI. This bit indicates that the RI pin has changed from low to high state after HSR was read  
by the CPU.  
Bit 1: TDSR. This bit indicates that the DSR pin has changed state after HSR was read by the CPU.  
Bit 0: TCTS. This bit indicates that the CTS pin has changed state after HSR was read.  
- 50 -  
W83L517D/W83L517D-F  
7.2.5 UART FIFO Control Register (UFR) (Write only)  
This register is used to control the FIFO functions of the UART.  
2
1
7
6
5
4
3
0
FIFO enable  
Receiver FIFO reset  
Transmitter FIFO reset  
DMA mode select  
Reserved  
Reserved  
RX interrupt active level (LSB)  
RX interrupt active level (MSB)  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if  
the interrupt active level is set as 4 bytes, once there are more than 4 data characters in the receiver  
FIFO, the interrupt will be activated to notify the CPU to read the data from the FIFO.  
TABLE 7-3 FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Bit 4, 5:  
Reserved  
Bit 3:  
mode 1 if  
When this bit is programmed to logic 1, the DMA mode will change from mode 0 to  
UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 1: Setting this bit to a logical 1 resets the RX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the UART. This bit should be set to a logical 1 before  
other bits of UFR are programmed.  
Publication Release Date: May 23, 2005  
- 51 -  
Revision 1.0  
W83L517D/W83L517D-F  
7.2.6 Interrupt Status Register (ISR) (Read only)  
This register reflects the UART interrupt status, which is encoded by different interrupt sources into 3  
bits.  
7
6
5
0
4
3
2
1
0
0
0 if interrupt pending  
Interrupt Status bit 0  
Interrupt Status bit 1  
Interrupt Status bit 2  
FIFOs enabled  
FIFOs enabled  
Bit 7, 6:  
Bit 5, 4:  
These two bits are set to a logical 1 when UFR bit 0 = 1.  
These two bits are always logic 0.  
Bit 3: In 16450 mode, this bit is 0. In 16550 mode, both bit 3 and 2 are set to a logical 1 when a time-  
out interrupt is pending.  
Bit 2, 1:  
below.  
These two bits identify the priority level of the pending interrupt, as shown in the table  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has occurred,  
this bit will be set to a logical 0.  
- 52 -  
W83L517D/W83L517D-F  
TABLE 7-4 INTERRUPT CONTROL FUNCTION  
ISR  
INTERRUPT SET AND FUNCTION  
Interrupt  
Type  
Interrupt Source  
Bit Bit Bit Bit Interrupt  
Clear Interrupt  
3
2
1
0
priority  
0
0
0
1
-
-
No Interrupt pending  
-
UART  
Receive  
Status  
1. OER = 1 2. PBER =1  
3. NSER = 1 4. SBD = 1  
0
0
1
1
1
0
0
0
First  
Read USR  
1. Read RBR  
1. RBR data ready  
RBR Data  
Ready  
2. Read RBR until  
FIFO data under active  
level  
Second  
2. FIFO interrupt active  
level reached  
Data present in RX FIFO  
for 4 characters period of  
time since last access of  
RX FIFO.  
FIFO Data  
Timeout  
1
1
0
0
Second  
Read RBR  
1. Write data into TBR  
0
0
0
0
1
0
0
0
Third  
TBR Empty  
TBR empty  
2. Read ISR (if priority  
is third)  
1. TCTS = 1 2. TDSR = 1  
3. FERI = 1 4. TDCD = 1  
Handshake  
status  
Fourth  
Read HSR  
** Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.  
7.2.7 Interrupt Control Register (ICR) (Read/Write)  
This 8-bit register allows the five types of controller interrupts to activate the interrupt output signal  
separately. The interrupt system can be totally disabled by resetting bits 0 through 3 of the Interrupt  
Control Register (ICR). A selected interrupt can be enabled by setting the appropriate bits of this  
register to a logical 1.  
5
6
0
4
0
3
2
0
7
0
1
0
RBR data ready interrupt enable (ERDRI)  
TBR empty interrupt enable (ETBREI)  
UART receive status interrupt enable (EUSRI)  
Handshake status interrupt enable (EHSRI)  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 53 -  
W83L517D/W83L517D-F  
Bit 7-4: These four bits are always logic 0.  
Bit 3: EHSRI. Setting this bit to a logical 1 enables the handshake status register interrupt.  
Bit 2: EUSRI. Setting this bit to a logical 1 enables the UART status register interrupt.  
Bit 1: ETBREI. Setting this bit to a logical 1 enables the TBR empty interrupt.  
Bit 0: ERDRI. Setting this bit to a logical 1 enables the RBR data ready interrupt.  
7.2.8 Programmable Baud Generator (BLL/BHL) (Read/Write)  
Two 8-bit registers, BLL and BHL, compose a programmable baud generator that uses 24 MHz to  
16  
generate a 1.8461 MHz frequency and divides it by a divisor from 1 to 2 -1. The output frequency of  
the baud generator is the baud rate multiplied by 16, and this is the base frequency for the transmitter  
and receiver. The table in the next page illustrates the use of the baud generator with a frequency of  
1.8461 MHz. In high-speed UART mode (refer to CR0C bit7 and CR0C bit6), the programmable baud  
generator directly uses 24 MHz and the same divisor as the normal speed divisor. In high-speed  
mode, the data transmission rate can be as high as 1.5M bps.  
7.2.9 User-defined Register (UDR) (Read/Write)  
This is a temporary register that can be accessed and defined by the user.  
TABLE 7-5 BAUD RATE TABLE  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
DECIMAL DIVISOR  
USED TO GENERATE  
16X CLOCK  
ERROR PERCENTAGE  
BETWEEN DESIRED  
AND ACTUAL  
PRE-DIV: 13  
1.8461M HZ  
PRE-DIV:1.625 PRE-DIV: 1.0  
14.769M HZ  
24M HZ  
50  
400  
600  
650  
975  
**  
2304  
1536  
1047  
857  
768  
384  
192  
96  
75  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1200  
2400  
4800  
9600  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
1478.5  
1950  
0.099%  
**  
**  
300  
3900  
600  
7800  
**  
1200  
1800  
2000  
2400  
3600  
4800  
7200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
**  
**  
64  
0.53%  
**  
58  
48  
**  
32  
**  
24  
**  
16  
**  
12  
- 54 -  
W83L517D/W83L517D-F  
BAUD RATE TABLE, continued.  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
DECIMAL DIVISOR  
USED TO GENERATE  
16X CLOCK  
ERROR PERCENTAGE  
BETWEEN DESIRED  
AND ACTUAL  
PRE-DIV: 13  
1.8461M HZ  
PRE-DIV:1.625 PRE-DIV: 1.0  
14.769M HZ  
24M HZ  
19200  
38400  
57600  
115200  
153600  
307200  
460800  
921600  
249600  
499200  
748800  
1497600  
**  
**  
**  
**  
6
3
2
1
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
Note. Pre-Divisor is determined by CRF0 of UART A  
8. INFRARED (IR) PORT  
The Infrared (IR) function provides a point-to-point (or multi-point to multi-point) wireless  
communication which can operate under various transmission protocols including IrDA 1.0 SIR, IrDA  
1.1 MIR (1.152 Mbps), IrDA 1.1 FIR (4 Mbps), SHARP ASK-IR, and remote control (NEC, RC-5,  
advanced RC-5, and RECS-80 protocol).  
8.1 IR Register Description  
When bank select enable bit (ENBNKSEL, the bit 0 in CRF0 of logic device 6) is set, legacy IR will be  
switched to Advanced IR, and eight Register Sets can then be accessible. These Register Sets  
control enhanced IR, SIR, MIR, or FIR. Also a superior traditional SIR function can be used with  
enhanced features such as 32-byte transmitter/receiver FIFOs, non-encoding IRQ identify status  
register, and automatic flow control. The MIR/FIR and remote control registers are also defined in  
these Register Sets. Structure of these Register Sets is asshown below.  
Publication Release Date: May 23, 2005  
- 55 -  
Revision 1.0  
W83L517D/W83L517D-F  
Reg 7  
Reg 6  
Reg 5  
Reg 4  
BDL/SSR  
Reg 2  
Reg 1  
Reg 0  
Set 0  
All in one Reg  
to Select SSR  
Set 1  
Set 2  
Set 3  
Set 4  
Set 5  
Set 6  
Set 7  
*Set 0, 1 are legacy/Advanced UART Registers  
*Set 2~7 are Advanced UART Registers  
Each of these register sets has a common register, namely Sets Select Register (SSR), in order to  
switch to another register set. The summary description of these Sets is given below.  
SET  
0
SETS DESCRIPTION  
Legacy/Advanced IR Control and Status Registers.  
1
Legacy Baud Rate Divisor Register.  
2
Advanced IR Control and Status Registers.  
3
Version ID and Mapped Control Registers.  
4
Transmitter/Receiver/Timer Counter Registers and IR Control Registers.  
Flow Control and IR Control and Frame Status FIFO Registers.  
IR Physical Layer Control Registers  
5
6
7
Remote Control and IR front-end Module Selection Registers.  
- 56 -  
W83L517D/W83L517D-F  
8.2 Set0-Legacy/Advanced IR Control and Status Registers  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
0
1
2
3
4
5
6
7
Receiver/Transmitter Buffer Registers  
RBR/TBR  
ICR  
Interrupt Control Register  
Interrupt Status or IR FIFO Control Register  
IR Control or Sets Select Register  
Handshake Control Register  
IR Status Register  
ISR/UFR  
UCR/SSR  
HCR  
USR  
Handshake Status Register  
User Defined Register  
HSR  
UDR/ESCR  
8.2.1 Set0.Reg0 - Receiver/Transmitter Buffer Registers (RBR/TBR) (Read/Write)  
Receiver Buffer Register is read only and Transmitter Buffer Register is write only. When operating in  
the PIO mode, the port is used to Receive/Transmit 8-bit data.  
When function as a legacy IR, this port only supports PIO mode. If set in the advanced IR mode and  
configured as MIR/FIR/Remote IR, this port can support DMA transmission. Two DMA channels can  
be used simultaneously, one for TX DMA and the other for RX DMA. Therefore, single DMA channel  
is also supported when the bit of D_CHSW (DMA Channel Swap, in Set2.Reg2.Bit3) is set and the  
TX/RX DMA channel is swapped. Note that two DMA channels can be defined in configure register  
CR2A which selects DMA channel or disables DMA channel. If only RX DMA channel is enabled  
while TX DMA channel is disabled, then the single DMA channel will be selected.  
8.2.2 Set0.Reg1 - Interrupt Control Register (ICR)  
MODE  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Legacy IR  
0
0
0
0
0
EUSRI  
ETBREI ERDRI  
ETBREI ERBRI  
EUSRI/  
TXURI  
Advanced IR ETMRI  
EFSFI  
ETXTHI  
EDMAI  
0
The advanced IR functions including Advanced SIR/ASK-IR, MIR, FIR, or Remote IR are described  
below.  
Bit 7:  
Legacy IR Mode:  
Not used. A read will return 0.  
Advanced IR Mode:  
ETMRI - Enable Timer Interrupt  
A write to 1 will enable timer interrupt.  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 57 -  
W83L517D/W83L517D-F  
Bit 6:  
Legacy IR Mode:  
Not used. A read will return 0.  
MIR, FIR mode:  
EFSFI - Enable Frame Status FIFO Interrupt  
A write to 1 will enable frame status FIFO interrupt.  
Advanced SIR/ASK-IR, Remote IR:  
Not used.  
Bit 5:  
Bit 4:  
Legacy IR Mode:  
Not used. A read will return 0.  
Advanced SIR/ASK-IR, MIR, FIR, Remote IR:  
ETXTHI - Enable Transmitter Threshold Interrupt  
A write to 1 will enable transmitter threshold interrupt.  
Legacy IR Mode:  
Not used. A read will return 0.  
MIR, FIR, Remote IR:  
EDMAI - Enable DMA Interrupt.  
A write to 1 will enable DMA interrupt.  
Bit 3:  
Bit 2:  
Reserved. A read will return 0.  
Legacy IR Mode:  
EUSRI - Enable USR (IR Status Register) Interrupt  
A write to 1 will enable IR status register interrupt.  
Advanced SIR/ASK-IR:  
EUSRI - Enable USR (IR Status Register) Interrupt  
A write to 1 will enable IR status register interrupt.  
MIR, FIR, Remote Controller:  
EHSRI/ETXURI - Enable USR Interrupt or Enable Transmitter Underrun Interrupt  
A write to 1 will enable USR interrupt or enable transmitter underrun interrupt.  
ETBREI - Enable TBR (Transmitter Buffer Register) Empty Interrupt  
A write to 1 will enable the transmitter buffer register empty interrupt.  
Bit 1:  
Bit 0:  
ERBRI - Enable RBR (Receiver Buffer Register) Interrupt  
A write to 1 will enable receiver buffer register interrupt.  
- 58 -  
W83L517D/W83L517D-F  
8.2.3 Set0.Reg2 - Interrupt Status Register/IR FIFO Control Register (ISR/UFR)  
Interrupt Status Register (Read Only)  
MODE B7 B6  
Legacy IR FIFO Enable FIFO Enable  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
IID2  
IID1  
IID0  
IP  
USR_I/  
FEND_I  
Advanced IR  
TMR_I  
0
FSF_I  
0
TXTH_I DMA_I HS_I  
TXEMP_I RXTH_I  
Reset Value  
1
0
0
0
1
0
Legacy IR:  
This register reflects the Legacy IR interrupt status, which is encoded by different interrupt sources  
into 3 bits.  
Bit 7, 6:  
Bit 5, 4:  
These two bits are set to a logical 1 when UFR bit 0 = 1.  
These two bits are always logical 0.  
Bit 3: When not in FIFO mode, this bit is always 0. In FIFO mode, both bit 3 and 2 are set to logical 1  
when a time-out interrupt is pending.  
Bit 2, 1:  
below.  
These bits identify the priority level of the pending interrupt, as shown in the table  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has occurred,  
this bit will be set to logical 0.  
TABLE: INTERRUPT CONTROL FUNCTION  
ISR  
Bit  
INTERRUPT SET AND FUNCTION  
Interrupt Source  
Bit Bit  
Bit Interrupt  
Interrupt  
Type  
Clear Interrupt  
-
3
2
1
0
priority  
0
0
0
1
-
-
No Interrupt pending  
1. OER = 1 2. PBER =1  
3. NSER = 1 4. SBD = 1  
IR Receive  
Status  
0
0
1
1
1
0
0
0
First  
Read USR  
1. Read RBR  
1. RBR data ready  
RBR Data  
Ready  
2. Read RBR until  
FIFO data under  
active level  
Second  
2. FIFO interrupt active  
level reached  
Data present in RX FIFO  
for 4 characters period of  
time since last access of  
RX FIFO.  
FIFO Data  
Time-out  
1
0
1
0
0
1
0
0
Second  
Third  
Read RBR  
1. Write data into  
TBR  
TBR Empty  
TBR empty  
2. Read ISR (if  
priority is third)  
** Bit 3 of ISR is enabled when bit 0 of UFR is a logical 1.  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 59 -  
W83L517D/W83L517D-F  
Advanced IR:  
Bit 7:  
TMR_I - Timer Interrupt.  
Set to 1 when timer counts to logical 0. This bit is valid when: (1) the timer registers are  
defined in Set4.Reg0 and Set4.Reg1; (2) EN_TMR(Enable Timer, in Set4.Reg2.Bit0) is  
set to 1; (3) ENTMR_I (Enable Timer Interrupt, in Set0.Reg1.Bit7) is set to 1.  
Bit 6: MIR, FIR modes:  
FSF_I - Frame Status FIFO Interrupt.  
Set to 1 when Frame Status FIFO is equal or larger than the threshold level or Frame  
Status FIFO time-out occurs. Cleared to 0 when Frame Status FIFO is below the  
threshold level.  
Advanced SIR/ASK-IR, Remote IR modes: Not used.  
Bit 5:  
TXTH_I - Transmitter Threshold Interrupt.  
Set to 1 if the TBR (Transmitter Buffer Register) FIFO is below the threshold level.  
Cleared to 0 if the TBR (Transmitter Buffer Register) FIFO is above the threshold level.  
Bit 4: MIR, FIR, Remote IR Modes:  
DMA_I - DMA Interrupt.  
Set to 1 if the DMA controller 8237A sends a TC (Terminal Count) to I/O device which  
might be a Transmitter TC or a Receiver TC. Cleared to 0 when this register is read.  
Bit 3:  
HS_I - Handshake Status Interrupt.  
Set to 1 when the Handshake Status Register has a toggle. Cleared to 0 when  
Handshake Status Register (HSR) is read. Note that in all IR modes including SIR, ASK-  
IR, MIR, FIR, and Remote Control IR, this bit defaults to be inactive unless IR Handshake  
Status Enable (IRHS_EN) is set to 1.  
Bit 2: Advanced SIR/ASK-IR modes:  
USR_I - IR Status Interrupt.  
Set to 1 when overrun error, parity error, stop bit error, or silent byte error is detected and  
registered in the IR Status Register (USR). Cleared to 0 when USR is read.  
MIR, FIR modes:  
FEND_I - Frame End Interrupt.  
Set to 1 when (1) a frame has a grace end to be detected where the frame signal is  
defined in the physical layer of IrDA version 1.1; (2) abort signal or illegal signal has been  
detected during receiving valid data. Cleared to 0 when this register is read.  
Remote Controller Mode: Not used.  
Bit 1:  
Bit 0:  
TXEMP_I - Transmitter Empty.  
Set to 1 when transmitter (or, say, FIFO + Transmitter) is empty. Cleared to 0 when this  
register is read.  
RXTH_I – Receiver Threshold Interrupt.  
Set to 1 when (1) the Receiver Buffer Register (RBR) is equal or larger than the threshold  
level; or (2) RBR time-out occurs if the receiver buffer register has valid data and isbelow  
the threshold level. Cleared to 0 when RBR is less than threshold level after reading  
RBR.  
- 60 -  
W83L517D/W83L517D-F  
IR FIFO Control Register (UFR):  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RXFTL1  
(MSB)  
RXFTL0  
(LSB)  
Legacy IR  
0
0
0
TXF_RST RXF_RST EN_FIFO  
TXF_RST RXF_RST EN_FIFO  
RXFTL1  
(MSB)  
RXFTL0 TXFTL1 TXFTL0  
(LSB)  
Advanced IR  
0
0
(MSB)  
(LSB)  
Reset Value  
0
0
0
0
0
0
0
Legacy IR:  
This register is used to control FIFO functions of the IR.  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if  
the interrupt active level is set as 4 bytes and there are more than 4 data characters in the receiver  
FIFO, the interrupt will be activated to notify CPU to read the data from FIFO.  
TABLE: FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Bit 4, 5:  
Bit 3:  
Reserved  
When this bit is programmed to logic 1, the DMA mode will change from mode 0 to  
mode 1 if UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to its initial state. This bit will be  
cleared to logical 0 by itself after being set to logical 1.  
Bit 1: Setting this bit to logical 1 resets the RX FIFO counter logic to its initial state. This bit will be  
cleared to a logical 0 by itself after being set to logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the IR. This bit should be set to logical 1 before  
other bits of UFR can be programmed.  
Advanced IR:  
BIT 7, 6:  
RXFTL1, 0 – RECEIVER FIFO THRESHOLD LEVEL  
Its definition is the same as Legacy IR. RXTH_I becomes 1 when the Receiver FIFO  
Threshold Level is equal to or larger than the defined value shown as follow.  
Publication Release Date: May 23, 2005  
- 61 -  
Revision 1.0  
W83L517D/W83L517D-F  
RXFTL1, 0  
(BIT 7, 6)  
RX FIFO THRESHOLD LEVEL  
RX FIFO THRESHOLD LEVEL  
(FIFO SIZE: 16-BYTE)  
(FIFO SIZE: 32-BYTE)  
00  
01  
10  
11  
1
4
1
4
8
16  
26  
14  
Note that the FIFO Size is selectable in SET2.Reg4.  
TXFTL1, 0 - Transmitter FIFO Threshold Level  
Bit 5, 4:  
TXTH_I (Transmitter Threshold Level Interrupt) is set to 1 when the Transmitter  
Threshold Level is less than the programmed value shown below.  
TX FIFO THRESHOLD  
LEVEL  
TX FIFO THRESHOLD  
LEVEL  
TXFTL1, 0  
(BIT 5, 4)  
(FIFO SIZE: 16-BYTE)  
(FIFO SIZE: 32-BYTE)  
00  
01  
10  
11  
1
3
1
7
9
17  
25  
13  
Same as in Legacy IR Mode  
Bit 3 ~0  
8.2.4 Set0.Reg3 - IR Control Register/Set Select Register (UCR/SSR):  
These two registers share the same address. In all Register Sets, Set Select Register (SSR) can be  
programmed to select a desired Set, but IR Control Register can only be programmed in Set 0 and  
Set 1. In other words, writing to Reg3 in Sets other than Set 0 and Set 1 will not affect IR Control  
Register. The mapping of entry Set and programming value is shown below.  
- 62 -  
W83L517D/W83L517D-F  
SSR BITS  
SELECTED  
Hex  
Value  
7
6
×
5
×
4
×
3
×
2
×
1
×
0
×
Set  
0
1
1
1
1
1
1
1
Set 0  
Set1  
Any combination except those used in SET 2~7  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0xE0  
0xE4  
0xE8  
0xEC  
0xF0  
0xF4  
Set 2  
Set 3  
Set 4  
Set 5  
Set 6  
Set 7  
8.2.5 Set0.Reg4 - Handshake Control Register (HCR)  
MODE  
B7  
B6  
B5  
B4  
B3  
EN_IRQ  
B2  
B1  
0
B0  
Legacy IR  
0
0
0
XLOOP  
0
0
0
0
Advanced IR AD_MD2 AD_MD1 AD_MD0 SIR_PLS TX_WT  
EN_DMA  
0
0
Reset Value  
0
1
1
0
0
0
Legacy IR Register:  
This register controls the pins of IR used for handshaking with peripherals such as modem, and  
controls the diagnostic mode of IR.  
Bit 4: When this bit is set to logical 1, the legacy IR enters diagnostic mode by an internal loopback:  
IRTX is forced to logical 0, and IRRX is isolated from the communication link instead of the TSR.  
Bit 3: The legacy IR interrupt output is enabled by setting this bit to logic 1.  
Advanced IR Register:  
Bit 7~5 Advanced SIR/ASK-IR, MIR, FIR, Remote Controller Modes:  
AD_MD2~0 - Advanced IR/Infrared Mode Select.  
These registers are active when Advanced IR Select (ADV_SL, in Set2.Reg2.Bit0) is set  
to 1. Operational mode selection is defined as follows. When backward operation  
occurs, these registers will be reset to 0 and fall back to legacy IR mode.  
Publication Release Date: May 23, 2005  
- 63 -  
Revision 1.0  
W83L517D/W83L517D-F  
AD_MD2~0 (BIT 7, 6, 5)  
SELECTED MODE  
Reserved  
000  
001  
010  
011  
100  
101  
110  
111  
Low speed MIR (0.576M bps)  
Advanced ASK-IR  
Advanced SIR  
High Speed MIR (1.152M bps)  
FIR (4M bps)  
Consumer IR  
Reserved  
Bit 4:  
MIR, FIR Modes:  
SIR_PLS - Send Infrared Pulse  
Writing 1 to this bit will send a 2 μ s long infrared pulse after physical frame end. This is  
to signal to SIR that the high speed infrared is still in. This bit will be auto cleared by  
hardware.  
Other Modes: Not used.  
MIR, FIR modes:  
Bit 3:  
TX_WT - Transmission Waiting  
If this bit is set to 1, the transmitter will wait for TX FIFO to reach threshold level or  
transmitter time-out before it begins to transmit data; this prevents short queues of data  
bytes from transmitting prematurely. This is to avoid Underrun.  
Other Modes: Not used.  
MIR, FIR modes:  
Bit 2:  
EN_DMA - Enable DMA  
Enable DMA function for transmitting or receiving. Before using this, the DMA channel  
should be selected first. If only RX DMA channel is set and TX DMA channel is disabled,  
then the single DMA channel is used. In the single channel system, the bit of D_CHSW  
(DMA channel swap, in Set 2.Reg2.Bit3) will determine if it is RX_DMA or TX_DMA  
channel.  
Other modes: Not used.  
Bit 1, 0:  
RTS, DTR  
Functional definitions are the same as in legacy IR mode.  
- 64 -  
W83L517D/W83L517D-F  
8.2.6 Set0.Reg5 - IR Status Register (USR)  
MODE  
B7  
B6  
B5  
TBRE  
TBRE  
0
B4  
B3  
B2  
B1  
B0  
RDR  
RDR  
0
Legacy IR  
RFEI  
TSRE  
SBD  
NSER  
PBER  
OER  
Advanced IR LB_INFR TSRE  
MX_LEX PHY_ERR CRC_ERR OER  
Reset Value  
0
0
0
0
0
0
Legacy IR Register: These registers are defined the same as previous description.  
Advanced IR Register:  
Bit 7:  
MIR, FIR Modes:  
LB_INFR - Last Byte In Frame End  
Set to 1 when last byte of a frame is in the bottom of FIFO. This bit separates one frame  
from another when RX FIFO has more than one frame.  
Bit 6, 5:  
Bit 4:  
Same as legacy IR description.  
MIR, FIR modes:  
MX_LEX - Maximum Frame Length Exceed  
Set to 1 when the length of a frame from the receiver has exceeded the programmed  
frame length defined in SET4.Reg6 and Reg5. If this bit is set to 1, the receiver will not  
receive any data to RX FIFO.  
Bit 3:  
MIR, FIR modes:  
PHY_ERR - Physical Layer Error  
Set to 1 when an illegal data symbol is received. The illegal data symbol is defined in  
physical layer of IrDA version 1.1. When this bit is set to 1, the decoder of receiver will  
be aborted and a frame end signal is set to 1.  
Bit 2:  
MIR, FIR Modes:  
CRC_ERR - CRC Error  
Set to 1 when an attached CRC is erroneous.  
OER - Overrun Error, RDR - RBR Data Ready  
Definitions are the same as legacy IR.  
Bit 1, 0:  
Publication Release Date: May 23, 2005  
- 65 -  
Revision 1.0  
W83L517D/W83L517D-F  
8.2.7 Set0.Reg6 - Reserved  
Set0.Reg7 - User Defined Register (UDR/AUDR)  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Legacy IR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Advanced  
IR  
RX_BSY/ LST_FE/  
FLC_ACT UNDRN  
S_FEND  
0
0
0
LB_SF  
0
RX_TO  
0
RX_IP  
RX_PD  
Reset Value  
0
0
0
0
Legacy IR Register:  
This is a temporary register that can be accessed and defined by the user.  
Advanced IR Register:  
Bit 7  
MIR, FIR Modes:  
FLC_ACT - Flow Control Active  
Set to 1 when the flow control occurs. Cleared to 0 when this register is read. Note that  
this will be affected by Set5.Reg2 which controls the SIR mode switches to MIR/FIR  
mode or MIR/FIR mode operated in DMA function switches to SIR mode.  
Bit 6  
Bit 5  
MIR, FIR Modes:  
UNDRN - Underrun  
Set to 1 when transmitter is empty and S_FEND (bit 3 of this register) is not set in PIO  
mode or no TC (Terminal Count) in DMA mode. Cleared to 0 after a write to 1.  
MIR, FIR Modes:  
RX_BSY - Receiver Busy  
Set to 1 when receiver is busy or active in process.  
Remote IR mode:  
RX_IP - Receiver in Process  
Set to 1 when receiver is in process.  
MIR, FIR modes:  
Bit 4:  
LST_FE - Lost Frame End  
Set to 1 when a frame end in a entire frame is lost. Cleared to 0 when this register is  
read.  
Remote IR Modes:  
RX_PD - Receiver Pulse Detected  
Set to 1 when one or more remote pulses are detected. Cleared to 0 when this register  
is read.  
- 66 -  
W83L517D/W83L517D-F  
Bit 3  
MIR, FIR Modes:  
S_FEND - Set a Frame End  
Set to 1 when trying to terminate the frame, that is, the procedure od PIO command is  
An Entire Frame = Write Frame Data (First) + Write S_FEND (Last)  
This bit should be set to 1, if used in PIO mode, to avoid transmitter underrun. Note that  
setting S_FEND to 1 is equivalent to TC (Terminal Count) in DMA mode. Therefore, this  
bit should be set to 0 in DMA mode.  
Bit 2:  
Bit 1:  
Reserved.  
MIR, FIR Modes:  
LB_SF - Last Byte Stay in FIFO  
A 1 in this bit indicates one or more frame ends remain in receiver FIFO.  
MIR, FIR, Remote IR Modes:  
Bit 0:  
RX_TO - Receiver FIFO or Frame Status FIFO time-out  
Set to 1 when receiver FIFO or frame status FIFO time-out occurs  
8.3 Set1 - Legacy Baud Rate Divisor Register  
ADDRESS OFFSET  
REGISTER NAME  
BLL  
REGISTER DESCRIPTION  
Baud Rate Divisor Latch (Low Byte)  
Baud Rate Divisor Latch (High Byte)  
Interrupt Status or IR FIFO Control Register  
IR Control or Sets Select Register  
Handshake Control Register  
IR Status Register  
0
1
2
3
4
5
6
7
BHL  
ISR/UFR  
UCR/SSR  
HCR  
USR  
HSR  
Handshake Status Register  
UDR/ESCR  
User Defined Register  
8.3.1 Set1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL)  
These two registers of BLL and BHL are baud rate divisor latch in the legacy SIR/ASK-IR mode.  
Accessing these registers in Advanced IR mode will cause backward operation, that is, UART will fall  
back to legacy SIR mode and clear some register values as shown in the following table.  
LEGACY MODE  
DIS_BACK=0  
SET & REGISTER  
ADVANCED MODE  
DIS_BACK=×  
Set 0.Reg 4  
Set 2.Reg 2  
Set 4.Reg 3  
Bit 7~5  
-
Bit 0, 5, 7  
Bit 2, 3  
Bit 5, 7  
-
Note that DIS_BACK=1 (Disable Backward operation) in legacy SIR/ASK-IR mode will not affect any register which is  
meaningful in legacy SIR/ASK-IR.  
Publication Release Date: May 23, 2005  
- 67 -  
Revision 1.0  
W83L517D/W83L517D-F  
8.3.2 Set1.Reg 2~7  
These registers are defined the same as Set 0 registers.  
8.4 Set2 - Interrupt Status or IR FIFO Control Register (ISR/UFR)  
These registers are only used in advanced modes.  
Address Offset Register Name  
Register Description  
Advanced Baud Rate Divisor Latch (Low Byte)  
Advanced Baud Rate Divisor Latch (High Byte)  
Advanced IR Control Register 1  
Sets Select Register  
0
1
2
3
4
5
6
7
ABLL  
ABHL  
ADCR1  
SSR  
Advanced IR Control Register 2  
-
ADCR2  
Reserved  
TXFDTH  
RXFDTH  
Transmitter FIFO Depth  
Receiver FIFO Depth  
8.4.1 Reg0, 1 - Advanced Baud Rate Divisor Latch (ABLL/ABHL)  
These two registers are the same as legacy IR baud rate divisor latch in SET 1.Reg0~1. In advanced  
SIR/ASK-IR mode, the user should program these registers to set baud rate. This is to prevent  
backward operations from occurring.  
8.4.2 Reg2 - Advanced IR Control Register 1 (ADCR1)  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
EN_LOU  
T
Advanced IR BR_OUT  
-
ALOOP D_CHSW DMATHL DMA_F ADV_SL  
Reset Value  
0
0
0
0
0
0
0
0
Bit 7:  
BR_OUT - Baud Rate Clock Output  
When written to 1, the programmed baud rate clock will be output to DTR pin. This bit is  
only used to test baud rate divisor.  
Bit 6:  
Bit 5:  
Reserved, write 0.  
EN_LOUT - Enable Loopback Output  
A write to 1 will enable transmitter to output data to IRTX pin when loopback operation  
occurs. Internal data can be verified through an output pin by setting this bit.  
- 68 -  
W83L517D/W83L517D-F  
Bit 4:  
Bit 3:  
ALOOP - All Mode Loopback  
A write to 1 will enable loopback in all modes.  
D_CHSW - DMA TX/RX Channel Swap  
If only one DMA channel operates in MIR/FIR mode, then the DMA channel can be  
swapped.  
D_CHSW  
DMA Channel Selected  
Receiver (Default)  
Transmitter  
0
1
A write to 1 will enable output data when ALOOP=1.  
DMATHL - DMA Threshold Level  
Set DMA threshold level as shown in the following table.  
Bit 2:  
DMATHL  
TX FIFO THRESHOLD  
RX FIFO THRESHOLD  
16-Byte  
32-Byte  
(16/32-Byte)  
13  
23  
13  
7
4
0
1
10  
Bit 1:  
Bit 0:  
DMA_F - DMA Fairness  
DMA_F  
Function Description  
DMA request (DREQ) is forced inactive after  
10.5us  
0
1
No effect DMA request.  
ADV_SL - Advanced Mode Select  
A write to 1 selects advanced mode.  
8.4.3 Reg3 - Sets Select Register (SSR)  
Reading this register returns E0H. Writing a value selects Register Set.  
REG.  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
0
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
SSR  
Refault Value  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 69 -  
W83L517D/W83L517D-F  
8.4.4 Reg4 - Advanced IR Control Register 2 (ADCR2)  
MODE  
Advanced IR DIS_BACK  
Reset Value  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
-
PR_DIV1 PR_DIV0 RX_FSZ1 RX_FSZ0 TX_FSZ1 TXFSZ0  
0
0
0
0
0
0
0
0
Bit 7:  
DIS_BACK - Disable Backward Operation  
A write to 1 disables backward legacy IR mode. When operating in legacy SIR/ASK-IR  
mode, this bit should be set to 1 to avoid backward operation.  
Bit 6:  
Reserved, write 0.  
Bit 5, 4:  
PR_DIV1~0 - Pre-Divisor 1~0.  
These bits select pre-divisor for external input clock 24M Hz. The clock goes through the  
pre-divisor then input to baud rate divisor of IR.  
PR_DIV1~0  
PRE-DIVISOR  
MAX. BAUD RATE  
115.2K bps  
921.6K bps  
230.4K bps  
1.5M bps  
00  
01  
10  
11  
13.0  
1.625  
6.5  
1
Bit 3, 2:  
RX_FSZ1~0 - Receiver FIFO Size 1~0  
These bits setup receiver FIFO size when FIFO is enable.  
RX_FSZ1~0  
RX FIFO SIZE  
00  
01  
1X  
16-Byte  
32-Byte  
Reserved  
Bit 1, 0:  
TX_FSZ1~0 - Transmitter FIFO Size 1~0  
These bits setup transmitter FIFO size when FIFO is enable.  
TX_FSZ1~0  
TX FIFO SIZE  
16-Byte  
00  
01  
1X  
32-Byte  
Reserved  
- 70 -  
W83L517D/W83L517D-F  
TABLE: SIR Baud Rate  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
Pre-Div:  
Pre-Div: 13  
1.8461M Hz  
Pre-Div:1.625  
Decimal divisor used  
to generate 16X clock  
Error Percentage between  
desired and actual  
1.0  
24M Hz  
650  
14.769M Hz  
50  
75  
400  
600  
**  
2304  
1536  
1047  
857  
768  
384  
192  
96  
975  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1478.5  
1950  
0.099%  
1200  
**  
**  
300  
2400  
3900  
600  
4800  
7800  
**  
1200  
1800  
2000  
2400  
3600  
4800  
7200  
9600  
19200  
38400  
57600  
115200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
249600  
499200  
748800  
1497600  
**  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
153600  
307200  
460800  
921600  
**  
64  
0.53%  
**  
58  
48  
**  
32  
**  
24  
**  
16  
**  
12  
**  
6
**  
3
**  
2
**  
1
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 71 -  
W83L517D/W83L517D-F  
8.4.5 Reg6 - Transmitter FIFO Depth (TXFDTH) (Read Only)  
MODE  
BIT 7  
BIT 6  
BIT 5  
TXFD5  
0
BIT 4  
TXFD4  
0
BIT 3  
TXFD3  
0
BIT 2  
TXFD2  
0
BIT 1  
TXFD1  
0
BIT 0  
TXFD1  
0
Advanced IR  
0
0
0
0
Reset Value  
Bit 7~6:  
Bit 5~0:  
Reserved, Read 0.  
Reading these bits returns the current transmitter FIFO depth, that is, the number of  
bytes left in the transmitter FIFO.  
8.4.6 Reg7 - Receiver FIFO Depth (RXFDTH) (Read Only)  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
RXFD2  
0
BIT 1  
BIT 0  
Advanced IR  
0
0
0
0
RXFD5 RXFD4 RXFD3  
RXFD1 RXFD1  
Reset Value  
0
0
0
0
0
Bit 7~6:  
Bit 5~0:  
Reserved, Read 0.  
Reading these bits returns the current receiver FIFO depth, that is, the number of bytes  
left in the receiver FIFO.  
8.5 Set3 - Version ID and Mapped Control Registers  
ADDRESS OFFSET  
REGISTER NAME  
AUID  
REGISTER DESCRIPTION  
Advanced IR ID  
0
1
2
3
4
5
6
7
MP_UCR  
MP_UFR  
SSR  
Mapped IR Control Register  
Mapped IR FIFO Control Register  
Sets Select Register  
Reversed  
Reserved  
Reserved  
Reserved  
-
-
-
-
8.5.1 Reg0 - Advanced IR ID (AUID)  
This register is read only. It stores advanced IR version ID. Reading it returns 1XH.  
REG.  
SSR  
BIT 7  
SSR7  
0
BIT 6  
SSR6  
0
BIT 5  
SSR5  
0
BIT 4  
SSR4  
1
BIT 3  
SSR3  
X
BIT 2  
SSR2  
X
BIT 1  
SRR1  
X
BIT 0  
SRR0  
X
Default Value  
- 72 -  
W83L517D/W83L517D-F  
8.5.2 Reg1 - Mapped IR Control Register (MP_UCR)  
This register is read only. Reading this register returns IR Control Register value of Set 0.  
REG.  
BIT 7  
SSR7  
0
BIT 6  
SSR6  
0
BIT 5  
SSR5  
0
BIT 4  
SSR4  
0
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
SSR  
Default Value  
8.5.3 Reg2 - Mapped IR FIFO Control Register (MP_UFR)  
This register is read only. Reading this register returns IR FIFO Control Register (UFR) value of SET  
0.  
REG.  
BIT 7  
SSR7  
0
BIT 6  
SSR6  
0
BIT 5  
SSR5  
0
BIT 4  
SSR4  
0
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
SSR  
Default Value  
8.5.4 Reg3 - Sets Select Register (SSR)  
Reading this register returns E4H. Writing a value selects a Register Set.  
Reg.  
Bit 7  
SSR7  
1
Bit 6  
SSR6  
1
Bit 5  
SSR5  
1
Bit 4  
SSR4  
0
Bit 3  
SSR3  
0
Bit 2  
SSR2  
1
Bit 1  
SRR1  
0
Bit 0  
SRR0  
0
SSR  
Default Value  
8.6 Set4 - TX/RX/Timer counter registers and IR control registers.  
ADDRESS OFFSET  
REGISTER NAME  
TMRL  
REGISTER DESCRIPTION  
Timer Value Low Byte  
0
1
2
3
4
5
6
7
TMRH  
Timer Value High Byte  
IR_MSL  
SSR  
Infrared Mode Select  
Sets Select Register  
TFRLL  
Transmitter Frame Length Low Byte  
Transmitter Frame Length High Byte  
Receiver Frame Length Low Byte  
Receiver Frame Length High Byte  
TFRLH  
RFRLL  
RFRLH  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 73 -  
W83L517D/W83L517D-F  
8.6.1 Set4.Reg0, 1 - Timer Value Register (TMRL/TMRH)  
This is a 12-bit timer whose resolution is 1ms, that is, the maximum programmable time is 212-1 ms.  
The timer is a down-counter and starts counting down when EN_TMR (Enable Timer) of Set4.Reg2 is  
set to 1. When the timer counts down to zero and EN_TMR=1, the TMR_I is set to 1 and a new initial  
value will be loaded into counter.  
8.6.2 Set4.Reg2 - Infrared Mode Select (IR_MSL)  
MODE  
BIT 7 BIT 6 BIT 5 BIT 4  
BIT 3  
IR_MSL1  
0
BIT 2  
IR_MSL0  
0
BIT 1  
TMR_TST  
0
BIT 0  
EN_TMR  
0
Advanced IR  
-
-
-
-
Reset Value  
0
0
0
0
Bit 7~4: Reserved, write to 0.  
Bit 3, 2:  
IR_MSL1, 0 - Infrared Mode Select  
Select legacy IR, SIR, or ASK-IR mode. Note that in legacy SIR/ASK-IR user should set  
DIS_BACK=1 to avoid backward when programming baud rate.  
IR_MSL1, 0  
Operation Mode Selected  
00  
01  
10  
11  
Legacy IR  
CIR  
Legacy ASK-IR  
Legacy SIR  
Bit 1:  
Bit 0:  
TMR_TST - Timer Test  
When set to 1, reading the TMRL/TMRH returns the programmed values of TMRL/TMRH  
instead of the value of down counter. This bit is for testing timer register.  
EN_TMR - Enable Timer  
A write to 1 will enable the timer.  
8.6.3 Set4.Reg3 - Set Select Register (SSR)  
Reading this register returns E8H. Writing this register selects Register Set.  
REG.  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
1
BIT 3  
SSR3  
1
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
SSR  
Default Value  
- 74 -  
W83L517D/W83L517D-F  
8.6.4 Set4.Reg4, 5 - Transmitter Frame Length (TFRLL/TFRLH)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
bit 4  
0
BIT 3  
bit3  
0
BIT 2  
bit 2  
0
BIT 1  
bit 1  
0
BIT 0  
bit 0  
0
TFRLL  
bit 7  
bit 6  
bit 5  
Reset Value  
0
-
0
-
0
-
TFRLH  
bit 12  
0
bit 11  
0
bit 10  
0
bit 9  
0
bit 8  
0
Reset Value  
-
-
-
These are combined to be a 13-bit register. Writing these registers programs the transmitter frame  
length of a package. These registers are only valid when APM=1 (automatic package mode,  
Set5.Reg4.bit5). When APM=1, the physical layer will split data stream to a programmed frame  
length if the transmitted data is larger than the programmed frame length. When these registers are  
read, they will return the number of bytes which is not transmitted from a frame length programmed.  
8.6.5 Set4.Reg6, 7 - Receiver Frame Length (RFRLL/RFRLH)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
bit 4  
0
BIT 3  
bit 3  
0
BIT 2  
bit 2  
0
BIT 1  
bit 1  
0
BIT 0  
bit 0  
0
RFRLL  
bit 7  
bit 6  
bit 5  
Reset Value  
0
-
0
-
0
-
RFRLH  
bit 12  
0
bit 11  
0
bit 10  
0
bit 9  
0
bit 8  
0
Reset Value  
-
-
-
These are combined to be a 13-bit register and up counter. The length of receiver frame will be  
limited to the programmed frame length. If the received frame length is larger than the programmed  
receiver frame length, the bit of MX_LEX (Maximum Length Exceed) will be set to 1. Simultaneously,  
the receiver will not receive any more data to RX FIFO until the next start flag of the next frame, which  
is defined in the physical layer IrDA 1.1. Reading these registers returns the number of received data  
bytes of a frame from the receiver.  
8.7 Set 5 - Flow control and IR control and Frame Status FIFO registers  
ADDRESS OFFSET REGISTER NAME  
REGISTER DESCRIPTION  
0
1
FCBLL  
FCBHL  
Flow Control Baud Rate Divisor Latch Register (Low Byte)  
Flow Control Baud Rate Divisor Latch Register (High  
Byte)  
2
3
4
5
6
7
FC_MD  
SSR  
Flow Control Mode Operation  
Sets Select Register  
IRCFG1  
FS_FO  
RFRLFL  
RFRLFH  
Infrared Configure Register  
Frame Status FIFO Register  
Receiver Frame Length FIFO Low Byte  
Receiver Frame Length FIFO High Byte  
Publication Release Date: May 23, 2005  
- 75 -  
Revision 1.0  
W83L517D/W83L517D-F  
8.7.1 Set5.Reg0, 1 - Flow Control Baud Rate Divisor Latch Register (FCDLL/ FCDHL)  
If flow control is enforced when UART switches mode from MIR/FIR to SIR, then the pre-programmed  
baud rate of FCBLL/FCBHL are loaded into advanced baud rate divisor latch (ADBLL/ADBHL).  
8.7.2 Set5.Reg2 - Flow Control Mode Operation (FC_MD)  
These registers control flow control mode operation as shown in the following table.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FC_MD FC_MD2 FC_MD1 FC_MD0  
Reset  
-
FC_DSW EN_FD EN_BRFC EN_FC  
0
0
0
0
0
0
0
0
Value  
Bit 7~5  
FC_MD2 - Flow Control Mode  
When flow control is enforced, these bits will be loaded into AD_MD2~0 of advanced HSR  
(Handshake Status Register). These three bits are defined as same as AD_MD2~0.  
Bit 4:  
Bit 3:  
Reserved, write 0.  
FC_DSW - Flow Control DMA Channel Swap  
A write to 1 allows user to swap DMA channel for transmitter or receiver when flow control  
is enforced.  
FC_DSW  
Next Mode After Flow Control Occurred  
Receiver Channel  
0
1
Transmitter Channel  
Bit 2:  
Bit 1:  
EN_FD - Enable Flow DMA Control  
A write to 1 enables UART to use DMA channel when flow control is enforced.  
EN_BRFC - Enable Baud Rate Flow Control  
A write to 1 enables FC_BLL/FC_BHL (Flow Control Baud Rate Divider Latch, in  
Set5.Reg1~0) to be loaded into advanced baud rate divisor latch (ADBLL/ADBHL, in  
Set2.Reg1~0).  
Bit 0:  
EN_FC - Enable Flow Control  
A write to 1 enables flow control function and bit 7~1 of this register.  
8.7.3 Set5.Reg3 - Sets Select Register (SSR)  
Writing this register selects Register Set. Reading this register returns ECH.  
REG.  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
0
BIT 3  
SSR3  
1
BIT 2  
SSR2  
1
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
SSR  
Default Value  
- 76 -  
W83L517D/W83L517D-F  
8.7.4 Set5.Reg4 - Infrared Configure Register 1 (IRCFG1)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRCFG1  
-
FSF_TH FEND_M AUX_RX  
-
-
IRHSSL IR_FULL  
Reset Value  
0
0
0
0
0
0
0
0
Bit 7:  
Bit 6:  
Reserved, write 0.  
FSF_TH - Frame Status FIFO Threshold  
Set this bit to determine the frame status FIFO threshold level and to generate the FSF_I.  
The threshold level values are defined as follows.  
FSF_TH  
STATUS FIFO THRESHOLD LEVEL  
0
1
2
4
BIT 5:  
Bit 4:  
FEND_MD - FRAME END MODE  
A write to 1 enables hardware to split data stream into equal length frame automatically  
as defined in Set4.Reg4 and Set4.Reg5, i.e., TFRLL/TFRLH.  
AUX_RX - Auxiliary Receiver Pin  
A write to 1 selects IRRX input pin. (Refer to Set7.Reg7.Bit5)  
Reserved, write 0.  
Bit 3~2:  
Bit 1:  
IRHSSL - Infrared Handshake Status Select  
When set to 0, the HSR (Handshake Status Register) operates the same as defined in IR  
mode. A write to 1 will disable HSR, and reading HSR returns 30H.  
Bit 0:  
IR_FULL - Infrared Full Duplex Operation  
When set to 0, IR module operates in half duplex. A write to 1 makes IR module operate  
in full duplex.  
8.7.5 Set5.Reg5 - Frame Status FIFO Register (FS_FO)  
This register shows the bottom byte of frame status FIFO.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
CRC_ER  
R
FS_FO  
FSFDR LST_FR  
-
MX_LEX PHY_ERR  
RX_OV FSF_OV  
Reset Value  
0
0
0
0
0
0
0
0
Publication Release Date: May 23, 2005  
Revision 1.0  
- 77 -  
W83L517D/W83L517D-F  
Bit 7:  
Bit 6:  
FSFDR - Frame Status FIFO Data Ready  
Indicates that a data byte is valid in frame status FIFO bottom.  
LST_FR - Lost Frame  
Set to 1 when one or more frames have been lost.  
Bit 5: Reserved.  
Bit 4:  
Bit 3:  
Bit 2:  
MX_LEX - Maximum Frame Length Exceed  
Set to 1 when incoming data exceeds programmed maximum frame length defined in  
Set4.Reg6 and Set4.Reg7. This bit is in frame status FIFO bottom and is valid only when  
FSFDR=1 (Frame Status FIFO Data Ready).  
PHY_ERR - Physical Error  
When receiving data, any physical layer error as defined in IrDA 1.1 will set this bit to 1.  
This bit is in frame status FIFO bottom and is valid only when FSFDR=1 (Frame Status  
FIFO Data Ready).  
CRC_ERR - CRC Error  
Set to 1 when a bad CRC is received in a frame. This CRC belongs to physical layer as  
defined in IrDA 1.1. This bit is in frame status FIFO bottom and is valid only when  
FSFDR=1 (Frame Status FIFO Data Ready).  
Bit 1:  
Bit 0:  
RX_OV - Received Data Overrun  
Set to 1 when receiver FIFO overruns.  
FSF_OV - Frame Status FIFO Overrun  
Set to 1 When frame status FIFO overruns.  
8.7.6 Set5.Reg6, 7 - Receiver Frame Length FIFO (RFLFL/RFLFH) or Lost Frame Number  
(LST_NU)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
Bit 4  
0
BIT 3  
Bit 3  
0
BIT 2  
Bit 2  
0
BIT 1  
Bit 1  
0
BIT 0  
Bit 0  
0
RFLFL/ LST_NU  
Bit 7  
Bit 6  
Bit 5  
Reset Value  
0
-
0
-
0
-
RFLFH  
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Reset Value  
0
0
0
Receiver Frame Length FIFO (RFLFL/RFLFH):  
These are combined to be a 13-bit register. Reading these registers returns received byte count for the frame. When read, the  
register of RFLFH will pop-up another frame status and frame length if FSFDR=1 (Set5.Reg4.Bit7).  
Lost Frame Number (LST_NU):  
When LST_FR=1 (Set5.Reg4.Bit6), Reg6 stands for LST_NU which is a 8-bit register holding the number of frames lost in  
succession.  
- 78 -  
W83L517D/W83L517D-F  
8.8 Set6 - IR Physical Layer Control Registers  
ADDRESS OFFSET REGISTER NAME  
REGISTER DESCRIPTION  
0
1
2
3
4
5
6
7
IR_CFG2  
MIR_PW  
SIR_PW  
SSR  
Infrared Configure Register 2  
MIR (1.152M bps or 0.576M bps) Pulse Width  
SIR Pulse Width  
Sets Select Register  
HIR_FNU  
IR_ID1  
High Speed Infrared Flag Number  
IR ID Register 1  
IR_ID2  
IR ID Register 2  
HIR_SL  
High Speed infrared Select Register  
8.8.1 Set6.Reg0 - Infrared Configure Register 2 (IR_CFG2)  
This register controls ASK-IR, MIR, FIR operations.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IR_CFG2 SHMD_N SHDM_N FIR_CRC MIR_CRC  
-
INV_CRC DIS_CRC  
-
Reset Value  
0
0
1
0
0
0
0
0
Bit 7:  
Bit 6:  
Bit 5:  
SHMD_N - ASK-IR Modulation Disable  
SHMD_N  
Modulation Mode  
0
1
IRTX modulate 500K Hz Square Wave  
Re-rout IRTX  
SHDM_N - ASK-IR Demodulation Disable  
SHDM_N  
Demodulation Mode  
Demodulation 500K Hz  
Re-rout IRRX  
0
1
FIR_CRC - FIR (4M bps) CRC Type  
FIR_CRC  
CRC Type  
16-bit CRC  
32-bit CRC  
0
1
Note that the 16/32-bit CRC are defined in IrDA 1.1 physical layer.  
Bit 4:  
MIR_CRC - MIR (1.152M/0.576M bps) CRC Type  
MIR_CRC  
CRC Type  
16-bit CRC  
32-bit CRC  
0
1
Publication Release Date: May 23, 2005  
Revision 1.0  
- 79 -  
W83L517D/W83L517D-F  
Bit 2:  
Bit 1:  
Bit 0:  
INV_CRC - Inverting CRC  
When set to 1, the CRC is inversely output in physical layer.  
DIS_CRC - Disable CRC  
When set to 1, the transmitter does not transmit CRC in physical layer.  
Reserved, write 1.  
8.8.2 Set6.Reg1 - MIR (1.152M/0.576M bps) Pulse Width  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
MIR_PW  
-
-
-
M_PW4 M_PW3  
M_PW2 M_PW1 M_PW0  
Reset Value  
0
0
0
0
1
0
1
0
This 5-bit register sets MIR output pulse width.  
M_PW4~0  
MIR PULSE WIDTH (1.152M BPS)  
MIR OUTPUT WIDTH (0.576M BPS)  
00000  
00001  
00010  
...  
0 ns  
20.83 ns  
0 ns  
41.66 ns  
41.66 (==20.83*2) ns  
...  
83.32 (==41.66*2) ns  
...  
k10  
20.83*k10 ns  
41.66*k10 ns  
...  
...  
...  
11111  
645 ns  
1290 ns  
8.8.3 Set6.Reg2 - SIR Pulse Width  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SIR_PW  
-
-
-
S_PW4 S_PW3  
S_PW2 S_PW1 S_PW0  
Reset Value  
0
0
0
0
0
0
0
0
This 5-bit register sets SIR output pulse width.  
S_PW4~0  
00000  
SIR OUTPUT PULSE WIDTH  
3/16 bit time of IR  
1.6 us  
01101  
Others  
1.6 us  
- 80 -  
W83L517D/W83L517D-F  
8.8.4 Set6.Reg3 - Set Select Register  
Select Register Set by writing a set number to this register. Reading this register returns F0H.  
REG.  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
1
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
SSR  
Default Value  
8.8.5 Set6.Reg4 - High Speed Infrared Beginning Flag Number (HIR_FNU)  
REG.  
BIT 7  
M_FG3  
0
BIT 6  
M_FG2  
0
BIT 5  
M_FG1  
1
BIT 4  
M_FG0  
0
BIT 3  
F_FL3  
1
BIT 2  
F_FL2  
0
BIT 1  
F_FL1  
1
BIT 0  
F_FL0  
0
HIR_FNU  
Reset Value  
Bit 7~4:  
M_FG3~0 - MIR beginning Flag Number  
These bits define the number of transmitter Start Flag of MIR. Note that the number of  
MIR start flag should be equal or more than two which is defined in IrDA 1.1 physical  
layer. The default value is 2.  
M_FG3~0  
BEGINNING FLAG NUMBER  
M_FG3~0  
1000  
BEGINNING FLAG NUMBER  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Reserved  
10  
12  
1
1001  
2 (Default)  
1010  
16  
3
4
5
6
8
1011  
20  
1100  
24  
1101  
28  
1110  
32  
1111  
Reserved  
Bit 3~0:  
F_FG3~0 - FIR Beginning Flag Number  
These bits define the number of transmitter Preamble Flag in FIR. Note that the number  
of FIR start flag should be equal to sixteen which is defined in IrDA 1.1 physical layer.  
The default value is 16.  
Publication Release Date: May 23, 2005  
- 81 -  
Revision 1.0  
W83L517D/W83L517D-F  
M_FG3~0  
0000  
BEGINNING FLAG NUMBER  
M_FG3~0  
BEGINNING FLAG NUMBER  
Reserved  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
10  
12  
0001  
1
2
3
4
5
6
8
0010  
16 (Default)  
0011  
20  
0100  
24  
0101  
28  
0110  
32  
0111  
Reserved  
8.8.6 Set6.Reg5 – Winbond infrared ID Register 1  
Bit 7~0:  
Winbond infrared ID1. Default value is 0x5C. Ready only.  
8.8.7 Set6.Reg6 – Winbond infrared ID Register 2  
Bit 7~0:  
Winbond infrared ID2. Default value is 0XA3. Ready only.  
8.8.8 Set6.Reg7 – High Speed infrared ID Select Register  
Bit 7-4:  
Bit 3-2:  
Reserve.  
IRSEL0_IRRXH Pin Function select  
Bit 3-2  
IRSEL0_IRRXH Pin function  
IRRXH FUNCTION  
00  
01  
IRSEL0 FUNCTION(Default value)  
Bit 1-0:  
Reserve.  
- 82 -  
W83L517D/W83L517D-F  
8.9 Set7 - Remote control and IR module selection registers  
ADDRESS OFFSET REGISTER NAME  
REGISTER DESCRIPTION  
Remote Infrared Receiver Control  
0
1
2
3
4
5
6
7
RIR_RXC  
RIR_TXC  
RIR_CFG  
SSR  
Remote Infrared Transmitter Control  
Remote Infrared Config Register  
Sets Select Register  
IRM_SL1  
IRM_SL2  
IRM_SL3  
IRM_CR  
Infrared Module (Front End) Select 1  
Infrared Module Select 2  
Infrared Module Select 3  
Infrared Module Control Register  
8.9.1 Set7.Reg0 - Remote Infrared Receiver Control (RIR_RXC)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RIR_RXC  
RX_FR2 RX_FR1 RX_FR0 RX_FSL4 RX_FSL3 RX_FSL2 RX_FSL1 RX_FSL0  
Default Value  
0
0
1
0
1
0
0
1
This register defines frequency range of receiver of remote IR.  
Bit 7~5:  
RX_FR2~0 - Receiver Frequency Range 2~0.  
These bits select the input frequency range of the receiver. It is implemented through a  
band pass filter, i.e., only the input signals whose frequency lies in the range defined in  
this register will be received.  
Bit 4~0:  
RX_FSL4~0 - Receiver Frequency Select 4~0.  
Selects the operation frequency of receiver.  
Publication Release Date: May 23, 2005  
- 83 -  
Revision 1.0  
W83L517D/W83L517D-F  
Table: Low Frequency range select of receiver.  
RX_FR2~0 (Low Frequency)  
010  
001  
011  
RX_FSL4~0  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01011  
01100  
01101  
01111  
10000  
10010  
10011  
10101  
10111  
11010  
11011  
11101  
Min.  
26.1  
28.2  
29.4  
30.0  
31.4  
32.1  
32.8  
33.6*  
34.4  
36.2  
37.2  
38.2  
40.3  
41.5  
42.8  
44.1  
45.5  
48.7  
50.4  
54.3  
Max.  
29.6  
32.0  
33.3  
34.0  
35.6  
36.4  
37.2  
38.1*  
39.0  
41.0  
42.1  
43.2  
45.7  
47.1  
48.5  
50.0  
51.6  
55.2  
57.1  
61.5  
Min.  
24.7  
26.7  
27.8  
28.4  
29.6  
30.3  
31.0  
31.7  
32.5  
34.2  
35.1  
36.0  
38.1  
39.2  
40.4  
41.7  
43.0  
46.0  
47.6  
51.3  
Max.  
31.7  
34.3  
35.7  
36.5  
38.1  
39.0  
39.8  
40.8  
41.8  
44.0  
45.1  
46.3  
49.0  
50.4  
51.9  
53.6  
55.3  
59.1  
61.2  
65.9  
Min.  
23.4  
25.3  
26.3  
26.9  
28.1  
28.7  
29.4  
30.1  
30.8  
32.4  
33.2  
34.1  
36.1  
37.2  
38.3  
39.5  
40.7  
43.6  
45.1  
48.6  
Max.  
34.2  
36.9  
38.4  
39.3  
41.0  
42.0  
42.9  
44.0  
45.0  
47.3  
48.6  
49.9  
52n.7  
54.3  
56.0  
57.7  
59.6  
63.7  
65.9  
71.0  
Note that those unassigned combinations are reserved.  
Table: High Frequency range select of receiver  
RX_FR2~0 (HIGH FREQUENCY)  
001  
RX_FSL4~0  
Min.  
Max.  
457.1  
489.8  
527.4  
00011  
355.6  
380.1  
410.3  
01000  
01011  
Note that those unassigned combinations are reserved.  
- 84 -  
W83L517D/W83L517D-F  
Table: SHARP ASK-IR receiver frequency range select.  
RX_FSL4~0 (SHARP ASK-IR)  
010 011 100  
480.0* 533.3* 457.1 564.7 436.4 600.0 417.4 640.0 400.0 685.6 384.0 738.5  
RX_FR2~0  
-
001  
101  
110  
Note that those unassigned combinations are reserved.  
8.9.2 Set7.Reg1 - Remote Infrared Transmitter Control (RIR_TXC)  
Reg.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RIR_TXC TX_PW2 TX_PW1 TX_PW0 TX_FSL4 TX_FSL3 TX_FSL2 TX_FSL1 TX_FSL0  
Default  
0
1
1
0
1
0
0
1
Value  
This Register defines the transmitter frequency and pulse width of remote IR.  
Bit 7~5:  
TX_PW2~0 - Transmitter Pulse Width 2~ 0.  
Select the transmission pulse width.  
TX_PW2~0  
010  
Low Frequency  
6 μ s  
High Frequency  
0.7 μ s  
7 μ s  
0.8 μ s  
011  
9 μ s  
0.9 μ s  
100  
10.6 μ s  
1.0 μ s  
101  
Note that those unassigned combinations are reserved.  
Bit 4~0:  
TX_FSL4~0 - Transmitter Frequency Select 4~0.  
Select the transmission frequency.  
Table: Low frequency selected.  
TX_FSL4~0  
Low Frequency  
00011  
00100  
...  
30K Hz  
31K HZ  
...  
11101  
56K Hz  
Note that those unassigned combinations are reserved.  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 85 -  
W83L517D/W83L517D-F  
Table: High frequency selected.  
TX_FSL4~0  
High Frequency  
400K Hz  
00011  
01000  
01011  
450K Hz  
480K Hz  
Note that those unassigned combinations are reserved.  
8.9.3 Set7.Reg2 - Remote Infrared Config Register (RIR_CFG)  
Reg.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
-
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RIR_CFG  
P_PNB  
SMP_M RXCFS  
TX_CFS RX_DM TX_MM1 TX_MM0  
Default  
Value  
0
0
0
0
0
0
0
0
Bit 7:  
P_PNB: Programming Pulse Number Coding.  
Write a 1 to select programming pulse number coding. The code format is defined as  
follows.  
(Number of bits) - 1  
B7 B6 B5 B4 B3 B2 B1 B0  
Bit value  
If the bit value is set to 0, the high pulse will be transmitted/received. If the bit value is set to 1, then  
no energy will be transmitted/received.  
Bit 6:  
Bit 5:  
SMP_M - Sampling Mode.  
To select receiver sampling mode.  
When set to 0 then uses T-period sampling, that the T-period is programmed IR baud rate.  
When set to 1, programmed baud rate will be used to do oversampling.  
RXCFS - Receiver Carry Frequency Select  
RXCFS  
Selected Frequency  
30K ~ 56K Hz  
0
1
400K ~ 480K Hz  
Bit 4:  
Bit 3:  
Reserved, write 0.  
TX_CFS - Transmitter Carry Frequency Select.  
Select low speed or high speed transmitter carry frequency.  
- 86 -  
W83L517D/W83L517D-F  
TX_FCS  
Selected Frequency  
30K ~ 56K Hz  
0
400K ~ 480K Hz  
1
Bit 2:  
RX_DM - Receiver Demodulation Mode.  
RX_DM  
Demodulation Mode  
Enable internal decoder  
Disable internal decoder  
0
1
Bit 1~0:  
TX_MM1~0 - Transmitter Modulation Mode 1~0  
TX_MM1~0  
TX Modulation Mode  
Continuously send pulse for logic 0  
8 pulses for logic 0 and no pulse for logic 1.  
6 pulses for logic 0 and no pulse for logic 1  
Reserved.  
00  
01  
10  
11  
8.9.4 Set7.Reg3 - Sets Select Register (SSR)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
0
Bit 2  
1
Bit 1  
0
Bit 0  
0
Default Value  
Reading this register returns F4H. Select Register Set by writing a set number to this register.  
8.9.5 Set7.Reg4 - Infrared Module (Front End) Select 1 (IRM_SL1)  
Reg.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IRM_SL1  
IR_MSP SIR_SL2 SIR_SL1 SIR_SL0  
-
AIR_SL2 AIR_SL1 AIR_SL0  
Default Value  
0
0
0
0
0
0
0
0
Bit 7:  
IR_MSP - IR Mode Select Pulse  
When set to 1, the transmitter (IRTX) will send a 64 μs pulse to setup a special IR front-  
end operational mode. When IR front-end module uses mode select pin (MD) and  
transmitter IR pulse (IRTX) to switch between high speed IR (such as FIR or MIR) and  
low speed IR (SIR or ASK-IR), this bit should be used.  
Bit 6~4:  
SIR_SL2~0 - SIR (Serial IR) mode select.  
These bits are used to program the operational mode of the SIR front-end module.  
These values of SIR_SL2~0 will be automatically loaded to pins of IR_SL2~0,  
respectively, when (1) AM_FMT=1 (Automatic Format, in Set7.Reg7.Bit7); (2) the mode  
of Advanced IR is set to SIR (AD_MD2~0, in Set0.Reg4.Bit7~0).  
Publication Release Date: May 23, 2005  
- 87 -  
Revision 1.0  
W83L517D/W83L517D-F  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
AIR_SL2~0 - ASK-IR Mode Select.  
These bits setup the operational mode of ASK-IR front-end module when AM_FMT=1  
and AD_MD2~0 are configured to ASK-IR mode. These values will be automatically  
loaded to IR_SL2~0, respectively.  
8.9.6 Set7.Reg5 - Infrared Module (Front End) Select 2 (IRM_SL2)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL2  
-
FIR_SL2 FIR_SL1 FIR_SL0  
-
MIR_SL2 MIR_SL1 MIR_SL0  
Default Value  
0
0
0
0
0
0
0
0
Bit 7:  
Reserved, write 0.  
FIR_SL2~0 - FIR mode select.  
Bit 6~4:  
These bits setup the operational mode of FIR front-end module when AM_FMT=1 and  
AD_MD2~0 are configured to FIR mode. These values will be automatically loaded to  
IR_SL2~0, respectively.  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
MIR_SL2~0 - MIR Mode Select.  
These bits setup the MIR operational mode when AM_FMT=1 and AD_MD2~0 are  
configured to MIR mode. These values will be automatically loaded to IR_SL2~0,  
respectively.  
8.9.7 Set7.Reg6 - Infrared Module (Front End) Select 3 (IRM_SL3)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL3  
-
LRC_SL2 LRC_SL1 LRC_SL0  
-
HRC_SL2 HRC_SL1 HRC_SL0  
Default Value  
0
0
0
0
0
0
0
0
Bit 7:  
Reserved, write 0.  
LRC_SL2~0 - Low Speed Remote IR mode select.  
Bit 6~4:  
These bits setup the operational mode of low speed remote IR front-end module when  
AM_FMT=1 and AD_MD2~0 are configured to Remote IR mode. These values will be  
automatically loaded to IR_SL2~0, respectively.  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
HRC_SL2~0 - High Speed Remote IR Mode Select.  
These bits setup the operational mode of high speed remote IR front-end module when  
AM_FMT=1 and .AD_MD2~0 are configured to Remote IR mode. These values will be  
automatically loaded to IR_SL2~0, respectively.  
- 88 -  
W83L517D/W83L517D-F  
8.9.8 Set7.Reg7 - Infrared Module Control Register (IRM_CR)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
-
BIT 1  
-
BIT 0  
-
IRM_CR  
AM_FMT IRX_MSL IRSL0D  
RXINV  
TXINV  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
Bit 7:  
AM_FMT - Automatic Format  
A write to 1 will enable automatic format IR front-end module. These bits will affect the  
output of IR_SL2~0 which is referred by IR front-end module selection (Set7.Reg4~6)  
Bit 6:  
IRX_MSL - IR Receiver Module Select  
Select the receiver input path from the IR front end module if IR module has a separated  
high speed and low speed receiver path. If the IR module has only one receiving path,  
then this bit should be set to 0.  
IRX_MSL  
Receiver Pin selected  
IRRX (Low/High Speed)  
IRRXH (High Speed)  
0
1
Bit 5:  
IRSL0D - Direction of IRSL0 Pin  
Select function for IRRXH or IRSL0 because they share common pin and have different  
input/output direction.  
IRSL0_D  
Function  
IRRXH (I/P)  
IRSL0 (O/P)  
0
1
Table: IR receiver input pin selection  
IRSL0D  
IRX_MSL  
AUX_RX  
HIGH SPEED IR  
SELECTED IR PIN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
X
X
0
1
X
X
0
1
IRRX  
IRRXH  
IRRX  
X
X
0
IRRXH  
IRRX  
1
Reserved  
IRRX  
X
X
Reserved  
Note: that (1) AUX_RX is defined in Set5.Reg4.Bit4, (2) high speed IR includes MIR (1.152M or 0.576M bps) and FIR (4M bps),  
(3) IRRX is the input of the low speed or high speed IR receiver, IRRXH is the input of the high speed IR receiver.  
Publication Release Date: May 23, 2005  
- 89 -  
Revision 1.0  
W83L517D/W83L517D-F  
Bit 4:  
RXINV - Receiving Signal Invert  
A write to 1 will Invert the receiving signal.  
TXINV - Transmitting Signal Invert  
A write to 1 will Invert the transmitting signal.  
Reserved, write 0.  
Bit 3:  
Bit 2~0:  
9. PARALLEL PORT  
9.1 Printer Interface Logic  
The parallel port of the W83L517D makes possible the attachment of various devices that accept  
eight bits of parallel data at standard TTL level. The W83L517D supports an IBM XT/AT compatible  
parallel port (SPP), bi-directional parallel port (BPP), Enhanced Parallel Port (EPP), Extended  
Capabilities Parallel Port (ECP), Extension FDD mode (EXTFDD), Extension 2FDD mode (EXT2FDD)  
on the parallel port. Refer to the configuration registers for more information on disabling, power-  
down, and on selecting the mode of operation.  
Table 8-1 shows the pin definitions for different modes of the parallel port.  
TABLE 8-1-1 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
HOST  
CONNECTOR  
PIN NUMBER  
OF W83627HF  
PIN ATTRIBUTE  
SPP  
EPP  
ECP  
1
36  
O
nSTB  
nWrite  
nSTB, HostClk2  
PD<0:7>  
PD<0:  
7>  
PD<0:7  
>
2-9  
31-26, 24-23  
I/O  
10  
11  
22  
21  
I
I
nACK  
BUSY  
Intr  
nACK, PeriphClk2  
BUSY, PeriphAck2  
nWait  
PEerror,  
nAckReverse2  
12  
19  
I
PE  
PE  
13  
14  
18  
35  
I
SLCT  
nAFD  
Select  
SLCT, Xflag2  
O
nDStrb  
nAFD, HostAck2  
nFault1,  
nPeriphRequest2  
15  
34  
I
nERR  
nError  
nINIT1,  
16  
17  
33  
32  
O
O
nINIT  
nInit  
nReverseRqst2  
nSLIN  
nAStrb  
nSLIN1 , ECPMode2  
Notes:  
n<name > : Active Low  
1. Compatible Mode  
2. High Speed Mode  
3. For more information, refer to the IEEE 1284 standard.  
- 90 -  
W83L517D/W83L517D-F  
TABLE 8-1-2 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
HOST  
CONNECTOR  
PIN NUMBER  
OF W83627HF  
PIN  
ATTRIBUTE  
PIN  
ATTRIBUTE  
PIN  
ATTRIBUTE  
SPP  
EXT2FDD  
EXTFDD  
1
2
3
4
5
36  
31  
30  
29  
28  
O
nSTB  
PD0  
PD1  
PD2  
PD3  
---  
---  
---  
---  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
INDEX2#  
TRAK02#  
WP2#  
I
I
I
I
INDEX2#  
TRAK02#  
WP2#  
RDATA2#  
RDATA2#  
DSKCHG2  
#
6
27  
I/O  
PD4  
I
DSKCHG2#  
I
7
26  
24  
23  
22  
21  
19  
18  
35  
34  
33  
32  
I/O  
I/O  
I/O  
I
PD5  
PD6  
---  
---  
---  
---  
8
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
MOA2#  
DSA2#  
DSB2#  
MOB2#  
WD2#  
---  
---  
9
PD7  
---  
---  
10  
11  
12  
13  
14  
15  
16  
17  
nACK  
BUSY  
PE  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
DSB2#  
MOB2#  
WD2#  
WE2#  
RWC2#  
HEAD2#  
DIR2#  
STEP2#  
I
I
I
SLCT  
nAFD  
nERR  
nINIT  
nSLIN  
WE2#  
O
I
RWC2#  
HEAD2#  
DIR2#  
O
O
STEP2#  
9.2 Enhanced Parallel Port (EPP)  
TABLE 8-2 PRINTER MODE AND EPP REGISTER ADDRESS  
A2  
0
A1  
0
A0  
0
REGISTER  
NOTE  
Data port (R/W)  
1
1
1
1
2
2
2
2
2
0
0
1
Printer status buffer (Read)  
Printer control latch (Write)  
Printer control swapper (Read)  
EPP address port (R/W)  
EPP data port 0 (R/W)  
EPP data port 1 (R/W)  
EPP data port 2 (R/W)  
EPP data port 2 (R/W)  
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Notes:  
1. These registers are available in all modes.  
2. These registers are available only in EPP mode.  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 91 -  
W83L517D/W83L517D-F  
9.2.1 Data Swapper  
The system microprocessor can read the contents of the printer's data latch by reading the data  
swapper.  
9.2.2 Printer Status Buffer  
The system microprocessor can read the printer status by reading the address of the printer status  
buffer. The bit definitions are as follows:  
7
6
5
4
3
2
1
1
1
0
TMOUT  
ERROR  
SLCT  
PE  
ACK  
BUSY  
Bit 7: This signal is active during data entry, when the printer is off-line during printing, when the print  
head is changing position, or during an error state. When this signal is active, the printer is busy and  
cannot accept data.  
Bit 6: This bit represents the current state of the printer's ACK# signal. A 0 means the printer has  
received a character and is ready to accept another. Normally, this signal will be active for  
approximately 5 microseconds before BUSY# stops.  
Bit 5: Logical 1 means the printer has detected the end of paper.  
Bit 4: Logical 1 means the printer is selected.  
Bit 3: Logical 0 means the printer has encountered an error condition.  
Bit 1, 2: These two bits are not implemented and are logic one during a read of the status register.  
Bit 0: This bit is valid in EPP mode only. It indicates that a 10 μS time-out has occurred on the EPP  
bus. A logic 0 means that no time-out error has occurred; a logic 1 means that a time-out error has  
been detected. Writing a logic 1 to this bit will clear the time-out status bit; writing a logic 0 has no  
effect.  
9.2.3 Printer Control Latch and Printer Control Swapper  
The system microprocessor can read the contents of the printer control latch by reading the printer  
control swapper. Bit definitions are as follows:  
- 92 -  
W83L517D/W83L517D-F  
7
1
6
1
5
4
3
2
1
0
STROBE  
AUTO FD  
INIT  
SLCT IN  
IRQ ENABLE  
DIR  
Bit 7, 6: These two bits are a logic one during a read. They can be written.  
Bit 5: Direction control bit  
When this bit is a logic 1, the parallel port is in input mode (read); when it is a logic 0, the  
parallel port is in output mode (write). This bit can be read and written. In SPP mode, this bit is invalid  
and fixed at zero.  
Bit 4: A 1 in this position allows an interrupt to occur when ACK# changes from low to high.  
Bit 3: A 1 in this bit position selects the printer.  
Bit 2: A 0 starts the printer (50 microsecond pulse, minimum).  
Bit 1: A 1 causes the printer to line-feed after a line is printed.  
Bit 0: A 0.5 microsecond minimum high active pulse clocks data into the printer. Valid data must be  
present for a minimum of 0.5 microseconds before and after the strobe pulse.  
9.2.4 EPP Address Port  
The address port is available only in EPP mode. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write  
operation. The leading edge of IOW# causes an EPP address write cycle to be performed, and the  
trailing edge of IOW# latches the data for the duration of the EPP write cycle.  
PD0-PD7 ports are read during a read operation. The leading edge of IOR# causes an EPP address  
read cycle to be performed and the data to be output to the host CPU.  
Publication Release Date: May 23, 2005  
- 93 -  
Revision 1.0  
W83L517D/W83L517D-F  
9.2.5 EPP Data Port 0-3  
These four registers are available only in EPP mode. Bit definitions of each data port are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
When accesses are made to any EPP data port, the contents of DB0-DB7 are buffered (non-inverting)  
and output to the ports PD0-PD7 during a write operation. The leading edge of IOW# causes an EPP  
data write cycle to be performed, and the trailing edge of IOW# latches the data for the duration of the  
EPP write cycle.  
During a read operation, ports PD0-PD7 are read, and the leading edge of IOR# causes an EPP read  
cycle to be performed and the data to be output to the host CPU.  
9.2.6 Bit Map of Parallel Port and EPP Registers  
7
6
5
4
3
2
1
0
REGISTER  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
Data Port (R/W)  
Status  
(Read)  
Buffer  
BUSY# ACK#  
PE  
1
SLCT  
IRQEN  
IRQ  
1
1
AUTOFD#  
AUTOFD#  
PD1  
TMOUT  
STROBE#  
STROBE#  
PD0  
ERROF#  
SLIN  
SLIN  
PD3  
Control Swapper  
(Read)  
1
1
INIT#  
INIT#  
PD2  
PD2  
PD2  
PD2  
PD2  
Control  
(Write)  
Latch  
1
1
DIR  
PD5  
PD5  
PD5  
PD5  
PD5  
EPP Address Port  
R/W)  
PD7  
PD7  
PD7  
PD7  
PD7  
PD6  
PD6  
PD6  
PD6  
PD6  
PD4  
EPP Data Port 0  
(R/W)  
PD4  
PD3  
PD1  
PD0  
EPP Data Port 1  
(R/W)  
PD4  
PD3  
PD1  
PD0  
EPP Data Port 2  
(R/W)  
PD4  
PD3  
PD1  
PD0  
EPP Data Port 3  
(R/W)  
PD4  
PD3  
PD1  
PD0  
- 94 -  
W83L517D/W83L517D-F  
9.2.7 EPP Pin Descriptions  
EPP NAME  
nWrite  
TYPE  
EPP DESCRIPTION  
O
I/O  
I
Denotes an address or data read or write operation.  
PD<0:7>  
Intr  
Bi-directional EPP address and data bus.  
Used by peripheral device to interrupt the host.  
Inactive to acknowledge that data transfer is completed. Active to indicate  
that the device is ready for the next transfer.  
nWait  
I
PE  
I
I
Paper end; same as SPP mode.  
Select  
nDStrb  
nError  
Printer selected status; same as SPP mode.  
This signal is active low. It denotes a data read or write operation.  
Error; same as SPP mode.  
O
I
This signal is active low. When it is active, the EPP device is reset to its  
initial operating mode.  
NInits  
O
O
nAStrb  
This signal is active low. It denotes an address read or write operation.  
9.2.8 EPP Operation  
When the EPP mode is selected in the configuration register, the standard and bi-directional modes  
are also available. The PDx bus is in the standard or bi-directional mode when no EPP read, write, or  
address cycle is currently being executed. In this condition all output signals are set by the SPP  
Control Port and the direction is controlled by DIR of the Control Port.  
A watchdog timer is required to prevent system lockup. The timer indicates that more than 10 μS have  
elapsed from the start of the EPP cycle to the time  
is deasserted. The current EPP cycle is  
WAIT#  
aborted when a time-out occurs. The time-out condition is indicated in Status bit 0.  
9.2.8.1 EPP Operation  
The EPP operates on a two-phase cycle. First, the host selects the register within the device for  
subsequent operations. Second, the host performs a series of read and/or write byte operations to the  
selected register. Four operations are supported on the EPP: Address Write, Data Write, Address  
Read, and Data Read. All operations on the EPP device are performed asynchronously.  
9.2.8.2 EPP Version 1.9 Operation  
The EPP read/write operation can be completed under the following conditions:  
a. If the nWait is active low, when the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or  
write cycle (nWrite active low, nDStrb/nAStrb active low) starts, the read/write cycle proceeds normally  
and will be completed when nWait goes inactive high.  
b. If nWait is inactive high, the read/write cycle will not start. It must wait until nWait changes to active  
low, at which time it will start as described above.  
9.2.8.3 EPP Version 1.7 Operation  
The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the  
read/write cycle starts, however, it will not terminate until nWait changes from active low to inactive  
high.  
Publication Release Date: May 23, 2005  
- 95 -  
Revision 1.0  
W83L517D/W83L517D-F  
9.3 Extended Capabilities Parallel (ECP) Port  
This port is software and hardware compatible with existing parallel ports, so it may be used as a  
standard printer mode if ECP is not required. It provides an automatic high burst-bandwidth channel  
that supports DMA for ECP in both the forward (host to peripheral) and reverse (peripheral to host)  
directions.  
Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth  
requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for the  
standard parallel port to improve compatibility mode transfer speed.  
The ECP port supports run-length-encoded (RLE) decompression (required) in hardware.  
Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates  
how many times the next byte is to be repeated. Hardware support for compression is optional.  
For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and ISA  
Interface Standard.  
9.3.1 ECP Register and Mode Definitions  
NAME  
data  
ADDRESS  
Base+000h  
Base+000h  
Base+001h  
Base+002h  
Base+400h  
Base+400h  
Base+400h  
Base+400h  
Base+401h  
Base+402h  
I/O  
R/W  
R/W  
R
ECP MODES  
000-001  
011  
FUNCTION  
Data Register  
ecpAFifo  
dsr  
ECP FIFO (Address)  
Status Register  
All  
dcr  
R/W  
R/W  
R/W  
R/W  
R
All  
Control Register  
cFifo  
010  
Parallel Port Data FIFO  
ECP FIFO (DATA)  
Test FIFO  
ecpDFifo  
tFifo  
011  
110  
cnfgA  
cnfgB  
ecr  
111  
Configuration Register A  
Configuration Register B  
Extended Control Register  
R/W  
R/W  
111  
All  
Note: The base addresses are specified by CR23, which are determined by configuration register or hardware setting.  
MODE  
000  
001  
010  
011  
100  
101  
110  
111  
DESCRIPTION  
SPP mode  
PS/2 Parallel Port mode  
Parallel Port Data FIFO mode  
ECP Parallel Port mode  
EPP mode (If this option is enabled in the CR9 and CR0 to select ECP/EPP mode)  
Reserved  
Test mode  
Configuration mode  
Note: The mode selection bits are bit 7-5 of the Extended Control Register.  
- 96 -  
W83L517D/W83L517D-F  
9.3.2 Data and ecpAFifo Port  
Modes 000 (SPP) and 001 (PS/2) (Data Port)  
During a write operation, the Data Register latches the contents of the data bus on the rising edge of  
the input. The contents of this register are output to the PD0-PD7 ports. During a read operation, ports  
PD0-PD7 are read and output to the host. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Mode 011 (ECP FIFO-Address/RLE)  
A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The  
hardware at the ECP port transmits this byte to the peripheral automatically. The operation of this  
register is defined only for the forward direction. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
Address or RLE  
Address/RLE  
9.3.3 Device Status Register (DSR)  
These bits are at low level during a read of the Printer Status Register. The bits of this status register  
are defined as follows:  
7
6
5
4
3
2
1
0
1
1
1
nFault  
Select  
PError  
nAck  
nBusy  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 97 -  
W83L517D/W83L517D-F  
Bit 7: This bit reflects the complement of the Busy input.  
Bit 6: This bit reflects the nAck input.  
Bit 5: This bit reflects the PError input.  
Bit 4: This bit reflects the Select input.  
Bit 3: This bit reflects the nFault input.  
Bit 2-0: These three bits are not implemented and are always logic one during a read.  
9.3.4 Device Control Register (DCR)  
The bit definitions are as follows:  
7
6
5
4
3
2
1
0
1
1
strobe  
autofd  
nInit  
SelectIn  
ackIntEn  
Direction  
Bit 6, 7: These two bits are logic one during a read and cannot be written.  
Bit 5: This bit has no effect and the direction is always out if mode = 000 or mode = 010. Direction is  
valid in all other modes.  
0
1
the parallel port is in output mode.  
the parallel port is in input mode.  
Bit 4: Interrupt request enable. When this bit is set to a high level, it may be used to enable interrupt  
requests from the parallel port to the CPU due to a low to high transition on the  
ACK#  
input.  
Bit 3: This bit is inverted and output to the  
output.  
SLIN#  
The printer is not selected.  
The printer is selected.  
output.  
0
1
Bit 2: This bit is output to the  
INIT#  
Bit 1: This bit is inverted and output to the  
Bit 0: This bit is inverted and output to the  
output.  
output.  
AFD#  
STB#  
9.3.5 cFifo (Parallel Port Data FIFO) Mode = 010  
This mode is defined only for the forward direction. The standard parallel port protocol is used by a  
hardware handshake to the peripheral to transmit bytes written or DMAed from the system to this  
FIFO. Transfers to the FIFO are byte aligned.  
- 98 -  
W83L517D/W83L517D-F  
9.3.6 ecpDFifo (ECP Data FIFO) Mode = 011  
When the direction bit is 0, bytes written or DMAed from the system to this FIFO are transmitted by a  
hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are  
byte aligned.  
When the direction bit is 1, data bytes from the peripheral are read under automatic hardware  
handshake from ECP into this FIFO. Reads or DMAs from the FIFO will return bytes of ECP data to  
the system.  
9.3.7 tFifo (Test FIFO Mode) Mode = 110  
Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data in  
the tFIFO will not be transmitted to the parallel port lines. However, data in the tFIFO may be  
displayed on the parallel port data lines.  
9.3.8 cnfgA (Configuration Register A) Mode = 111  
This register is a read-only register. When it is read, 10H is returned. This indicates to the system that  
this is an 8-bit implementation.  
9.3.9  
cnfgB (Configuration Register B) Mode = 111  
The bit definitions are as follows:  
7
6
5
4
3
2
1
1
0
1
1
IRQx 0  
IRQx 1  
IRQx 2  
intrValue  
compress  
Bit 7: This bit is read-only. It is at low level during a read. This means that this chip does not support  
hardware RLE compression.  
Bit 6: Returns the value on the ISA IRQ line to determine possible conflicts.  
Publication Release Date: May 23, 2005  
- 99 -  
Revision 1.0  
W83L517D/W83L517D-F  
Bit 5-3: Reflect the IRQ resource assigned for ECP port.  
cnfgB[5:3]  
IRQ resource  
000  
001  
010  
011  
100  
101  
110  
111  
reflect other IRQ resources selected by PnP register (default)  
IRQ7  
IRQ9  
IRQ10  
IRQ11  
IRQ14  
IRQ15  
IRQ5  
Bit 2-0: These five bits are at high level during a read and can be written.  
9.3.10 ecr (Extended Control Register) Mode = all  
This register controls the extended ECP parallel port functions. The bit definitions are follows:  
7
6
5
4
3
2
1
0
empty  
full  
service Intr  
dmaEn  
nErrIntrEn  
MODE  
MODE  
MODE  
Bit 7-5: These bits are read/write and select the mode.  
000  
001  
Standard Parallel Port mode. The FIFO is reset in this mode.  
PS/2 Parallel Port mode. This is the same as 000 except that direction may be used  
to tri-state the data lines and reading the data register returns the value on the data  
lines and not the value in the data register.  
Parallel Port FIFO mode. This is the same as 000 except that bytes are written or  
DMAed to the FIFO. FIFO data are automatically transmitted using the standard  
parallel port protocol. This mode is useful only when direction is 0.  
010  
011  
ECP Parallel Port Mode. When the direction is 0 (forward direction), bytes placed  
into the ecpDFifo and bytes written to the ecpAFifo are placed in a single FIFO and  
auto transmitted to the peripheral using ECP Protocol. When the direction is 1  
(reverse direction), bytes are moved from the ECP parallel port and packed into  
bytes in the ecpDFifo.  
100  
101  
Selects EPP Mode. In this mode, EPP is activated if the EPP mode is selected.  
Reserved.  
- 100 -  
W83L517D/W83L517D-F  
Test Mode. The FIFO may be written and read in this mode, but the data will not be  
transmitted on the parallel port.  
110  
111  
Configuration Mode. The confgA and confgB registers are accessible at 0x400 and  
0x401 in this mode.  
Bit 4: Read/Write (Valid only in ECP Mode)  
1
Disables the interrupt generated on the asserting edge of nFault.  
Enables an interrupt pulse on the high to low edge of nFault. If nFault is asserted  
(interrupt) an interrupt will be generated and this bit is written from a 1 to 0.  
0
Bit 3: Read/Write  
1
Enables DMA.  
0
Disables DMA unconditionally.  
Bit 2: Read/Write  
1
Disables DMA and all of the service interrupts.  
Enables one of the following cases of interrupts. When one of the service interrupts  
has occurred, the serviceIntr bit is set to a 1 by hardware. This bit must be reset to  
0 to re-enable the interrupts. Writing a 1 to this bit will not cause an interrupt.  
(a) dmaEn = 1: During DMA this bit is set to a 1 when terminal count is reached.  
(b) dmaEn = 0 direction = 0: This bit is set to 1 whenever there are writeIntr  
Threshold or more bytes free in the FIFO.  
0
(c) dmaEn = 0 direction = 1: This bit is set to 1 whenever there are readIntr  
Threshold or more valid bytes to be read from the FIFO.  
Bit 1: Read only  
0
The FIFO has at least 1 free byte.  
1
The FIFO cannot accept another byte or the FIFO is completely full.  
Bit 0: Read only  
0
The FIFO contains at least 1 byte of data.  
The FIFO is completely empty.  
1
9.3.11 Bit Map of ECP Port Registers  
D7  
PD7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
Data  
Addr/RLE  
nBusy  
1
Address or RLE field  
2
1
1
2
2
2
ecpAFifo  
Dsr  
nAck  
1
PError  
Select  
nFault  
1
1
1
Directio  
ackIntEn  
SelectIn  
nInit  
autofd  
strobe  
Dcr  
Parallel Port Data FIFO  
ECP Data FIFO  
Test FIFO  
CFifo  
ecpDFifo  
TFifo  
CnfgA  
CnfgB  
Ecr  
0
0
0
1
1
1
0
1
0
1
0
1
0
1
compress  
intrValue  
MODE  
nErrIntrEn  
dmaEn  
serviceIntr  
full  
empty  
Notes: 1. These registers are available in all modes.  
2. All FIFOs use one common 16-byte FIFO.  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 101 -  
W83L517D/W83L517D-F  
9.3.12 ECP Pin Descriptions  
NAME  
TYPE  
DESCRIPTION  
The nStrobe registers data or address into the slave on the  
asserting edge during write operations. This signal handshakes  
with Busy.  
nStrobe (HostClk)  
O
PD<7:0>  
I/O  
I
These signals contains address or data or RLE data.  
This signal indicates valid data driven by the peripheral when  
asserted. This signal handshakes with nAutoFd in reverse.  
nAck (PeriphClk)  
This signal deasserts to indicate that the peripheral can accept  
data. It indicates whether the data lines contain ECP command  
information or data in the reverse direction. When in reverse  
direction, normal data are transferred when Busy (PeriphAck) is  
high and an 8-bit command is transferred when it is low.  
Busy (PeriphAck)  
I
This signal is used to acknowledge a change in the direction of  
the transfer (asserted = forward). The peripheral drives this  
signal low to acknowledge nReverseRequest. The host relies  
upon nAckReverse to determine when it is permitted to drive  
the data bus.  
PError (nAckReverse)  
Select (Xflag)  
I
I
Indicates printer on line.  
Requests a byte of data from the peripheral when it is asserted.  
This signal indicates whether the data lines contain ECP  
address or data in the forward direction. When in forward  
direction, normal data are transferred when nAutoFd (HostAck)  
is high and an 8-bit command is transferred when it is low.  
nAutoFd (HostAck)  
O
Generates an error interrupt when it is asserted. This signal is  
valid only in the forward direction. The peripheral is permitted  
(but not required) to drive this pin low to request a reverse  
transfer during ECP Mode.  
nFault (nPeriphRequest)  
I
This signal sets the transfer direction (asserted = reverse,  
deasserted = forward). This pin is driven low to place the  
channel in the reverse direction.  
nInit (nReverseRequest)  
nSelectIn (ECPMode)  
O
O
This signal is always deasserted in ECP mode.  
9.3.13 ECP Operation  
The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol  
before ECP operation. After negotiation, it is necessary to initialize some of the port bits. The  
following are required:  
(a) Set direction = 0, enabling the drivers.  
(b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.  
(c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.  
(d) Set mode = 011 (ECP Mode)  
ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo,  
respectively.  
- 102 -  
W83L517D/W83L517D-F  
9.3.13.1 Mode Switching  
Software will execute P1284 negotiation and all operation prior to a data transfer phase under  
programmed I/O control (mode 000 or 001). Hardware provides an automatic control line handshake,  
moving data between the FIFO and the ECP port only in the data transfer phase (mode 011 or 010).  
If the port is in mode 000 or 001 it may switch to any other mode. If the port is not in mode 000 or 001  
it can only be switched into mode 000 or 001. The direction can be changed only in mode 001.  
When in extended forward mode, the software should wait for the FIFO to be empty before switching  
back to mode 000 or 001. In ECP reverse mode the software waits for all the data to be read from the  
FIFO before changing back to mode 000 or 001.  
9.3.13.2 Command/Data  
ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction, normal  
data are transferred when HostAck is high and an 8-bit command is transferred when HostAck is low.  
The most significant bits of the command indicate whether it is a run-length count (for compression) or  
a channel address.  
In the reverse direction, normal data are transferred when PeriphAck is high and an 8-bit command is  
transferred when PeriphAck is low. The most significant bit of the command is always zero.  
9.3.13.3 Data Compression  
The W83627HF supports run length encoded (RLE) decompression in hardware and can transfer  
compressed data to a peripheral. Note that the odd (RLE) compression in hardware is not supported.  
In order to transfer data in ECP mode, the compression count is written to the ecpAFifo and the data  
byte is written to the ecpDFifo.  
9.3.14 FIFO Operation  
The FIFO threshold is set in configuration register 5. All data transfers to or from the parallel port can  
proceed in DMA or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO  
is used by selecting the Parallel Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO is  
disabled.  
9.3.15 DMA Transfers  
DMA transfers are always to or from the ecpDFifo, tFifo, or CFifo. The DMA uses the standard PC  
DMA services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA  
will empty or fill the FIFO using the appropriate direction and mode. When the terminal count in the  
DMA controller is reached, an interrupt is generated and serviceIntr is asserted, which will disable the  
DMA.  
9.3.16 Programmed I/O (NON-DMA) Mode  
The ECP or parallel port FIFOs can also be operated using interrupt driven programmed I/O.  
Programmed I/O transfers are to the ecpDFifo at 400H and ecpAFifo at 000H or from the ecpDFifo  
located at 400H, or to/from the tFifo at 400H. The host must set the direction, state, dmaEn = 0 and  
serviceIntr = 0 in the programmed I/O transfers.  
The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The  
programmed I/O will empty or fill the FIFO using the appropriate direction and mode.  
Publication Release Date: May 23, 2005  
- 103 -  
Revision 1.0  
W83L517D/W83L517D-F  
9.4 Extension FDD Mode (EXTFDD)  
In this mode, the W83627HF changes the printer interface pins to FDC input/output pins, allowing the  
user to install a second floppy disk drive (FDD B) through the DB-25 printer connector. The pin  
assignments for the FDC input/output pins are shown in Table 6-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins  
and  
will be forced to inactive state.  
DSB#  
MOB#  
will be logically ORed with pins PD4-PD0 to  
DSKCHG# RDATA# WP# TRAK0# INDEX#  
(2) Pins  
,
,
,
,
serve as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXTFDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
9.5 Extension 2FDD Mode (EXT2FDD)  
In this mode, the W83627HF changes the printer interface pins to FDC input/output pins, allowing the  
user to install two external floppy disk drives through the DB-25 printer connector to replace internal  
floppy disk drives A and B. The pin assignments for the FDC input/output pins are shown in Table6-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins  
,
,
, and  
will be forced to inactive state.  
DSB#  
MOA# DSA# MOB#  
(2) Pins  
,
,
,
, and  
will be logically ORed with pins PD4-PD0 to serve as  
INDEX#  
DSKCHG# RDATA# WP# TRAK0#  
input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for FDD open  
drain/collector output.  
(4) If the parallel port is set to EXT2FDD mode after the system has booted DOS or another operating system, a  
warm reset is needed to enable the system to recognize the extension floppy drive.  
10. GENERAL PURPOSE I/O  
W83L517D provides 38 input/output ports that can be individually configured to perform a simple  
basic I/O function or a pre-defined alternate function. Those 38 GP I/O ports are divided into five  
groups, each group contains 6,8,8,8,8 ports from group 1 to group 5. The first group is configured  
through control registers in logical device 7, the second group in logical device 8,the third ,the  
fourth,and the fifth group in logical device 9. Users can configure each individual port to be an input or  
output port by programming respective bit in selection register (CRF0: 0 = output, 1 = input). Invert  
port value by setting inversion register (CRF2: 0 = non-inverse, 1 = inverse). Port value is read/written  
through data register (CRF1). Table 7.1 and 7.2 gives more details on GPIO's assignment. In  
addition, GPIO1 is designed to be functional even in power loss condition (VCC or VSB is off). Figure  
7.1 shows the GP I/O port's structure. Right after Power-on reset, those ports default to perform basic  
input function except ports in GPIO1 which maintains its previous settings until a battery loss  
condition.  
- 104 -  
W83L517D/W83L517D-F  
Table 9.1  
SELECTION BIT  
INVERSION BIT  
0 = OUTPUT  
0 = NON INVERSE  
BASIC I/O OPERATIONS  
1 = INPUT  
1 = INVERSE  
0
0
1
1
0
1
0
1
Basic non-inverting output  
Basic inverting output  
Basic non-inverting input  
Basic inverting input  
Table 9.2  
GP I/O PORT DATA REGISTER  
REGISTER BIT ASSIGNMENT  
GP I/O PORT  
BIT 0  
GP10  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
GP11  
GP12  
GP13  
GP14  
GP1  
BIT 5  
BIT 0  
GP15  
GP20  
BIT 1  
BIT 2  
GP21  
GP22  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 0  
GP23  
GP24  
GP25  
GP26  
GP27  
GP30  
GP2  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
GP31  
GP32  
GP33  
GP34  
GP35  
GP36  
GP37  
GP3  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 105 -  
W83L517D/W83L517D-F  
Table 9.2, continued.  
GP I/O PORT DATA REGISTER REGISTER BIT ASSIGNMENT  
GP I/O PORT  
GP40  
GP41  
GP42  
GP43  
GP44  
GP45  
GP46  
GP47  
GP50  
GP51  
GP52  
GP53  
GP54  
GP55  
GP56  
GP57  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
GP4  
GP5  
Figure 7.1  
- 106 -  
W83L517D/W83L517D-F  
11. ACPI REGISTERS FEATURES  
W83L517D supports both ACPI and legacy power managements. The switch logic of the power  
management block generates an SMI interrupt in the legacy mode and an PME interrupt in the ACPI  
mode. The new ACPI feature routes SMI / PME logic output either to SMI or to PME .The  
SMI /PME logic routes to SMI only when both PME_EN = 0 and SMIPME_OE = 1. Similarly, the  
SMI/PMElogic routes to PME only when both PME_EN = 1 and SMIPME_OE = 1.  
PME_EN  
SMIPME_OE  
IRQ events  
PME Logic  
SMI /  
SMI  
0
1
PME  
SMIPME_OE  
Device Idle  
Timers  
WAK_STS  
IRQs  
Clock  
Control  
Sleep/Wake  
State machine  
Device Trap  
Global STBY  
Timer  
12. CONFIGURATION REGISTER  
12.1 Plug and Play Configuration  
The W83L517D uses Compatible PNP protocol to access configuration registers for setting up  
different types of configurations. In W83L517D, there are eleven Logical Devices (from Logical  
Device 0 to Logical Device B with the exception of logical device 4 for backward compatibility) which  
correspond to eleven individual functions: FDC (logical device 0), PRT (logical device 1), UART1  
(logical device 2), FIR (Fast IR, logical device 6), GPIO1 (logical device 7), GPIO2(logical device  
8),GPIO3 ~GPIO5(logical device 9), and ACPI ((logical device A). Each Logical Device has its own  
configuration registers (above CR30). Host can access those registers by writing an appropriate  
logical device number into logical device select register at CR07.  
Publication Release Date: May 23, 2005  
- 107 -  
Revision 1.0  
W83L517D/W83L517D-F  
12.2 Compatible PnP  
12.2.1 Extended Function Registers  
In Compatible PnP, there are two ways to enter Extended Function and read or write the configuration  
registers. HEFRAS (CR26 bit 6) can be used to select one out of these two methods of entering the  
Extended Function mode as follows:  
HEFRAS  
ADDRESS AND VALUE  
write 87h to the location 2Eh twice  
write 87h to the location 4Eh twice  
0
1
After Power-on reset, the value on RTSA# (pin 49) is latched by HEFRAS of CR26. In Compatible  
PnP, a specific value (87h) must be written twice to the Extended Functions Enable Register (I/O port  
address 2Eh or 4Eh). Secondly, an index value (02h, 07h-FFh) must be written to the Extended  
Functions Index Register (I/O port address 2Eh or 4Eh same as Extended Functions Enable Register)  
to identify which configuration register is to be accessed. The designer can then access the desired  
configuration register through the Extended Functions Data Register (I/O port address 2Fh or 4Fh).  
After programming of the configuration register is finished, an additional value (AAh) should be written  
to EFERs to exit the Extended Function mode to prevent unintentional access to those configuration  
registers. The designer can also set bit 5 of CR26 (LOCKREG) to high to protect the configuration  
registers against accidental accesses.  
The configuration registers can be reset to their default or hardware settings only by a cold reset (pin  
MR = 1). A warm reset will not affect the configuration registers.  
- 108 -  
W83L517D/W83L517D-F  
12.2.2 Extended Functions Enable Registers (EFERs)  
After a power-on reset, the W83L517D enters the default operating mode. Before the W83L517D  
enters the extended function mode, a specific value must be programmed into the Extended Function  
Enable Register (EFER) so that the extended function register can be accessed. The Extended  
Function Enable Registers are write-only registers. On a PC/AT system, their port addresses are 2Eh  
or 4Eh (as described in previous section).  
12.2.3 Extended Function Index Registers (EFIRs), Extended Function Data  
Registers(EFDRs)  
After the extended function mode is entered, the Extended Function Index Register (EFIR) must be  
loaded with an index value (02h, 07h-FEh) to access Configuration Register 0 (CR0), Configuration  
Register 7 (CR07) to Configuration Register FE (CRFE), and so forth through the Extended Function  
Data Register (EFDR). The EFIRs are write-only registers with port address 2Eh or 4Eh (as  
described in section 12.2.1) on PC/AT systems; the EFDRs are read/write registers with port address  
2Fh or 4Fh (as described in section 9.2.1) on PC/AT systems.  
12.3 Configuration Sequence  
To program W83L517D configuration registers, the following configuration sequence must be  
followed:  
(1). Enter the extended function mode  
(2). Configure the configuration registers  
(3). Exit the extended function mode  
12.3.1 Enter the extended function mode  
To place the chip into the extended function mode, two successive wrtites of 0x87 must be applied to  
Extended Function Enable Registers(EFERs, i.e. 2Eh or 4Eh).  
12.3.2 Configurate the configuration registers  
The chip selects the logical device and activates the desired logical devices through Extended  
Function Index Register(EFIR) and Extended Function Data Register(EFDR). EFIR is located at the  
same address as EFER, and EFDR is located at address (EFIR+1).  
First, write the Logical Device Number (i.e.,0x07) to the EFIR and then write the number of the desired  
logical device to the EFDR. If accessing the Chip(Global) Control Registers, this step is not required.  
Secondly, write the address of the desired configuration register within the logical device to the EFIR  
and then write (or read) the desired configuration register through EFDR.  
12.3.3 Exit the extended function mode  
To exit the extended function mode, one write of 0xAA to EFER is required. Once the chip exits the  
extended function mode, it is in the normal running mode and is ready to enter the configuration  
mode.  
Publication Release Date: May 23, 2005  
- 109 -  
Revision 1.0  
W83L517D/W83L517D-F  
12.3.4 Software programming example  
The following example is written in Intel 8086 assembly language. It assumes that the EFER is located  
at 2Eh, so EFIR is located at 2Eh and EFDR is located at 2Fh. If HEFRAS (CR26 bit 6) is set, 4Eh  
can be directly replaced by 4Eh and 2Fh replaced by 4Fh.  
;-----------------------------------------------------------------------------------  
; Enter the extended function mode ,interruptible double-write  
;-----------------------------------------------------------------------------------  
MOV DX,2EH  
|
MOV AL,87H  
OUT DX,AL  
OUT DX,AL  
;-----------------------------------------------------------------------------  
; Configurate logical device 1, configuration register CRF0 |  
;-----------------------------------------------------------------------------  
MOV DX,2EH  
MOV AL,07H  
OUT DX,AL  
MOV DX,2FH  
MOV AL,01H  
OUT DX,AL  
;MOV DX,2EH  
MOV AL,F0H  
OUT DX,AL  
MOV DX,2FH  
MOV AL,3CH  
; point to Logical Device Number Reg.  
; select logical device 1  
; select CRF0  
OUT DX,AL  
; update CRF0 with value 3CH  
;------------------------------------------  
; Exit extended function mode  
;------------------------------------------  
MOV DX,2EH  
|
MOV AL,AAH  
OUT DX,AL  
- 110 -  
W83L517D/W83L517D-F  
12.4 Chip (Global) Control Register  
CR02 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: SWRST --> Soft Reset.  
CR07  
The register is used to switch each logical device when write the number of logical device to  
EFDRs.  
CR20  
Bit 7 - 0: LDNB7 - LDNB0 --> Logical Device Number Bit 7 - 0  
Bit 7 - 0: DEVIDB7 - DEBIDB0 --> Device ID Bit 7 - Bit 0 = 0x 61 (read only).  
CR21  
Bit 7 - 0: DEVREVB7 - DEBREVB0 --> Device Rev = 0x 0X (read only).  
X : Version change number .(Bit 3~0).  
CR22 (Default 0xff)  
Bit 7~ 5: Reserved.  
Bit 4: Flash I/F Power down  
= 0 Power down  
= 1 No Power down  
Bit 3: FIRPWD  
= 0 Power down  
= 1 No Power down  
Bit 2: URAPWD  
= 0 Power down  
= 1 No Power down  
Bit 1: PRTPWD  
= 0 Power down  
= 1 No Power down  
Bit 0: FDCPWD  
= 0 Power down  
= 1 No Power down  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 111 -  
W83L517D/W83L517D-F  
CR23 (Default 0x00)  
Bit 7 ~ 1: Reserved.  
Bit 0: IPD (Immediate Power Down). When set to 1, it will put the whole chip into power down  
mode immediately.  
CR24 (Default ss00,00ssb)  
Bit 7 : Keyboard address decoder control  
= 0 Enable keyboard address (interface: KBCS# and MCCS#) decoder and IRQ1 , IRQ12  
pass to SERIRQ.  
= 1 Disable keyboard interface.  
The corresponding power-on setting pin is PENKBC# (pin 52)  
Bit 6: CLKSEL(Enable 48Mhz)  
= 0 The clock input on Pin 1 should be 24 MHz.  
= 1 The clock input on Pin 1 should be 48 MHz.  
The corresponding power-on setting pin is PEN48 (pin 61).  
Bit[5:4]: ROM size select  
= 00 1Mb  
01 2Mb  
10 4Mb  
11 Reserved  
Bit3:MEMW# Select (PIN97)  
= 0 MEMW# of flash interface is Disabled.  
= 1 MEMW# of flash interface is Enabled.  
Bit2: Reserved.  
Bit1 : Enable Flash ROM Interface  
= 0 Flash ROM Interface is enabled after hardware reset  
= 1 Flash ROM Interface is disabled after hardware reset  
This bit is read only, and set/reset by power-on setting pin. The corresponding power-on  
setting pin is PENROM#(pin 69)  
Bit 0: PNPCSV  
= 0 The Compatible PnP address select registers have default values.  
= 1 The Compatible PnP address select registers have no default value.  
The corresponding power-on setting pin is PNPCSV# (pin 43).  
- 112 -  
W83L517D/W83L517D-F  
CR25 (Default 0x00)  
Bit 7 ~ 4: Reserved  
Bit 3: FIRTRI  
When write to “1” ,FIR interface is set to tri-state and reduce the power consumption of chip.  
Bit 2: URATRI  
When write to “1”, UART interface is set to tri-state and reduce the power consumption of  
chip.  
Bit 1: PRTTRI  
When write to “1”, PRT interface is set to tri-state and reduce the power consumption of chip.  
Bit 0: FDCTRI.  
When write to “1”,FDC interface is set to tri-state and reduce the power consumption of chip.  
CR26 (Default 0s00,000b)  
Bit 7: Reserved  
Bit 6: HEFRAS  
These two bits define how to enable Configuration mode. The corresponding power-on  
setting pin is RTSA# (pin 42).  
HEFRAS Address and Value  
= 0 Write 87h to the location 2E twice.  
= 1 Write 87h to the location 4Etwice.  
Bit 5: LOCKREG  
= 0 Enable R/W Configuration Registers.  
= 1 Disable R/W Configuration Registers.  
Bit 4: Reserved.  
Bit 3: DSFDLGRQ  
= 0 Enable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is effective  
on selecting IRQ  
= 1 Disable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is not  
effective on selecting IRQ  
Bit 2: DSPRLGRQ  
= 0 Enable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is effective on  
selecting IRQ  
= 1 Disable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is not effective  
on selecting IRQ  
Bit 1: DSUALGRQ  
= 0 Enable UART A legacy mode IRQ selecting, then MCR bit 3 is effective on selecting IRQ  
= 1 Disable UART A legacy mode IRQ selecting, then MCR bit 3 is not effective on selecting IRQ  
Publication Release Date: May 23, 2005  
- 113 -  
Revision 1.0  
W83L517D/W83L517D-F  
Bit 0: DSUBLGRQ  
= 0 Enable UART B legacy mode IRQ selecting, then MCR bit 3 is effective on selecting IRQ  
= 1 Disable UART B legacy mode IRQ selecting, then MCR bit 3 is not effective on selecting IRQ  
CR28 (Default 0000,0sssb)  
Bit 7 : PRT_NFDD#  
= 0 Enable PRT_NFDD# Function.(Default)  
= 1 Disable PRT_NFDD# Function.  
Bit 6 - 3: Reserved.  
Bit 2 - 0: PRTMODS2 - PRTMODS0  
= 0xx Parallel Port Mode  
= 100 Reserved  
= 101 External FDC Mode  
= 110 Reserved  
= 111 External two FDC Mode  
When bit 7 = 0 , the bit 2 is controlled by Pin PRT_NFDD#.  
CR29 (GPIO10,GP11 Select default 0sss,s000b)  
Bit 7: Reserved.  
Bit [6:5] : Pin 5 Func. Select  
= 00 GP11  
= 01 WDTO  
= 10 RTCCS#  
= 11 IRQIN1  
Bit[4:3] : Pin 4 Func. Select  
= 00 GP10  
= 01 PLED  
= 10 P80CS#  
= 11 IRQIN0  
Bit2~0: Reserved  
CR2A (GPIO1 ~ 5& FlashROM Interface  
Selectd ,default 0x00)  
Bit 7~5 : Reserved  
Bit 4 : (PIN 81 ~ 84 ,PIN 86 ~ 89 )  
= 0 GPIO 5X  
= 1 Flash I/F (XA11 ~ XA18)  
Bit 3 : (PIN 73 ~80 )  
= 0 GPIO 4X  
= 1 Flash I/F (XA3 ~ XA10)  
- 114 -  
W83L517D/W83L517D-F  
Bit 2 : (PIN 57 ~ 59, PIN 61 ~ 64 , PIN 66)  
= 0 GPIO 3X  
= 1 Flash I/F (XD7 ~ XD0)  
Bit 1 : (PIN 71 ~72)  
= 0 GPIO 2X  
= 1 or CR24 bit7 =0 the Pin 71 ~ 72 is Flash I/F (XA1 ~ XA0)  
Bit 0: (PIN 67 ~ 70 )  
= 0 GPIO1X  
= 1 Flash I/F( MEMR#, MEMW#, ROMCS#, XA0)  
This bits is set to 1 if Pin 45 is set to 0 during RESET Period.  
CR2B (POWER DOWN CONTROL default s000,0000b)  
Bit 7 :  
= 0 Normal operation  
= 1 Enable Power down mode (Active with  
bit[2..0] are all set to “1”)  
Bit 6 –3 : Reserved  
Bit 2 : Enable Flash interface Power-down  
= 0 Normal operation  
= 1 Flash interface is in power-down mode if CR2B bit 7 =1 or PDCTL# = 0)  
Bit 1 : Enable SERIRQ interface Power-down  
= 0 Normal operation  
= 1 SERIRQ interface is in power-down mode if CR2B bit 7 =1 or PDCTL# = 0)  
Bit 0 : Enable FDC,UR, FIR ,PRT interface Power-down  
= 0 Normal operation  
= 1 FDC, UR, FIR, PRT interface is in power-down mode if CR2B bit 7 =1 or PDCTL# = 0  
CR2C , CR2D , CR2E FOR WINBOND TEST Reserved.  
CR2C default 0x10  
bit 7 – 5 : Reserved  
bit 4-0 : Fresh interface Cycle time control .  
Publication Release Date: May 23, 2005  
- 115 -  
Revision 1.0  
W83L517D/W83L517D-F  
12.5 Logical Device 0 (FDC)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0xf0 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select FDC I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x06 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for FDC.  
CR74 (Default 0x02 if PNPCSV = 0 during POR, default 0x04 otherwise)  
Bit 7 - 3: Reserved.  
Bit 2 - 0: These bits select DRQ resource for FDC.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04 - 0x07 No DMA active  
CRF0 (Default 0x0E)  
FDD Mode Register  
Bit 7: FIPURDWN  
This bit controls the internal pull-up resistors of the FDC input pins RDATA, INDEX, TRAK0,  
DSKCHG, and WP.  
= 0 The internal pull-up resistors of FDC are turned on.(Default)  
= 1 The internal pull-up resistors of FDC are turned off.  
Bit 6: INTVERTZ  
This bit determines the polarity of all FDD interface signals.  
= 0 FDD interface signals are active low.  
= 1 FDD interface signals are active high.  
Bit 5: DRV2EN (PS2 mode only)  
When this bit is a logic 0, indicates a second drive is installed and is reflected in status register A.  
- 116 -  
W83L517D/W83L517D-F  
Bit 4: Swap Drive 0, 1 Mode  
= 0 No Swap (Default)  
= 1 Drive and Motor select 0 and 1 are swapped.  
Bit 3 - 2 Interface Mode  
= 11 AT Mode (Default)  
= 10 (Reserved)  
= 01 PS/2  
= 00 Model 30  
Bit 1: FDC DMA Mode  
= 0 Burst Mode is enabled  
= 1 Non-Burst Mode (Default)  
Bit 0: Floppy Mode  
= 0 Normal Floppy Mode (Default)  
= 1 Enhanced 3-mode FDD  
CRF1 (Default 0x00)  
Bit 7 - 6: Boot Floppy  
= 00 FDD A  
= 01 FDD B  
= 10 FDD C  
= 11 FDD D  
Bit 5, 4: Media ID1, Media ID0. These bits will be reflected on FDC's Tape Drive Register bit  
7, 6.  
Bit 3 - 2: Density Select  
= 00 Normal (Default)  
= 01 Normal  
= 10 1 ( Forced to logic 1)  
= 11 0 ( Forced to logic 0)  
Bit 1: DISFDDWR  
= 0 Enable FDD write.  
= 1 Disable FDD write(forces pins WE, WD stay high).  
Bit 0: SWWP  
= 0 Normal, use WP to determine whether the FDD is write protected or not.  
= 1 FDD is always write-protected.  
Publication Release Date: May 23, 2005  
- 117 -  
Revision 1.0  
W83L517D/W83L517D-F  
CRF2 (Default 0xFF)  
Bit 7 - 6: FDD D Drive Type  
Bit 5 - 4: FDD C Drive Type  
Bit 3 - 2: FDD B Drive Type  
Bit 1 - 0: FDD A Drive Type  
CRF4 (Default 0x00)  
FDD0 Selection:  
Bit 7: Reserved.  
Bit 6: Precomp. Disable.  
= 1 Disable FDC Precompensation.  
= 0 Enable FDC Precompensation.  
Bit 5: Reserved.  
Bit 4 - 3: DRTS1, DRTS0: Data Rate Table select (Refer to TABLE A).  
= 00 Select Regular drives and 2.88 format  
= 01  
3-mode drive  
= 10 2 Meg Tape  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1:0: DTYPE0, DTYPE1: Drive Type select (Refer to TABLE B).  
CRF5 (Default 0x00)  
FDD1 Selection: Same as FDD0 of CRF4.  
TABLE A  
DRIVE RATE TABLE SELECT  
DATA RATE  
SELECTED DATA RATE  
SELDEN  
DRTS1  
DRTS0  
DRATE1  
DRATE0  
MFM  
1Meg  
500K  
300K  
250K  
1Meg  
500K  
500K  
250K  
1Meg  
500K  
2Meg  
250K  
FM  
---  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
250K  
150K  
125K  
---  
0
1
1
0
250K  
250K  
125K  
---  
250K  
---  
125K  
- 118 -  
W83L517D/W83L517D-F  
TABLE B  
DRVDEN1(PIN 3)  
DTYPE0  
DTYPE1  
DRVDEN0(PIN 2)  
SELDEN  
DRIVE TYPE  
4/2/1 MB 3.5”“  
0
0
DRATE0  
2/1 MB 5.25”  
2/1.6/1 MB 3.5” (3-MODE)  
0
1
1
1
0
1
DRATE1  
DRATE0  
DRATE0  
DRATE1  
SELDEN  
DRATE0  
12.6 Logical Device 1 (Parallel Port)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0x78 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Parallel Port I/O base address.  
[0x100:0xFFC] on 4 byte boundary (EPP not supported) or  
[0x100:0xFF8] on 8 byte boundary (all modes supported, EPP is only available when the base  
address is on 8 byte boundary).  
CR70 (Default 0x07 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for Parallel Port.  
CR74 (Default 0x04)  
Bit 7 - 3: Reserved.  
Bit 2 - 0: These bits select DRQ resource for Parallel Port.  
0x00=DMA0  
0x01=DMA1  
0x02=DMA2  
0x03=DMA3  
0x04 - 0x07= No DMA active  
Publication Release Date: May 23, 2005  
- 119 -  
Revision 1.0  
W83L517D/W83L517D-F  
CRF0 (Default 0x3F)  
Bit 7: Reserved.  
Bit 6 - 3: ECP FIFO Threshold.  
Bit 2 - 0: Parallel Port Mode (CR28 PRTMODS2 = 0)  
= 100 Printer Mode (Default)  
= 000 Standard and Bi-direction (SPP) mode  
= 001 EPP - 1.9 and SPP mode  
= 101 EPP - 1.7 and SPP mode  
= 010 ECP mode  
= 011 ECP and EPP - 1.9 mode  
= 111 ECP and EPP - 1.7 mode.  
12.7 Logical Device 2 (UART A)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0xF8 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Serial Port 1 I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x04 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for Serial Port 1.  
CRF0 (Default 0x00)  
Bit 7 - 2: Reserved.  
Bit 1 - 0: SUACLKB1, SUACLKB0  
= 00 UART A clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART A clock source is 2 Mhz (24MHz/12)  
= 10 UART A clock source is 24 Mhz (24MHz/1)  
= 11 UART A clock source is 14.769 Mhz (24mhz/1.625)  
- 120 -  
W83L517D/W83L517D-F  
12.8 Logical Device 6 (FIR)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select IR I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for IR  
CR74 (Default 0x04)  
Bit 7-3 : Reserved.  
Bit 2-0 : These bits select DRQ resource for RX of FIR.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04-0x07 No DMA active  
CR75 (Default 0x04)  
Bit 7-3 : Reserved.  
Bit 2-0 : These bits select DRQ resource for TX of FIR.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04-0x07 No DMA active  
CRF0 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3: RXW4C  
= 0  
No reception delay when SIR is changed from TX mode to RX mode.  
= 1 Reception delays 4 characters-time (40 bit-time) when SIR is changed from TX mode  
to RX mode.  
Publication Release Date: May 23, 2005  
- 121 -  
Revision 1.0  
W83L517D/W83L517D-F  
Bit 2: TXW4C  
= 0  
= 1  
No transmission delay when SIR is changed from RX mode to TX mode.  
Transmission delays 4 characters-time (40 bit-time) when SIR is changed  
from RX mode to TX mode.  
Bit 1 : APEDCRC  
= 0 No append hardware CRC value as data in FIR/MIR mode.  
= 1 Append hardware CRC value as data in FIR/MIR mode.  
Bit 0 : ENBNKSEL; Bank select enable  
= 0 Disable IR Bank selection.  
= 1 Enable IR Bank selection.  
12.9 Logical Device 7 ( GPIO Port 1)  
CR30 ( Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 GPIO1 port is Activate  
= 0 GPIO1 port is inactive.  
CR62, CR 63 (Default 0x00, 0x00 )  
These two registers select the GPIO1 base address [0x100:0xFFF] on 4byte boundary.  
IO address :  
CRF1 base address  
IO address + 1 : CRF3 base address  
IO address + 2 : CRF4 base address  
IO address + 3 : CRF5 base address  
CR70 (Default 0x09 if PNPCSV = 0 during POR, default 0x00 otherwise when the port is active)  
Bit [7:4]: These bits select IRQ resource for IRQIN1.  
Bit [3:0]: These bits select IRQ resource for IRQIN0.  
CRF0 (GPIO1 selection register. Default 0xFF)  
When set to a '1', respective GPIO port is programmed as an input port.  
When set to a '0', respective GPIO port is programmed as an output port.  
CRF1 (GPIO1 data register. Default 0x00 when the port is active)  
If a port is programmed to be an output port, then its respective bit can be read/written.  
If a port is programmed to be an input port, then its respective bit can only be read.  
CRF2 (GP5 inversion register. Default 0x00 when the port is active)  
When set to a '1', the incoming/outgoing port value is inverted.  
When set to a '0', the incoming/outgoing port value is the same as in data register.  
- 122 -  
W83L517D/W83L517D-F  
CRF3 (PLED mode register. Default 0x00)  
Bit 7 ~ 3 : Reserved .  
Bit 2: select WDTO count mode.  
= 0 second  
= 1 minute  
Bit 1 ~ 0: select PLED mode  
= 00 Power LED pin is tri-stated.  
= 01 Power LED pin is droved low.  
= 10 Power LED pin is a 1Hz toggle pulse with 50 duty cycle.  
= 11 Power LED pin is a 1/4Hz toggle pulse with 50 duty cycle.  
CRF4 (Default 0x00)  
Watch Dog Timer Time-out value. Writing a non-zero value to this register causes the counter to load  
the value to Watch Dog Counter and start counting down. Reading this register returns current value  
in Watch Dog Counter instead of Watch Dog Timer Time-out value.  
Bit 7 - 0:  
= 0x00 Time-out Disable  
= 0x01 Time-out occurs after 1 second/minute  
= 0x02 Time-out occurs after 2 second/minutes  
= 0x03 Time-out occurs after 3 second/minutes  
................................................  
= 0xFF Time-out occurs after 255 second/minutes  
CRF5 (Default 0x00)  
Bit 7 ~ 6 : Reserved .  
Bit 5: Force Watch Dog Timer Time-out, Write only*  
= 1 Force Watch Dog Timer time-out event; this bit is self-clearing.  
Bit 4: Watch Dog Timer Status, R/W  
= 1 Watch Dog Timer time-out occurred.  
= 0 Watch Dog Timer counting  
Bit 3 -0: These bits select IRQ resource for Watch Dog. Setting of 2 selects SMI.  
Publication Release Date: May 23, 2005  
- 123 -  
Revision 1.0  
W83L517D/W83L517D-F  
12.10 Logical Device 8 ( GPIO Port 2)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activate GPIO2  
= 0 GPIO2 is inactive.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select the GPIO1 base address [0x100:0xFFF] on 1 byte boundary  
IO address : CRF1 base address  
CRF0 (GP10-GP17 I/O selection register. Default 0xFF)  
When set to a '1', respective GPIO port is programmed as an input port.  
When set to a '0', respective GPIO port is programmed as an output port.  
CRF1 (GP10-GP17 data register. Default 0x00 when the port is active)  
If a port is programmed to be an output port, then its respective bit can be read/written  
If a port is programmed to be an input port, then its respective bit can only be read  
CRF2 (GP10-GP17 inversion register. Default 0x00 when the port is active)  
When set to a '1', the incoming/outgoing port value is inverted.  
When set to a '0', the incoming/outgoing port value is the same as in data register.  
12.11 Logical Device 9 (GPIO Port 3 ~ GPIO Port 5 )  
CR30 (Default 0x00)  
Bit 7 ~ 3: Reserved.  
Bit 2: = 1 Activate GPIO5.  
= 0 GPIO5 is inactive  
Bit 1: = 1 Activate GPIO4.  
= 0 GPIO4 is inactive  
Bit 0: = 1 Activate GPIO3.  
= 0 GPIO3 is inactive.  
CR60,61(Default 0x00,0x00).  
These two registers select the GP 3,4,5 base address(0x100:FFE) ON 3 bytes boundary.  
IO address  
: CRF1 base address  
IO address + 1 : CRF3 base address  
IO address + 2 : CRF7 base address  
CRF0 (GP3 I/O selection register. Default 0xFF )  
When set to a '1', respective GPIO port is programmed as an input port.  
When set to a '0', respective GPIO port is programmed as an output port.  
- 124 -  
W83L517D/W83L517D-F  
CRF1 (GP3 data register. Default 0x00 when the port is active )  
If a port is programmed to be an output port, then its respective bit can be read/written.  
If a port is programmed to be an input port, then its respective bit can only be read.  
CRF2 (GP3 inversion register. Default 0x00 when the port is active)  
When set to a '1', the incoming/outgoing port value is inverted.  
When set to a '0', the incoming/outgoing port value is the same as in data register.  
CRF3 (GP4 I/O selection register. Default 0xFF )  
When set to a '1', respective GPIO port is programmed as an input port.  
When set to a '0', respective GPIO port is programmed as an output port.  
CRF4 (GP4 data register. Default 0x00 when the port is active)  
If a port is programmed to be an output port, then its respective bit can be read/written.  
If a port is programmed to be an input port, then its respective bit can only be read.  
CRF5 (GP4 inversion register. Default 0x00 when the port is active)  
When set to a '1', the incoming/outgoing port value is inverted.  
When set to a '0', the incoming/outgoing port value is the same as in data register.  
CRF6 (GP5 I/O selection register. Default 0xFF )  
When set to a '1', respective GPIO port is programmed as an input port.  
When set to a '0', respective GPIO port is programmed as an output port.  
CRF7 (GP5 data register. Default 0x00 when the port is active)  
If a port is programmed to be an output port, then its respective bit can be read/written.  
If a port is programmed to be an input port, then its respective bit can only be read.  
CRF8 (GP5 inversion register. Default 0x00 when the port is active)  
When set to a '1', the incoming/outgoing port value is inverted.  
When set to a '0', the incoming/outgoing port value is the same as in data register.  
12.12 Logical Device A (ACPI)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resources for SM I PME  
/
Publication Release Date: May 23, 2005  
Revision 1.0  
- 125 -  
W83L517D/W83L517D-F  
CRE0 (Default 0x00)  
Bit7 : ENCIRWAKEUP. Enable CIR to wake-up system .  
= 0 Disable CIR wake up function  
= 1 Enable CIR wake up function  
Bit 5 : CIR_STS. This bit is cleared by reading 1 this register.  
= 0 Disable  
= 1 Enable  
Bit6, 4 ~ 0 : Reserved  
CRE 1 (Default 0x00) CIR wake up index register  
The range of CIR wake up index register is 0x20 ~ px2F .  
CRE 2 CIR wake up data register  
This register holds the value of wake up key register indicated by CRE1. This register can  
be read/written.  
CRE5 (Default 0x00)  
Bit 7 : Reserved  
Bit 6 ~ 0 :Compared Code Length . When the compared codes are storage in the data  
register, these data length should be written to this register.  
CRE6 (Default 0x00)  
Bit 7 - 6: Reserved.  
Bit 5 - 0: CIR Baud Rate Divisor. The clock base of CIR is 32khz, so that the baud rate is 32khz  
divided by ( CIR Baud Rate Divisor + 1).  
CRE7 (Default 0x00)  
Bit 7 - 3: Reserved.  
Bit 2:Reset CIR Power-On function. After using CIR power-on, the software should  
write logical 1 to restart CIR power-on function.  
Bit 1: Invert RX Data.  
= 1 Inverting RX Data.  
= 0 Not inverting RX Data.  
Bit 0: Enable Demodulation.  
= 1 Enable received signal to demodulate.  
= 0 Disable received signal to demodulate.  
CRF0 (Default 0x00)  
Bit 7: CHIPPME. Chip level auto power management enable.  
= 0  
= 1  
disable the auto power management functions  
enable the auto power management functions.  
- 126 -  
W83L517D/W83L517D-F  
Bit 6: CIRPME. Consumer IR port auto power management enable.  
= 0  
= 1  
disable the auto power management functions  
enable the auto power management functions.  
Bit 5: MIDIPME. MIDI port auto power management enable.  
= 0  
= 1  
disable the auto power management functions  
enable the auto power management functions.  
Bit 4: Reserved. Return zero when read.  
Bit 3: PRTPME. Printer port auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
Bit 2: FDCPME. FDC auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
Bit 1: URAPME. UART A auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
Bit 0: URBPME. UART B auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
CRF1 (Default 0x00)  
Bit 7: WAK_STS. This bit is set when the chip is in the sleeping state and an enabled resume  
event occurs. Upon setting this bit, the sleeping/working state machine will transition the  
system to the working state. This bit is only set by hardware and is cleared by writing a 1  
to this bit position or by the sleeping/working state machine automatically when the  
global standby timer expires.  
= 0  
= 1  
the chip is in the sleeping state.  
the chip is in the working state.  
Bit 6 - 5: Devices' trap status.  
Bit 4: Reserved. Return zero when read.  
Bit 3 - 0: Devices' trap status.  
CRF3 (Default 0x00)  
Bit 7 ~ 4: Reserved. Return zero when read.  
Bit 3 ~ 0: Device's IRQ status.  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 127 -  
W83L517D/W83L517D-F  
These bits indicate the IRQ status of the individual device respectively. The device's IRQ  
status bit is set by their source device and is cleared by writing a 1. Writing a 0 has no effect.  
Bit 3: PRTIRQSTS. printer port IRQ status.  
Bit 2: FDCIRQSTS. FDC IRQ status.  
Bit 1: URAIRQSTS. UART A IRQ status.  
Bit 0: URBIRQSTS. FIR IRQ status.  
CRF4 (Default 0x00)  
Bit 7 ~ 4: Reserved. Return zero when read.  
Bit 3 ~ 0: These bits indicate the IRQ status of the individual GPIO function or logical device  
respectively. The status bit is set by their source function or device and is cleared by writing  
a1. Writing a 0 has no effect.  
Bit 2: WDTIRQSTS. Watch dog timer IRQ status.  
Bit 1~0: Reserved  
CRF9 (Default 0x00)  
Bit 7 - 3: Reserved. Return zero when read.  
Bit 2: PME_EN: Select the power management events to be either an PME or SMI interrupt  
for the IRQ events. Note that: this bit is valid only when SMIPME_OE = 1.  
= 0 the power management events will generate an SMI event.  
= 1 the power management events will generate an PME event.  
Bit 1: FSLEEP: This bit selects the fast expiry time of individual devices.  
= 0 1 S  
= 1 8 mS.  
Bit 0: SMIPME_OE: This is the SMI and PME output enable bit.  
= 0 neither SMI nor PME will be generated. Only the IRQ status bit is set.  
= 1 an SMI or PME event will be generated.  
13.  
ORDERING INSTRUCTION  
PART NO.  
PACKAGE  
REMARKS  
W83L517D/W83L517D-F  
100-pin LQFP  
- 128 -  
W83L517D/W83L517D-F  
14. HOW TO READ THE TOP MARKING  
Example: The top marking of W83L517D/W83L517D-F  
inbond  
W83L517D  
20109620-91  
014ABSA  
inbond  
W83L517D-F  
20109620-91  
014ABSA  
1st line: Winbond logo  
2nd line: the type number: W83L517D/W83L517D-F  
3rd line: the tracking code 20109620-91  
20109620-91: wafer production series lot number  
4th line: the tracking code  
014 A B SA  
014: packages made in '2000, week 14  
A: assembly house ID; A means ASE, S means SPIL.... etc.  
B: IC revision; A means version A, B means version B  
SA: for internal use  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 129 -  
W83L517D/W83L517D-F  
15. PACKAGE DIMENSIONS  
H
D
D
A
A2  
75  
A1  
51  
76  
50  
H
E E  
100  
26  
L1  
L
1
25  
c
e
b
θ
Y
Controlling Dimension : Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
A
Min Nom  
Max  
0.063  
Min Nom  
Max  
1.60  
A1  
A2  
b
0.002  
0.05  
1.45  
0.27  
0.053 0.055 0.057  
1.35  
0.17  
0.10  
1.40  
0.22  
0.011  
0.008  
0.009  
0.006  
0.007  
0.004  
0.547  
0.547  
c
0.15  
0.20  
D
E
14.00  
0.551  
0.551  
14.10  
13.90  
13.90  
0.556  
0.556  
14.00 14.10  
0.50  
e
H D  
0.020  
0.630  
16.00  
16.20  
16.20  
16.00  
15.80  
15.80  
0.45  
0.622  
0.638  
0.638  
0.030  
H E  
L
0.622 0.630  
0.60  
1.00  
0.75  
0.024  
0.039  
0.018  
L1  
y
0.10  
7
0.004  
7
θ
0
0
- 130 -  
W83L517D/W83L517D-F  
16. RECOMMENDED CIRCUIT  
XD5  
GND  
XD2  
XD1  
XD0  
IOW#  
IOR#  
IRQ12IN  
IRQ1IN  
MCCS#  
KBCS#  
3VCC  
XD3  
XD4  
XD6  
XD7  
MEMR#  
MEMW#  
ROMCS#  
XA0  
XA1  
XA2  
U1  
FLASH ROM  
COM PORT  
XA18  
XA17  
XA16  
XA15  
XA14  
XA13  
XA12  
XA11  
XA10  
XA9  
XA8  
XA7  
XA6  
XA5  
1
30  
2
13  
14  
15  
17  
18  
19  
20  
21  
XD0  
XD1  
XD2  
XD3  
XD4  
XD5  
XD6  
XD7  
NC/A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
5VCC  
12VCC  
XD[0..7]  
3
U2  
29  
28  
4
25  
23  
26  
27  
5
6
7
8
9
20  
1
VCC  
+12V  
RTSA#  
DTRA#  
SOUTA  
RIA#  
CTSA#  
DSRA#  
SINA  
16  
15  
13  
19  
18  
17  
14  
12  
5
6
8
2
3
4
7
9
NRTSA  
NDTRA  
NSOUTA  
NRIA  
NCTSA  
NDSRA  
NSINA -12VCC  
NDCDA  
XA3  
XA4  
XA5  
DA1  
DA2  
DA3  
RY1  
RY2  
RY3  
RY4  
RY5  
DY1  
DY2  
DY3  
RA1  
RA2  
RA3  
RA4  
RA9  
U3  
XA[0..18]  
DCDA#  
XA4  
XA3  
XA2  
XA1  
A4  
A3  
A2  
A1  
11  
10  
GND  
-12V  
10  
11  
12  
5VCC  
14185  
(SOP20)  
XA0  
A0  
32  
16  
VCC  
GND  
O.1U  
C1  
31  
24  
22  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P1  
IRSEL0  
IRTX  
IRRX  
RIA#  
MEMW#  
MEMR#  
ROMCS#  
WE#  
OE#  
CE#  
XA6  
XA7  
XA8  
XA9  
XA6/GP43  
XA7/GP44  
XA8/GP45  
XA9/GP46  
XA10/GP47  
XA11/GP50  
XA12/GP51  
XA13/GP52  
XA14/GP53  
GND  
XA15/GP54  
XA16/GP55  
XA17/GP56  
XA18/GP57  
VCC  
HEAD#  
RDATA#  
WP#  
TRACK0#  
WE#  
WD#  
IRSEL0  
IRTX  
5
9
4
8
3
7
2
6
1
NRIA  
NDTRA  
NCTSA  
NSOUTA  
NRTSA  
NSINA  
NDSRA  
NDCDA  
IRRX  
RIA#  
DCDA#  
SOUTA  
SINA  
DTRA#  
RTSA#  
DSRA#  
5VCC  
CTSA#  
STB#  
AFD#  
ERR#  
GND  
INIT#  
SLIN#  
PD7  
PD6  
PD5  
XA10  
XA11  
XA12  
XA13  
XA14  
GND  
XA15  
XA16  
XA17  
XA18  
5VCC  
HEAD#  
RDATA#  
WP#  
TRACK0#  
WE#  
WD#  
STEP#  
DIR#  
MOA#  
DSKCHG#  
DCDA#  
SOUTA/PEN48  
SINA  
DTRA#/PNPCSV#  
RTSA#/HEFRAS  
DSRA#  
VCC  
W29C020/40  
Note6:  
(Before updating the code of flash ROM,CR  
registers of W83L517D and chipset must be  
setted)  
CONNECTOR DB9  
CTSA#  
STB#  
AFD#  
5VCC  
3VCC  
ERR#  
RP1  
RP2  
GND  
XA0  
XA1  
XA2  
XA3  
XA4  
XA5  
XA6  
XA7  
XA8  
2
3
4
5
6
7
8
9
10  
1
LAD0  
LAD1  
LAD2  
LAD3  
2
3
4
5
6
7
8
9
10  
1
INIT#  
SLIN#  
FIR/SIR CON.  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
5VCC/3VCC  
JP1  
LFRAME#  
SERIRQ  
PDCTL#  
PD4  
PD3  
PD2  
PD1  
STEP#  
DIR#  
MOA#  
DSKCHG#  
1
2
3
IRSEL0  
IRRX  
100  
4
5
5VCC  
1
IRTX  
8.2K  
RP3  
8.2K  
HEADER  
5
XA9  
2
3
4
5
6
7
8
9
10  
Note8:  
XA10  
XA11  
XA12  
XA13  
XA14  
XA15  
XA16  
XA17  
The resistor of SERIRQ is option if Host  
connected.  
5VCC  
W83L517D  
R1  
8.2K  
RP4  
PD0  
5VCC  
1
IRQ1IN  
ACK#  
BUSY  
PE  
SLCT  
PRT_NFDD#  
LFRAME#  
LAD3  
LAD2  
LAD1  
3VCC  
DSA#  
INDEX#  
DRVDEN0  
P80CS#  
RTCCS#  
CLKIN  
XA18  
XD0  
XD1  
XD2  
XD3  
XD4  
XD5  
XD6  
XD7  
2
3
4
5
6
7
8
9
10  
Note1:  
Note3:  
(PRT_NFDD# is used to detect external FDD)  
8.2K  
R2  
(P80CS# is decoded 80h and IOW#)  
(RTCCS# is decoded 70h and 71h)  
(CLKIN is 24 or 48MHz)  
IRQ12IN  
PME#  
LREST#  
PDCTL#  
GND  
SERIRQ  
PCICLK  
(PDCTL# should connect  
pull-high resistor)  
a
8.2K  
LAD0  
LDRQ#  
8.2K  
Note2:  
3VCC or 3VCC(stand by)  
(LDRQ# is connected to either one LDRQX of chipset)  
R6  
4.7K  
inbond  
Title  
W83L517D LPC SUPER I/O  
Size  
B
Document Number  
L517_1  
Rev  
0.2  
Date:  
Tuesday, June 27, 2000  
Sheet  
1
of  
Publication Release Date: May 23, 2005  
Revision 1.0  
- 131 -  
W83L517D/W83L517D-F  
5VCC  
FDD_VCC  
F.D.D  
CN1  
1
2
3
4
5
6
7
8
5VCC  
R3  
PD0  
PD7  
PD4  
100K  
JP2  
1
1
1
2
ROMCS#  
KBCS#  
RTSA#  
5VCC  
R4  
100K  
Q1  
MOSFET P  
(PENROM#)  
(PENKB#)  
(HEFRAS#)  
JUMPER  
3
FDC_VCC  
JP3  
2
AFD#  
PD6  
9
RP5  
4.7K  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Q2  
DTC144EUA  
1
3
5
7
2
4
6
8
D1  
1
2
1
JUMPER  
INIT#  
PE  
PRT_NFDD#  
DIODE  
JP4  
2
SLCT  
R5  
100K  
JUMPER  
JP5  
2
PD1  
PD2  
PD3  
ERR#  
1
DTRA#  
(PNPCSV#)  
JUMPER  
Note5:  
(The recommened circuit is used to controll  
power ON/OFF of External FDD).  
Note7:  
(JP2[ON condition] during Power-On --> Disable BIOS ROM functions)  
(JP3[ON condition] during Power-On --> Disable K/B functions)  
(JP4[ON condition] during Power-On -->Configuration ports change to 4Eh  
)
5VCC  
(JP5[ON condition] during Power-On --> Disable all IO functions  
except K/B I/F)  
D2  
D3  
1
2
1
2
DIODE  
DIODE  
RP6  
10P9R-2.7K  
RP7  
10P9R-2.7K  
PRT PORT  
Note4:  
(For External FDD usd,set two of pin[18..25]  
that GND pin to be PRT_NFDD# and FDD_VCC)  
RPACK1  
1
3
5
7
2
4
6
8
STB#  
AFD#  
INIT#  
SLIN#  
J1  
1
14  
2
15  
3
16  
4
33  
PD[0..7]  
RPACK2  
PD0  
PD1  
PD2  
PD3  
1
3
5
7
2
4
6
8
17  
5
18  
6
19  
7
20  
8
21  
9
33  
RPACK3  
PD4  
PD5  
PD6  
PD7  
1
3
5
7
2
4
6
8
22  
10  
23  
11  
24  
12  
25  
13  
33  
ERR#  
ACK#  
BUSY  
PE  
SLCT  
DB25  
C2  
C3  
C4  
180  
C5  
C6  
C7  
C8  
C9  
C10  
180  
180  
180  
180  
180  
180  
C15  
180  
180  
C17  
C11  
180  
C12  
180  
C13  
180  
C14  
180  
C16  
180  
C18  
180  
inbond  
Title  
180  
180  
W83L517D LPC SUPER I/O  
Size  
B
Document Number  
L517_2  
Rev  
0.2  
Date:  
Tuesday, June 27, 2000  
Sheet  
2
of  
- 132 -  
W83L517D/W83L517D-F  
17. REVISION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
1.0  
May 23, 2005  
133  
ADD Important Notice  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
Publication Release Date: May 23, 2005  
- 133 -  
Revision 1.0  

相关型号:

W83L517D-F

LPC I/O for Notebook
WINBOND

W83L517D/W83L517D-F

LPC I/O for Notebook
WINBOND

W83L517D_05

LPC I/O for Notebook
WINBOND

W83L518D

Integrated Media Reader
WINBOND

W83L518D_05

Integrated Media Reader
WINBOND

W83L519D

Integrated Media Reader
WINBOND

W83L603G

SMBus GPIO Controller
WINBOND

W83L604G

SMBus GPIO Controller
WINBOND

W83L761G

H/W MONITORING IC
WINBOND

W83L771ASG

W83L771AWG W83L771ASG Nuvoton H/W Monitoring IC
NUVOTEM TALEM

W83L771G

H/W Monitoring IC
WINBOND

W83L771W

H/W Monitoring IC
WINBOND