W9751G8JB-18 [WINBOND]

DDR DRAM, 64MX8, 0.35ns, CMOS, PBGA60, 8 X 12.50 MM, ROHS COMPLIANT, WBGA-60;
W9751G8JB-18
型号: W9751G8JB-18
厂家: WINBOND    WINBOND
描述:

DDR DRAM, 64MX8, 0.35ns, CMOS, PBGA60, 8 X 12.50 MM, ROHS COMPLIANT, WBGA-60

动态存储器 双倍数据速率
文件: 总86页 (文件大小:1458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W9751G8JB  
16M 4 BANKS 8 BIT DDR2 SDRAM  
Table of Contents-  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
GENERAL DESCRIPTION ...................................................................................................................4  
FEATURES...........................................................................................................................................4  
KEY PARAMETERS .............................................................................................................................5  
BALL CONFIGURATION ......................................................................................................................6  
BALL DESCRIPTION............................................................................................................................7  
BLOCK DIAGRAM ................................................................................................................................8  
FUNCTIONAL DESCRIPTION..............................................................................................................9  
Power-up and Initialization Sequence...................................................................................................9  
Mode Register and Extended Mode Registers Operation ...................................................................10  
7.1  
7.2  
7.2.1  
Mode Register Set Command (MRS)...............................................................................10  
Extend Mode Register Set Commands (EMRS) ..............................................................11  
Extend Mode Register Set Command (1), EMR (1)................................................11  
DLL Enable/Disable................................................................................................12  
Extend Mode Register Set Command (2), EMR (2)................................................13  
Extend Mode Register Set Command (3), EMR (3)................................................14  
Off-Chip Driver (OCD) Impedance Adjustment ................................................................15  
Extended Mode Register for OCD Impedance Adjustment ....................................16  
OCD Impedance Adjust..........................................................................................16  
Drive Mode .............................................................................................................17  
On-Die Termination (ODT)...............................................................................................18  
ODT related timings .........................................................................................................18  
MRS command to ODT update delay.....................................................................18  
7.2.2  
7.2.2.1  
7.2.2.2  
7.2.2.3  
7.2.2.4  
7.2.3  
7.2.3.1  
7.2.3.2  
7.2.3.3  
7.2.4  
7.2.5  
7.2.5.1  
7.3  
Command Function.............................................................................................................................20  
7.3.1  
Bank Activate Command..................................................................................................20  
Read Command...............................................................................................................20  
Write Command...............................................................................................................21  
Burst Read with Auto-precharge Command.....................................................................21  
Burst Write with Auto-precharge Command.....................................................................21  
Precharge All Command..................................................................................................21  
Self Refresh Entry Command ..........................................................................................21  
Self Refresh Exit Command.............................................................................................22  
Refresh Command...........................................................................................................22  
No-Operation Command..................................................................................................23  
Device Deselect Command..............................................................................................23  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
7.3.7  
7.3.8  
7.3.9  
7.3.10  
7.3.11  
7.4  
Read and Write access modes ...........................................................................................................23  
7.4.1  
7.4.1.1  
Posted CAS ....................................................................................................................23  
Examples of posted CAS operation......................................................................23  
Publication Release Date: Oct. 12, 2010  
- 1 -  
Revision A01  
W9751G8JB  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
Burst mode operation.......................................................................................................24  
Burst read mode operation...............................................................................................25  
Burst write mode operation ..............................................................................................25  
Write data mask...............................................................................................................26  
7.5  
7.6  
Burst Interrupt .....................................................................................................................................26  
Precharge operation............................................................................................................................27  
7.6.1  
7.6.2  
Burst read operation followed by precharge.....................................................................27  
Burst write operation followed by precharge ....................................................................27  
7.7  
Auto-precharge operation ...................................................................................................................27  
7.7.1  
7.7.2  
Burst read with Auto-precharge .......................................................................................28  
Burst write with Auto-precharge.......................................................................................28  
7.8  
7.9  
Refresh Operation...............................................................................................................................29  
Power Down Mode..............................................................................................................................29  
7.9.1  
7.9.2  
Power Down Entry ...........................................................................................................30  
Power Down Exit..............................................................................................................30  
7.10 Input clock frequency change during precharge power down .............................................................30  
OPERATION MODE ...........................................................................................................................31  
8.  
9.  
8.1  
8.2  
8.3  
8.4  
8.5  
Command Truth Table ........................................................................................................................31  
Clock Enable (CKE) Truth Table for Synchronous Transitions ...........................................................32  
Data Mask (DM) Truth Table...............................................................................................................32  
Function Truth Table...........................................................................................................................33  
Simplified Stated Diagram...................................................................................................................36  
ELECTRICAL CHARACTERISTICS ...................................................................................................37  
Absolute Maximum Ratings ................................................................................................................37  
Operating Temperature Condition.......................................................................................................37  
Recommended DC Operating Conditions...........................................................................................37  
ODT DC Electrical Characteristics ......................................................................................................38  
Input DC Logic Level...........................................................................................................................38  
Input AC Logic Level...........................................................................................................................38  
Capacitance........................................................................................................................................39  
Leakage and Output Buffer Characteristics ........................................................................................39  
DC Characteristics ..............................................................................................................................40  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
9.10 IDD Measurement Test Parameters....................................................................................................42  
9.11 AC Characteristics ..............................................................................................................................43  
9.11.1  
9.11.2  
AC Characteristics and Operating Condition for -18 speed grade ...................................43  
AC Characteristics and Operating Condition for -25/25I/-3 speed grades........................45  
9.12 AC Input Test Conditions ....................................................................................................................65  
9.13 Differential Input/Output AC Logic Levels ...........................................................................................65  
9.14 AC Overshoot / Undershoot Specification...........................................................................................66  
9.14.1  
9.14.2  
AC Overshoot / Undershoot Specification for Address and Control Pins: ........................66  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask pins:..........66  
10.  
TIMING WAVEFORMS .......................................................................................................................67  
10.1 Command Input Timing.......................................................................................................................67  
Publication Release Date: Oct. 12, 2010  
- 2 -  
Revision A01  
W9751G8JB  
10.2 Timing of the CLK Signals...................................................................................................................67  
10.3 ODT Timing for Active/Standby Mode.................................................................................................68  
10.4 ODT Timing for Power Down Mode ....................................................................................................68  
10.5 ODT Timing mode switch at entering power down mode....................................................................69  
10.6 ODT Timing mode switch at exiting power down mode ......................................................................70  
10.7 Data output (read) timing ....................................................................................................................71  
10.8 Burst read operation: RL=5 (AL=2, CL=3, BL=4) ................................................................................71  
10.9 Data input (write) timing ......................................................................................................................72  
10.10  
10.11  
10.12  
10.13  
10.14  
10.15  
10.16  
10.17  
10.18  
10.19  
10.20  
10.21  
10.22  
10.23  
10.24  
10.25  
Burst write operation: RL=5 (AL=2, CL=3, WL=4, BL=4)...........................................................72  
Seamless burst read operation: RL = 5 (AL = 2, and CL = 3, BL = 4) .......................................73  
Seamless burst write operation: RL = 5 (WL = 4, BL = 4)..........................................................73  
Burst read interrupt timing: RL =3 (CL=3, AL=0, BL=8).............................................................74  
Burst write interrupt timing: RL=3 (CL=3, AL=0, WL=2, BL=8)..................................................74  
Write operation with Data Mask: WL=3, AL=0, BL=4) ...............................................................75  
Burst read operation followed by precharge: RL=4 (AL=1, CL=3, BL=4, tRTP ≤ 2clks) ............76  
Burst read operation followed by precharge: RL=4 (AL=1, CL=3, BL=8, tRTP ≤ 2clks) ............76  
Burst read operation followed by precharge: RL=5 (AL=2, CL=3, BL=4, tRTP ≤ 2clks) ............77  
Burst read operation followed by precharge: RL=6 (AL=2, CL=4, BL=4, tRTP ≤ 2clks) ............77  
Burst read operation followed by precharge: RL=4 (AL=0, CL=4, BL=8, tRTP > 2clks) ............78  
Burst write operation followed by precharge: WL = (RL-1) = 3..................................................78  
Burst write operation followed by precharge: WL = (RL-1) = 4..................................................79  
Burst read operation with Auto-precharge: RL=4 (AL=1, CL=3, BL=8, tRTP ≤ 2clks) ...............79  
Burst read operation with Auto-precharge: RL=4 (AL=1, CL=3, BL=4, tRTP > 2clks) ...............80  
Burst read with Auto-precharge followed by an activation to the same bank (tRC Limit): RL=5  
(AL=2, CL=3, internal tRCD=3, BL=4, tRTP ≤ 2clks).......................................................................................80  
10.26 Burst read with Auto-precharge followed by an activation to the same bank (tRP Limit): RL=5  
(AL=2, CL=3, internal tRCD=3, BL=4, tRTP ≤ 2clks).......................................................................................81  
10.27  
10.28  
10.29  
10.30  
10.31  
10.32  
Burst write with Auto-precharge (tRC Limit): WL=2, WR=2, BL=4, tRP=3.................................81  
Burst write with Auto-precharge (WR + tRP Limit): WL=4, WR=2, BL=4, tRP=3.......................82  
Self Refresh Timing...................................................................................................................82  
Active Power Down Mode Entry and Exit Timing.......................................................................83  
Precharged Power Down Mode Entry and Exit Timing..............................................................83  
Clock frequency change in precharge Power Down mode ........................................................84  
11.  
12.  
PACKAGE SPECIFICATION ..............................................................................................................85  
Package Outline WBGA60 (8x12.5 mm2)........................................................................................................85  
REVISION HISTORY..........................................................................................................................86  
Publication Release Date: Oct. 12, 2010  
- 3 -  
Revision A01  
W9751G8JB  
1. GENERAL DESCRIPTION  
The W9751G8JB is a 512M bits DDR2 SDRAM, organized as 16,777,216 words 4 banks 8 bits.  
This device achieves high speed transfer rates up to 1066Mb/sec/pin (DDR2-1066) for general  
applications. W9751G8JB is sorted into the following speed grades: -18, -25, 25I and -3. The -18 is  
compliant to the DDR2-1066 (7-7-7) specification. The -25/25I are compliant to the DDR2-800 (5-5-5)  
or DDR2-800 (6-6-6) specification (the 25I industrial grade which is guaranteed to support -40°C ≤  
TCASE 95°C). The -3 is compliant to the DDR2-667 (5-5-5) specification.  
All of the control and address inputs are synchronized with a pair of externally supplied differential  
clocks. Inputs are latched at the cross point of differential clocks (CLK rising and CLK falling). All  
I/Os are synchronized with a single ended DQS or differential DQS- DQS pair in a source  
synchronous fashion.  
2. FEATURES  
Power Supply: VDD, VDDQ = 1.8 V 0.1 V  
Double Data Rate architecture: two data transfers per clock cycle  
CAS Latency: 3, 4, 5, 6 and 7  
Burst Length: 4 and 8  
Bi-directional, differential data strobes (DQS and DQS ) are transmitted / received with data  
Edge-aligned with Read data and center-aligned with Write data  
DLL aligns DQ and DQS transitions with clock  
Differential clock inputs (CLK and CLK  
Data masks (DM) for write data.  
)
Commands entered on each positive CLK edge, data and data mask are referenced to both edges  
of DQS  
Posted CAS programmable additive latency supported to make command and data bus efficiency  
Read Latency = Additive Latency plus CAS Latency (RL = AL + CL)  
Off-Chip-Driver impedance adjustment (OCD) and On-Die-Termination (ODT) for better signal  
quality  
Auto-precharge operation for read and write bursts  
Auto Refresh and Self Refresh modes  
Precharged Power Down and Active Power Down  
Write Data Mask  
Write Latency = Read Latency - 1 (WL = RL - 1)  
Interface: SSTL_18  
Packaged in WBGA 60 Ball (8X12.5 mm2), using Lead free materials with RoHS compliant  
Publication Release Date: Oct. 12, 2010  
- 4 -  
Revision A01  
W9751G8JB  
3. KEY PARAMETERS  
SPEED GRADE  
DDR2-1066  
7-7-7  
DDR2-800  
DDR2-667  
5-5-5  
-3  
SYM.  
Bin(CL-tRCD-tRP)  
5-5-5/6-6-6  
-25/25I  
Part Number Extension  
-18  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Min.  
Min.  
Min.  
Max.  
Max.  
Max.  
Max.  
Max.  
Max.  
Max.  
1.875 nS  
7.5 nS  
2.5 nS  
7.5 nS  
3 nS  
@CL = 7  
2.5 nS  
8 nS  
@CL = 6  
@CL = 5  
@CL = 4  
@CL = 3  
2.5 nS  
8 nS  
3 nS  
tCK(avg)  
Average clock period  
7.5 nS  
3.75 nS  
7.5 nS  
8 nS  
3.75 nS  
8 nS  
3.75 nS  
8 nS  
5 nS  
5 nS  
8 nS  
8 nS  
tRCD  
tRP  
Active to Read/Write Command Delay Time  
Precharge to Active Command Period  
Active to Ref/Active Command Period  
Active to Precharge Command Period  
Operating current  
13.125 nS  
13.125 nS  
53.125 nS  
40 nS  
12.5 nS  
12.5 nS  
52.5 nS  
40 nS  
55 mA  
62 mA  
85 mA  
110 mA  
80 mA  
6 mA  
15 nS  
15 nS  
55 nS  
40 nS  
55 mA  
60 mA  
80 mA  
105 mA  
80 mA  
6 mA  
110 mA  
tRC  
tRAS  
IDD0  
IDD1  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
65 mA  
70 mA  
120 mA  
125 mA  
85 mA  
6 mA  
Operation current (Single bank)  
Operating burst read current  
Operating burst write current  
Burst refresh current  
Self refresh current (TCASE 85°C)  
Operating bank interleave read current  
135 mA  
120 mA  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 5 -  
W9751G8JB  
4. BALL CONFIGURATION  
1
2
3
4
5
6
7
8
9
NU/RDQS  
VSSQ  
DQ1  
VDD  
DQ6  
VSS  
DM/RDQS  
VDDQ  
DQ3  
VSS  
WE  
A
B
C
D
E
F
G
H
J
VSSQ  
DQS  
VDDQ  
DQ2  
VSSDL  
RAS  
CAS  
A2  
DQS  
VSSQ  
DQ0  
VSSQ  
CLK  
CLK  
CS  
VDDQ  
DQ7  
VDDQ  
DQ4  
VDDQ  
DQ5  
VSSQ  
VDDL VREF  
CKE  
VDD  
ODT  
NC  
BA0  
A10/AP  
A3  
BA1  
A1  
A0  
VDD  
VSS  
VSS  
VDD  
A5  
A6  
A4  
A7  
A9  
K
L
A11  
A8  
A12  
NC  
NC  
A13  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 6 -  
W9751G8JB  
5. BALL DESCRIPTION  
BALL NUMBER  
SYMBOL  
FUNCTION  
DESCRIPTION  
Provide the row address for active commands, and the column  
address and Auto-precharge bit for Read/Write commands to select  
one location out of the memory array in the respective bank.  
H8,H3,H7,J2,J8,J3,  
J7,K2,K8,K3,H2,K7,  
L2,L8  
A0A13  
Address  
Row address: A0−A13.  
Column address: A0−A9. (A10 is used for Auto-precharge)  
BA0BA1 define to which bank an Active, Read, Write or Precharge  
command is being applied. Bank address also determines if the  
mode register or one of the extended mode registers is to be  
accessed during a MRS or EMRS command cycle.  
G2,G3  
BA0BA1  
Bank Select  
Data Input  
/ Output  
C8,C2,D7,D3,D1,D9,  
B1,B9  
DQ0DQ7  
Bi-directional data bus.  
On Die Termination ODT (registered HIGH) enables termination resistance internal to the  
F9  
ODT  
Control  
DDR2 SDRAM.  
Output with read data, input with write data for source synchronous  
operation. Edge-aligned with read data, center-aligned with write  
Data Strobe /  
Differential Read  
Data Strobe  
B7,A8  
DQS,  
DQS  
data.  
is only used when differential data strobe mode is  
DQS  
enabled via the control bit at EMR (1) [A10] = 0.  
All commands are masked when  
is registered  
CS  
G8  
Chip Select  
HIGH. provides for external Rank selection on systems with  
CS  
CS  
multiple Ranks.  
is considered part of the command code.  
CS  
,
,
,
and  
(along with  
) define the command being  
CS  
RAS CAS  
RAS CAS  
WE  
F7,G7,F3  
Command Inputs  
entered.  
WE  
DM is an input mask signal for write data. Input data is masked when  
DM is sampled HIGH coincident with that input data during a Write  
access. DM is sampled on both edges of DQS. Although DM is input  
only, the DM loading matches the DQ and DQS loading. When  
RDQS is enabled, RDQS is output with read data only and is ignored  
during write data. RDQS is enabled by EMR (1) [A11] = 1. If RDQS is  
enabled, the DM function is disabled.  
Input Data Mask/  
Read Data Strobe  
DM/RDQS  
B3  
A2  
is only used when RDQS is enabled and differential data  
RDQS  
Not Use/Differential  
Read Data Strobe  
strobe mode is enabled. If differential data strobe mode is disabled  
via the control bit at EMR (1) [A10] = 1, then ball A2 and A8 are not  
used.  
NU/  
RDQS  
CLK and  
are differential clock inputs. All address and control  
CLK  
input signals are sampled on the crossing of the positive edge of CLK  
Differential Clock  
Inputs  
E8,F8  
F2  
CLK,  
CLK  
and negative edge of  
crossings of CLK and  
. Output (read) data is referenced to the  
(both directions of crossing).  
CLK  
CLK  
CKE (registered HIGH) activates and CKE (registered LOW)  
deactivates clocking circuitry on the DDR2 SDRAM.  
CKE  
Clock Enable  
E2  
A1,E9,H9,L1  
A3,E3,J1,K9  
A9,C1,C3,C7,C9  
A7,B2,B8,D2,D8  
G1,L3,L7  
VREF  
VDD  
VSS  
Reference Voltage VREF is reference voltage for inputs.  
Power Supply  
Power Supply: 1.8V ±0.1V.  
Ground  
Ground.  
VDDQ  
VSSQ  
NC  
DQ Power Supply  
DQ Ground  
DQ Power Supply: 1.8V ±0.1V.  
DQ Ground. Isolated on the device for improved noise immunity.  
No connection.  
No Connection  
DLL Power Supply  
DLL Ground  
E1  
VDDL  
DLL Power Supply: 1.8V ±0.1V.  
DLL Ground.  
E7  
VSSDL  
Publication Release Date: Oct. 12, 2010  
- 7 -  
Revision A01  
W9751G8JB  
6. BLOCK DIAGRAM  
CLK  
CLK  
DLL  
CLOCK  
BUFFER  
CKE  
CONTROL  
CS  
SIGNAL  
GENERATOR  
RAS  
CAS  
WE  
COMMAND  
DECODER  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #1  
CELL ARRAY  
BANK #0  
A10  
A0  
MODE  
REGISTER  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
A9  
ADDRESS  
BUFFER  
A11  
A12  
A13  
BA1  
BA0  
ODT  
DQ0  
|
DQ7  
PREFETCH REGISTER  
DQ  
DATA CONTROL  
CIRCUIT  
BUFFER  
ODT  
DQS  
DQS  
CONTROL  
RDQS  
RDQS  
COLUMN  
COUNTER  
REFRESH  
COUNTER  
DM  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
NOTE: The cell array configuration is 16384 * 1024 * 8  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 8 -  
W9751G8JB  
7. FUNCTIONAL DESCRIPTION  
7.1 Power-up and Initialization Sequence  
DDR2 SDRAMs must be powered up and initialized in a predefined manner. Operational procedures  
other than those specified may result in undefined operation. The following sequence is required for  
Power-up and Initialization.  
1. Apply power and attempt to maintain CKE below 0.2 × VDDQ and ODT*1 at a LOW state (all other  
inputs may be undefined.) Either one of the following sequence is required for Power-up.  
A. The VDD voltage ramp time must be no greater than 200 mS from when VDD ramps from 300  
mV to VDD min; and during the VDD voltage ramp, |VDD -VDDQ| 0.3 volts.  
VDD, VDDL and VDDQ are driven from a single power converter output  
VTT is limited to 0.95V max  
VREF*2 tracks VDDQ/2  
VDDQ VREF must be met at all times  
B. Voltage levels at I/Os and outputs must be less than VDDQ during voltage ramp time to avoid  
DRAM latch-up. During the ramping of the supply voltages, VDD VDDL VDDQ must be  
maintained and is applicable to both AC and DC levels until the ramping of the supply voltages  
is complete.  
Apply VDD/VDDL*3 before or at the same time as VDDQ  
Apply VDDQ*4 before or at the same time as VTT  
VREF*2 tracks VDDQ/2  
VDDQ VREF must be met at all times.  
2. Start Clock and maintain stable condition for 200 µS (min.).  
3. After stable power and clock (CLK, CLK ), apply NOP or Deselect and take CKE HIGH.  
4. Wait minimum of 400 nS then issue precharge all command. NOP or Deselect applied during 400  
nS period.  
5. Issue an EMRS command to EMR (2). (To issue EMRS command to EMR (2), provide LOW to  
BA0, HIGH to BA1.)  
6. Issue an EMRS command to EMR (3). (To issue EMRS command to EMR (3), provide HIGH to  
BA0 and BA1.)  
7. Issue an EMRS command to EMR (1) to enable DLL. (To issue DLL Enable command, provide  
LOW to A0, HIGH to BA0 and LOW to BA1 and A13. And A9=A8=A7=LOW must be used when  
issuing this command.)  
8. Issue a Mode Register Set command for DLL reset. (To issue DLL Reset command, provide HIGH  
to A8 and LOW to BA0-BA1 and A13.)  
9. Issue a precharge all command.  
10. Issue 2 or more Auto Refresh commands.  
11. Issue a MRS command with LOW to A8 to initialize device operation. (i.e. to program operating  
parameters without resetting the DLL.)  
12. At least 200 clocks after step 8, execute OCD Calibration (Off Chip Driver impedance adjustment).  
If OCD calibration is not used, EMRS to EMR (1) to set OCD Calibration Default  
(A9=A8=A7=HIGH) followed by EMRS to EMR (1) to exit OCD Calibration Mode  
(A9=A8=A7=LOW) must be issued with other operating parameters of EMR(1).  
13. The DDR2 SDRAM is now ready for normal operation.  
Publication Release Date: Oct. 12, 2010  
- 9 -  
Revision A01  
W9751G8JB  
Notes:  
1. To guarantee ODT off, VREF must be valid and a LOW level must be applied to the ODT pin.  
2. VREF must be within ±300 mV with respect to VDDQ/2 during supply ramp time.  
3. VDD/VDDL voltage ramp time must be no greater than 200 mS from when VDD ramps from 300 mV to VDD min.  
4. The VDDQ voltage ramp time from when VDD min is achieved on VDD to when VDDQ min is achieved on VDDQ must be  
no greater than 500 mS.  
tCH tCL  
CLK  
CLK  
tIS  
tIS  
CKE  
ODT  
PRE  
ALL  
PRE  
ALL  
ANY  
CMD  
Command  
NOP  
EMRS  
MRS  
REF  
MRS  
EMRS  
EMRS  
OCD  
REF  
tMRD  
tRP  
tRFC  
Follow OCD  
Flow chart  
400nS  
tRP  
tMRD  
tRFC  
tMRD  
tOIT  
DLL  
Enable  
DLL  
Reset  
OCD  
Default  
min 200 Cycle  
CAL. Mode  
Exit  
Figure 1 Initialization sequence after power-up  
7.2 Mode Register and Extended Mode Registers Operation  
For application flexibility, burst length, burst type, CAS Latency, DLL reset function, write recovery  
time (WR) are user defined variables and must be programmed with a Mode Register Set (MRS)  
command. Additionally, DLL disable function, driver impedance, additive CAS Latency, ODT (On Die  
Termination), single-ended strobe and OCD (off chip driver impedance adjustment) are also user  
defined variables and must be programmed with an Extended Mode Register Set (EMRS) command.  
Contents of the Mode Register (MR) or Extended Mode Registers EMR (1), EMR (2) and EMR (3) can  
be altered by re-executing the MRS or EMRS Commands. Even if the user chooses to modify only a  
subset of the MR or EMR (1), EMR (2) and EMR (3) variables, all variables within the addressed  
register must be redefined when the MRS or EMRS commands are issued.  
MRS, EMRS and Reset DLL do not affect array contents, which mean re-initialization including those  
can be executed at any time after power-up without affecting array contents.  
7.2.1 Mode Register Set Command (MRS)  
(
CS = "L", RAS = "L", CAS = "L",  
= "L", BA0 = "L", BA1 = "L", A0 to A13 = Register Data)  
WE  
The mode register stores the data for controlling the various operating modes of DDR2 SDRAM. It  
programs CAS Latency, burst length, burst sequence, test mode, DLL reset, Write Recovery (WR) and  
various vendor specific options to make DDR2 SDRAM useful for various applications. The default  
value in the Mode Register after power-up is not defined, therefore the Mode Register must be  
programmed during initialization for proper operation.  
The DDR2 SDRAM should be in all bank precharge state with CKE already HIGH prior to writing into  
the mode register. The mode register set command cycle time (tMRD) is required to complete the write  
operation to the mode register. The mode register contents can be changed using the same command  
and clock cycle requirements during normal operation as long as all banks are in the precharge state.  
The mode register is divided into various fields depending on functionality. Burst length is defined by  
A[2:0] with options of 4 and 8 bit burst lengths. The burst length decodes are compatible with DDR  
Publication Release Date: Oct. 12, 2010  
- 10 -  
Revision A01  
W9751G8JB  
SDRAM. Burst address sequence type is defined by A3, CAS Latency is defined by A[6:4]. The DDR2  
does not support half clock latency mode. A7 is used for test mode. A8 is used for DLL reset. A7 must  
be set to LOW for normal MRS operation. Write recovery time WR is defined by A[11:9]. Refer to the  
table for specific codes.  
BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
Address Field  
Mode Register  
Burst Length  
0*1  
PD  
WR  
DLL  
TM  
CAS Latency  
Burst Length  
0
0
A8  
DLL Reset  
No  
A3  
0
Burst Type  
Sequential  
Interleave  
A7  
0
Mode  
0
1
A2  
0
A1  
1
A0  
0
BL  
4
Normal  
Test  
Yes  
1
1
0
1
1
8
BA1 BA0  
MRS mode  
Write recovery for Auto-precharge  
CAS Latency  
0
0
1
1
0
1
0
1
MR  
EMR (1)  
EMR (2)  
EMR (3)  
A11 A10  
A9  
0
WR *2  
A6  
0
A5  
0
A4  
0
Latency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
Reserved  
Reserved  
1
2
3
4
5
6
7
8
0
0
1
Reserved  
0
0
1
0
Reserved  
A12  
0
Active power down exit time  
Fast exit (use tXARD)  
1
0
1
1
3
4
5
6
7
0
1
0
0
1
Slow exit (use tXARDS)  
1
1
0
1
0
1
1
0
1
1
1
1
Note:  
1. A13 reserved for future use and must be set to "0" when programming the MR.  
2. WR (write recovery for Auto-precharge) min is determined by tCK(avg) max and WR max is determined by tCK(avg) min.  
WR[cycles] = RU{ tWR[nS] / tCK(avg)[nS] }, where RU stands for round up. The mode register must be programmed to this  
value. This is also used with tRP to determine tDAL  
Figure 2 Mode Register Set (MRS)  
7.2.2 Extend Mode Register Set Commands (EMRS)  
7.2.2.1 Extend Mode Register Set Command (1), EMR (1)  
(
CS = "L", RAS = "L", CAS = "L",  
= "L", BA0 = "H", BA1 = "L, A0 to A13 = Register data)  
WE  
The extended mode register (1) stores the data for enabling or disabling the DLL, output driver  
strength, additive latency, ODT, DQS disable, OCD program. The default value of the extended  
mode register (1) is not defined, therefore the extended mode register (1) must be programmed during  
initialization for proper operation. The DDR2 SDRAM should be in all bank precharge with CKE  
already high prior to writing into the extended mode register (1). The mode register set command  
cycle time (tMRD) must be satisfied to complete the write operation to the extended mode register (1).  
Extended mode register (1) contents can be changed using the same command and clock cycle  
requirements during normal operation as long as all banks are in the precharge state. A0 is used for  
DLL enable or disable. A1 is used for enabling a reduced strength output driver. A[5:3] determines the  
additive latency, A[9:7] are used for OCD control, A10 is used for DQS disable and A11 is used for  
RDQS enable. A2 and A6 are used for ODT setting.  
Publication Release Date: Oct. 12, 2010  
- 11 -  
Revision A01  
W9751G8JB  
7.2.2.2 DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power-up initialization,  
and upon returning to normal operation after having the DLL disabled. The DLL is automatically  
disabled when entering Self Refresh operation and is automatically re-enabled and reset upon exit of  
Self Refresh operation. Any time the DLL is enabled (and subsequently reset), 200 clock cycles must  
occur before a Read command can be issued to allow time for the internal clock to be synchronized  
with the external clock. Failing to wait for synchronization to occur may result in a violation of the tAC  
or tDQSCK parameters.  
BA1  
0
BA0  
1
A13  
0*1  
A12  
Qoff  
A11  
A10  
A9  
A8  
A7  
A6  
Rtt  
A5  
A4  
A3  
A2  
Rtt  
A1  
A0  
Address Field  
Extended Mode Register (1)  
OCD program  
AdditiveLatency
D.I.C  
DLL  
RDQS  
DQS  
A6  
0
A2  
0
Rtt (nominal)  
ODT disabled  
75 ohm  
DLL Enable  
Enable  
A0  
0
MRS mode  
BA1  
BA0  
0
1
0
0
1
1
0
1
0
1
MRS  
1
0
150 ohm  
1
Disable  
EMR (1)  
EMR (2)  
EMR (3)  
1
1
50 ohm*2  
Driver strength control  
Output driver  
impedance control  
A1  
Driver size  
Driver impedance adjustment  
Normal  
100%  
60%  
0
1
OCD Calibration Program  
A9  
A8  
0
A7  
0
Reduced  
0
0
0
1
1
OCD calibration mode exit; matain setting  
Drive (1)  
Additive Latency  
0
1
A5  
0
A4  
A3  
0
Latency  
1
0
Drive (0)  
0
0
Adjust mode*3  
0
0
0
1
1
0
0
1
1
1
1
OCD Calibration default*4  
1
0
1
2
0
0
3
0
1
A12  
0
Qoff  
4
1
0
Output buffer enabled  
Output buffer disabled  
5
6
1
1
1
1
0
Resesved  
1
1
A10  
0
DQS  
Enable  
1
Disable  
A10  
A11  
Strobe Function Matrix  
RDQS Enable*5  
Disable  
A11  
0
(RDQS Enable)  
(DQS Enable)  
RDQS/DM  
DM  
DQS  
DQS  
DQS  
Hi-z  
RDQS  
0 (Disable)  
0 (Disable)  
1 (Enable)  
1 (Enable)  
0 (Enable)  
1 (Disable)  
0 (Enable)  
1 (Disable)  
Hi-z  
Hi-z  
DQS  
DQS  
DQS  
DQS  
1
Enable  
DM  
RDQS  
RDQS  
RDQS  
Hi-z  
DQS  
Hi-z  
Notes:  
1. A13 reserved for future use and must be set to "0" when programming the EMR (1).  
2. Optional for DDR2-667, mandatory for DDR2-800 and DDR2-1066.  
3. When Adjust mode is issued, AL from previously set value must be applied.  
4. After setting to default, OCD calibration mode needs to be exited by setting A9-A7 to 000. Refer to the section 7.2.3 for  
detailed information.  
5. If RDQS is enabled, the DM function is disabled. RDQS is active for reads and don‟t care for writes.  
Figure 3 EMR (1)  
Publication Release Date: Oct. 12, 2010  
- 12 -  
Revision A01  
W9751G8JB  
7.2.2.3 Extend Mode Register Set Command (2), EMR (2)  
CS = "L", RAS = "L", CAS = "L",  
= "L", BA0 = "L", BA1 = "H", A0 to A13 = Register data)  
(
WE  
The extended mode register (2) controls refresh related features. The default value of the extended  
mode register (2) is not defined, therefore the extended mode register (2) must be programmed during  
initialization for proper operation.  
The DDR2 SDRAM should be in all bank precharge state with CKE already high prior to writing into  
the extended mode register (2). The mode register set command cycle time (tMRD) must be satisfied to  
complete the write operation to the extended mode register (2). Mode register contents can be  
changed using the same command and clock cycle requirements during normal operation as long as  
all banks are in the precharge state.  
A13  
BA1 BA0  
A12 A11 A10 A9 A8  
A7  
A6  
A5  
A4  
A3  
0*1  
A2  
A1  
A0  
Address Field  
0*1  
Extended Mode Register (2)  
1
0
SELF  
BA1 BA0  
MRS mode  
A7 High Temperature Self Refresh Rate Enable  
0
0
1
1
0
1
0
1
MRS  
0
1
Disable  
EMR (1)  
EMR (2)  
EMR (3)  
Enable*2  
Notes:  
1. A0-A6, A8-A13 are reserved for future use and must be set to "0" when programming the EMR (2).  
2. When DRAM is operated at 85 °C < TCASE 95 °C the extended Self Refresh rate must be enabled by setting bit A7 to "1"  
before the Self Refresh mode can be entered.  
Figure 4 EMR (2)  
Publication Release Date: Oct. 12, 2010  
- 13 -  
Revision A01  
W9751G8JB  
7.2.2.4 Extend Mode Register Set Command (3), EMR (3)  
CS = "L", RAS = "L", CAS = "L",  
= "L", BA0 = "H", BA1 = "H", A0 to A13 = Register data)  
(
WE  
No function is defined in extended mode register (3). The default value of the EMR (3) is not defined,  
therefore the EMR (3) must be programmed during initialization for proper operation.  
BA1 BA0  
A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
A13  
Address Field  
0*1  
1
1
Extended Mode Register (3)  
Note:  
1. All bits in EMR (3) except BA0 and BA1 are reserved for future use and must be set to "0" when programming the EMR(3).  
Figure 5 EMR (3)  
Publication Release Date: Oct. 12, 2010  
- 14 -  
Revision A01  
W9751G8JB  
7.2.3 Off-Chip Driver (OCD) Impedance Adjustment  
DDR2 SDRAM supports driver calibration feature and the flow chart in Figure 6 is an example of the  
sequence. Every calibration mode command should be followed by “OCD calibration mode exit”  
before any other command being issued. MRS should be set before entering OCD impedance  
adjustment and On Die Termination (ODT) should be carefully controlled depending on system  
environment.  
All MR shoud be programmed before entering OCD impedance adjustment and ODT should  
be carefully controlled depending on system environment  
Start  
EMRS: OCD calibration mode exit  
EMRS: Drive(1)  
EMRS: Drive(0)  
DQ &DQS High; DQS Low  
DQ &DQS Low; DQS High  
ALL OK  
Need Calibration  
ALL OK  
Test  
Test  
Need Calibration  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS:  
EMRS:  
Enter Adjust Mode  
Enter Adjust Mode  
BL=4 code input to all DQs  
Inc, Dec or NOP  
BL=4 code input to all DQs  
Inc, Dec or NOP  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
End  
Figure 6 OCD Impedance Adjustment Flow Chart  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 15 -  
W9751G8JB  
7.2.3.1 Extended Mode Register for OCD Impedance Adjustment  
OCD impedance adjustment can be done using the following EMRS mode. In drive mode all outputs  
are driven out by DDR2 SDRAM and drive of RDQS is dependent on EMR bit enabling RDQS  
operation. In Drive (1) mode, all DQ, DQS (and RDQS) signals are driven HIGH and all DQS signals  
are driven LOW. In Drive (0) mode, all DQ, DQS (and RDQS) signals are driven LOW and all DQS  
signals are driven HIGH. In adjust mode, BL = 4 of operation code data must be used. In case of OCD  
calibration default, output driver characteristics have a nominal impedance value of 18 Ω during  
nominal temperature and voltage conditions. OCD applies only to normal full strength output drive  
setting defined by EMR (1) and if reduced strength is set, OCD default driver characteristics are not  
applicable. When OCD calibration adjust mode is used, OCD default output driver characteristics are  
not applicable. After OCD calibration is completed or driver strength is set to default, subsequent  
EMRS commands not intended to adjust OCD characteristics must specify A[9:7] as ‟000‟ in order to  
maintain the default or calibrated value.  
Table 1 OCD Drive Mode Program  
A9  
A8  
A7  
Operation  
0
0
0
OCD calibration mode exit  
0
0
0
1
1
0
Drive (1) DQ, DQS, (RDQS) HIGH and DQS LOW  
Drive (0) DQ, DQS, (RDQS) LOW and DQS HIGH  
Adjust mode  
1
1
0
1
0
1
OCD calibration default  
7.2.3.2 OCD Impedance Adjust  
To adjust output driver impedance, controllers must issue the ADJUST EMRS command along with a  
4 bit burst code to DDR2 SDRAM as in table 2. For this operation, Burst Length has to be set to BL =  
4 via MRS command before activating OCD and controllers must drive the burst code to all DQs at the  
same time. DT0 in table 2 means all DQ bits at bit time 0, DT1 at bit time 1, and so forth. The driver  
output impedance is adjusted for all DDR2 SDRAM DQs simultaneously and after OCD calibration, all  
DQs and DQS‟s of a given DDR2 SDRAM will be adjusted to the same driver strength setting. The  
maximum step count for adjustment is 16 and when the limit is reached, further increment or  
decrement code has no effect. The default setting may be any step within the 16 step range. When  
Adjust mode command is issued, AL from previously set value must be applied.  
Table 2 OCD Adjust Mode Program  
4 bit burst code inputs to all DQs  
Operation  
Pull-up driver strength  
DT0  
0
DT1  
0
DT2  
0
DT3  
0
Pull-down driver strength  
NOP (No operation)  
NOP  
NOP (No operation)  
Increase by 1 step  
Decrease by 1 step  
NOP  
0
0
0
1
0
0
1
0
NOP  
0
1
0
0
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Increase by 1 step  
Decrease by 1 step  
Decrease by 1 step  
1
0
0
0
NOP  
0
1
0
1
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Decrease by 1 step  
0
1
1
0
1
0
0
1
1
0
1
0
Other Combinations  
Reserved  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 16 -  
W9751G8JB  
For proper operation of adjust mode, WL = RL - 1 = AL + CL - 1 clocks and tDS/tDH should be met as  
shown in Figure 7. For input data pattern for adjustment, DT0 - DT3 is a fixed order and is not affected  
by burst type (i.e., sequential or interleave).  
CLK  
CLK  
CMD  
NOP  
NOP  
EMRS  
NOP  
NOP  
NOP  
NOP  
EMRS  
NOP  
WL  
DQS  
WR  
DQS_in  
tDS tDH  
DQ_in  
DM  
DT0  
DT1 DT2 DT3  
OCD adjust mode  
OCD calibration mode exit  
Figure 7 OCD Adjust Mode  
7.2.3.3 Drive Mode  
Drive mode, both Drive (1) and Drive (0), is used for controllers to measure DDR2 SDRAM Driver  
impedance. In this mode, all outputs are driven out tOIT after “enter drive mode” command and all  
output drivers are turned-off tOIT after “OCD calibration mode exit” command as shown in Figure 8.  
CLK  
CLK  
EMRS  
tOIT  
NOP  
NOP  
NOP  
NOP  
EMRS  
tOIT  
NOP  
NOP  
NOP  
CMD  
HI-Z  
DQS  
DQS  
DQS high & DQS low for Drive (1), DQS low & DQS high for Drive (0)  
DQs high for Drive (1)  
DQs low for Drive (0)  
DQ  
Enter Drive mode  
OCD calibration mode exit  
Figure 8 OCD Drive Mode  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 17 -  
W9751G8JB  
7.2.4 On-Die Termination (ODT)  
On-Die Termination (ODT) is a new feature on DDR2 components that allows a DRAM to turn on/off  
termination resistance for each DQ, DQS/DQS , RDQS/RDQS, and DM signal via the ODT control pin.  
The ODT feature is designed to improve signal integrity of the memory channel by allowing the DRAM  
controller to independently turn on/off termination resistance for any or all DRAM devices.  
The ODT function can be used for all active and standby modes. ODT is turned off and not supported  
in Self Refresh mode. (Example timing waveforms refer to 10.3, 10.4 ODT Timing for  
Active/Standby/Power Down Mode and 10.5, 10.6 ODT timing mode switch at entering/exiting power  
down mode diagram in Chapter 10)  
VDDQ  
VDDQ  
VDDQ  
sw1  
sw2  
sw3  
Rval1  
Rval2  
Rval3  
DRAM  
Input  
Buffer  
Input  
Pin  
Rval1  
sw1  
Rval2  
sw2  
Rval3  
sw3  
VSSQ  
VSSQ  
VSSQ  
Switch (sw1, sw2, sw3) is enabled by ODT pin.  
Selection among sw1, sw2, and sw3 is determined by “Rtt (nominal)” in EMR (1).  
Termination included on all DQs, DM, DQS, DQS , RDQS, and RDQS pins.  
Figure 9 Functional Representation of ODT  
7.2.5 ODT related timings  
7.2.5.1 MRS command to ODT update delay  
During normal operation the value of the effective termination resistance can be changed with an  
EMRS command. The update of the Rtt setting is done between tMOD,min and tMOD,max, and CKE  
must remain HIGH for the entire duration of tMOD window for proper operation. The timings are shown  
in the following timing diagram.  
Publication Release Date: Oct. 12, 2010  
- 18 -  
Revision A01  
W9751G8JB  
CMD  
CLK  
EMRS  
NOP  
NOP  
NOP  
NOP  
NOP  
CLK  
ODT  
tIS  
tMOD,max  
tAOFD  
tMOD,min  
Rtt  
Old setting  
Updating  
New setting  
1) EMRS command directed to EMR(1), which updates the information in EMR(1)[A6,A2], i.e. Rtt (Nominal).  
2) "setting" in this diagram is the Register and I/O setting, not what is measured from outside.  
Figure 10 ODT update delay timing - tMOD  
However, to prevent any impedance glitch on the channel, the following conditions must be met.  
tAOFD must be met before issuing the EMRS command.  
ODT must remain LOW for the entire duration of tMOD window, until tMOD,max is met.  
Now the ODT is ready for normal operation with the new setting, and the ODT signal may be raised  
again to turned on the ODT. Following timing diagram shows the proper Rtt update procedure.  
CLK  
CLK  
EMRS  
NOP  
NOP  
NOP  
NOP  
NOP  
CMD  
ODT  
tIS  
tAOND  
tAOFD  
tMOD,max  
Old setting  
New setting  
Rtt  
1) EMRS command directed to EMR(1), which updates the information in EMR(1)[A6,A2], i.e. Rtt (Nominal).  
2) "setting" in this diagram is what is measured from outside.  
Figure 11 ODT update delay timing - tMOD, as measured from outside  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 19 -  
W9751G8JB  
7.3 Command Function  
7.3.1 Bank Activate Command  
(
CS = "L", RAS = "L", CAS = "H",  
= "H", BA0, BA1 = Bank, A0 to A13 be row address)  
WE  
The Bank Activate command must be applied before any Read or Write operation can be executed.  
Immediately after the bank active command, the DDR2 SDRAM can accept a read or write command  
on the following clock cycle. If a Read/Write command is issued to a bank that has not satisfied the  
tRCDmin specification, then additive latency must be programmed into the device to delay when the  
Read/Write command is internally issued to the device. The additive latency value must be chosen to  
assure tRCDmin is satisfied. Additive latencies of 0, 1, 2, 3, 4, 5 and 6 are supported. Once a bank has  
been activated it must be precharged before another Bank Activate command can be applied to the  
same bank. The bank active and precharge times are defined as tRAS and tRP, respectively. The  
minimum time interval between successive Bank Activate commands to the same bank is determined  
by the RAS cycle time of the device (tRC). The minimum time interval between Bank Activate  
commands is tRRD.  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
Tn+2  
Tn+3  
CLK  
CLK  
Internal RAS - RAS delay (tRCDmin)  
Bank A  
Row Addr.  
Bank A  
Col. Addr.  
Bank B  
Row Addr.  
Bank B  
Col. Addr.  
Bank A  
Addr.  
Bank A  
Row Addr.  
Bank B  
Addr.  
Address  
CAS - CAS delay time(tCCD)  
Additive Latency delay(AL)  
tRCD = 1  
Read Begins  
RAS - RAS delay time(tRRD)  
Bank A  
Post CAS  
Read  
Bank B  
Post CAS  
Read  
Bank A  
Activate  
Bank B  
Activate  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Activate  
Command  
Bank Active (tRAS)  
Bank Precharge time (tRP)  
RAS Cycle time (tRC)  
Figure 12 Bank activate command cycle: tRCD = 3, AL = 2, tRP = 3, tRRD = 2, tCCD = 2  
7.3.2 Read Command  
(
CS = "L", RAS = "H", CAS = "L",  
= "H", BA0, BA1 = Bank, A10 = "L", A0 to A9 = Column  
WE  
Address)  
The READ command is used to initiate a burst read access to an active row. The value on BA0, BA1  
inputs selects the bank, and the A0 to A9 address inputs determine the starting column address. The  
address input A10 determines whether or not Auto-precharge is used. If Auto-precharge is selected,  
the row being accessed will be precharged at the end of the READ burst; if Auto-precharge is not  
selected, the row will remain open for subsequent accesses.  
Publication Release Date: Oct. 12, 2010  
- 20 -  
Revision A01  
W9751G8JB  
7.3.3 Write Command  
CS = "L", RAS = "H", CAS = "L",  
(
= "L", BA0, BA1 = Bank, A10 = "L", A0 to A9 = Column  
WE  
Address)  
The WRITE command is used to initiate a burst write access to an active row. The value on BA0, BA1  
inputs selects the bank, and the A0 to A9 address inputs determine the starting column address. The  
address input A10 determines whether or not Auto-precharge is used. If Auto-precharge is selected,  
the row being accessed will be precharged at the end of the WRITE burst; if Auto-precharge is not  
selected, the row will remain open for subsequent accesses.  
7.3.4 Burst Read with Auto-precharge Command  
(
CS = "L", RAS = "H", CAS ="L",  
= "H", BA0, BA1 = Bank, A10 = "H", A0 to A9 = Column  
WE  
Address)  
If A10 is HIGH when a Read Command is issued, the Read with Auto-precharge function is engaged.  
The DDR2 SDRAM starts an Auto-precharge operation on the rising edge which is (AL + BL/2) cycles  
later than the read with AP command if tRAS(min) and tRTP(min) are satisfied.  
7.3.5 Burst Write with Auto-precharge Command  
(
CS = "L", RAS = "H", CAS = "L",  
= "L", BA0, BA1 = Bank, A10 = "H", A0 to A9 = Column  
WE  
Address)  
If A10 is HIGH when a Write Command is issued, the Write with Auto-precharge function is engaged.  
The DDR2 SDRAM automatically begins precharge operation after the completion of the burst write  
plus write recovery time (WR) programmed in the mode register.  
7.3.6 Precharge All Command  
(
CS = "L", RAS = "L", CAS = "H",  
= "L", BA0, BA1 = Don‟t Care, A10 = "H", A0 to A9 and  
WE  
A11 = Don‟t Care)  
The Precharge All command precharge all banks simultaneously. Then all banks are switched to the  
idle state.  
7.3.7 Self Refresh Entry Command  
(
CS = "L", RAS = "L", CAS = "L",  
= "H", CKE = "L", BA0, BA1, A0 to A13 = Dont Care)  
WE  
The Self Refresh command can be used to retain data, even if the rest of the system is powered  
down. When in the Self Refresh mode, the DDR2 SDRAM retains data without external clocking. The  
DDR2 SDRAM device has a built-in timer to accommodate Self Refresh operation. ODT must be  
turned off before issuing Self Refresh command, by either driving ODT pin LOW or using an EMRS  
command. Once the command is registered, CKE must be held LOW to keep the device in Self  
Refresh mode. The DLL is automatically disabled upon entering Self Refresh and is automatically  
enabled upon exiting Self Refresh. When the DDR2 SDRAM has entered Self Refresh mode, all of the  
external signals except CKE, are ”Don‟t Care”.  
The clock is internally disabled during self refresh operation to save power. The user may change the  
external clock frequency or halt the external clock one clock after Self Refresh entry is registered;  
however, the clock must be restarted and stable before the device can exit self refresh operation.  
Publication Release Date: Oct. 12, 2010  
- 21 -  
Revision A01  
W9751G8JB  
7.3.8 Self Refresh Exit Command  
(CKE = "H", CS = "H" or CKE = "H", CS = "L", RAS = "H", CAS = "H",  
= "H", BA0, BA1,  
WE  
A0 to A13 = Dont Care)  
The procedure for exiting Self Refresh requires a sequence of commands. First, the clock must be  
stable prior to CKE going back HIGH. Once Self Refresh Exit is registered, a delay of at least tXSNR  
must be satisfied before a valid command can be issued to the device to allow for any internal refresh  
in progress. CKE must remain HIGH for the entire Self Refresh exit period tXSRD for proper operation  
except for self refresh re-entry.  
Upon exit from Self Refresh, the DDR2 SDRAM can be put back into Self Refresh mode after waiting  
at least tXSNR period and issuing one refresh command (refresh period of tRFC). NOP or Deselect  
commands must be registered on each positive clock edge during the Self Refresh exit interval tXSNR.  
ODT should be turned off during tXSRD.  
The use of Self Refresh mode introduces the possibility that an internally timed refresh event can be  
missed when CKE is raised for exit from Self Refresh mode. Upon exit from Self Refresh, the DDR2  
SDRAM requires a minimum of one extra auto refresh command before it is put back into Self Refresh  
mode.  
7.3.9 Refresh Command  
(
CS = "L", RAS = "L", CAS = "L",  
= "H", CKE = "H", BA0, BA1, A0 to A13 = Don‟t Care)  
WE  
Refresh is used during normal operation of the DDR2 SDRAM. This command is non persistent, so it  
must be issued each time a refresh is required.  
The refresh addressing is generated by the internal refresh controller. This makes the address  
bits ”Don‟t Care” during an Auto Refresh command. The DDR2 SDRAM requires Auto Refresh cycles  
at an average periodic interval of tREFI (max.).  
When the refresh cycle has completed, all banks of the DDR2 SDRAM will be in the precharged (idle)  
state. A delay between the auto refresh command (REF) and the next activate command or  
subsequent auto refresh command must be greater than or equal to the auto refresh cycle time (tRFC).  
To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the  
absolute refresh interval is provided. A maximum of eight Refresh commands can be posted to any  
given DDR2 SDRAM, meaning that the maximum absolute interval between any Refresh command  
and the next Refresh command is 9 x tREFI.  
T0  
T1  
T2  
T3  
Tm  
Tn  
Tn + 1  
CLK/CLK  
CKE  
"HIGH"  
tRFC  
tRFC  
tRP  
REF  
REF  
NOP  
NOP  
ANY  
CMD  
Precharge  
NOP  
Figure 13 Refresh command  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 22 -  
W9751G8JB  
7.3.10 No-Operation Command  
CS = "L", RAS = "H", CAS = "H",  
(
= "H", CKE, BA0, BA1, A0 to A13 = Don‟t Care)  
WE  
The No-Operation command simply performs no operation (same command as Device Deselect).  
7.3.11 Device Deselect Command  
(
CS = "H", RAS  
,
CAS  
,
, CKE, BA0, BA1, A0 to A13 = Don‟t Care)  
WE  
The Device Deselect command disables the command decoder so that the RAS  
Address inputs are ignored. This command is similar to the No-Operation command.  
,
CAS  
,
and  
WE  
7.4 Read and Write access modes  
The DDR2 SDRAM provides a fast column access operation. A single Read or Write Command will  
initiate a serial read or write operation on successive clock cycles. The boundary of the burst cycle is  
strictly restricted to specific segments of the page length.  
The 16 Mbit x 8 I/O x 4 Bank chip has a page length of 1024 bits (defined by CA0 to CA9)*. The page  
length of 1024 is divided into 256 or 128 uniquely addressable boundary segments depending on  
burst length, 256 for 4 bit burst, 128 for 8 bit burst respectively. A 4-bit or 8-bit burst operation will  
occur entirely within one of the 256 or 128 groups beginning with the column address supplied to the  
device during the Read or Write Command (CA0 to CA9). The second, third and fourth access will  
also occur within this group segment. However, the burst order is a function of the starting address,  
and the burst sequence.  
A new burst access must not interrupt the previous 4 bit burst operation in case of BL = 4 setting.  
However, in case of BL = 8 setting, two cases of interrupt by a new burst access are allowed, one  
reads interrupted by a read, the other writes interrupted by a write with 4 bit burst boundary  
respectively. The minimum CAS to CAS delay is defined by tCCD, and is a minimum of 2 clocks for  
read or write cycles.  
Note: Page length is a function of I/O organization and column addressing  
16M bits × 8 organization (CA0 to CA9); Page Length = 1024 bits  
7.4.1 Posted CAS  
Posted CAS operation is supported to make command and data bus efficient for sustainable  
bandwidths in DDR2 SDRAM. In this operation, the DDR2 SDRAM allows a CAS read or write  
command to be issued immediately after the RAS bank activate command (or any time during the  
RAS CAS -delay time, tRCD, period). The command is held for the time of the Additive Latency (AL)  
-
before it is issued inside the device. The Read Latency (RL) is controlled by the sum of AL and the  
CAS Latency (CL). Therefore if a user chooses to issue a Read/Write command before the tRCDmin,  
then AL (greater than 0) must be written into the EMR (1). The Write Latency (WL) is always defined  
as RL -1 (Read Latency -1) where Read Latency is defined as the sum of Additive Latency plus CAS  
Latency (RL = AL + CL). Read or Write operations using AL allow seamless bursts. (Example timing  
waveforms refer to 10.11 and 10.12 seamless burst read/write operation diagram in Chapter 10)  
7.4.1.1 Examples of posted CAS operation  
Examples of a read followed by a write to the same bank where AL = 2 and where AL = 0 are shown  
in Figures 14 and 15, respectively.  
Publication Release Date: Oct. 12, 2010  
- 23 -  
Revision A01  
W9751G8JB  
6
-1  
0
4
5
7
8
9
10  
11  
12  
1
2
3
CLK /CLK  
CMD  
Active  
A-Bank  
Read  
A-Bank  
Write  
A-Bank  
WL=RL-1=4  
CL=3  
AL=2  
DQS/DQS  
DQ  
tRCD  
RL=AL+CL=5  
Din1 Din2  
Din3  
Dout0  
Din0  
Dout1 Dout2 Dout3  
[AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL - 1) = 4, BL = 4]  
Figure 14 Example 1: Read followed by a write to the same bank,  
where AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL - 1) = 4, BL = 4  
-1  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK/CLK  
CMD  
AL=0  
Active  
A-Bank  
Read  
A-Bank  
Write  
A-Bank  
WL=RL-1=2  
CL=3  
DQS/DQS  
DQ  
tRCD  
RL=AL+CL=3  
Din0  
Din1 Din2 Din3  
Dout0 Dout1 Dout2 Dout3  
AL = 0 and CL = 3, RL = (AL + CL) = 3, WL = (RL - 1) = 2, BL = 4]  
Figure 15 Example 2: Read followed by a write to the same bank,  
where AL = 0 and CL = 3, RL = (AL + CL) = 3, WL = (RL - 1) = 2, BL = 4  
7.4.2 Burst mode operation  
Burst mode operation is used to provide a constant flow of data to memory locations (write cycle), or  
from memory locations (read cycle). The parameters that define how the burst mode will operate are  
burst sequence and burst length. The DDR2 SDRAM supports 4 bit and 8 bit burst modes only. For 8  
bit burst mode, full interleave address ordering is supported, however, sequential address ordering is  
nibble based for ease of implementation. The burst length is programmable and defined by MR A[2:0].  
The burst type, either sequential or interleaved, is programmable and defined by MR [A3]. Seamless  
burst read or write operations are supported.  
Publication Release Date: Oct. 12, 2010  
- 24 -  
Revision A01  
W9751G8JB  
Unlike DDR1 devices, interruption of a burst read or writes cycle during BL = 4 mode operation is  
prohibited. However in case of BL = 8 mode, interruption of a burst read or write operation is limited to  
two cases, reads interrupted by a read, or writes interrupted by a write. (Example timing waveforms  
refer to 10.13 and 10.14 Burst read and write interrupt timing diagram in Chapter 10)  
Therefore the Burst Stop command is not supported on DDR2 SDRAM devices.  
Table 3 Burst Length and Sequence  
Starting Address  
Sequential Addressing  
(decimal)  
Interleave Addressing  
(decimal)  
Burst Length  
(A2 A1 A0)  
x00  
0, 1, 2, 3  
0, 1, 2, 3  
x01  
1, 2, 3, 0  
1, 0, 3, 2  
4
x10  
2, 3, 0, 1  
2, 3, 0, 1  
x11  
3, 0, 1, 2  
3, 2, 1, 0  
000  
001  
010  
011  
100  
101  
110  
111  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
8
7.4.3 Burst read mode operation  
Burst Read is initiated with a READ command. The address inputs determine the starting column  
address for the burst. The delay from the start of the command to when the data from the first cell  
appears on the outputs is equal to the value of the read latency (RL). The data strobe output (DQS) is  
driven LOW one clock cycle before valid data (DQ) is driven onto the data bus. The first bit of the burst  
is synchronized with the rising edge of the data strobe (DQS). Each subsequent data-out appears on  
the DQ pin in phase with the DQS signal in a source synchronous manner. The RL is equal to an  
additive latency (AL) plus CAS Latency (CL). The CL is defined by the Mode Register Set (MRS). The  
AL is defined by the Extended Mode Register EMR (1). (Example timing waveforms refer to 10.7 and  
10.8 Data output (read) timing and Burst read operation diagram in Chapter 10)  
7.4.4 Burst write mode operation  
Burst Write is initiated with a WRITE command. The address inputs determine the starting column  
address for the burst. Write Latency (WL) is defined by a Read Latency (RL) minus one and is equal  
to (AL + CL -1); and is the number of clocks of delay that are required from the time the write  
command is registered to the clock edge associated to the first DQS strobe. A data strobe signal  
(DQS) should be driven LOW (preamble) nominally half clock prior to the WL. The first data bit of the  
burst cycle must be applied to the DQ pins at the first rising edge of the DQS following the preamble.  
The tDQSS specification must be satisfied for each positive DQS transition to its associated clock edge  
during write cycles. The subsequent burst bit data are issued on successive edges of the DQS until  
the burst length is completed, which is 4 or 8 bit burst. When the burst has finished, any additional  
data supplied to the DQ pins will be ignored. The DQ Signal is ignored after the burst write operation is  
complete. The time from the completion of the burst write to bank precharge is the write recovery time  
(WR). (Example timing waveforms refer to 10.9 and 10.10 Data input (write) timing and Burst write  
operation diagram in Chapter 10)  
Publication Release Date: Oct. 12, 2010  
- 25 -  
Revision A01  
W9751G8JB  
7.4.5 Write data mask  
One write data mask (DM) pin for each 8 data bits (DQ) will be supported on DDR2 SDRAM,  
consistent with the implementation on DDR1 SDRAM. It has identical timings on write operations as  
the data bits, and though used in a unidirectional manner, is internally loaded identically to data bits to  
insure matched system timing. DM function is disabled, when RDQS / RDQS are enabled by  
EMRS(1). (Example timing waveform refer to 10.15 Write operation with Data Mask diagram in  
Chapter 10)  
7.5 Burst Interrupt  
Read or Write burst interruption is prohibited for burst length of 4 and only allowed for burst length of 8  
under the following conditions:  
1. Read burst of 8 can only be interrupted by another Read command. Read burst interruption by  
Write or Precharge Command is prohibited.  
2. Write burst of 8 can only be interrupted by another Write command. Write burst interruption by  
Read or Precharge Command is prohibited.  
3. Read burst interrupt must occur exactly two clocks after the previous Read command. Any other  
Read burst interrupt timings are prohibited.  
4. Write burst interrupt must occur exactly two clocks after the previous Write command. Any other  
Write burst interrupt timings are prohibited.  
5. Read or Write burst interruption is allowed to any bank inside the DDR2 SDRAM.  
6. Read or Write burst with Auto-precharge enabled is not allowed to interrupt.  
7. Read burst interruption is allowed by a Read with Auto-precharge command.  
8. Write burst interruption is allowed by a Write with Auto-precharge command.  
9. All command timings are referenced to burst length set in the mode register. They are not  
referenced to the actual burst. For example below:  
Minimum Read to Precharge timing is AL + BL/2 where BL is the burst length set in the  
mode register and not the actual burst (which is shorter because of interrupt).  
Minimum Write to Precharge timing is WL + BL/ 2 + tWR, where tWR starts with the rising  
clock after the un-interrupted burst end and not from the end of the actual burst end.  
(Example timing waveforms refer to 10.13 and 10.14 Burst read and write interrupt timing diagram in  
Chapter 10)  
Publication Release Date: Oct. 12, 2010  
- 26 -  
Revision A01  
W9751G8JB  
7.6 Precharge operation  
The Precharge Command is used to precharge or close a bank that has been activated. The  
Precharge Command can be used to precharge each bank independently or all banks simultaneously.  
Three address bits A10, BA0 and BA1 are used to define which bank to precharge when the  
command is issued.  
Table 4 Bank selection for precharge by address bits  
A10  
LOW  
LOW  
LOW  
LOW  
HIGH  
BA1  
LOW  
BA0  
LOW  
Precharge Bank(s)  
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
All Banks  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
HIGH  
Dont Care  
Dont Care  
7.6.1 Burst read operation followed by precharge  
Minimum Read to Precharge command spacing to the same bank = AL + BL/2 + max(RTP, 2) - 2 clks  
For the earliest possible precharge, the precharge command may be issued on the rising edge which  
is “Additive Latency (AL) + BL/2 + max(RTP, 2) - 2 clocks” after a Read command. A new bank active  
(command) may be issued to the same bank after the RAS precharge time (tRP). A precharge  
command cannot be issued until tRAS is satisfied.  
The minimum Read to Precharge spacing has also to satisfy a minimum analog time from the rising  
clock edge that initiates the last 4-bit prefetch of a Read to Precharge command. This time is called  
tRTP (Read to Precharge). For BL = 4 this is the time from the actual read (AL after the Read  
command) to Precharge command. For BL = 8 this is the time from AL + 2 clocks after the Read to the  
Precharge command. (Example timing waveforms refer to 10.16 to 10.20 Burst read operation  
followed by precharge diagram in Chapter 10)  
7.6.2 Burst write operation followed by precharge  
Minimum Write to Precharge Command spacing to the same bank = WL + BL/2 clks + tWR  
For write cycles, a delay must be satisfied from the completion of the last burst write cycle until the  
Precharge Command can be issued. This delay is known as a write recovery time (tWR) referenced  
from the completion of the burst write to the precharge command. No Precharge command should be  
issued prior to the tWR delay. (Example timing waveforms refer to 10.21 to 10.22 Burst write operation  
followed by precharge diagram in Chapter 10)  
7.7 Auto-precharge operation  
Before a new row in an active bank can be opened, the active bank must be precharged using either  
the Precharge command or the Auto-precharge function. When a Read or a Write command is given  
to the DDR2 SDRAM, the CAS timing accepts one extra address, column address A10, to allow the  
active bank to automatically begin precharge at the earliest possible moment during the burst read or  
write cycle. If A10 is LOW when the READ or WRITE command is issued, then normal Read or Write  
burst operation is executed and the bank remains active at the completion of the burst sequence. If  
A10 is HIGH when the Read or Write command is issued, then the Auto-precharge function is  
engaged. During Auto-precharge, a Read command will execute as normal with the exception that the  
active bank will begin to precharge on the rising edge which is CAS Latency (CL) clock cycles before  
the end of the read burst.  
Publication Release Date: Oct. 12, 2010  
- 27 -  
Revision A01  
W9751G8JB  
Auto-precharge is also implemented during Write commands. The precharge operation engaged by  
the Auto-precharge command will not begin until the last data of the burst write sequence is properly  
stored in the memory array.  
This feature allows the precharge operation to be partially or completely hidden during burst read  
cycles (dependent upon CAS Latency) thus improving system performance for random data access.  
The RAS lockout circuit internally delays the Precharge operation until the array restore operation  
has been completed (tRAS satisfied) so that the Auto-precharge command may be issued with any  
read or write command.  
7.7.1 Burst read with Auto-precharge  
If A10 is HIGH when a Read Command is issued, the Read with Auto-precharge function is engaged.  
The DDR2 SDRAM starts an Auto-precharge operation on the rising edge which is (AL + BL/2) cycles  
later from the Read with AP command if tRAS(min) and tRTP(min) are satisfied. (Example timing  
waveform refer to 10.23 Burst read operation with Auto-precharge diagram in Chapter 10)  
If tRAS(min) is not satisfied at the edge, the start point of Auto-precharge operation will be delayed until  
tRAS(min) is satisfied.  
If tRTP(min) is not satisfied at the edge, the start point of Auto-precharge operation will be delayed until  
tRTP(min) is satisfied.  
In case the internal precharge is pushed out by tRTP, tRP starts at the point where tRTP ends (not at the  
next rising clock edge after this event). So for BL = 4 the minimum time from Read with Auto-  
precharge to the next Activate command becomes AL + RU{ (tRTP + tRP) / tCK } (Example timing  
waveform refer to 10.24 Burst read operation with Auto-precharge diagram in Chapter 10.), for BL = 8  
the time from Read with Auto-precharge to the next Activate command is AL + 2 + RU{ (tRTP + tRP) /  
tCK }, where RU stands for “rounded up to the next integer”. In any event internal precharge does not  
start earlier than two clocks after the last 4-bit prefetch.  
A new bank active command may be issued to the same bank if the following two conditions are  
satisfied simultaneously.  
The RAS precharge time (tRP) has been satisfied from the clock at which the Auto-precharge  
begins.  
The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
(Example timing waveforms refer to 10.25 to 10.26 Burst read with Auto-precharge followed by an  
activation to the same bank (tRC Limit) and (tRP Limit) diagram in Chapter 10)  
7.7.2 Burst write with Auto-precharge  
If A10 is HIGH when a Write Command is issued, the Write with Auto-Precharge function is engaged.  
The DDR2 SDRAM automatically begins precharge operation after the completion of the burst write  
plus write recovery time (WR) programmed in the mode register. The bank undergoing Auto-  
precharge from the completion of the write burst may be reactivated if the following two conditions are  
satisfied.  
The data-in to bank activate delay time (WR + tRP) has been satisfied.  
The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
(Example timing waveforms refer to 10.27 to 10.28 Burst write with Auto-precharge (tRC Limit) and  
(WR + tRP Limit) diagram in Chapter 10)  
Publication Release Date: Oct. 12, 2010  
- 28 -  
Revision A01  
W9751G8JB  
Table 5 Precharge & Auto-precharge clarifications  
From  
To Command  
Minimum Delay between “From Unit Notes  
Command  
Command” to “To Command”  
Read  
Precharge (to same Bank as Read)  
Precharge All  
AL + BL/2 + max(RTP, 2) - 2  
clks  
clks  
clks  
clks  
clks  
clks  
clks  
clks  
clks  
clks  
clks  
clks  
1, 2  
1, 2  
1, 2  
1, 2  
2
AL + BL/2 + max(RTP, 2) - 2  
Read w/AP  
Write  
Precharge (to same Bank as Read w/AP)  
Precharge All  
AL + BL/2 + max(RTP, 2) - 2  
AL + BL/2 + max(RTP, 2) - 2  
Precharge (to same Bank as Write)  
Precharge All  
WL + BL/2 + tWR  
WL + BL/2 + tWR  
2
Write w/AP  
Precharge  
Precharge (to same Bank as Write w/AP)  
Precharge All  
WL + BL/2 + WR  
2
WL + BL/2 + WR  
2
Precharge (to same Bank as Precharge)  
Precharge All  
1
1
1
1
2
2
Precharge  
All  
Precharge  
2
Precharge All  
2
Notes:  
1. RTP[cycles] = RU{ tRTP[nS] / tCK(avg)[nS] }, where RU stands for round up.  
2. For a given bank, the precharge period should be counted from the latest precharge command, either one bank precharge or  
precharge all, issued to that bank. The precharge period is satisfied after tRP depending on the latest precharge command  
issued to that bank.  
7.8 Refresh Operation  
Two types of Refresh operation can be performed on the device: Auto Refresh and Self Refresh. By  
repeating the Auto Refresh cycle, each bank in turn refreshed automatically. The Refresh operation  
must be performed 8192 times (rows) within 64mS. The period between the Auto Refresh command  
and the next command is specified by tRFC.  
Self Refresh mode enters issuing the Self Refresh command (CKE asserted "LOW") while all banks  
are in the idle state. The device is in Self Refresh mode for as long as CKE held "LOW". In the case of  
8192 burst Auto Refresh commands, 8192 burst Auto Refresh commands must be performed within  
7.8 µS before entering and after exiting the Self Refresh mode. In the case of distributed Auto Refresh  
commands, distributed auto refresh commands must be issued every 7.8 µS and the last distributed  
Auto Refresh commands must be performed within 7.8 µS before entering the self refresh mode. After  
exiting from the Self Refresh mode, the refresh operation must be performed within 7.8 µS. In Self  
Refresh mode, all input/output buffers are disable, resulting in lower power dissipation (except CKE  
buffer). (Example timing waveform refer to 10.29 Self Refresh diagram in Chapter 10)  
7.9 Power Down Mode  
Power-down is synchronously entered when CKE is registered LOW, along with NOP or Deselect  
command. CKE is not allowed to go LOW while mode register or extended mode register command  
time, or read or write operation is in progress. CKE is allowed to go LOW while any other operation  
such as row activation, Precharge or Auto-precharge or Auto Refresh is in progress, but power down  
IDD specification will not be applied until finishing those operations.  
The DLL should be in a locked state when power-down is entered. Otherwise DLL should be reset  
after exiting power-down mode for proper read operation.  
Publication Release Date: Oct. 12, 2010  
- 29 -  
Revision A01  
W9751G8JB  
7.9.1 Power Down Entry  
Two types of Power Down Mode can be performed on the device: Precharge Power Down Mode and  
Active Power Down Mode.  
If power down occurs when all banks are idle, this mode is referred to as Precharge Power Down; if  
power down occurs when there is a row active in any bank, this mode is referred to as Active Power  
Down. Entering power down deactivates the input and output buffers, excluding CLK, CLK , ODT and  
CKE. Also the DLL is disabled upon entering Precharge Power Down or slow exit Active Power Down,  
but the DLL is kept enabled during fast exit Active Power Down.  
In power down mode, CKE LOW and a stable clock signal must be maintained at the inputs of the  
DDR2 SDRAM, and ODT should be in a valid state but all other input signals are “Don‟t Care”. CKE  
LOW must be maintained until tCKE has been satisfied. Maximum power down duration is limited by  
the refresh requirements of the device, which allows a maximum of 9 x tREFI if maximum posting of  
REF is utilized immediately before entering power down. (Example timing waveforms refer to 10.30 to  
10.31 Active and Precharged Power Down Mode Entry and Exit diagram in Chapter 10)  
7.9.2 Power Down Exit  
The power-down state is synchronously exited when CKE is registered HIGH (along with a NOP or  
Deselect command). CKE high must be maintained until tCKE has been satisfied. A valid, executable  
command can be applied with power-down exit latency, tXP, tXARD, or tXARDS, after CKE goes HIGH.  
Power-down exit latency is defined at AC Characteristics table of this data sheet.  
7.10 Input clock frequency change during precharge power down  
DDR2 SDRAM input clock frequency can be changed under following condition:  
DDR2 SDRAM is in precharged power down mode. ODT must be turned off and CKE must be at logic  
LOW level. A minimum of 2 clocks must be waited after CKE goes LOW before clock frequency may  
change. SDRAM input clock frequency is allowed to change only within minimum and maximum  
operating frequency specified for the particular speed grade. During input clock frequency change,  
ODT and CKE must be held at stable LOW levels.  
Once input clock frequency is changed, stable new clocks must be provided to DRAM before  
precharge power down may be exited and DLL must be RESET via MRS command after precharge  
power down exit. Depending on new clock frequency an additional MRS or EMRS command may  
need to be issued to appropriately set the WR, CL etc…  
During DLL re-lock period, ODT must remain off. After the DLL lock time, the DRAM is ready to  
operate with new clock frequency. (Example timing waveform refer to 10.32 Clock frequency change  
in precharge Power Down mode diagram in Chapter 10)  
Publication Release Date: Oct. 12, 2010  
- 30 -  
Revision A01  
W9751G8JB  
8. OPERATION MODE  
8.1 Command Truth Table  
CKE  
A13  
A12  
A11  
BA1  
BA0  
COMMAND  
A10  
A9-A0  
NOTES  
Previous  
Cycle  
Current  
Cycle  
RAS  
CAS  
WE  
CS  
Bank Activate  
H
H
BA  
BA  
Row Address  
L
L
L
L
L
H
H
H
L
1,2  
1,2  
Single Bank  
Precharge  
H
H
X
X
X
Precharge All  
Banks  
H
H
H
H
H
H
H
H
H
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
1
Write  
BA  
BA  
BA  
BA  
Column  
Column  
Column  
Column  
L
H
L
Column  
Column  
Column  
Column  
H
H
H
H
1,2,3  
1,2,3  
1,2,3  
1,2,3  
Write with Auto-  
precharge  
L
Read  
H
H
Read with Auto-  
precharge  
H
(Extended)  
Mode Register  
Set  
H
H
H
X
BA  
X
OP Code  
X
L
L
L
L
L
1,2  
1
No Operation  
X
X
H
H
H
Device Deselect  
Refresh  
H
H
X
H
X
X
X
X
X
X
X
X
H
L
X
L
X
L
X
H
1
1
Self Refresh  
Entry  
H
L
L
X
X
X
X
X
X
X
X
L
L
L
H
1,4  
H
L
X
H
X
H
X
H
X
H
X
H
X
H
Self Refresh Exit  
H
1,4,5  
H
L
Power Down  
Mode Entry  
H
L
L
X
X
X
X
X
X
X
X
1,6  
1,6  
H
L
X
H
X
H
X
H
Power Down  
Mode Exit  
H
Notes:  
1. All DDR2 SDRAM commands are defined by states of  
,
,
,
and CKE at the rising edge of the clock.  
CS RAS CAS WE  
2. Bank addresses BA [1:0] determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.  
3. Burst reads or writes at BL = 4 can not be terminated or interrupted. See Burst Interrupt in section 7.5 for details.  
4. V  
must be maintained during Self Refresh operation.  
REF  
5. Self Refresh Exit is asynchronous.  
6. The Power Down does not perform any refresh operations. The duration of Power Down Mode is therefore limited by the  
refresh requirements outlined in section 7.9.  
Publication Release Date: Oct. 12, 2010  
- 31 -  
Revision A01  
W9751G8JB  
8.2 Clock Enable (CKE) Truth Table for Synchronous Transitions  
COMMAND (N) 3  
CKE  
CURRENT  
STATE2  
ACTION (N) 3  
NOTES  
Previous Cycle 1  
Current Cycle 1  
(N)  
RAS CAS CS  
,
,
WE  
,
(N-1)  
L
L
H
L
X
Maintain Power Down  
Power Down Exit  
11, 13, 15  
4, 8, 11, 13  
11, 15, 16  
4, 5, 9, 16  
Power Down  
L
L
DESELECT or NOP  
X
Maintain Power Down  
Self Refresh Exit  
Self Refresh  
Bank(s) Active  
All Banks Idle  
L
H
L
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
REFRESH  
Active Power Down  
Entry  
4, 8, 10, 11,  
13  
H
H
H
H
Precharge Power Down  
Entry  
4, 8, 10, 11,  
13  
L
L
Self Refresh Entry  
6, 9, 11, 13  
7
H
Refer to the Command Truth Table  
Notes:  
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N1) was the state of CKE at the previous clock edge.  
2. Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.  
3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N).  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period.  
Read commands may be issued only after tXSRD (200 clocks) is satisfied.  
6. Self Refresh mode can only be entered from the All Banks Idle state.  
7. Must be a legal command as defined in the Command Truth Table.  
8. Valid commands for Power Down Entry and Exit are NOP and DESELECT only.  
9. Valid commands for Self Refresh Exit are NOP and DESELECT only.  
10. Power Down and Self Refresh can not be entered while Read or Write operations, (Extended) Mode Register Set  
operations or Precharge operations are in progress. See section 7.9 "Power Down Mode" and section 7.3.7/7.3.8 "Self  
Refresh Entry/Exit Command" for a detailed list of restrictions.  
11. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the  
valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not  
transition from its valid level during the time period of tIS + 2 x tCK + tIH.  
12. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
See section 7.2.4.  
13. The Power Down does not perform any refresh operations. The duration of Power Down Mode is therefore limited by the  
refresh requirements outlined in section 7.9.  
14. CKE must be maintained HIGH while the SDRAM is in OCD calibration mode.  
15. ”X” means “don‟t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven  
high or low in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMR (1)).  
16. VREF must be maintained during Self Refresh operation.  
8.3 Data Mask (DM) Truth Table  
FUNCTION  
Write enable  
Write inhibit  
DM  
L
DQS  
Valid  
X
NOTE  
1
1
H
Note:  
1. Used to mask write data, provided coincident with the corresponding data.  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 32 -  
W9751G8JB  
8.4 Function Truth Table  
CURRENT  
STATE  
CS  
RAS CAS WE  
ADDRESS  
COMMAND  
ACTION  
NOTES  
H
L
L
L
L
L
L
X
H
H
H
L
X
H
L
X
H
H
L
X
X
DSL  
NOP  
NOP or Power down  
NOP or Power down  
ILLEGAL  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
1
1
L
ILLEGAL  
Idle  
H
H
L
H
L
BA, RA  
BA, A10  
X
ACT  
Row activating  
L
PRE/PREA  
AREF/SELF  
Precharge/ Precharge all banks  
Auto Refresh or Self Refresh  
L
H
2
2
Mode/Extended register  
accessing  
L
L
L
L
Op-Code  
MRS/EMRS  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
X
H
H
H
L
X
H
L
X
H
H
L
X
X
DSL  
NOP  
NOP  
NOP  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
Begin read  
L
Begin write  
Banks  
Active  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
1
L
BA, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
Precharge/ Precharge all banks  
ILLEGAL  
L
H
L
X
L
L
Op-Code  
ILLEGAL  
X
H
H
H
L
X
H
L
X
H
H
L
X
X
Continue burst to end  
Continue burst to end  
Burst interrupt  
ILLEGAL  
NOP  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
1,3  
1
L
Read  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
1
L
BA, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
1
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
X
H
H
H
L
X
H
L
X
H
H
L
X
X
Continue burst to end  
Continue burst to end  
ILLEGAL  
NOP  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
1
1,3  
1
L
Burst interrupt  
ILLEGAL  
Write  
H
H
L
H
L
BA, RA  
BA, A10  
X
ACT  
L
PRE/PREA  
AREF/SELF  
MRS/EMRS  
ILLEGAL  
1
L
H
L
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 33 -  
W9751G8JB  
Function Truth Table, continued  
CURRENT  
STATE  
CS  
RAS CAS  
WE  
ADDRESS  
COMMAND  
ACTION  
NOTES  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
X
H
H
H
L
X
H
L
X
H
H
L
X
X
DSL  
NOP  
Continue burst to end  
Continue burst to end  
ILLEGAL  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
1
1
1
1
Read with  
Auto-  
precharge  
L
ILLEGAL  
BA, RA  
ACT  
H
H
L
H
L
ILLEGAL  
BA, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
L
ILLEGAL  
X
L
H
L
ILLEGAL  
Op-Code  
L
L
ILLEGAL  
X
H
H
H
L
X
H
L
X
H
H
L
X
X
Continue burst to end  
Continue burst to end  
ILLEGAL  
NOP  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
1
1
1
1
Write with  
Auto-  
precharge  
L
ILLEGAL  
BA, RA  
ACT  
H
H
L
H
L
ILLEGAL  
L
BA, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
X
H
H
H
L
X
H
L
X
H
H
L
X
X
NOP-> Idle after tRP  
NOP-> Idle after tRP  
ILLEGAL  
NOP  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
1
1
1
1
L
ILLEGAL  
Precharge  
BA, RA  
ACT  
H
H
L
H
L
ILLEGAL  
BA, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
L
NOP-> Idle after tRP  
ILLEGAL  
X
L
H
L
Op-Code  
L
L
ILLEGAL  
X
H
H
H
L
X
H
L
X
H
H
L
X
X
NOP-> Row active after tRCD  
NOP-> Row active after tRCD  
ILLEGAL  
NOP  
BA, CA, A10 READ/READA  
BA, CA, A10 WRIT/WRITA  
1
1
1
1
L
ILLEGAL  
Row  
Activating  
BA, RA  
BA, A10  
X
ACT  
H
H
L
H
L
ILLEGAL  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
L
ILLEGAL  
L
H
L
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 34 -  
W9751G8JB  
Function Truth Table, continued  
CURRENT  
STATE  
CS  
RAS CAS  
WE  
ADDRESS  
COMMAND  
DSL  
ACTION  
NOTES  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
X
H
H
H
L
X
H
L
X
H
H
L
X
NOP-> Bank active after tWR  
NOP-> Bank active after tWR  
ILLEGAL  
X
NOP  
BA, CA, A10  
BA, CA, A10  
BA, RA  
READ/READA  
WRIT/WRITA  
ACT  
1
L
New write  
Write  
Recovering  
H
H
L
H
L
ILLEGAL  
1
1
BA, A10  
L
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
Op-Code  
L
L
ILLEGAL  
X
H
H
H
L
X
H
L
X
H
H
L
X
NOP-> Precharge after tWR  
NOP-> Precharge after tWR  
ILLEGAL  
X
NOP  
BA, CA, A10  
BA, CA, A10  
BA, RA  
READ/READA  
WRIT/WRITA  
ACT  
1
1
1
1
Write  
L
ILLEGAL  
Recovering  
with Auto-  
precharge  
H
H
L
H
L
ILLEGAL  
BA, A10  
L
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
Op-Code  
L
L
ILLEGAL  
H
L
L
L
L
L
L
L
X
H
H
H
L
X
H
L
X
H
H
L
X
NOP-> Idle after tRC  
NOP-> Idle after tRC  
ILLEGAL  
X
NOP  
BA, CA, A10  
BA, CA, A10  
BA, RA  
READ/READA  
WRIT/WRITA  
ACT  
L
ILLEGAL  
Refreshing  
H
H
L
H
L
ILLEGAL  
L
BA, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
H
L
L
L
L
L
L
L
X
H
H
H
L
X
H
L
X
H
H
L
X
NOP-> Idle after tMRD  
NOP-> Idle after tMRD  
ILLEGAL  
X
NOP  
BA, CA, A10  
BA, CA, A10  
BA, RA  
READ/READA  
WRIT/WRITA  
ACT  
Mode  
Register  
Accessing  
L
ILLEGAL  
H
H
L
H
L
ILLEGAL  
L
BA, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
ILLEGAL  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Notes:  
1. This command may be issued for other banks, depending on the state of the banks.  
2. All banks must be in "IDLE".  
3. Read or Write burst interruption is prohibited for burst length of 4 and only allowed for burst length of 8. Burst read/write can  
only be interrupted by another read/write with 4 bit burst boundary. Any other case of read/write interrupt is not allowed.  
Remark: H = High level, L = Low level, X = High or Low level (Don‟t Care), V = Valid data.  
Publication Release Date: Oct. 12, 2010  
- 35 -  
Revision A01  
W9751G8JB  
8.5 Simplified Stated Diagram  
Initialization  
Sequence  
CKEL  
OCD  
calibration  
Self Refreshing  
SELF  
PRE  
CKEH  
Setting  
MR,EMR (1)  
EMR (2)  
Idle  
All banks  
Precharged  
(E)MRS  
REF  
Refreshing  
EMR (3)  
CKEL  
CKEL  
ACT  
CKEH  
Precharge  
Power  
Down  
CKEL  
Autoomatic Sequence  
Command Sequence  
Activating  
CKEL  
CKEL  
Active  
Power  
Down  
CKEH  
CKEL  
Bank  
Active  
Read  
Write  
Write  
Read  
WRITA  
Write  
READA  
CKEL = CKE LOW, enter Power Down  
CKEH = CKE HIGH, exit Power Down  
CKEH = CKE HIGH, exit Self Refresh  
ACT = Activate  
WRITA = Write with Auto-precharge  
READA = Read (with Auto-precharge  
PREA = Precharge All  
Read  
Writing  
Reading  
(E)MRS = (Extended) Mode Register Set  
SELF = Enter Self Refresh  
WRITA  
READA  
REF = Refresh  
READA  
WRITA  
Writing  
with  
Reading  
with  
Auto-precharge  
Auto-precharge  
PRE, PREA  
PRE, PREA  
PRE, PREA  
Precharging  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 36 -  
W9751G8JB  
9. ELECTRICAL CHARACTERISTICS  
9.1 Absolute Maximum Ratings  
PARAMETER  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
SYMBOL  
RATING  
-1.0 ~ 2.3  
-0.5 ~ 2.3  
-0.5 ~ 2.3  
-0.5 ~ 2.3  
-55 ~ 100  
UNIT NOTES  
VDD  
VDDQ  
V
V
1, 2  
1, 2  
VDDL  
V
1, 2  
VIN, VOUT  
TSTG  
V
1, 2  
°C  
1, 2, 3  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2. When VDD and VDDQ and VDDL are less than 500mV; VREF may be equal to or less than 300mV.  
3. Storage temperature is the case surface temperature on the center/top side of the DRAM.  
9.2 Operating Temperature Condition  
PARAMETER  
Operating Temperature (for -18/-25/-3)  
Operating Temperature (for 25I)  
Notes:  
SYMBOL  
TOPR  
RATING  
0 ~ 85  
UNIT NOTES  
°C  
°C  
1, 2, 3  
TOPR  
-40 ~ 95  
1, 2, 3, 4  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM.  
2. Supporting 0 ~ 85°C with full JEDEC AC and DC specifications.  
3. Supporting 0 ~ 85 °C and being able to extend to 95 °C with doubling Auto Refresh commands in frequency to a 32 mS  
period ( tREFI = 3.9 µS) and to enter to Self Refresh mode at this high temperature range via A7 "1" on EMR (2).  
4. During operation, the DRAM case temperature must be maintained between -40 to 95°C for Industrial parts under all  
specification parameters.  
9.3 Recommended DC Operating Conditions  
(0°C ≤ TCASE ≤ 85°C for -18/-25/-3, -40°C ≤ TCASE 95°C for 25I, VDD, VDDQ = 1.8V ± 0.1V)  
SYM.  
PARAMETER  
Supply Voltage  
MIN.  
1.7  
TYP.  
1.8  
MAX.  
1.9  
UNIT NOTES  
VDD  
V
V
V
V
V
1
5
VDDL Supply Voltage for DLL  
VDDQ Supply Voltage for Output  
VREF Input Reference Voltage  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1, 5  
2, 3  
4
0.49 x VDDQ  
VREF - 0.04  
0.5 x VDDQ  
VREF  
0.51 x VDDQ  
VREF + 0.04  
VTT  
Termination Voltage (System)  
Notes:  
1. There is no specific device VDD supply voltage requirement for SSTL_18 compliance. However under all conditions VDDQ  
must than or equal to VDD.  
2. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF  
is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.  
3. Peak to peak AC noise on VREF may not exceed ±2 % VREF(dc).  
4. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to  
VREF, and device must track VREF of receiving device.  
5. VDDQ tracks with VDD, VDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
Publication Release Date: Oct. 12, 2010  
- 37 -  
Revision A01  
W9751G8JB  
9.4 ODT DC Electrical Characteristics  
(0°C ≤ TCASE ≤ 85°C for -18/-25/-3, -40°C ≤ TCASE 95°C for 25I, VDD, VDDQ = 1.8V ± 0.1V)  
PARAMETER/CONDITION  
SYM.  
Rtt1(eff)  
Rtt2(eff)  
Rtt3(eff)  
ΔVM  
MIN.  
60  
NOM. MAX.  
UNIT NOTES  
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 Ω  
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 Ω  
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 Ω  
Deviation of VM with respect to VDDQ/2  
75  
150  
50  
90  
180  
60  
Ω
Ω
Ω
%
1
1
120  
40  
1, 2  
1
-6  
+6  
Notes:  
1. Test condition for Rtt measurements.  
2. Optional for DDR2-667, mandatory for DDR2-800 and DDR2-1066.  
Measurement Definition for Rtt(eff):  
Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH (ac)) and I(VIL (ac))  
respectively. VIH (ac), VIL (ac), and VDDQ values defined in SSTL_18.  
Rtt(eff) = (VIH(ac) VIL(ac)) /(I(VIHac) I(VILac))  
Measurement Definition for ΔVM:  
Measure voltage (VM) at test pin (midpoint) with no load.  
ΔVM = ((2 x Vm / VDDQ) 1) x 100%  
9.5 Input DC Logic Level  
(0°C ≤ TCASE ≤ 85°C for -18/-25/-3, -40°C ≤ TCASE 95°C for 25I, VDD, VDDQ = 1.8V ± 0.1V)  
PARAMETER  
DC input logic HIGH  
DC input logic LOW  
SYM.  
VIH(dc)  
VIL(dc)  
MIN.  
VREF + 0.125  
-0.3  
MAX.  
UNIT  
VDDQ + 0.3  
VREF - 0.125  
V
V
9.6 Input AC Logic Level  
(0°C ≤ TCASE ≤ 85°C for -18/-25/-3, -40°C ≤ TCASE 95°C for 25I, VDD, VDDQ = 1.8V ± 0.1V)  
-18  
-25/25I/-3  
PARAMETER  
SYM.  
UNIT  
MIN.  
MAX.  
MIN.  
MAX.  
VDDQ + VPEAK1  
VIH (ac)  
VIL (ac)  
VREF + 0.200  
VREF + 0.200  
VSSQ - VPEAK1  
V
V
AC input logic HIGH  
AC input logic LOW  
VREF - 0.200  
VREF - 0.200  
Note:  
1. Refer to the page 66 sections 9.14.1 and 9.14.2 AC Overshoot/Undershoot specification table for VPEAK value: maximum  
peak amplitude allowed for Overshoot/Undershoot.  
Publication Release Date: Oct. 12, 2010  
- 38 -  
Revision A01  
W9751G8JB  
9.7 Capacitance  
SYM.  
PARAMETER  
MIN.  
MAX.  
UNIT  
CCK  
1.0  
2.0  
pF  
Input Capacitance , CLK andCLK  
CDCK  
0.25  
2.0  
pF  
pF  
pF  
1.0  
Input Capacitance delta , CLK andCLK  
CI  
input Capacitance, all other input-only pins  
Input Capacitance delta, all other input-only pins  
CDI  
0.25  
Input/output Capacitance, DQ, DM,  
DQS,DQS ,RDQS,RDQS  
CIO  
2.5  
3.5  
0.5  
pF  
pF  
Input/output Capacitance delta, DQ, DM,  
DQS,DQS ,RDQS,RDQS  
CDIO  
9.8 Leakage and Output Buffer Characteristics  
SYM.  
PARAMETER  
Input Leakage Current  
MIN.  
MAX.  
UNIT  
NOTES  
IIL  
-2  
2
5
µA  
µA  
1
(0V VIN VDD)  
Output Leakage Current  
IOL  
-5  
2
(Output disabled, 0V VOUT VDDQ)  
Minimum Required Output Pull-up  
Maximum Required Output Pull-down  
VOH  
VOL  
VTT + 0.603  
V
V
VTT - 0.603  
IOH(dc) Output Minimum Source DC Current  
IOL(dc) Output Minimum Sink DC Current  
-13.4  
mA  
3, 5  
4, 5  
13.4  
mA  
Notes:  
1. All other pins not under test = 0 V.  
2. DQ, DQS, , RDQS,  
are disabled and ODT is turned off.  
RDQS  
DQS  
3. VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT - VDDQ)/IOH must be less than 21 Ω for values of VOUT between VDDQ and VDDQ -  
0.28V.  
4. VDDQ = 1.7 V; VOUT = 0.28V. VOUT/IOL must be less than 21 Ω for values of VOUT between 0 V and 0.28V.  
5. The values of IOH(dc) and IOL(dc) are based on the conditions given in Notes 3 and 4. They are used to test drive current  
capability to ensure VIHmin plus a noise margin and VILmax minus a noise margin are delivered to an SSTL_18 receiver.  
Publication Release Date: Oct. 12, 2010  
- 39 -  
Revision A01  
W9751G8JB  
9.9 DC Characteristics  
(0°C ≤ TCASE ≤ 85°C for -18/-25/-3, -40°C ≤ TCASE 95°C for 25I, VDD, VDDQ = 1.8V ± 0.1V)  
-18  
-25/25I  
-3  
SYM.  
IDD0  
CONDITIONS  
UNIT  
NOTES  
MAX. MAX. MAX.  
Operating Current - One Bank Active-Precharge  
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD);  
1,2,3,4,5,  
6
65  
70  
55  
62  
55  
60  
mA  
CKE is HIGH,  
is HIGH between valid commands;  
CS  
Address and control inputs are SWITCHING;  
Databus inputs are SWITCHING.  
Operating Current - One Bank Active-Read-  
Precharge  
IOUT = 0 mA;  
BL = 4, CL = CL(IDD), AL = 0;  
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD), tRCD  
= tRCD(IDD);  
1,2,3,4,5,  
6
mA  
IDD1  
CKE is HIGH,  
is HIGH between valid commands;  
CS  
Address and control inputs are SWITCHING;  
Data bus inputs are SWITCHING.  
Precharge Power-Down Current  
All banks idle;  
tCK = tCK(IDD);  
CKE is LOW;  
Other control and address inputs are STABLE;  
1,2,3,4,5,  
6,7  
6
6
6
mA  
mA  
mA  
IDD2P  
IDD2N  
IDD2Q  
Data Bus inputs are FLOATING. (TCASE 85°C)  
Precharge Standby Current  
All banks idle;  
tCK = tCK(IDD);  
1,2,3,4,5,  
6
40  
35  
35  
30  
35  
30  
CKE is HIGH,  
is HIGH;  
CS  
Other control and address inputs are SWITCHING;  
Data bus inputs are SWITCHING.  
Precharge Quiet Standby Current  
All banks idle;  
tCK = tCK(IDD);  
1,2,3,4,5,  
6
CKE is HIGH,  
is HIGH;  
CS  
Other control and address inputs are STABLE;  
Data bus inputs are FLOATING.  
Active Power-Down Current  
All banks open;  
tCK = tCK(IDD);  
CKE is LOW;  
Other control and address inputs are  
STABLE;  
Data bus inputs are FLOATING.  
Fast PDN Exit  
MRS(12) = 0  
1,2,3,4,5,  
6
10  
10  
10  
10  
10  
10  
mA  
mA  
IDD3PF  
IDD3PS  
Slow PDN Exit  
MRS(12) = 1  
1,2,3,4,5,  
6,7  
(TCASE 85°C)  
Active Standby Current  
All banks open;  
tCK = tCK(IDD); tRAS = tRASmax(IDD), tRP = tRP(IDD);  
1,2,3,4,5,  
6
55  
45  
45  
mA  
IDD3N  
CKE is HIGH, CS is HIGH between valid commands;  
Other control and address inputs are SWITCHING;  
Data bus inputs are SWITCHING.  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 40 -  
W9751G8JB  
Operating Burst Read Current  
All banks open, Continuous burst reads, IOUT = 0 mA;  
BL = 4, CL = CL(IDD), AL = 0;  
tCK = tCK(IDD); tRAS = tRASmax(IDD), tRP = tRP(IDD);  
1,2,3,4,5,  
120  
125  
85  
80  
mA  
6
IDD4R  
IDD4W  
CKE is HIGH,  
is HIGH between valid commands;  
CS  
Address inputs are SWITCHING;  
Data Bus inputs are SWITCHING.  
Operating Burst Write Current  
All banks open, Continuous burst writes;  
BL = 4, CL = CL(IDD), AL = 0;  
tCK = tCK(IDD); tRAS = tRASmax(IDD), tRP = tRP(IDD);  
1,2,3,4,5,  
110  
105  
mA  
6
CKE is HIGH,  
is HIGH between valid commands;  
CS  
Address inputs are SWITCHING;  
Data Bus inputs are SWITCHING.  
Burst Refresh Current  
tCK = tCK(IDD);  
Refresh command every tRFC(IDD) interval;  
1,2,3,4,5,  
6
85  
6
80  
6
80  
6
mA  
mA  
IDD5B  
IDD6  
CKE is HIGH,  
is HIGH between valid commands;  
CS  
Other control and address inputs are SWITCHING;  
Data bus inputs are SWITCHING.  
Self Refresh Current  
CKE 0.2 V, external clock off, CLK and  
at 0 V;  
CLK  
1,2,3,4,5,  
6,7  
Other control and address inputs are FLOATING;  
Data bus inputs are FLOATING. (TCASE 85°C)  
Operating Bank Interleave Read Current  
All bank interleaving reads, IOUT = 0mA;  
BL = 4, CL = CL(IDD), AL = tRCD(IDD) - 1 x tCK(IDD);  
tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD), tRCD =  
tRCD(IDD);  
1,2,3,4,5,  
6
135  
120  
110  
mA  
IDD7  
CKE is HIGH,  
is HIGH between valid commands;  
CS  
Address bus inputs are STABLE during deselects;  
Data Bus inputs are SWITCHING.  
Notes:  
1. VDD = 1.8 V0.1V; VDDQ = 1.8 V0.1V.  
2. IDD specifications are tested after the device is properly initialized.  
3. Input slew rate is specified by AC Parametric Test Condition.  
4. IDD parameters are specified with ODT disabled.  
5. Data Bus consists of DQ, DM, DQS,  
6. Definitions for IDD  
, RDQS,  
.
RDQS  
DQS  
LOW = Vin VIL (ac) (max)  
HIGH = Vin VIH (ac) (min)  
STABLE = inputs stable at a HIGH or LOW level  
FLOATING = inputs at VREF = VDDQ/2  
SWITCHING = inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and  
control signals, and inputs changing between HIGH and LOW every other data transfer (once per clock)  
for DQ signals not including masks or strobes.  
7. The following IDD values must be derated (IDD limits increase), when TCASE 85°C IDD2P must be derated by 20 %;  
IDD3P(slow) must be derated by 30 % and IDD6 must be derated by 80 %. (IDD6 will increase by this amount if TCASE < 85°C  
and the 2X refresh option is still enabled)  
Publication Release Date: Oct. 12, 2010  
- 41 -  
Revision A01  
W9751G8JB  
9.10 IDD Measurement Test Parameters  
DDR2-1066  
DDR2-800  
(-25/25I)  
DDR2-667  
SPEED GRADE  
(-18)  
(-3)  
UNIT  
Bin(CL-tRCD-tRP)  
7-7-7  
5-5-5/6-6-6  
5-5-5  
CL(IDD)  
7
5/6  
5
3
tCK  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
tCK(IDD)  
1.875  
13.125  
13.125  
53.125  
40  
2.5  
12.5  
12.5  
52.5  
40  
tRCD(IDD)  
15  
tRP(IDD)  
15  
tRC(IDD)  
55  
tRASmin(IDD)  
tRASmax(IDD)  
tRRD(IDD)-1KB  
tFAW(IDD)-1KB  
tRFC(IDD)  
40  
70000  
7.5  
70000  
7.5  
70000  
7.5  
37.5  
105  
35  
35  
105  
105  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 42 -  
W9751G8JB  
9.11 AC Characteristics  
9.11.1 AC Characteristics and Operating Condition for -18 speed grade  
SPEED GRADE  
Bin(CL-tRCD-tRP)  
DDR2-1066 (-18)  
7-7-7  
SYM.  
UNIT25  
NOTES  
PARAMETER  
MIN.  
MAX.  
tRCD  
tRP  
Active to Read/Write Command Delay Time  
Precharge to Active Command Period  
Active to Ref/Active Command Period  
Active to Precharge Command Period  
Auto Refresh to Active/Auto Refresh command period  
13.125  
13.125  
53.125  
40  
nS  
nS  
nS  
nS  
nS  
μS  
23  
23  
23  
4,23  
5
tRC  
tRAS  
tRFC  
70000  
105  
7.8  
5
0°C TCASE 85°C  
85°C < TCASE 95°C  
Average periodic  
refresh Interval  
tREFI  
tCCD  
3.9  
μS  
5,6  
2
nCK  
to  
command delay  
CAS  
CAS  
tCK(avg) @ CL=4  
tCK(avg) @ CL=5  
tCK(avg) @ CL=6  
tCK(avg) @ CL=7  
3.75  
3
7.5  
nS  
nS  
30,31  
30,31  
30,31  
30,31  
30,31  
30,31  
7.5  
tCK(avg)  
Average clock period  
2.5  
7.5  
nS  
1.875  
0.48  
0.48  
7.5  
nS  
tCH(avg)  
tCL(avg)  
Average clock high pulse width  
Average clock low pulse width  
0.52  
0.52  
tCK(avg)  
tCK(avg)  
tAC  
-350  
-325  
350  
325  
pS  
pS  
35  
35  
DQ output access time from CLK/  
CLK  
tDQSCK  
DQS output access time from CLK /  
CLK  
tDQSQ  
tCKE  
tRRD  
tFAW  
tWR  
DQS-DQ skew for DQS & associated DQ signals  
CKE minimum high and low pulse width  
Active to active command period for 1KB page size  
Four Activate Window for 1KB page size  
Write recovery time  
175  
pS  
nCK  
nS  
13  
7
3
7.5  
8,23  
23  
35  
nS  
15  
nS  
23  
tDAL  
tWTR  
tRTP  
Auto-precharge write recovery + precharge time  
Internal Write to Read command delay  
Internal Read to Precharge command delay  
WR + tnRP  
7.5  
nCK  
nS  
24  
9,23  
4,23  
7.5  
nS  
10, 26,  
40,42,43  
tIS (base)  
tIH (base)  
tIS (ref)  
Address and control input setup time  
Address and control input hold time  
Address and control input setup time  
Address and control input hold time  
125  
200  
325  
325  
pS  
pS  
pS  
pS  
11, 26,  
40,42,43  
10,26,  
40,42,43  
11,26,  
40,42,43  
tIH (ref)  
tIPW  
tDQSS  
tDSS  
Address and control input pulse width for each input  
DQS latching rising transitions to associated clock edges  
DQS falling edge to CLK setup time  
DQS falling edge hold time from CLK  
DQS input high pulse width  
0.6  
-0.25  
0.2  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
0.25  
28  
28  
28  
tDSH  
0.2  
tDQSH  
tDQSL  
0.35  
0.35  
DQS input low pulse width  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 43 -  
W9751G8JB  
AC Characteristics and Operating Condition for -18 speed grade, continued  
SPEED GRADE  
DDR2-1066 (-18)  
7-7-7  
SYM.  
Bin(CL-tRCD-tRP)  
PARAMETER  
UNITS25 NOTES  
MIN.  
MAX.  
tWPRE  
tWPST  
tRPRE  
tRPST  
Write preamble  
Write postamble  
Read preamble  
Read postamble  
0.35  
0.4  
0.9  
0.4  
tCK(avg)  
0.6  
1.1  
0.6  
tCK(avg)  
tCK(avg)  
tCK(avg)  
12  
14,36  
14,37  
16,27,29,  
41,42,44  
tDS(base)  
tDH(base)  
tDS(ref)  
DQ and DM input setup time  
DQ and DM input hold time  
DQ and DM input setup time  
0
pS  
pS  
pS  
pS  
17,27,29,  
41,42,44  
75  
16,27,29,  
41,42,44  
200  
200  
17,27,29,  
41,42,44  
tDH(ref)  
DQ and DM input hold time  
tDIPW  
tHZ  
DQ and DM input pulse width for each input  
0.35  
tCK(avg)  
pS  
tAC,max  
15,35  
15,35  
15,35  
Data-out high-impedance time from CLK/  
CLK  
tLZ(DQS)  
tLZ(DQ)  
tAC,min  
tAC,max  
tAC,max  
pS  
pS  
DQS/  
-low-impedance time from CLK/  
DQS  
CLK  
2 x tAC,min  
DQ low-impedance time from CLK/  
Clock half pulse width  
CLK  
Min. (tCH(abs),  
tCL(abs))  
tHP  
pS  
32  
tQHS  
tQH  
Data hold skew factor  
250  
pS  
pS  
33  
34  
23  
DQ/DQS output hold time from DQS  
tHP - tQHS  
tXSNR  
tXSRD  
tXP  
Exit Self Refresh to a non-Read command  
Exit Self Refresh to a Read command  
tRFC + 10  
nS  
200  
3
nCK  
nCK  
nCK  
Exit precharge power down to any command  
Exit active power down to Read command  
Exit active power down to Read command  
(slow exit, lower power)  
tXARD  
3
18  
tXARDS  
10 - AL  
nCK  
18,19  
tAOND  
tAON  
ODT turn-on delay  
2
2
nCK  
nS  
20  
ODT turn-on  
tAC,min  
tAC,max + 2.575  
20,35  
3 x tCK(avg) +  
tAC,max+1  
tAONPD  
ODT turn-on (Power Down mode)  
tAC,min + 2  
nS  
tAOFD  
tAOF  
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
nCK  
nS  
21,39  
tAC,min  
tAC,max + 0.6  
21,38,39  
2.5 x tCK(avg) +  
tAC,max + 1  
tAOFPD  
ODT turn-off (Power Down mode)  
tAC,min + 2  
nS  
tANPD  
tAXPD  
tMRD  
tMOD  
tOIT  
ODT to power down Entry Latency  
ODT Power Down Exit Latency  
4
11  
2
nCK  
nCK  
nCK  
nS  
Mode Register Set command cycle time  
MRS command to ODT update delay  
OCD Drive mode output delay  
0
12  
12  
23  
23  
0
nS  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tDELAY  
tIS+tCK(avg)+tIH  
nS  
22  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 44 -  
W9751G8JB  
9.11.2 AC Characteristics and Operating Condition for -25/25I/-3 speed grades  
DDR2-800  
(-25/25I)  
DDR2-667  
SPEED GRADE  
(-3)  
SYM.  
UNITS25 NOTES  
Bin(CL-tRCD-tRP)  
PARAMETER  
5-5-5/6-6-6  
5-5-5  
MIN.  
MAX.  
MIN.  
15  
MAX.  
tRCD  
tRP  
Active to Read/Write Command Delay Time  
Precharge to Active Command Period  
Active to Ref/Active Command Period  
Active to Precharge Command Period  
12.5  
12.5  
52.5  
40  
nS  
nS  
nS  
nS  
23  
23  
15  
tRC  
55  
23  
tRAS  
70000  
40  
70000  
4,23  
Auto Refresh to Active/Auto Refresh command  
period  
tRFC  
105  
105  
nS  
5
7.8  
3.9  
7.8  
3.9  
μS  
μS  
5
2
2
0°C TCASE 85°C  
85°C < TCASE 95°C  
Average periodic  
refresh Interval  
tREFI  
tCCD  
5,6  
nCK  
to  
command delay  
CAS  
CAS  
tCK(avg) @ CL=3  
tCK(avg) @ CL=4  
tCK(avg) @ CL=5  
tCK(avg) @ CL=6  
5
8
8
5
3.75  
3
8
8
nS  
nS  
30,31  
30,31  
30,31  
30,31  
30,31  
30,31  
3.75  
2.5  
tCK(avg) Average clock period  
8
8
nS  
2.5  
8
nS  
tCH(avg) Average clock high pulse width  
tCL(avg) Average clock low pulse width  
0.48  
0.48  
0.52  
0.52  
0.48  
0.48  
0.52  
0.52  
tCK(avg)  
tCK(avg)  
tAC  
-400  
-350  
400  
350  
-450  
-400  
450  
400  
pS  
pS  
35  
35  
DQ output access time from CLK/  
CLK  
tDQSCK  
DQS output access time from CLK /  
CLK  
tDQSQ  
tCKE  
DQS-DQ skew for DQS & associated DQ signals  
CKE minimum high and low pulse width  
200  
240  
pS  
13  
7
3
3
nCK  
Active to active command period for 1KB page  
size  
tRRD  
7.5  
7.5  
nS  
8,23  
tFAW  
tWR  
Four Activate Window for 1KB page size  
Write recovery time  
35  
15  
37.5  
15  
nS  
nS  
23  
23  
tDAL  
tWTR  
tRTP  
Auto-precharge write recovery + precharge time WR + tnRP  
WR + tnRP  
7.5  
nCK  
nS  
24  
Internal Write to Read command delay  
7.5  
7.5  
9,23  
4,23  
Internal Read to Precharge command delay  
7.5  
nS  
10, 26,  
40,42,43  
tIS (base) Address and control input setup time  
tIH (base) Address and control input hold time  
175  
250  
375  
375  
0.6  
200  
275  
400  
400  
0.6  
pS  
pS  
11, 26,  
40,42,43  
10,26,  
40,42,43  
tIS (ref)  
tIH (ref)  
tIPW  
Address and control input setup time  
Address and control input hold time  
pS  
11,26,  
40,42,43  
pS  
Address and control input pulse width for each  
input  
tCK(avg)  
tCK(avg)  
DQS latching rising transitions to associated  
clock edges  
tDQSS  
-0.25  
0.25  
-0.25  
0.25  
28  
tDSS  
tDSH  
DQS falling edge to CLK setup time  
DQS falling edge hold time from CLK  
DQS input high pulse width  
0.2  
0.2  
0.2  
0.2  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
28  
28  
tDQSH  
tDQSL  
0.35  
0.35  
0.35  
0.35  
DQS input low pulse width  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 45 -  
W9751G8JB  
AC Characteristics and Operating Condition for -25/25I/-3 speed grades, continued  
DDR2-800  
DDR2-667  
(-3)  
SPEED GRADE  
(-25/25I)  
SYM.  
UNITS25 NOTES  
Bin(CL-tRCD-tRP)  
PARAMETER  
5-5-5/6-6-6  
5-5-5  
MIN.  
MAX.  
MIN.  
0.35  
0.4  
MAX.  
tWPRE Write preamble  
0.35  
0.4  
0.9  
0.4  
tCK(avg)  
tCK(avg)  
tWPST  
tRPRE  
tRPST  
Write postamble  
0.6  
1.1  
0.6  
0.6  
1.1  
0.6  
12  
Read preamble  
Read postamble  
0.9  
tCK(avg) 14,36  
tCK(avg) 14,37  
0.4  
16,27,29,  
pS  
tDS(base) DQ and DM input setup time  
tDH(base) DQ and DM input hold time  
tDS(ref) DQ and DM input setup time  
tDH(ref) DQ and DM input hold time  
50  
100  
175  
300  
300  
0.35  
41,42,44  
17,27,29,  
pS  
125  
250  
250  
0.35  
41,42,44  
16,27,29,  
pS  
41,42,44  
17,27,29,  
pS  
41,42,44  
DQ and DM input pulse width for each  
tDIPW  
tHZ  
tCK(avg)  
input  
Data-out high-impedance time from  
tAC,max  
tAC,max  
pS  
15,35  
CLK/  
CLK  
DQS/  
CLK/  
-low-impedance time from  
DQS  
tLZ(DQS)  
tLZ(DQ)  
tHP  
tAC,min  
tAC,max  
tAC,max  
tAC,min  
tAC,max  
tAC,max  
pS  
pS  
pS  
15,35  
15,35  
32  
CLK  
2 x tAC,min  
2 x tAC,min  
DQ low-impedance time from CLK/  
Clock half pulse width  
CLK  
Min.  
(tCH(abs),  
tCL(abs))  
Min.  
(tCH(abs),  
tCL(abs))  
tQHS  
tQH  
Data hold skew factor  
300  
340  
pS  
pS  
33  
34  
23  
DQ/DQS output hold time from DQS  
tHP - tQHS  
tHP - tQHS  
tRFC + 10  
200  
tXSNR  
tXSRD  
Exit Self Refresh to a non-Read command tRFC + 10  
nS  
Exit Self Refresh to a Read command  
200  
nCK  
Exit precharge power down to any  
command  
tXP  
2
2
2
nCK  
nCK  
tXARD  
Exit active power down to Read command  
Exit active power down to Read command  
(slow exit, lower power)  
2
18  
tXARDS  
8 - AL  
7 - AL  
nCK  
18,19  
tAOND  
tAON  
ODT turn-on delay  
2
2
2
2
nCK  
nS  
20  
ODT turn-on  
tAC,min  
tAC,max + 0.7  
tAC,min  
tAC,max + 0.7  
20,35  
2 x tCK(avg) +  
tAC,max + 1  
2 x tCK(avg) +  
tAC,max + 1  
tAONPD ODT turn-on (Power Down mode)  
tAC,min + 2  
tAC,min + 2  
nS  
tAOFD  
tAOF  
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
2.5  
nCK  
nS  
21,39  
tAC,min  
tAC,max + 0.6  
tAC,min  
tAC,max + 0.6  
21,38,39  
2.5 x tCK(avg)  
+ tAC,max + 1  
2.5 x tCK(avg)  
+ tAC,max + 1  
tAOFPD ODT turn-off (Power Down mode)  
tAC,min + 2  
tAC,min + 2  
nS  
tANPD  
tAXPD  
tMRD  
tMOD  
tOIT  
ODT to power down Entry Latency  
ODT Power Down Exit Latency  
3
8
2
0
0
3
8
2
0
0
nCK  
nCK  
nCK  
nS  
Mode Register Set command cycle time  
MRS command to ODT update delay  
OCD Drive mode output delay  
12  
12  
12  
12  
23  
23  
nS  
Minimum time clocks remain ON after  
CKE asynchronously drops LOW  
tIS+tCK(avg)+  
tIH  
tIS+tCK(avg)+  
tIH  
tDELAY  
nS  
22  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 46 -  
W9751G8JB  
Notes:  
1. All voltages are referenced to VSS.  
2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage  
levels, but the related specifications and device operation are guaranteed for the full voltage range specified. ODT is  
disabled for all measurements that are not ODT-specific.  
3. AC timing reference load:  
VDDQ  
DQ  
Output  
DUT  
VTT = VDDQ/2  
DQS  
Timing  
reference  
point  
25Ω  
DQS  
Figure 16 AC timing reference load  
4. This is a minimum requirement. Minimum read to precharge timing is AL + BL / 2 provided that the tRTP and tRAS(min)  
have been satisfied.  
5. If refresh timing is violated, data corruption may occur and the data must be re-written with valid data before a valid READ  
can be executed.  
6. This is an optional feature. For detailed information, please refer to “operating temperature condition” section 9.2 in this data  
sheet.  
7. tCKE min of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the  
valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not  
transition from its valid level during the time period of tIS + 2 x tCK + tIH.  
8. A minimum of two clocks (2 *nCK) is required irrespective of operating frequency.  
9. tWTR is at least two clocks (2 * nCK) independent of operation frequency.  
10. There are two sets of values listed for Command/Address input setup time: tIS(base) and tIS(ref). The tIS(ref) value (for  
reference only) is equivalent to the baseline value of tIS(base) at VREF when the slew rate is 1.0 V/nS. The baseline value  
tIS(base) is the JEDEC defined value, referenced from the input signal crossing at the VIH(ac) level for a rising signal and  
VIL(ac) for a falling signal applied to the device under test. See Figure 17. If the Command/Address slew rate is not equal to  
1.0 V/nS, then the baseline values must be derated by adding the values from table of tIS/tIH derating values for DDR2-667,  
DDR2-800 and DDR2-1066 (page 55).  
CLK  
CLK  
tIH(base)  
tIS(base) tIH(base)  
tIS(base)  
Logic levels  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
VREF levels  
tIS(ref)  
tIH(ref)  
tIS(ref)  
tIH(ref)  
Figure 17 Differential input waveform timing tIS and tIH  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 47 -  
W9751G8JB  
11. There are two sets of values listed for Command/Address input hold time: tIH(base) and tIH(ref). The tIH(ref) value (for  
reference only) is equivalent to the baseline value of tIH(base) at VREF when the slew rate is 1.0 V/nS. The baseline value  
tIH(base) is the JEDEC defined value, referenced from the input signal crossing at the VIL(dc) level for a rising signal and  
VIH(dc) for a falling signal applied to the device under test. See Figure 17. If the Command/Address slew rate is not equal to  
1.0 V/nS, then the baseline values must be derated by adding the values from table tIS/tIH derating values for DDR2-667,  
DDR2-800 and DDR2-1066 (page 55).  
12. The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this  
parameter, but system performance (bus turnaround) will degrades accordingly.  
13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as  
well as output Slew Rate mismatch between DQS /  
and associated DQ in any given cycle.  
DQS  
14. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is  
no longer driving (tRPST), or begins driving (tRPRE). Figure 18 shows a method to calculate these points when the device  
is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage  
measurement points are not critical as long as the calculation is consistent.  
15. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a  
specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ). Figure 18  
shows a method to calculate the point when device is no longer driving (tHZ), or begins driving (tLZ) by measuring the  
signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is  
consistent. tLZ(DQ) refers to tLZ of the DQ‟s and tLZ(DQS) refers to tLZ of the (DQS,  
, RDQS,  
) each treated  
RDQS  
DQS  
as single-ended signal.  
VOH - x mV  
VTT + 2x mV  
VTT + x mV  
VOH - 2x mV  
tHZ  
tLZ  
tRPRE begin point  
tRPST end point  
VOL + 2x mV  
VOL + x mV  
VTT - x mV  
VTT - 2x mV  
T1 T2  
T1 T2  
tHZ,tRPST end point = 2 x T1 - T2  
tLZ,tRPRE begin point = 2 x T1 - T2  
Figure 18 Method for calculating transitions and endpoints  
16. Input waveform timing tDS with differential data strobe enabled MR[bit10]=0. There are two sets of values listed for DQ and  
DM input setup time: tDS(base) and tDS(ref). The tDS(ref) value (for reference only) is equivalent to the baseline value  
tDS(base) at VREF when the slew rate is 2.0 V/nS, differentially. The baseline value tDS(base) is the JEDEC defined value,  
referenced from the input signal crossing at the VIH(ac) level to the differential data strobe crosspoint for a rising signal, and  
from the input signal crossing at the VIL(ac) level to the differential data strobe crosspoint for a falling signal applied to the  
device under test. DQS,  
signals must be monotonic between VIL(dc)max and VIH(dc)min. See Figure 19. If the  
DQS  
differential DQS slew rate is not equal to 2.0 V/nS, then the baseline values must be derated by adding the values from  
table of DDR2-667, DDR2-800 and DDR2-1066 tDS/tDH derating with differential data strobe (page 60).  
17. Input waveform timing tDH with differential data strobe enabled MR[bit10]=0. There are two sets of values listed for DQ and  
DM input hold time: tDH(base) and tDH(ref). The tDH(ref) value (for reference only) is equivalent to the baseline value  
tDH(base) at VREF when the slew rate is 2.0 V/nS, differentially. The baseline value tDH(base) is the JEDEC defined value,  
referenced from the differential data strobe crosspoint to the input signal crossing at the VIH(dc) level for a falling signal and  
from the differential data strobe crosspoint to the input signal crossing at the VIL(dc) level for a rising signal applied to the  
device under test. DQS,  
signals must be monotonic between VIL(dc)max and VIH(dc)min. See Figure 19. If the  
DQS  
differential DQS slew rate is not equal to 2.0 V/nS, then the baseline values must be derated by adding the values from  
table of DDR2-667, DDR2-800 and DDR2-1066 tDS/tDH derating with differential data strobe (page 60).  
Publication Release Date: Oct. 12, 2010  
- 48 -  
Revision A01  
W9751G8JB  
DQS  
DQS  
tDS(base)  
tDH(base)  
tDS(base) tDH(base)  
Logic levels  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
VREF levels  
tDS(ref)  
tDH(ref)  
tDS(ref)  
tDH(ref)  
Figure 19 Differential input waveform timing tDS and tDH  
18. User can choose which active power down exit timing to use via MRS (bit 12). tXARD is expected to be used for fast active  
power down exit timing. tXARDS is expected to be used for slow active power down exit timing.  
19. AL = Additive Latency.  
20. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time  
max is when the ODT resistance is fully on. Both are measure from tAOND, which is interpreted differently per speed bin.  
For DDR2-667/800/1066, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual  
input clock edges.  
21. ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high  
impedance. Both are measured from tAOFD.  
For DDR2-667/800: This is interpreted differently per speed bin. If tCK(avg) = 3 nS is assumed, tAOFD is 1.5 nS (=  
0.5 x 3 nS) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by  
counting the actual input clock edges.  
For DDR2-1066: This is interpreted as 0.5 x tCK(avg) [nS] after the second trailing clock edge counting from the  
clock edge that registered a first ODT LOW and by counting the actual input clock edges. tAOFD is 0.9375 [nS] (=  
0.5 x 1.875 [nS]) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW  
and by counting the actual input clock edges.  
22. The clock frequency is allowed to change during Self Refresh mode or precharge power-down mode. In case of clock  
frequency change during precharge power-down, a specific procedure is required as described in section 7.10.  
23. For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM /  
tCK(avg)}, which is in clock cycles, assuming all input clock jitter specifications are satisfied.  
Examples:  
The device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are  
met. This means: For DDR2-667 5-5-5, of which tRP = 15nS, the device will support tnRP = RU{tRP / tCK(avg)} = 5,  
i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm+5  
is valid even if (Tm+5 - Tm) is less than 15nS due to input clock jitter. For DDR2-1066 7-7-7, of which tRP = 13.125  
nS, the device will support tnRP = RU{tRP / tCK(avg)} = 7, i.e. as long as the input clock jitter specifications are met,  
Precharge command at Tm and Active command at Tm+7 is valid even if (Tm+7 - Tm) is less than 13.125 nS due to  
input clock jitter.  
24. tDAL [nCK] = WR [nCK] + tnRP [nCK] = WR + RU {tRP [pS] / tCK(avg) [pS] }, where WR is the value programmed in the  
mode register set and RU stands for round up.  
Example:  
For DDR2-1066 7-7-7 at tCK(avg) = 1.875 nS with WR programmed to 8 nCK, tDAL = 8 + RU{13.125 nS / 1.875  
nS} [nCK] = 8 + 7 [nCK] = 15 [nCK].  
Publication Release Date: Oct. 12, 2010  
- 49 -  
Revision A01  
W9751G8JB  
25. New units, „tCK(avg)‟ and „nCK‟, are introduced in DDR2-667, DDR2-800 and DDR2-1066.  
Unit „tCK(avg)‟ represents the actual tCK(avg) of the input clock under operation.  
Unit „nCK‟ represents one clock cycle of the input clock, counting the actual clock edges.  
Examples:  
For DDR2-667/800: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be  
registered at Tm+2, even if (Tm+2 - Tm) is 2 x tCK(avg) + tERR(2per),min.  
For DDR2-1066: tXP = 3 [nCK] means; if Power Down exit is registered at Tm, an Active command may be  
registered at Tm+3, even if (Tm+3 - Tm) is 3 x tCK(avg) + tERR(3per),min.  
26. These parameters are measured from a command/address signal (CKE,  
,
,
,
, ODT, BA0, A0, A1, etc.)  
WE  
CS RAS CAS  
transition edge to its respective clock signal (CLK/  
) crossing. The spec values are not affected by the amount of clock  
CLK  
jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the  
command/address. That is, these parameters should be met whether clock jitter is present or not.  
27. If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can  
be executed.  
28. These parameters are measured from a data strobe signal (DQS,  
, RDQS,  
) crossing to its respective clock  
RDQS  
DQS  
signal (CLK/  
) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc),  
CLK  
etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is  
present or not.  
29. These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe  
signal (DQS,  
, RDQS,  
) crossing.  
RDQS  
DQS  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 50 -  
W9751G8JB  
30. Input clock jitter spec parameter. These parameters and the ones in the table below are referred to as 'input clock jitter spec  
parameters'. The jitter specified is a random jitter meeting a Gaussian distribution.  
Input clock-Jitter specifications parameters for DDR2-667, DDR2-800 and DDR2-1066  
DDR2-667  
MIN. MAX.  
DDR2-800  
MIN. MAX.  
DDR2-1066  
PARAMETER  
SYMBOL  
UNIT  
MIN.  
-90  
MAX.  
90  
Clock period jitter  
tJIT(per)  
tJIT(per,lck)  
tJIT(cc)  
-125  
-100  
-250  
-200  
125  
100  
250  
200  
-100  
-80  
100  
80  
pS  
pS  
pS  
pS  
Clock period jitter during DLL locking period  
Cycle to cycle clock period  
-80  
80  
-200  
-160  
200  
160  
-180  
-160  
180  
160  
Cycle to cycle clock period jitter during DLL  
locking period  
tJIT(cc,lck)  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6-10per)  
-175  
-225  
-250  
-250  
-350  
175  
225  
250  
250  
350  
-150  
-175  
-200  
-200  
-300  
150  
175  
200  
200  
300  
-132  
-157  
-175  
-188  
-250  
132  
157  
175  
188  
250  
pS  
pS  
pS  
pS  
pS  
Cumulative error across n cycles,  
n = 6 ... 10, inclusive  
Cumulative error across n cycles,  
n = 11 ... 50, inclusive  
tERR(11-50per)  
tJIT(duty)  
-450  
-125  
450  
125  
-450  
-100  
450  
100  
-425  
-75  
425  
75  
pS  
pS  
Duty cycle jitter  
Definitions:  
-
tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window.  
N
tCK(avg) =  
tCK / N  
j   
j1  
where  
N = 200  
-
tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average HIGH pulse width, as calculated across any consecutive 200 HIGH pulses.  
N
tCH(avg) =  
tCH / (N × tCK(avg))  
j   
j1  
where  
N = 200  
tCL(avg) is defined as the average LOW pulse width, as calculated across any consecutive 200 LOW pulses.  
N
tCL(avg) =  
tCL / (N × tCK(avg))  
j   
j1  
where  
N = 200  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 51 -  
W9751G8JB  
-
tJIT(duty)  
tJIT(duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of any single tCH from  
tCH(avg). tCL jitter is the largest deviation of any single tCL from tCL(avg).  
tJIT(duty) = Min/max of {tJIT(CH), tJIT(CL)}  
where,  
tJIT(CH) = {tCHi- tCH(avg) where i=1 to 200}  
tJIT(CL) = {tCLi- tCL(avg) where i=1 to 200}  
-
tJIT(per), tJIT(per,lck)  
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).  
tJIT(per) = Min/max of {tCKi- tCK(avg) where i=1 to 200}  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not guaranteed through final production testing.  
-
tJIT(cc), tJIT(cc,lck)  
tJIT(cc) is defined as the difference in clock period between two consecutive clock cycles:  
tJIT(cc) = Max of |tCKi+1 tCKi|  
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not guaranteed through final production testing.  
-
tERR(2per), tERR (3per), tERR (4per), tERR (5per), tERR (6-10per) and tERR (11-50per)  
tERR is defined as the cumulative error across multiple consecutive cycles from tCK(avg).  
in1  
tERR(nper) =  
tCK n × tCK(avg)  
j   
j1  
n = 2  
n = 3  
n = 4  
n = 5  
for tERR(2per)  
for tERR(3per)  
for tERR(4per)  
for tERR(5per)  
Where  
6 n 10 for tERR(6 10per)  
11n 50 for tERR(1150per)  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 52 -  
W9751G8JB  
31. These parameters are specified per their average values, however it is understood that the following relationship between  
the average timing and the absolute instantaneous timing holds at all times. (Min and max of SPEC values are to be used  
for calculations in the table below.)  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNIT  
Absolute clock period  
tCK(abs)  
tCK(avg),min + tJIT(per),min  
tCK(avg),max + tJIT(per),max  
pS  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
tCH(abs)  
tCL(abs)  
tCH(avg),min x tCK(avg),min +  
tJIT(duty),min  
tCH(avg),max x tCK(avg),max +  
tJIT(duty),max  
pS  
pS  
tCL(avg),min x tCK(avg),min +  
tJIT(duty),min  
tCL(avg),max x tCK(avg),max +  
tJIT(duty),max  
Examples: 1) For DDR2-667, tCH(abs),min = ( 0.48 x 3000 pS ) - 125 pS = 1315 pS  
2) For DDR2-1066, tCH(abs),min = ( 0.48 x 1875 pS ) - 75 pS = 825 pS  
32. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input  
specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for  
tQH calculation is determined by the following equation;  
tHP = Min ( tCH(abs), tCL(abs) ),  
where,  
tCH(abs) is the minimum of the actual instantaneous clock HIGH time;  
tCL(abs) is the minimum of the actual instantaneous clock LOW time;  
33. tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is  
transferred to the output; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition,  
both of which are independent of each other, due to data pin skew, output pattern effects, and p-channel to n-  
channel variation of the output drivers  
34. tQH = tHP tQHS, where:  
tHP is the minimum of the absolute half period of the actual input clock; and  
tQHS is the specification value under the max column.  
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples:  
1) If the system provides tHP of 1315 pS into a DDR2-667 SDRAM, the DRAM provides tQH of 975 pS minimum.  
2) If the system provides tHP of 1420 pS into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 pS minimum.  
3) If the system provides tHP of 825 pS into a DDR2-1066 SDRAM, the DRAM provides tQH of 575 pS minimum.  
4) If the system provides tHP of 900 pS into a DDR2-1066 SDRAM, the DRAM provides tQH of 650 pS minimum.  
35. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the  
input clock. (output deratings are relative to the SDRAM input clock.)  
Examples:  
1) If the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 pS and tERR(6-10per),max = +  
293 pS, then tDQSCK,min(derated) = tDQSCK,min - tERR(6-10per),max = - 400 pS - 293 pS = - 693 pS and  
tDQSCK,max(derated) = tDQSCK,max - tERR(6-10per),min = 400 pS + 272 pS = + 672 pS.  
Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ),min(derated) = - 900 pS - 293 pS = - 1193 pS and  
tLZ(DQ),max(derated) = 450 pS + 272 pS = + 722 pS. (Caution on the min/max usage!)  
2) If the measured jitter into a DDR2-1066 SDRAM has tERR(6-10per),min = - 202 pS and tERR(6-10per),max = +  
223 pS, then tDQSCK,min(derated) = tDQSCK,min - tERR(6-10per),max = - 300 pS - 223 pS = - 523 pS and  
tDQSCK,max(derated) = tDQSCK,max - tERR(6-10per),min = 300 pS + 202 pS = + 502 pS.  
Similarly, tLZ(DQ) for DDR2-1066 derates to tLZ(DQ),min(derated) = - 700 pS - 223 pS = - 923 pS and  
tLZ(DQ),max(derated) = 350 pS + 202 pS = + 552 pS. (Caution on the min/max usage!)  
Publication Release Date: Oct. 12, 2010  
- 53 -  
Revision A01  
W9751G8JB  
36. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per) of the input  
clock. (output deratings are relative to the SDRAM input clock.)  
Examples:  
1) If the measured jitter into a DDR2-667 SDRAM has tJIT(per),min = - 72 pS and tJIT(per),max = + 93 pS, then  
tRPRE,min(derated) = tRPRE,min + tJIT(per),min = 0.9 x tCK(avg) - 72 pS = + 2178 pS and tRPRE,max(derated) =  
tRPRE,max + tJIT(per),max = 1.1 x tCK(avg) + 93 pS = + 2843 pS. (Caution on the min/max usage!)  
2) If the measured jitter into a DDR2-1066 SDRAM has tJIT(per),min = - 72 pS and tJIT(per),max = + 63 pS, then  
tRPRE,min(derated) = tRPRE,min + tJIT(per),min = 0.9 x tCK(avg) - 72 pS = + 1615.5 pS and tRPRE,max(derated)  
= tRPRE,max + tJIT(per),max = 1.1 x tCK(avg) + 63 pS = + 2125.5 pS. (Caution on the min/max usage!)  
37. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(duty) of the input  
clock. (output deratings are relative to the SDRAM input clock.)  
Examples:  
1) If the measured jitter into a DDR2-667 SDRAM has tJIT(duty),min = - 72 pS and tJIT(duty),max = + 93 pS, then  
tRPST,min(derated) = tRPST,min + tJIT(duty),min = 0.4 x tCK(avg) - 72 pS = + 928 pS and tRPST,max(derated) =  
tRPST,max + tJIT(duty),max = 0.6 x tCK(avg) + 93 pS = + 1592 pS. (Caution on the min/max usage!)  
2) If the measured jitter into a DDR2-1066 SDRAM has tJIT(duty),min = - 72 pS and tJIT(duty),max = + 63 pS, then  
tRPST,min(derated) = tRPST,min + tJIT(duty),min = 0.4 x tCK(avg) - 72 pS = + 678 pS and tRPST,max(derated) =  
tRPST,max + tJIT(duty),max = 0.6 x tCK(avg) + 63 pS = + 1188 pS. (Caution on the min/max usage!)  
38. When the device is operated with input clock jitter, this parameter needs to be derated by { -tJIT(duty),max - tERR(6-  
10per),max } and { - tJIT(duty),min - tERR(6-10per),min } of the actual input clock. (output deratings are relative to the  
SDRAM input clock.)  
Examples:  
1) If the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 pS, tERR(6-10per),max = + 293  
pS, tJIT(duty),min = - 106 pS and tJIT(duty),max = + 94 pS, then tAOF,min(derated) = tAOF,min + { - tJIT(duty),max  
- tERR(6-10per),max } = - 450 pS + { - 94 pS - 293 pS} = - 837 pS and tAOF,max(derated) = tAOF,max + { -  
tJIT(duty),min - tERR(6-10per),min } = 1050 pS + { 106 pS + 272 pS } = + 1428 pS. (Caution on the min/max  
usage!)  
2) If the measured jitter into a DDR2-1066 SDRAM has tERR(6-10per),min = - 202 pS, tERR(6-10per),max = + 223  
pS, tJIT(duty),min = - 66 pS and tJIT(duty),max = + 74 pS, then tAOF,min(derated) = tAOF,min + { - tJIT(duty),max -  
tERR(6-10per),max } = - 350 pS + { - 74 pS - 223 pS} = - 647 pS and tAOF,max(derated) = tAOF,max + { -  
tJIT(duty),min - tERR(6-10per),min } = 950 pS + { 66 pS + 202 pS } = + 1218 pS. (Caution on the min/max usage!)  
39. For tAOFD of DDR2-667/800/1066, the 1/2 clock of nCK in the 2.5 x nCK assumes a tCH(avg), average input clock HIGH  
pulse width of 0.5 relative to tCK(avg). tAOF,min and tAOF,max should each be derated by the same amount as the actual  
amount of tCH(avg) offset present at the DRAM input with respect to 0.5.  
Example:  
If an input clock has a worst case tCH(avg) of 0.48, the tAOF,min should be derated by subtracting 0.02 x tCK(avg)  
from it, whereas if an input clock has a worst case tCH(avg) of 0.52, the tAOF,max should be derated by adding  
0.02 x tCK(avg) to it. Therefore, we have;  
tAOF,min(derated) = tAC,min - [0.5 - Min(0.5, tCH(avg),min)] x tCK(avg)  
tAOF,max(derated) = tAC,max + 0.6 + [Max(0.5, tCH(avg),max) - 0.5] x tCK(avg)  
or  
tAOF,min(derated) = Min(tAC,min, tAC,min - [0.5 - tCH(avg),min] x tCK(avg))  
tAOF,max(derated) = 0.6 + Max(tAC,max, tAC,max + [tCH(avg),max - 0.5] x tCK(avg))  
where tCH(avg),min and tCH(avg),max are the minimum and maximum of tCH(avg) actually measured at the DRAM  
input balls.  
Note that these deratings are in addition to the tAOF derating per input clock jitter, i.e. tJIT(duty) and tERR(6-10per). However  
tAC values used in the equations shown above are from the timing parameter table and are not derated.  
Thus the final derated values for tAOF are;  
tAOF,min(derated_final) = tAOF,min(derated) + { - tJIT(duty),max - tERR(6-10per),max }  
tAOF,max(derated_final) = tAOF,max(derated) + { - tJIT(duty),min - tERR(6-10per),min }  
40. Timings are specified with command/address input slew rate of 1.0 V/nS.  
41. Timings are specified with DQs and DM input slew rate of 1.0V/nS.  
42. Timings are specified with CLK/ CLK differential slew rate of 2.0 V/nS. Timings are guaranteed for DQS signals with a  
differential slew rate of 2.0 V/nS in differential strobe mode.  
Publication Release Date: Oct. 12, 2010  
- 54 -  
Revision A01  
W9751G8JB  
43. tIS and tIH (input setup and hold) derating.  
tIS/tIH Derating values for DDR2-667, DDR2-800 and DDR2-1066  
ΔtIS and ΔtIH Derating Values for DDR2-667, DDR2-800 and DDR2-1066  
Command/  
Address  
Slew Rate  
(V/nS)  
CLK/ CLK Differential Slew Rate  
2.0 V/nS  
1.5 V/nS  
1.0 V/nS  
Unit  
ΔtIS  
+150  
+143  
+133  
+120  
+100  
+67  
0
ΔtIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
ΔtIS  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
ΔtIH  
+124  
+119  
+113  
+105  
+75  
ΔtIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
ΔtIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
+51  
+30  
+60  
-5  
-14  
+16  
+55  
+46  
-13  
-31  
-1  
+47  
+29  
-22  
-54  
-24  
+38  
+6  
-34  
-83  
-4  
-53  
+26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-295  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and  
tIH(base) value to the ΔtIS and ΔtIH derating value respectively. Example: tIS (total setup time) = tIS(base) + ΔtIS.  
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first  
crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
VREF(dc) and the first crossing of VIL(ac)max. If the actual signal is always earlier than the nominal slew rate line between  
shaded „VREF(dc) to AC region‟, use nominal slew rate for derating value. See Figure 20 Illustration of nominal slew rate for tIS.  
If the actual signal is later than the nominal slew rate line anywhere between shaded „VREF(dc) to AC region‟, the slew rate of a  
tangent line to the actual signal from the AC level to DC level is used for derating value. See Figure 21 Illustration of tangent line  
for tIS.  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first  
crossing of VREF(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
VIH(dc)min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate line between  
shaded „DC to VREF(dc) region‟, use nominal slew rate for derating value. See Figure 22 Illustration of nominal slew rate for tIH.  
If the actual signal is earlier than the nominal slew rate line anywhere between shaded „DC to VREF(dc) region‟, the slew rate of  
a tangent line to the actual signal from the DC level to VREF(dc) level is used for derating value. See Figure 23 Illustration of  
tangent line for tIH.  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at  
the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rates in between the values listed in above tIS/tIH derating values for DDR2-667, DDR2-800 and DDR2-1066 table, the  
derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Publication Release Date: Oct. 12, 2010  
- 55 -  
Revision A01  
W9751G8JB  
CLK  
CLK  
tIS  
tIH  
tIS  
tIH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF to AC  
region  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VREF to AC  
region  
VIL(ac)max  
VSS  
ΔTF  
ΔTR  
VIH(ac)min - VREF(dc)  
VREF(dc) - VIL(ac)max  
Setup Slew Rate  
Rising Signal  
Setup Slew Rate  
Falling Signal  
=
=
ΔTR  
ΔTF  
Figure 20 Illustration of nominal slew rate for tIS  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 56 -  
W9751G8JB  
CLK  
CLK  
tIS  
tIH  
tIS  
tIH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
nominal  
line  
VREF to AC  
region  
tangent  
line  
VREF(dc)  
tangent  
line  
VIL(dc)max  
VREF to AC  
region  
VIL(ac)max  
nominal  
line  
ΔTR  
VSS  
tangent line[VIH(ac)min - VREF(dc)  
]
Setup Slew Rate  
Rising Signal  
=
ΔTF  
ΔTR  
tangent line[VREF(dc) - VIL(ac)max  
]
Setup Slew Rate  
Falling Signal  
=
ΔTF  
Figure 21 Illustration of tangent line for tIS  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 57 -  
W9751G8JB  
CLK  
CLK  
tIH  
tIS  
tIS  
tIH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
DC to VREF  
region  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
DC to VREF  
region  
VIL(dc)max  
VIL(ac)max  
VSS  
ΔTR  
ΔTF  
VIH(dc)min - VREF(dc)  
VREF(dc) - VIL(dc)max  
Hold Slew Rate  
Falling Signal  
Hold Slew Rate  
Rising Signal  
=
=
ΔTF  
ΔTR  
Figure 22 Illustration of nominal slew rate for tIH  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 58 -  
W9751G8JB  
CLK  
CLK  
tIS  
tIH  
tIS  
tIH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
nominal  
line  
DC to VREF  
region  
tangent  
line  
VREF(dc)  
tangent  
line  
DC to VREF  
region  
nominal  
line  
VIL(dc)max  
VIL(ac)max  
VSS  
ΔTR  
ΔTF  
tangent line[VREF(dc) - VIL(ac)max  
]
Hold Slew Rate  
Rising Signal  
=
ΔTR  
tangent line[VIH(dc)min - VREF(dc)  
]
Hold Slew Rate  
Falling Signal  
=
ΔTF  
Figure 23 Illustration of tangent line for tIH  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 59 -  
W9751G8JB  
44. Data setup and hold time derating.  
DDR2-667, DDR2-800 and DDR2-1066 tDS/tDH derating with differential data strobe  
ΔtDS, ΔtDH derating values for DDR2-667, DDR2-800 and DDR2-1066 (All units in „pS‟; the note applies to  
the entire table)  
DQ  
Slew  
Rate  
(V/nS)  
DQS/DQS Differential Slew Rate  
4.0 V/nS  
3.0 V/nS  
2.0 V/nS  
1.8 V/nS  
1.6 V/nS  
1.4 V/nS  
1.2 V/nS  
1.0 V/nS  
0.8 V/nS  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
45 100  
45 100  
45  
21  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
67  
0
-
21  
0
-
67  
0
-5  
-
21  
67  
0
79  
12  
7
33  
12  
-2  
-
-
0
24  
19  
11  
2
24  
10  
-7  
-30  
-
-
-
-
-
-
-
-
-
-14  
-5  
-14  
31  
23  
14  
2
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-13 -31  
-1  
-19  
35  
26  
14  
17  
-6  
-35  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-10 -42  
-18  
-47  
38  
26  
0
6
-
-
-
-
-
-
-
-
-
-
-
-10 -59  
-23  
-65  
38  
12  
-11  
-53  
-
-
-
-
-
-
-
-24 -89 -12 -77  
-
-
-
-
-
-52 -140 -40 -128 -28 -116  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and  
tDH(base) value to the ΔtDS and ΔtDH derating value respectively. Example: tDS (total setup time) = tDS(base) + ΔtDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first  
crossing of VIH(ac)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
VREF(dc) and the first crossing of VIL(ac)max. If the actual signal is always earlier than the nominal slew rate line between  
shaded „VREF(dc) to AC region‟, use nominal slew rate for derating value. See Figure 24 Illustration of nominal slew rate for  
tDS (differential DQS,  
).  
DQS  
If the actual signal is later than the nominal slew rate line anywhere between shaded „VREF(dc) to AC region‟, the slew rate of a  
tangent line to the actual signal from the AC level to DC level is used for derating value. See Figure 25 Illustration of tangent line  
for tDS (differential DQS,  
).  
DQS  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first  
crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
VIH(dc)min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate line between  
shaded DC level to VREF(dc) region‟, use nominal slew rate for derating value. See Figure 26 Illustration of nominal slew rate  
for tDH (differential DQS,  
).  
DQS  
If the actual signal is earlier than the nominal slew rate line anywhere between shaded „DC to VREF(dc) region‟, the slew rate of  
a tangent line to the actual signal from the DC level to VREF(dc) level is used for derating value. See Figure 27 Illustration of  
tangent line for tDH (differential DQS,  
).  
DQS  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at  
the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rates in between the values listed in above DDR2-667, DDR2-800 and DDR2-1066 tDS/tDH derating with differential  
data strobe table, the derating values may be obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Publication Release Date: Oct. 12, 2010  
- 60 -  
Revision A01  
W9751G8JB  
DQS  
DQS  
tDH  
tDS  
tDS  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF to AC  
region  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VREF to AC  
region  
VIL(ac)max  
VSS  
ΔTF  
ΔTR  
VREF(dc) - VIL(ac)max  
VIH(ac)min - VREF(dc)  
Setup Slew Rate  
Falling Signal  
Setup Slew Rate  
Rising Signal  
=
=
ΔTF  
ΔTR  
Figure 24 Illustration of nominal slew rate for tDS (differential DQS,  
)
DQS  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 61 -  
W9751G8JB  
DQS  
DQS  
tDS  
tDH  
tDS  
tDH  
VDDQ  
nominal  
line  
VIH(ac)min  
VIH(dc)min  
VREF(dc)  
VREF to AC  
region  
tangent  
line  
tangent  
line  
VIL(dc)max  
VIL(ac)max  
VREF to AC  
region  
nominal  
line  
ΔTR  
VSS  
Setup Slew Rate  
Rising Signal  
tangent line[VIH(ac)min - VREF(dc)  
]
=
ΔTR  
ΔTF  
tangent line[VREF(dc) - VIL(ac)max  
]
Setup Slew Rate  
Falling Signal  
=
ΔTF  
Figure 25 Illustration of tangent line for tDS (differential DQS,DQS  
)
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 62 -  
W9751G8JB  
DQS  
DQS  
tDS  
tDH  
tDS  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF(dc)  
DC to VREF  
region  
nominal  
slew rate  
nominal  
slew rate  
DC to VREF  
region  
VIL(dc)max  
VIL(ac)max  
VSS  
ΔTR  
ΔTF  
VREF(dc) - VIL(dc)max  
VIH(dc)min - VREF(dc)  
Hold Slew Rate  
Rising Signal  
Hold Slew Rate  
Falling Signal  
=
=
ΔTR  
ΔTF  
Figure 26 Illustration of nominal slew rate for tDH (differential DQS,  
)
DQS  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 63 -  
W9751G8JB  
DQS  
DQS  
tDS  
tDH  
tDS  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
nominal  
line  
DC to VREF  
region  
tangent  
line  
VREF(dc)  
tangent  
line  
DC to VREF  
nominal  
line  
region  
VIL(dc)max  
VIL(ac)max  
VSS  
ΔTR  
ΔTF  
tangent line[VREF(dc) - VIL(ac)max  
]
Hold Slew Rate  
Rising Signal  
=
ΔTR  
tangent line [VIH(dc)min - VREF(dc)  
]
Hold Slew Rate  
Falling Signal  
=
ΔTF  
Figure 27 Illustration tangent line for tDH (differential DQS,  
)
DQS  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 64 -  
W9751G8JB  
9.12 AC Input Test Conditions  
(0°C ≤ TCASE ≤ 85°C for -18/-25/-3, -40°C ≤ TCASE 95°C for 25I, VDD, VDDQ = 1.8V ± 0.1V)  
CONDITION  
Input reference voltage  
SYMBOL  
VREF  
VALUE  
0.5 x VDDQ  
1.0  
UNIT  
V
NOTES  
1
1
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
Notes:  
VSWING(MAX)  
SLEW  
V
1.0  
V/nS  
2, 3  
1. Input waveform timing is referenced to the input signal crossing through the VIH/IL(ac) level applied to the device under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(ac) min for rising edges and the  
range from VREF to VIL(ac) max for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to  
VIL(ac) on the negative transitions.  
9.13 Differential Input/Output AC Logic Levels  
(0°C ≤ TCASE ≤ 85°C for -18/-25/-3, -40°C ≤ TCASE 95°C for 25I, VDD, VDDQ = 1.8V ± 0.1V)  
PARAMETER  
AC differential input voltage  
AC differential cross point input voltage  
AC differential cross point output voltage  
Notes:  
SYM.  
VID (ac)  
VIX (ac)  
VOX (ac)  
MIN.  
0.5  
MAX.  
UNIT NOTES  
VDDQ + 0.6  
V
V
V
1
2
3
0.5 x VDDQ - 0.175  
0.5 x VDDQ - 0.125  
0.5 x VDDQ + 0.175  
0.5 x VDDQ + 0.125  
1. VID (ac) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such  
as CLK, DQS) and VCP is the complementary input signal (such as  
VIL (ac).  
,
). The minimum value is equal to VIH (ac) -  
DQS  
CLK  
2. The typical value of VIX (ac) is expected to be about 0.5 x VDDQ of the transmitting device and VIX (ac) is expected to track  
variations in VDDQ. VIX (ac) indicates the voltage at which differential input signals must cross.  
3. The typical value of VOX (ac) is expected to be about 0.5 x VDDQ of the transmitting device and VOX (ac) is expected to  
track variations in VDDQ. VOX (ac) indicates the voltage at which differential output signals must cross.  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VSWING(MAX)  
VREF  
VDDQ  
VID  
VIL(dc) max  
VTR  
VCP  
Crossing point  
VIX or VOX  
VIL(ac) max  
VSS  
ΔTF  
ΔTR  
VSSQ  
VREF - VIL(ac) max  
VIH(ac) min - VREF  
Falling Slew =  
Rising Slew =  
ΔTF  
ΔTR  
Figure 28 AC input test signal and Differential signal levels waveform  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 65 -  
W9751G8JB  
9.14 AC Overshoot / Undershoot Specification  
9.14.1 AC Overshoot / Undershoot Specification for Address and Control Pins:  
Applies to A0-A13, BA0-BA1, /CS, /RAS, /CAS, /WE, CKE, ODT  
PARAMETER  
DDR2-1066  
DDR2-800  
0.9  
DDR2-667  
0.9  
UNIT  
V
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDD  
0.9  
0.9  
0.5  
0.5  
0.9  
0.9  
V
0.66  
0.8  
V-nS  
V-nS  
Maximum undershoot area below VSS  
0.66  
0.8  
9.14.2 AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask pins:  
Applies to DQ, DQS, /DQS, RDQS, /RDQS, DM, CLK, /CL K  
PARAMETER  
DDR2-1066  
0.9  
DDR2-800  
0.9  
DDR2-667  
0.9  
UNIT  
V
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDDQ  
0.9  
0.9  
0.9  
V
0.19  
0.23  
0.23  
V-nS  
V-nS  
Maximum undershoot area below VSSQ  
0.19  
0.23  
0.23  
Maximum Amplitude  
Overshoot Area  
VDD/VDDQ  
VSS/VSSQ  
Volts (V)  
Undershoot Area  
Maximum Amplitude  
Time (nS)  
Figure 29 AC overshoot and undershoot definition  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 66 -  
W9751G8JB  
10. TIMING WAVEFORMS  
10.1 Command Input Timing  
tCK  
tCK  
tCH  
tCL  
CLK  
CLK  
tIS  
tIS  
tIS  
tIS  
tIS  
tIH  
CS  
tIH  
RAS  
tIH  
tIH  
tIH  
CAS  
WE  
A0~A13  
BA0,1  
Refer to the Command Truth Table  
10.2 Timing of the CLK Signals  
tCL  
tCH  
VIH  
CLK  
CLK  
VIH(AC)  
VIL(AC)  
VIL  
tT  
tT  
tCK  
CLK  
VIH  
VIL  
CLK  
VX  
VX  
VX  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 67 -  
W9751G8JB  
10.3 ODT Timing for Active/Standby Mode  
T0  
T4  
T5  
T6  
T8  
T1  
T2  
T3  
T7  
CLK  
CLK  
tIS  
CKE  
ODT  
tIS  
tIS  
VIH(ac)  
VIL(ac)  
tAOFD  
tAOND  
Internal  
Term Res.  
RTT  
tAON(min)  
tAOF(min)  
tAOF(max)  
tAON(max)  
10.4 ODT Timing for Power Down Mode  
T0  
T4  
T5  
T6  
T7  
T8  
T1  
T2  
T3  
CLK  
CLK  
CKE  
tIS  
tIS  
VIH(ac)  
ODT  
VIL(ac)  
tAOFPD(max)  
tAOFPD(min)  
Internal  
Term Res.  
RTT  
tAONPD(min)  
tAONPD(max)  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 68 -  
W9751G8JB  
10.5 ODT Timing mode switch at entering power down mode  
T-2  
T-1  
T0  
T1  
T2  
T-5  
T-4  
T-3  
CLK  
CLK  
tANPD  
CKE  
tIS  
Entering Slow Exit Active Power Down  
Mode or Precharge Power Down Mode  
tIS  
ODT  
VIL(ac)  
Active & Standby  
mode timings to be  
applied  
Internal  
Term Res.  
RTT  
tAOFD  
tIS  
ODT  
VIL(ac)  
Power Down mode  
timings to be applied  
Internal  
Term Res.  
RTT  
tAOFPD(max)  
tIS  
Active & Standby  
mode timings to be  
applied  
VIH(ac)  
tAOND  
ODT  
Internal  
RTT  
Term Res.  
tIS  
VIH(ac)  
Power Down mode  
timings to be applied  
tAONPD(max)  
ODT  
Internal  
Term Res.  
RTT  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 69 -  
W9751G8JB  
10.6 ODT Timing mode switch at exiting power down mode  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
CLK  
CLK  
tIS  
tAXPD  
VIH(ac)  
CKE  
Exiting from Slow Active Power Down Mode  
or Precharge Power Down Mode  
tIS  
ODT  
Active & Standby mode  
timings to be applied  
VIL(ac)  
Internal  
Term Res.  
RTT  
tAOFD  
tIS  
ODT  
Power Down mode  
VIL(ac)  
timings to be applied  
Internal  
Term Res.  
RTT  
tAOFPD(max)  
tIS  
VIH(ac)  
ODT  
Internal  
Active & Standby mode  
timings to be applied  
RTT  
Term Res.  
tAOND  
tIS  
VIH(ac)  
ODT  
Internal  
Term Res.  
Power Down mode  
timings to be applied  
RTT  
tAONPD(max)  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 70 -  
W9751G8JB  
10.7 Data output (read) timing  
tCH  
tCL  
CLK  
CLK  
DQS  
DQS  
DQS  
DQS  
tRPST  
tRPRE  
Q
Q
Q
Q
DQ  
tDQSmax  
tDQSmax  
tQH  
tQH  
10.8 Burst read operation: RL=5 (AL=2, CL=3, BL=4)  
T4  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Posted CAS  
READ A  
NOP  
NOP
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCK  
DQS,  
DQS  
CL = 3  
AL = 2  
RL = 5  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
DQ's  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 71 -  
W9751G8JB  
10.9 Data input (write) timing  
tDQSH  
tDQSL  
DQS  
DQS  
DQS  
DQS  
tWPRE  
tWPST  
VIH(ac)  
D
VIH(dc)  
D
VIL(dc)  
D
D
DQ  
VIL(ac)  
tDH  
tDH  
tDS  
tDS  
VIH(ac)  
DMin  
VIH(dc)  
DMin  
VIL(dc)  
DMin  
DMin  
DM  
VIL(ac)  
10.10 Burst write operation: RL=5 (AL=2, CL=3, WL=4, BL=4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn  
CLK  
CLK  
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge  
CMD  
tDQSS  
tDQSS  
tDSS  
Completion of  
The Burst Write  
Case 1: with tDQSS(max)  
tDSS  
DQS  
DQS  
WL = RL 1= 4  
tWR  
DIN  
A0  
tDQSS  
DIN  
A1  
DIN  
A2  
tDQSS  
DIN  
A3  
DQs  
Case 2: with tDQSS(min)  
tDSH  
tDSH  
DQS  
DQS  
WL = RL 1= 4  
tWR  
DIN  
A0  
DIN  
A1  
DIN  
A2  
DIN  
A3  
DQs  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 72 -  
W9751G8JB  
10.11 Seamless burst read operation: RL = 5 (AL = 2, and CL = 3, BL = 4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
CLK  
Post CAS  
READ A  
Post CAS  
READ B  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
DQS  
CL = 3  
AL = 2  
RL = 5  
DOUT  
B2  
DOUT  
A1  
DOUT  
A2  
DOUT  
A3  
DOUT  
B0  
DOUT  
B1  
DOUT  
A0  
DQ's  
Note:  
The seamless burst read operation is supported by enabling a read command at every other clock for BL = 4 operation, and  
every 4 clock for BL = 8 operation. This operation is allowed regardless of same or different banks as long as the banks are  
activated.  
10.12 Seamless burst write operation: RL = 5 (WL = 4, BL = 4)  
T0  
T1  
T2  
T3  
T8  
T4  
T5  
T6  
T7  
CLK  
CLK  
Post CAS  
Write B  
Post CAS  
Write A  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
DQS  
WL = RL - 1 = 4  
DIN  
A3  
DIN  
B0  
DIN  
A1  
DIN  
A2  
DIN  
B1  
DIN  
B2  
DIN  
B3  
DIN  
A0  
DQ's  
Note:  
The seamless burst write operation is supported by enabling a write command every other clock for BL = 4 operation, every four  
clocks for BL = 8 operation. This operation is allowed regardless of same or different banks as long as the banks are activated.  
Publication Release Date: Oct. 12, 2010  
- 73 -  
Revision A01  
W9751G8JB  
10.13 Burst read interrupt timing: RL =3 (CL=3, AL=0, BL=8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ A  
READ B  
DQS,  
DQS  
Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout  
A0 A1 A2 A3 B0 B1 B2 B3 B4 B5 B6 B7  
DQ's  
10.14 Burst write interrupt timing: RL=3 (CL=3, AL=0, WL=2, BL=8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
NOP  
Write A  
NOP  
Write B  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
Din  
A0  
Din  
A1  
Din  
A2  
Din  
A3  
Din  
B0  
Din  
B1  
Din  
B2  
Din  
B3  
Din  
B4  
Din  
B5  
Din  
B6  
Din  
B7  
DQ's  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 74 -  
W9751G8JB  
10.15 Write operation with Data Mask: WL=3, AL=0, BL=4)  
Data Mask Timing  
DQS/  
DQS  
DQ  
VIH(ac)  
VIL(ac)  
VIH(ac)  
VIL(ac)  
VIH(dc)  
VIL(dc)  
VIH(dc)  
VIL(dc)  
DM  
tDS tDH  
tDS tDH  
CLK  
CLK  
CMDMAND  
Write  
tWR  
WL + tDQSS (min)  
Case 1: min tDQSS  
DQS/DQS  
DQ  
DM  
WL + tDQSS (max)  
Case 2: max tDQSS  
DQS/DQS  
DQ  
DM  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 75 -  
W9751G8JB  
10.16 Burst read operation followed by precharge: RL=4 (AL=1, CL=3, BL=4, tRTP  
2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Post CAS  
READ A  
Bank A  
Activate  
NOP  
NOP  
AL+BL/2 clks  
Precharge  
NOP  
NOP  
tRP  
NOP  
NOP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
DQ's  
tRAS  
tRTP  
10.17 Burst read operation followed by precharge: RL=4 (AL=1, CL=3, BL=8, tRTP  
2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Post CAS  
READ A  
NOP  
NOP  
AL + BL/2 clks  
NOP  
NOP  
Precharge  
NOP  
NOP  
NOP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
Dout  
A4  
Dout  
A5  
Dout  
A6  
Dout  
A7  
DQ's  
tRTP  
first 4-bit prefetch  
second 4-bit prefetch  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 76 -  
W9751G8JB  
10.18 Burst read operation followed by precharge: RL=5 (AL=2, CL=3, BL=4, tRTP  
2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
READ A  
Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
AL + BL/2 clks  
tRP  
DQS,  
DQS  
AL = 2  
CL = 3  
RL = 5  
Dout  
A3  
Dout  
A0  
Dout  
A1  
Dout  
A2  
DQ's  
tRAS  
CL = 3  
tRTP  
10.19 Burst read operation followed by precharge: RL=6 (AL=2, CL=4, BL=4, tRTP  
2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
READA  
NOP  
NOP  
AL + BL/2 clks  
NOP  
NOP  
NOP  
Precharge  
NOP  
tRP  
DQS,  
DQS  
AL = 2  
CL = 4  
RL = 6  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
DQ's  
tRAS  
CL = 4  
tRTP  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 77 -  
W9751G8JB  
10.20 Burst read operation followed by precharge: RL=4 (AL=0, CL=4, BL=8, tRTP  
> 2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
READ A  
Precharge  
NOP  
NOP  
AL + BL/2 + max(RTP, 2) - 2 clks  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
AL = 0  
CL = 4  
RL = 4  
tRP  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
Dout  
A4  
Dout  
A5  
Dout  
A6  
Dout  
A7  
DQ's  
tRAS  
tRTP  
second 4-bit prefetch  
first 4-bit prefetch  
10.21 Burst write operation followed by precharge: WL = (RL-1) = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Post CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge  
Completion of the Burst Write  
tWR  
DQS,  
DQS  
WL = 3  
DIN  
A0  
DIN  
A1  
DIN  
A2  
DIN  
A3  
DQ's  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 78 -  
W9751G8JB  
10.22 Burst write operation followed by precharge: WL = (RL-1) = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CLK/CLK  
CMD  
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge A  
NOP  
Completion of the Burst Write  
tWR  
DQS,  
DQS  
WL = 4  
DIN A0 DIN A1 DIN A2 DIN A3  
DQ's  
10.23 Burst read operation with Auto-precharge: RL=4 (AL=1, CL=3, BL=8, tRTP ≤  
2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
READA  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A10 = 1  
AL + BL/2 clks  
tRP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
Dout  
A4  
Dout  
A5  
Dout  
A6  
Dout  
A7  
DQ's  
tRTP  
first 4-bit prefetch  
second 4-bit prefetch  
tRTP  
Precharge begins here  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 79 -  
W9751G8JB  
10.24 Burst read operation with Auto-precharge: RL=4 (AL=1, CL=3, BL=4, tRTP >  
2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
READA  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A10 = 1  
AL + tRTP + tRP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
DQ's  
4-bit prefetch  
tRTP  
tRP  
Precharge begins here  
10.25 Burst read with Auto-precharge followed by an activation to the same bank  
(tRC Limit): RL=5 (AL=2, CL=3, internal tRCD=3, BL=4, tRTP 2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
READA  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A10 = 1  
Auto-precharge begins  
tRAS min. (AL + BL/2)  
DQS,  
DQS  
tRP  
AL = 2  
CL = 3  
RL = 5  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
DQ's  
tRC min.  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 80 -  
W9751G8JB  
10.26 Burst read with Auto-precharge followed by an activation to the same bank  
(tRP Limit): RL=5 (AL=2, CL=3, internal tRCD=3, BL=4, tRTP 2clks)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
READA  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A10 = 1  
Auto-precharge begins  
tRAS min.  
DQS,  
DQS  
tRP min.  
AL = 2  
CL = 3  
RL = 5  
Dout  
A0  
Dout  
A1  
Dout  
A2  
Dout  
A3  
DQ's  
tRC  
10.27 Burst write with Auto-precharge (tRC Limit): WL=2, WR=2, BL=4, tRP=3  
Tm  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK/CLK  
CMD  
Bank A  
Activate  
Post CAS  
WRA Bank A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A10 = 1  
Completion of the Burst Write  
Auto-precharge Begins  
WR tRP  
DQS,  
DQS  
WL= RL- 1 = 2  
DIN  
A0  
DIN  
A1  
DIN  
A2  
DIN  
A3  
DQ's  
tRC min.  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 81 -  
W9751G8JB  
10.28 Burst write with Auto-precharge (WR + tRP Limit): WL=4, WR=2, BL=4, tRP=3  
T6  
T11  
T0  
T3  
T4  
T5  
T7  
T8  
T9  
CLK/CLK  
CMD  
Post CAS  
WRA Bank A  
Bank A  
Activate  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A10 = 1  
Completion of the Burst Write  
Auto-precharge Begins  
DQS,  
DQS  
tRP min.  
WR  
WL = RL - 1 = 4  
DIN  
A0  
DIN  
A1  
DIN  
A2  
DIN  
A3  
DQ's  
tRC  
10.29 Self Refresh Timing  
T0  
T1  
T2  
T3  
T4  
Tm  
Tn  
T5  
T6  
tCK  
tCH tCL  
CLK  
CLK  
tXSNR  
tRP  
tXSRD  
CKE  
ODT  
VIH(ac)  
VIL(ac)  
tAOFD  
tIS  
tIH  
VIL(ac)  
tIS  
tIH  
tIS  
tIH  
tIS tIH  
VIH(ac)  
VIL(ac)  
VIH(dc)  
VIL(dc)  
Read  
Command  
Self  
Refresh  
Non-Read  
Command  
CMD  
NOP  
NOP  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 82 -  
W9751G8JB  
10.30 Active Power Down Mode Entry and Exit Timing  
Tn+2  
T0  
T1  
T2  
Tn  
Tn+1  
CLK  
CLK  
Valid  
Command  
CMD  
CKE  
Activate  
NOP  
tIS  
NOP  
NOP  
tIS  
NOP  
tXARD or  
tXARDS  
Active  
Power Down  
Exit  
Active  
Power Down  
Entry  
10.31 Precharged Power Down Mode Entry and Exit Timing  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
Tn+2  
CLK  
CLK  
Valid  
NOP  
Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
CMD  
CKE  
Command  
tIS  
tIS  
tRP  
tXP  
Precharge  
Power Down  
Entry  
Precharge  
Power Down  
Exit  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 83 -  
W9751G8JB  
10.32 Clock frequency change in precharge Power Down mode  
T0  
T1  
T2  
T4  
TX  
TX+1  
TY  
TY+1  
TY+2  
TY+3  
TY+4  
Tz  
CLK  
CLK  
DLL  
RESET  
CMD  
CKE  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
200 Clocks  
tIS  
tIS  
Frequency change  
Occurs here  
ODT  
tRP  
tAOFD  
tIH  
tXP  
ODT is off during  
DLL RESET  
Minimum 2 clocks  
required before  
changing frequency  
Stable new clock  
before power down exit  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 84 -  
W9751G8JB  
11. PACKAGE SPECIFICATION  
Package Outline WBGA60 (8x12.5 mm2)  
bbb C  
E1  
aaa  
A
A1  
E
eE  
Pin A1 index  
Pin A1 index  
9
8
7
3
2
1
B
A
B
C
D
E
F
G
H
J
A
K
L
THE WINDOW-SIDE  
ENCAPSULANT  
60xψb  
ccc  
C
SOLDER BALL DIAMETER REFERS.  
TO POST REFLOW CONDITION.  
C
SEATING PLANE  
DIMENSION (MM)  
SYMBOL  
Ball Land  
MIN.  
---  
NOM.  
---  
MAX.  
1.20  
0.40  
0.50  
12.60  
8.10  
A
0.25  
0.40  
A1  
b
---  
0.45  
12.40  
7.90  
12.50  
8.00  
D
E
D1  
8.00 BSC.  
6.40 BSC.  
0.80 BSC.  
0.80 BSC.  
---  
E1  
eE  
Ball Opening  
eD  
aaa  
bbb  
ccc  
Note: 1. Ball land : 0.5mm  
---  
---  
---  
2. Ball opening : 0.4mm  
3. PCB Ball land suggested 0.4mm  
0.15  
0.20  
0.10  
---  
---  
Publication Release Date: Oct. 12, 2010  
Revision A01  
- 85 -  
W9751G8JB  
12. REVISION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
Initial formally data sheet  
A01  
Oct. 12, 2010  
All  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
Publication Release Date: Oct. 12, 2010  
- 86 -  
Revision A01  

相关型号:

W9751G8JB-25

DDR DRAM, 16MX8, 0.4ns, CMOS, PBGA84, 8 X 12.50 MM, ROHS COMPLIANT, WBGA-84

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9751G8JB-3

DDR DRAM, 64MX8, 0.45ns, CMOS, PBGA60, 8 X 12.50 MM, ROHS COMPLIANT, WBGA-60

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9751G8KB

16M x 4 BANKS 꼌 8 BIT DDR2 SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9751G8KB-25

DDR DRAM, 64MX8, 0.4ns, CMOS, PBGA60, WBGA-60

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9751G8KB25I

DDR DRAM, 64MX8, 0.4ns, CMOS, PBGA60, WBGA-60

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W978H2KBQX2E

IC DRAM 256M PARALLEL 168WFBGA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W978H2KBQX2I

IC DRAM 256M PARALLEL 168WFBGA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W978H2KBVX2I

IC DRAM 256M PARALLEL 134VFBGA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W978H6KBQX2E

IC DRAM 256M PARALLEL 168WFBGA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W978H6KBQX2I

IC DRAM 256M PARALLEL 168WFBGA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W978H6KBVX2I

IC DRAM 256M PARALLEL 134VFBGA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC