W9864G6IH-6A [WINBOND]

暂无描述;
W9864G6IH-6A
型号: W9864G6IH-6A
厂家: WINBOND    WINBOND
描述:

暂无描述

存储 内存集成电路 光电二极管 动态存储器 双倍数据速率 时钟
文件: 总43页 (文件大小:1253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W9864G6IH  
1M × 4BANKS × 16BITS SDRAM  
Table of Contents-  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
GENERAL DESCRIPTION ......................................................................................................... 3  
FEATURES................................................................................................................................. 3  
AVAILABLE PART NUMBER ..................................................................................................... 4  
PIN CONFIGURATION............................................................................................................... 4  
PIN DESCRIPTION..................................................................................................................... 5  
BLOCK DIAGRAM ...................................................................................................................... 6  
FUNCTIONAL DESCRIPTION ................................................................................................... 7  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Power Up and Initialization ............................................................................................. 7  
Programming Mode Register Set command .................................................................. 7  
Bank Activate Command ................................................................................................ 7  
Read and Write Access Modes ...................................................................................... 7  
Burst Read Command .................................................................................................... 8  
Burst Command.............................................................................................................. 8  
Read Interrupted by a Read ........................................................................................... 8  
Read Interrupted by a Write............................................................................................ 8  
Write Interrupted by a Write............................................................................................ 8  
7.10 Write Interrupted by a Read............................................................................................ 8  
7.11 Burst Stop Command ..................................................................................................... 9  
7.12 Addressing Sequence of Sequential Mode .................................................................... 9  
7.13 Addressing Sequence of Interleave Mode ..................................................................... 9  
7.14 Auto-precharge Command ........................................................................................... 10  
7.15 Precharge Command.................................................................................................... 10  
7.16 Self Refresh Command ................................................................................................ 10  
7.17 Power Down Mode ....................................................................................................... 11  
7.18 No Operation Command............................................................................................... 11  
7.19 Deselect Command ...................................................................................................... 11  
7.20 Clock Suspend Mode.................................................................................................... 11  
OPERATION MODE ................................................................................................................. 12  
ELECTRICAL CHARACTERISTICS......................................................................................... 13  
8.  
9.  
9.1  
9.2  
Absolute Maximum Ratings.......................................................................................... 13  
Recommended DC Operating Conditions.................................................................... 13  
Publication Release Date:Mar. 31, 2008  
- 1 -  
Revision A05  
W9864G6IH  
9.3  
9.4  
9.5  
Capacitance.................................................................................................................. 13  
DC Characteristics........................................................................................................ 14  
AC Characteristics and Operating Condition................................................................ 15  
10.  
11.  
TIMING WAVEFORMS............................................................................................................. 18  
10.1 Command Input Timing ................................................................................................ 18  
10.2 Read Timing.................................................................................................................. 19  
10.3 Control Timing of Input/Output Data............................................................................. 20  
10.4 Mode Register Set Cycle.............................................................................................. 21  
OPERATINOPERATING TIMING EXAMPLE........................................................................... 22  
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)...................................... 22  
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)........... 23  
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)...................................... 24  
11.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)........... 25  
11.5 Interleaved Bank Write (Burst Length = 8) ................................................................... 26  
11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge) ........................................ 27  
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3) .............................................. 28  
11.8 Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)..................................... 29  
11.9 Auto-precharge Read (Burst Length = 4, CAS Latency = 3)........................................ 30  
11.10 Auto-precharge Write (Burst Length = 4).................................................................... 31  
11.11 Auto Refresh Cycle ..................................................................................................... 32  
11.12 Self Refresh Cycle....................................................................................................... 33  
11.13 Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)............................. 34  
11.14 Power-down Mode ...................................................................................................... 35  
11.15 Auto-precharge Timing (Write Cycle).......................................................................... 36  
11.16 Auto-precharge Timing (Read Cycle) ......................................................................... 37  
11.17 Timing Chart of Read to Write Cycle........................................................................... 38  
11.18 Timing Chart of Write to Read Cycle........................................................................... 38  
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command).......................................... 39  
11.20 Timing Chart of Burst Stop Cycle (Precharge Command).......................................... 39  
11.21 CKE/DQM Input Timing (Write Cycle)......................................................................... 40  
11.22 CKE/DQM Input Timing (Read Cycle)......................................................................... 41  
PACKAGE SPECIFICATION.................................................................................................... 42  
12.1 54L TSOP (II)-400 mil................................................................................................... 42  
REVISION HISTORY................................................................................................................ 43  
12.  
13.  
Publication Release Date:Mar. 31, 2008  
- 2 -  
Revision A05  
W9864G6IH  
1. GENERAL DESCRIPTION  
W9864G6IH is a high-speed synchronous dynamic random access memory (SDRAM), organized as  
1M words × 4 banks × 16 bits. W9864G6IH delivers a data bandwidth of up to 200M words per second.  
For different application, W9864G6IH is sorted into the following speed grades: -5, -6, -7/-7S. The -5  
parts can run up to 200MHz/CL3. The -6 parts can run up to 166MHz/CL3. The -7/-7S parts can run  
up to 143MHz/CL3. And the grade of -7S with tRP = 18nS.  
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be  
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE  
command. Column addresses are automatically generated by the SDRAM internal counter in burst  
operation. Random column read is also possible by providing its address at each clock cycle.  
The multiple bank nature enables interleaving among internal banks to hide the precharging time.By  
having a programmable Mode Register, the system can change burst length, latency cycle, interleave  
or sequential burst to maximize its performance. W9864G6IH is ideal for main memory in high  
performance applications.  
2. FEATURES  
3.3V± 0.3V for -5/-6 speed grades power supply  
2. 7V~3.6V for -7/-7S speed grades power supply  
1,048,576 words × 4 banks × 16 bits organization  
Self Refresh Current: Standard and Low Power  
CAS Latency: 2 & 3  
Burst Length: 1, 2, 4, 8 and full page  
Sequential and Interleave Burst  
Byte data controlled by LDQM, UDQM  
Auto-precharge and controlled precharge  
Burst read, single write operation  
4K refresh cycles/64mS  
Interface: LVTTL  
Packaged in TSOP II 54-pin, 400 mil using Lead free materials with RoHS compliant  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 3 -  
 
W9864G6IH  
3. AVAILABLE PART NUMBER  
SELF REFRESH  
CURRENT (MAX.)  
OPERATING  
TEMPERATURE  
PART NUMBER  
W9864G6IH-5  
SPEED  
0°C ~ 70°C  
0°C ~ 70°C  
0°C ~ 70°C  
0°C ~ 70°C  
200MHz/CL3  
166MHz/CL3  
143MHz/CL3  
143MHz/CL3  
2 mA  
2 mA  
2 mA  
2 mA  
W9864G6IH-6  
W9864G6IH-7  
W9864G6IH-7S  
4. PIN CONFIGURATION  
VDD  
DQ0  
VSS  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
2
3
VDDQ  
DQ1  
4
DQ2  
5
VSSQ  
6
DQ12  
DQ11  
VSSQ  
DQ3  
7
DQ4  
8
VDDQ  
9
DQ10  
DQ9  
DQ5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
DQ6  
VSSQ  
VDDQ  
DQ8  
VSS  
DQ7  
VDD  
NC  
LDQM  
WE  
UDQM  
CLK  
CKE  
NC  
CAS  
RAS  
CS  
A11  
A9  
BS0  
BS1  
A10/AP  
A0  
A8  
A7  
A6  
A1  
A5  
A2  
A4  
A3  
VDD  
VSS  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 4 -  
 
W9864G6IH  
5. PIN DESCRIPTION  
PIN NUMBER PIN NAME  
FUNCTION  
DESCRIPTION  
Multiplexed pins for row and column address.  
Row address: A0A11. Column address: A0A7.  
23 ~ 26, 22,  
Address  
A0A11  
A10 is sampled during a precharge command to  
determine if all banks are to be precharged or bank  
selected by BS0, BS1.  
29 ~35  
Select bank to activate during row address latch time,  
or bank to read/write during address latch time.  
20, 21  
BS0, BS1  
Bank Select  
2, 4, 5, 7, 8, 10,  
11, 13, 42, 44,  
45, 47, 48, 50,  
51, 53  
Data  
Multiplexed pins for data output and input.  
DQ0DQ15  
Input/ Output  
Disable or enable the command decoder. When  
command decoder is disabled, new command is  
ignored and previous operation continues.  
19  
18  
Chip Select  
CS  
Command input. When sampled at the rising edge of  
Row Address  
Strobe  
RAS  
the clock RAS, CAS and WE define the  
operation to be executed.  
Column  
Address Strobe  
17  
16  
CAS  
WE  
Referred to RAS  
Write Enable  
Referred to RAS  
The output buffer is placed at Hi-Z (with latency of 2)  
when DQM is sampled high in read cycle. In write  
cycle, sampling DQM high will block the write  
operation with zero latency.  
UDQM  
LDQM  
Input/output  
mask  
39, 15  
System clock used to sample inputs on the rising  
edge of clock.  
38  
37  
CLK  
CKE  
Clock Inputs  
Clock Enable  
CKE controls the clock activation and deactivation.  
When CKE is low, Power Down mode, Suspend  
mode, or Self Refresh mode is entered.  
1, 14, 27  
VDD  
VSS  
Power  
Power for input buffers and logic circuit inside DRAM.  
Ground for input buffers and logic circuit inside  
DRAM.  
28, 41, 54  
Ground  
Power for I/O Separated power from VDD, to improve DQ noise  
3, 9, 43, 49  
VDDQ  
buffer  
immunity.  
Ground for I/O  
buffer  
Separated ground from VSS, to improve DQ noise  
immunity.  
6, 12, 46, 52 VSSQ  
36, 40 NC  
No connection.(The NC pin must connect to  
ground or floating.)  
No Connection  
Publication Release Date:Mar. 31, 2008  
- 5 -  
Revision A05  
 
W9864G6IH  
6. BLOCK DIAGRAM  
CLK  
CLOCK  
BUFFER  
CKE  
CONTROL  
CS  
SIGNAL  
GENERATOR  
RAS  
COMMAND  
CAS  
DECODER  
COLUMN DECODER  
COLUMN DECODER  
WE  
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
A10  
MODE  
REGISTER  
A0  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
ADDRESS  
BUFFER  
A9  
A11  
BS0  
BS1  
DQ0  
DATA CONTROL  
CIRCUIT  
DQ  
BUFFER  
DQ15  
COLUMN  
REFRESH  
COUNTER  
UDQM  
LDQM  
COUNTER  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
NOTE:  
The cell array configuration is 4096 * 256 * 16  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 6 -  
 
W9864G6IH  
7. FUNCTIONAL DESCRIPTION  
7.1 Power Up and Initialization  
The default power up state of the mode register is unspecified. The following power up and  
initialization sequence need to be followed to guarantee the device being preconditioned to each user  
specific needs.  
During power up, all VDD and VDDQ pins must be ramp up simultaneously to the specified voltage  
when the input signals are held in the "NOP" state. The power up voltage must not exceed VDD + 0.3V  
on any of the input pins or VDD supplies. After power up, an initial pause of 200 µS is required  
followed by a precharge of all banks using the precharge command. To prevent data contention on the  
DQ bus during power up, it is required that the DQM and CKE pins be held high during the initial  
pause period. Once all banks have been precharged, the Mode Register Set Command must be  
issued to initialize the Mode Register. An additional eight Auto Refresh cycles (CBR) are also required  
before or after programming the Mode Register to ensure proper subsequent operation.  
7.2 Programming Mode Register Set command  
After initial power up, the Mode Register Set Command must be issued for proper device operation.  
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode  
Register Set Command can be issued. The Mode Register Set Command is activated by the low  
signals of RAS, CAS , CS and WE at the positive edge of the clock. The address input data  
during this cycle defines the parameters to be set as shown in the Mode Register Operation table. A  
new command may be issued following the mode register set command once a delay equal to tRSC  
has elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.  
7.3 Bank Activate Command  
The Bank Activate command must be applied before any Read or Write operation can be executed.  
The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate  
command is applied to when the first read or write operation can begin must not be less than the RAS  
to CAS delay time (tRCD). Once a bank has been activated it must be precharged before another Bank  
Activate command can be issued to the same bank. The minimum time interval between successive  
Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC).  
The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice  
versa) is the Bank to Bank delay time (tRRD). The maximum time that each bank can be held active is  
specified as tRAS (max.).  
7.4 Read and Write Access Modes  
After a bank has been activated, a read or write cycle can be followed. This is accomplished by setting  
RAS high and CAS low at the clock rising edge after minimum of tRCD delay. WE pin voltage level  
defines whether the access cycle is a read operation ( WE high), or a write operation ( WE low). The  
address inputs determine the starting column address. Reading or writing to a different row within an  
activated bank requires the bank be precharged and a new Bank Activate command be issued. When  
more than one bank is activated, interleaved bank Read or Write operations are possible. By using the  
programmed burst length and alternating the access and precharge operations between multiple  
banks, seamless data access operation among many different pages can be realized. Read or Write  
Commands can also be issued to the same bank or between active banks on every clock cycle.  
Publication Release Date:Mar. 31, 2008  
- 7 -  
Revision A05  
 
W9864G6IH  
7.5 Burst Read Command  
The Burst Read command is initiated by applying logic low level to CS and CAS while holding  
RAS and WE high at the rising edge of the clock. The address inputs determine the starting column  
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst  
length (1, 2, 4, 8, full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page  
explain the address sequence of interleave mode and sequence mode.  
7.6 Burst Command  
The Burst Write command is initiated by applying logic low level to CS , CAS and WE while  
holding RAS high at the rising edge of the clock. The address inputs determine the starting column  
address. Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle  
that the Write Command is issued. The remaining data inputs must be supplied on each subsequent  
rising clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes  
will be ignored.  
7.7 Read Interrupted by a Read  
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,  
the remaining addresses are overridden by the new read address with the full burst length. The data  
from the first Read Command continues to appear on the outputs until the CAS Latency from the  
interrupting Read Command the is satisfied.  
7.8 Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output  
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will  
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the  
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM  
masking is no longer needed.  
7.9 Write Interrupted by a Write  
A burst write may be interrupted before completion of the burst by another Write Command. When the  
previous burst is interrupted, the remaining addresses are overridden by the new address and data  
will be written into the device until the programmed burst length is satisfied.  
7.10 Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read  
Command is activated. The DQs must be in the high impedance state at least one cycle before the  
new read data appears on the outputs to avoid data contention. When the Read Command is  
activated, any residual data from the burst write cycle will be ignored.  
Publication Release Date:Mar. 31, 2008  
- 8 -  
Revision A05  
 
W9864G6IH  
7.11 Burst Stop Command  
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank  
open for future Read or Write Commands to the same page of the active bank, if the burst length is full  
page. Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop  
Command is defined by having RAS and CAS high with CS and WE low at the rising edge of  
the clock. The data DQs go to a high impedance state after a delay, which is equal to the CAS  
Latency in a burst read cycle, interrupted by Burst Stop.  
7.12 Addressing Sequence of Sequential Mode  
A column access is performed by increasing the address from the column address which is input to  
the device. The disturb address is varied by the Burst Length as shown in Table 2.  
Table 2 Address Sequence of Sequential Mode  
DATA  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
ACCESS ADDRESS  
BURST LENGTH  
n
BL = 2 (disturb address is A0)  
No address carry from A0 to A1  
BL = 4 (disturb addresses are A0 and A1)  
No address carry from A1 to A2  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
BL = 8 (disturb addresses are A0, A1 and A2)  
No address carry from A2 to A3  
7.13 Addressing Sequence of Interleave Mode  
A column access is started in the input column address and is performed by inverting the address bit  
in the sequence shown in Table 3.  
Table 3 Address Sequence of Interleave Mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BL = 2  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BL = 4  
BL = 8  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 9 -  
 
W9864G6IH  
7.14 Auto-precharge Command  
If A10 is set to high when the Read or Write Command is issued, then the auto-precharge function is  
entered. During auto-precharge, a Read Command will execute as normal with the exception that the  
active bank will begin to precharge automatically before all burst read cycles have been completed.  
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled  
burst cycle. The number of clocks is determined by CAS Latency.  
A Read or Write Command with auto-precharge cannot be interrupted before the entire burst  
operation is completed for the same bank. Therefore, use of a Read, Write, or Precharge Command is  
prohibited during a read or write cycle with auto-precharge. Once the precharge operation has started,  
the bank cannot be reactivated until the Precharge time (tRP) has been satisfied. Issue of Auto-  
Precharge command is illegal if the burst is set to full page length. If A10 is high when a Write  
Command is issued, the Write with Auto-Precharge function is initiated. The SDRAM automatically  
enters the precharge operation two clocks delay from the last burst write cycle. This delay is referred  
to as write tWR. The bank undergoing auto-precharge cannot be reactivated until tWR and tRP are  
satisfied. This is referred to as tDAL, Data-in to Active delay (tDAL = tWR + tRP). When using the Auto-  
precharge Command, the interval between the Bank Activate Command and the beginning of the  
internal precharge operation must satisfy tRAS (min).  
7.15 Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The  
Precharge Command is entered when CS, RAS and WE are low and CAS is high at the rising  
edge of the clock. The Precharge Command can be used to precharge each bank separately or all  
banks simultaneously. Three address bits, A10, BS0, and BS1 are used to define which bank(s) is to  
be precharged when the command is issued. After the Precharge Command is issued, the precharged  
bank must be reactivated before a new read or write access can be executed. The delay between the  
Precharge Command and the Activate Command must be greater than or equal to the Precharge time  
(tRP).  
7.16 Self Refresh Command  
The Self Refresh Command is defined by having CS, RAS, CAS and CKE held low with WE  
high at the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command.  
Once the command is registered, CKE must be held low to keep the device in Self Refresh mode.  
When the SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are  
disabled. The clock is internally disabled during Self Refresh Operation to save power. The device will  
exit Self Refresh operation after CKE is returned high. A minimum delay time is required when the  
device exits Self Refresh Operation and before the next command can be issued. This delay is equal  
to the tAC cycle time plus the Self Refresh exit time.  
If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly  
distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and  
just after exiting the self refresh mode.  
Publication Release Date:Mar. 31, 2008  
- 10 -  
Revision A05  
 
W9864G6IH  
7.17 Power Down Mode  
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are  
gated off to reduce the power. The Power Down mode does not perform any refresh operations,  
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the  
device.  
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation  
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be  
enabled with CKE held high for a period equal to tCKS (min.) + tCK (min.).  
7.18 No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to  
prevent the SDRAM from registering any unwanted commands between operations. A No Operation  
Command is registered when CS is low with RAS, CAS , and WE held high at the rising edge of  
the clock. A No Operation Command will not terminate a previous operation that is still executing,  
such as a burst read or write cycle.  
7.19 Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect  
Command occurs when CS is brought high, the RAS, CAS , and WE signals become don't Care.  
7.20 Clock Suspend Mode  
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low  
while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode  
deactivates the internal clock and suspends any clocked operation that was currently being executed.  
There is a one clock delay between the registration of CKE low and the time at which the SDRAM  
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are  
issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay  
from when CKE returns high to when Clock Suspend mode is exited.  
Publication Release Date:Mar. 31, 2008  
- 11 -  
Revision A05  
 
W9864G6IH  
8. OPERATION MODE  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 1 shows the truth table for the operation commands.  
Table 1 Truth Table (Note (1), (2))  
A0-A9,  
DEVICE  
STATE  
COMMAND  
CKEn-1 CKEn DQM BS0, 1 A10  
RAS CAS  
WE  
CS  
A11  
V
x
Bank Active  
Idle  
Any  
H
H
H
H
H
H
H
H
H
H
H
H
H
L
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
v
v
x
v
v
v
v
v
x
x
x
x
x
x
x
v
L
H
L
H
L
H
v
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
L
L
H
H
H
L
H
L
L
L
L
H
H
L
H
L
x
Bank Precharge  
Precharge All  
Any  
x
x
L
Write  
Active (3)  
Active (3)  
Active (3)  
Active (3)  
Idle  
x
v
H
H
H
H
L
Write with Auto-precharge  
Read  
x
v
L
x
v
L
Read with Auto-precharge  
Mode Register Set  
No-Operation  
x
v
L
x
v
L
Any  
Active (4)  
x
x
x
H
H
x
H
H
x
Burst Stop  
x
x
x
Device Deselect  
Auto-Refresh  
Any  
x
x
x
Idle  
H
L
H
H
x
x
L
L
H
H
x
Self-Refresh Entry  
Idle  
x
x
L
L
idle  
x
x
x
x
Self Refresh Exit  
(S.R)  
L
x
x
H
H
x
Clock suspend Mode  
Entry  
Active  
H
L
x
x
x
x
x
x
x
x
Idle  
Active (5)  
Active  
Any  
H
H
L
L
L
x
x
x
x
x
x
x
x
x
x
x
x
H
L
x
x
H
x
x
H
x
X
H
X
Power Down Mode Entry  
Clock Suspend Mode Exit  
H
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
x
X
H
Power Down Mode Exit  
(Power  
Down)  
H
H
Data write/Output Enable  
Data write/Output Disable  
Notes:  
Active  
Active  
H
x
x
L
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H
H
(1) v = valid, x = Don't care, L = Low Level, H = High Level  
(2) CKEn signal is input leve l when commands are provided.  
(3) These are state of bank designated by BS0, BS1 signals.  
(4) Device state is full page burst operation.  
(5) Power Down Mode can not be entered in the burst cycle.  
When this command asserts in the burst cycle, device state is clock suspend mode.  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 12 -  
 
W9864G6IH  
9. ELECTRICAL CHARACTERISTICS  
9.1 Absolute Maximum Ratings  
PARAMETER  
Input, Column Output Voltage  
Power Supply Voltage  
SYMBOL  
RATING  
-0.3 ~ VDD + 0.3  
-0.3 ~ 4.6  
0 ~ 70  
UNIT  
V
NOTES  
VIN, VOUT  
VDD, VDDQ  
TOPR  
1
1
1
1
1
1
1
V
°C  
°C  
°C  
W
Operating Temperature  
Storage Temperature  
TSTG  
-55 ~ 150  
260  
Soldering Temperature (10s)  
Power Dissipation  
TSOLDER  
PD  
1
Short Circuit Output Current  
IOUT  
50  
mA  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliabilityof  
the device.  
9.2 Recommended DC Operating Conditions  
(TA = 0 to 70°C for -5/-6/-7/-7S)  
PARAMETER  
Supply Voltage (Normal operation)  
Supply voltage (for –7/-7S)  
Supply Voltage for I/O Buffer  
Supply Voltage for I/O Buffer (for -7/-7S)  
Input High Voltage  
SYM.  
VDD  
VDD  
VDDQ  
VDDQ  
VIH  
MIN.  
3.0  
2.7  
3.0  
2.7  
2.0  
-0.3  
TYP.  
MAX.  
3.6  
UNIT NOTES  
3.3  
V
V
V
V
V
V
2
2
2
2
2
2
-
3.6  
3.3  
3.6  
-
-
-
3.6  
VDD + 0.3  
0.8  
Input Low Voltage  
VIL  
Note: VIH(max) = VDD/ VDDQ+1.5V for pulse width < 5 nS  
VIL(min) = VSS/ VSSQ-1.5V for pulse width < 5 nS  
9.3 Capacitance  
(VDD =3V±0.3V for-5/-6, VDD = 2.7V-3.6V for -7/-7S , TA = 25 °C, f = 1 MHz)  
PARAMETER  
SYM.  
MIN.  
MAX.  
UNIT  
Input Capacitance  
Ci1  
2.5  
4
pf  
(A0 to A11, BS0, BS1, CS, RAS, CAS , WE , CKE)  
Input Capacitance (CLK)  
CCLK  
Co  
2.5  
4
4
pf  
pf  
pf  
6.5  
5.5  
Input/Output Capacitance (DQ0DQ15)  
Input Capacitance DQM  
Ci2  
3.0  
Note: These parameters are periodically sampled and not 100% tested  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 13 -  
 
W9864G6IH  
9.4 DC Characteristics  
(VDD = 3V±0.3V for-5/-6 ,VDD = 2.7V-3.6V for -7/-7S on TA = 0 to 70°C)  
-5  
-6  
-7/-7S  
PARAMETER  
SYM.  
UNIT NOTES  
MAX.  
MAX.  
MAX.  
Operating Current  
tCK = min., tRC = min.  
IDD1  
100  
90  
80  
3
Active precharge command  
cycling without burst operation  
1 Bank Operation  
Standby Current  
IDD2  
40  
2
35  
2
30  
2
3
3
tCK = min., CS = VIH  
VIH/L = VIH (min.)/VIL (max.)  
CKE = VIH  
CKE = VIL  
Bank: Inactive State  
Standby Current  
IDD2P  
(Power Down  
mode)  
IDD2S  
15  
15  
15  
CLK = VIL, CS = VIH  
VIH/L=VIH (min.)/VIL (max.)  
CKE = VIH  
CKE = VIL  
Bank: Inactive State  
IDD2PS  
IDD3  
2
2
2
mA  
(Power Down  
mode)  
No Operating Current  
CKE = VIH  
65  
15  
60  
15  
55  
15  
tCK = min., CS = VIH (min.)  
CKE = VIL  
Bank: Active State (4 Banks)  
IDD3P  
(Power Down  
mode)  
Burst Operating Current  
(tCK = min.)  
IDD4  
180  
165  
145  
3, 4  
3
Read/Write command cycling  
Auto Refresh Current  
(tCK = min.)  
IDD5  
IDD6  
160  
2
140  
2
120  
2
Auto refresh command cycling  
Self Refresh Current  
Self refresh mode  
(CKE = 0.2V)  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
NOTES  
Input Leakage Current  
II(L)  
-5  
-5  
2.4  
-
5
5
µA  
(0V VIN VDD, all other pins not under test = 0V)  
Output Leakage Current  
lO(L)  
VOH  
VOL  
µA  
V
(Output disable, 0V VOUT VDDQ)  
LVTTL Output HLevel Voltage  
(IOUT = -2 mA)  
-
LVTTL Output LLevel Voltage  
0.4  
V
(IOUT = 2 mA)  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 14 -  
 
W9864G6IH  
9.5 AC Characteristics and Operating Condition  
(VDD =3V±0.3V for-5/-6, VDD = 2.7V-3.6V for -7/-7S on TA = 0 to 70°C)  
(Notes: 5, 6)  
-5  
-6  
-7  
-7S  
PARAMETER  
SYM.  
UNIT NOTES  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Ref/Active to Ref/Active  
Command Period  
tRC  
tRAS  
tRCD  
55  
60  
65  
65  
Active to precharge  
Command Period  
nS  
40  
15  
100000  
42  
18  
100000  
45  
20  
100000  
45  
20  
100000  
Active to Read/Write  
Command Delay Time  
Read/Write(a) to Read/  
Write(b) Command  
Period  
tCCD  
1
1
1
1
tCK  
nS  
Precharge to Active(b)  
Command Period  
tRP  
15  
10  
18  
12  
20  
14  
18  
14  
Active(a) to Active(b)  
Command Period  
tRRD  
Write Recovery Time  
CL* = 2  
tWR  
tCK  
2
2
2
2
tCK  
CL* = 3  
CLK Cycle Time  
CL* = 2  
10  
5
1000  
1000  
7.5  
6
1000  
1000  
10  
7
1000  
1000  
10  
7
1000  
1000  
CL* = 3  
CLK High Level  
CLK Low Level  
tCH  
tCL  
2
2
2
2
2
2
2
2
9
9
Access Time from CLK  
CL* = 2  
6
5
6
6
tAC  
10  
CL* = 3  
4.5  
5.5  
5.5  
Output Data Hold Time  
Output Data High  
Impedance Time  
Output Data Low  
Impedance Time  
Power Down Mode  
Entry Time  
tOH  
tHZ  
2
2
2
2
2
2
2
2
10  
7
5
6
7
7
tLZ  
tSB  
tT  
0
0
0
0
0
0
0
0
10  
nS  
5
1
6
1
7
1
7
1
Transition Time of CLK  
(Rise and Fall)  
Data-in-Set-up Time  
Data-in Hold Time  
Address Set-up Time  
Address Hold Time  
CKE Set-up Time  
CKE Hold Time  
tDS  
tDH  
1.5  
1
1.5  
1
1.5  
1
1.5  
1
9
9
9
9
9
9
9
tAS  
1.5  
1
1.5  
1
1.5  
1
1.5  
1
tAH  
tCKS  
tCKH  
1.5  
1
1.5  
1
1.5  
1
1.5  
1
Command Set-up Time tCMS  
1.5  
1.5  
1.5  
1.5  
Command Hold Time  
tCMH  
1
1
1
9
1
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 15 -  
 
W9864G6IH  
AC Characteristics and Operating Condition, continued  
-5  
-6  
-7  
-7S  
MAX.  
64  
PARAMETER  
Refresh Time  
SYM.  
UNIT  
NOTES  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
tREF  
tRSC  
64  
64  
64  
mS  
nS  
Mode Register Set  
Cycle Time  
10  
70  
14  
72  
14  
75  
14  
75  
Exit self refresh to  
ACTIVE Command  
tXSR  
nS  
Notes:  
1.Operation exceeds “Absolute Maximum Ratings” may cause permanent damage to the devices.  
2. All voltages are referenced to VSS  
2.7V~3.6V power supply for -7/-7S speed grade.  
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the  
minimum values of tCK and tRC.  
4. These parameters depend on the output loading conditions. Specified values are obtained with  
output open.  
5. Power up sequence please refer to "Functional Description" section described before.  
6. AC Test Load diagram.  
1.4 V  
50 ohms  
output  
Z = 50 ohms  
30pF  
AC TEST LOAD  
7. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to  
output level.  
Publication Release Date:Mar. 31, 2008  
- 16 -  
Revision A05  
W9864G6IH  
8. These parameters account for the number of clock cycles and depend on the operating frequency  
of the clock, as follows the number of clock cycles = specified value of timing/ clock period (count  
fractions as whole number)  
(1)tCH is the pulse width of CLK measured from the positive edge to the negative edge referenced to VIH (min.).  
tCL is the pulse width of CLK measured from the negative edge to the positive edge referenced to VIL (max.).  
(2)A.C Latency Characteristics  
CKE to clock disable (CKE Latency)  
1
2
0
0
0
tCK  
DQM to output to HI-Z (Read DQM Latency)  
DQM to output to HI-Z (Write DQM Latency)  
Write command to input data (Write Data Latency)  
CS to Command input ( CS Latency)  
Precharge to DQ Hi-Z Lead time  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
2
3
1
2
2
3
1
2
Precharge to Last Valid data out  
Bust Stop Command to DQ Hi-Z Lead time  
Bust Stop Command to Last Valid Data out  
Read with Auto-precharge Command to Active/Ref Command  
Write with Auto-precharge Command to Active/Ref Command  
BL + tRP  
BL + tRP  
tCK + nS  
(BL+1) + tRP  
(BL+1) + tRP  
9. Assumed input rise and fall time (tT ) = 1nS.  
If tr & tf is longer than 1nS, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]nS should be added to the parameter  
( The tT maximum can’t be more than 10nS for low frequency application. )  
10. If clock rising time (tT) is longer than 1nS, (tT/2-0.5)nS should be added to the parameter.  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 17 -  
W9864G6IH  
10. TIMING WAVEFORMS  
10.1 Command Input Timing  
t
CL  
tCH  
t
CK  
V
IH  
IL  
CLK  
CS  
V
t
T
tT  
t
CMS  
tCMH  
t
CMH  
tCMS  
t
CMS  
t
CMH  
RAS  
t
t
CMS  
t
t
CMH  
CAS  
WE  
CMS  
CMH  
t
AS  
tAH  
A0-A11  
BS0, 1  
t
CKS  
t
CKH  
tCKH  
tCKS  
t
CKS  
t
CKH  
CKE  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 18 -  
 
W9864G6IH  
10.2 Read Timing  
Read CAS Latency  
CLK  
CS  
RAS  
CAS  
WE  
A0-A11  
BS0, 1  
t
AC  
t
AC  
t
HZ  
t
OH  
t
OH  
t
LZ  
Valid  
Data-Out  
Valid  
Data-Out  
DQ  
Read Command  
Burst Length  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 19 -  
 
W9864G6IH  
10.3 Control Timing of Input/Output Data  
Control Timing of Input Data  
(Word Mask)  
CLK  
t
CMS  
tCMH  
t
CMH  
tCMS  
DQM  
t
DS  
t
DH  
t
DS  
t
DH  
t
DS  
t
DH  
t
DS  
tDH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0 -15  
(Clock Mask)  
CLK  
t
CKH  
t
CKS  
t
CKH  
tCKS  
CKE  
t
DS  
t
DH  
t
DS  
t
DH  
t
DS  
t
DH  
tDS  
tDH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0 -15  
Control Timing of Output Data  
(Output Enable)  
CLK  
t
CMH  
t
CMS  
tCMS  
t
CMH  
DQM  
t
AC  
t
HZ  
tAC  
t
AC  
t
AC  
t
LZ  
t
OH  
t
OH  
t
OH  
t
OH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
OPEN  
DQ0 -15  
(Clock Mask)  
CLK  
t
CKH  
t
CKS  
t
CKH  
tCKS  
CKE  
t
AC  
t
AC  
tAC  
t
AC  
t
OH  
tOH  
t
OH  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
DQ0 -15  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 20 -  
 
W9864G6IH  
10.4 Mode Register Set Cycle  
t
RSC  
CLK  
t
CMS  
tCMH  
CS  
t
CMS  
tCMH  
RAS  
CAS  
WE  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
t
AS  
tAH  
A0-A11  
BS0,1  
Register  
set data  
next  
command  
A2 A1A0  
BurstLength  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9
A10  
A11  
Sequential  
Interleave  
Burst Length  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
2
4
8
2
4
8
Addressing Mode  
CAS Latency  
Reserved  
FullPage  
Reserved  
A3  
0
1
Addressing Mode  
Sequential  
Interleave  
"0" (Test Mode)  
"0"  
Reserved  
A6 A5A4  
CAS Latency  
Reserved  
Reserved  
2
3
Reserved  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
WriteMode  
"0"  
"0"  
BS0 "0"  
"0"  
Reserved  
A9
0
1
Single Write Mode  
Burst read andBurst write  
Burst read andsingle write  
BS1  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 21 -  
 
W9864G6IH  
11. OPERATINOPERATING TIMING EXAMPLE  
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
tRC  
t
RC  
tRC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
RP  
tRP  
t
RAS  
t
tRAS  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
t
RCD  
t
RCD  
RAa  
RAa  
RBb  
RAc  
RAc  
RBd  
RBd  
A10  
RAe  
RAe  
A0-A9,  
A11  
CBx  
RBb  
CAy  
CAw  
CBz  
DQM  
CKE  
DQ  
t
AC  
t
AC  
t
AC  
t
AC  
bx3  
bx1  
aw0  
aw2 aw3  
bx0  
bx2  
cy0 cy1  
cy2 cy3  
aw1  
t
RRD  
t
RRD  
tRRD  
t
RRD  
Precharge  
Read  
Active  
Read  
Precharge  
Active  
Bank #0  
Bank #1  
Bank #2  
Read  
Active  
Precharge  
Read  
Active  
Active  
Idle  
Bank #3  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 22 -  
 
W9864G6IH  
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
tRC  
t
RC  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
t
RP  
t
RAS  
t
RP  
t
RAS  
WE  
BS0  
BS1  
A10  
t
RCD  
t
RCD  
t
RCD  
t
RCD  
RAe  
RBd  
RAa  
RBb  
RAc  
A0-A9,  
A11  
CBz  
RAa  
CAw  
CAy  
RAe  
CBx  
RBb  
RAc  
RBd  
DQM  
CKE  
t
AC  
t
AC  
t
AC  
t
AC  
aw0 aw1 aw2  
aw3  
bx0 bx1  
bx2 bx3  
cy0  
cy1 cy2  
cy3  
dz0  
DQ  
t
RRD  
t
RRD  
t
RRD  
tRRD  
Read  
AP*  
Active  
AP*  
Read  
Active  
Active  
Active  
AP*  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Read  
Read  
Active  
Idle  
* AP is the internal precharge start timing  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 23 -  
 
W9864G6IH  
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
tRC  
t
RC  
RAS  
t
RAS  
t
RP  
tRAS  
t
RP  
t
RAS  
tRP  
CAS  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
tRCD  
RAa  
RAa  
RAc  
RAc  
A10  
RBb  
RBb  
A0-A9,  
A11  
CAx  
CBy  
CAz  
DQM  
CKE  
tAC  
t
AC  
tAC  
ax0 ax1  
ax2  
ax3  
ax4  
ax5 ax6  
by0  
by1  
by4 by5  
by6  
by7  
DQ  
CZ0  
t
RRD  
t
RRD  
Read  
Active  
Idle  
Precharge  
Active  
Read  
Precharge  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Precharge  
Read  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 24 -  
 
W9864G6IH  
11.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
1
2
3
4
5
21 22 23  
0
CLK  
CS  
t
RC  
RAS  
t
RAS  
t
RAS  
t
RP  
t
RAS  
t
RP  
CAS  
WE  
BS0  
BS1  
t
RCD  
tRCD  
t
RCD  
A10  
RBb  
RBb  
RAc  
RAa  
RAa  
CAz  
CAx  
RAc  
CBy  
A0-A9,  
A11  
DQM  
CKE  
DQ  
t
CAC  
t
CAC  
t
CAC  
ax3  
ax4  
ax0  
ax2  
ax5 ax6  
ax7  
by0  
by1  
by4  
by5  
by6  
ax1  
CZ0  
t
RRD  
tRRD  
AP*  
Read  
Active  
Bank #0 Active  
Bank #1  
Read  
Active  
Read  
AP*  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 25 -  
 
W9864G6IH  
11.5 Interleaved Bank Write (Burst Length = 8)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
RAS  
CAS  
t
RAS  
t
RAS  
t
RP  
tRP  
t
RAS  
tRCD  
t
RCD  
t
RCD  
WE  
BS0  
BS1  
RBb  
RAc  
RAc  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAx  
RBb  
CBy  
CAz  
DQM  
CKE  
DQ  
ax0 ax1  
ax4  
ax5  
ax6 ax7 by0  
by1 by2  
by3  
by4  
by5  
by6  
by7  
CZ0  
CZ1  
CZ2  
t
RRD  
tRRD  
Active  
Write  
Precharge  
Active  
Write  
Bank #0  
Active  
Write  
Precharge  
Bank #1  
Bank #2  
Bank #3  
Idle  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 26 -  
 
W9864G6IH  
11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
RAS  
CAS  
t
RP  
t
RAS  
t
RAS  
WE  
BS0  
BS1  
t
RCD  
tRCD  
t
RCD  
RAa  
RAa  
RBb  
RBb  
RAb  
RAc  
A10  
A0-A9  
A11  
CAx  
CBy  
CAz  
DQM  
CKE  
DQ  
ax4  
by2  
by5  
ax0 ax1  
ax5  
ax6 ax7  
by0 by1  
by3  
by4  
by6  
by7 CZ0  
CZ1  
CZ2  
tRRD  
t
RRD  
Write  
Active  
AP*  
Active  
Write  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
AP*  
Write  
Active  
Idle  
* AP is the internal precharge start timing  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 27 -  
 
W9864G6IH  
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
CCD  
t
CCD  
tCCD  
t
RAS  
tRP  
t
RAS  
tRP  
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
A10  
A0-A9,  
A11  
CBx  
CAy  
CAm  
CBz  
CAI  
DQM  
CKE  
t
AC  
t
AC  
t
AC  
t
AC  
tAC  
am1  
am2 bz0  
bz1  
bz2  
bz3  
a0  
a1  
a3  
bx0  
Ay0  
Ay1 Ay2 am0  
a2  
bx1  
DQ  
t
RRD  
Read  
Bank #0 Active  
Bank #1  
Read  
Read  
Precharge  
AP*  
Active  
Read  
Read  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 28 -  
 
W9864G6IH  
11.8 Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
t
RAS  
tRP  
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAx  
CAy  
DQM  
CKE  
tAC  
t
WR  
ax5  
ay1  
ax0  
ax1  
ax3  
ay0  
ay2  
ay4  
ax2  
ax4  
ay3  
DQ  
Q
Q
Q
Q
Q
Q
D
D
D
D
D
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Idle  
Read  
Write  
Precharge  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 29 -  
 
W9864G6IH  
11.9 Auto-precharge Read (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RC  
tRC  
RAS  
t
RAS  
t
RP  
t
RAS  
tRP  
CAS  
WE  
BS0  
BS1  
A10  
t
RCD  
tRCD  
RAa  
RAb  
A0-A9,  
A11  
CAx  
RAa  
CAw  
RAb  
DQM  
CKE  
DQ  
t
AC  
t
AC  
aw0 aw1 aw2 aw3  
bx0  
bx1  
bx2 bx3  
Bank #0  
AP*  
Active  
Idle  
Read  
Active  
Read  
AP*  
Bank #1  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 30 -  
 
W9864G6IH  
11.10 Auto-precharge Write (Burst Length = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RC  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
tRP  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
RAc  
RAa  
RAa  
RAb  
A10  
A0-A9,  
A11  
CAw  
RAb  
CAx  
RAc  
DQM  
CKE  
DQ  
bx0  
aw1 aw2  
bx1  
bx3  
bx2  
aw0  
aw3  
Active  
Idle  
AP*  
Bank #0  
Write  
Active  
Write  
Active  
AP*  
Bank #1  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 31 -  
 
W9864G6IH  
11.11 Auto Refresh Cycle  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
CLK  
CS  
t
RP  
t
RC  
tRC  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
CKE  
DQ  
All Banks  
Prechage  
Auto  
Refresh  
Auto Refresh (Arbitrary Cycle)  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 32 -  
 
W9864G6IH  
11.12 Self Refresh Cycle  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
tRP  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
tCKS  
tCKS  
tSB  
CKE  
DQ  
tCKS  
tXSR  
Self Refresh Cycle  
No Operation / Command Inhibit  
Self Refresh  
Exit  
All Banks  
Precharge  
Self Refresh  
Entry  
Arbitrary Cycle  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 33 -  
 
W9864G6IH  
11.13 Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
RAS  
CAS  
t
RCD  
WE  
BS0  
BS1  
A10  
RBa  
A0-A9,  
A11  
CBz  
RBa  
CBv  
CBw  
CBx CBy  
DQM  
CKE  
t
AC  
tAC  
DQ  
av0  
av1  
av3  
aw0  
ax0  
ay0  
az1  
az2  
az3  
az0  
av2  
Q
Q
Q
Q
D
D
D
Q
Q
Q
Q
Read  
Active  
Single Write  
Read  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Idle  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 34 -  
 
W9864G6IH  
11.14 Power-down Mode  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
CAS  
WE  
BS  
RAa  
RAa  
RAa  
RAa  
A10  
A0-A9  
A11  
CAa  
CAx  
DQM  
tSB  
tSB  
CKE  
DQ  
tCKS  
tCKS  
tCKS  
tCKS  
ax0  
ax2  
ax3  
ax1  
Active  
NOP Read  
Precharge  
NOP Active  
Precharge Standby  
Power Down mode  
Active Standby  
Power Down mode  
Note: The PowerDown Mode is entered by asserting CKE "low".  
All Input/Output buffers (except CKE buffers) are turned off in the Power Down mode.  
When CKE goes high, command input must be No operation at next CLK rising edge.  
Violating refresh requirements during power-down may result in a loss of data.  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 35 -  
 
W9864G6IH  
11.15 Auto-precharge Timing (Write Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
(1) CAS Latency = 2  
(a) burst length = 1  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
AP  
tWR  
tRP  
DQ  
D1  
D1  
(c) burst length = 4  
Command  
Act  
D7  
Write  
D0  
tRP  
tWR  
DQ  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D2  
AP  
D4  
D5  
D6  
(2) CAS Latency = 3  
(a) burst length = 1  
Command  
Write  
D0  
Act  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D1  
D1  
(c) burst length = 4  
Command  
Write  
D0  
AP  
D5  
Act  
tWR  
tRP  
DQ  
D2  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D4  
D6  
D7  
Note )  
represents the Write with Auto precharge command.  
represents the start of internal precharing.  
represents the Bank Active command.  
Write  
AP  
Act  
When the /auto precharge command is asserted,the period from Bank Activate  
command to the start of intermal precgarging must be at least tRAS (min).  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 36 -  
 
W9864G6IH  
11.16 Auto-precharge Timing (Read Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS Latency=2  
( a ) burst length = 1  
Command  
Read AP  
Read  
Act  
t
RP  
DQ  
Q0  
( b ) burst length = 2  
Command  
AP  
Q0  
Act  
t
RP  
DQ  
Q1  
( c ) burst length = 4  
Command  
Read  
AP  
Q2  
Act  
Q4  
t
RP  
DQ  
Q0  
Q0  
Q1  
Q1  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q6  
Act  
t
RP  
DQ  
Q2  
Act  
Q3  
Act  
Q5  
Q7  
(2) CAS Latency=3  
( a ) burst length = 1  
Command  
Read AP  
Read  
t
RP  
DQ  
Q0  
Q0  
Q0  
Q0  
( b ) burst length = 2  
Command  
AP  
t
RP  
DQ  
Q1  
AP  
Q1  
( c ) burst length = 4  
Command  
Read  
Act  
Q4  
t
RP  
DQ  
Q2  
Q2  
Q3  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q5  
Act  
t
RP  
DQ  
Q1  
Q6  
Q7  
Note )  
Read  
represents the Read with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
AP  
Act  
When the Auto precharge command is asserted, the period from Bank Activate command to  
the start of internal precgarging must be at least tRAS(min).  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 37 -  
 
W9864G6IH  
11.17 Timing Chart of Read to Write Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
( a ) Command  
Read  
Write  
DQM  
DQ  
D0  
D1  
D2  
D3  
( b ) Command  
Read  
Write  
DQM  
DQ  
D0  
D1  
D2  
D2  
D3  
D3  
(2) CAS Latency=3  
( a ) Command  
Read  
Read  
Write  
D0  
DQM  
D1  
DQ  
( b ) Command  
Write  
DQM  
DQ  
D0  
D1  
D2  
D3  
Note: The Output data must be masked by DQM to avoid I/O conflict.  
11.18 Timing Chart of Write to Read Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency = 2  
( a ) Command  
DQM  
Write  
Read  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
Read  
Write  
DQM  
DQ  
D0  
D1  
Q3  
(2) CAS Latency = 3  
( a ) Command  
Read  
Write  
DQM  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Write  
Read  
D0  
D1  
Q3  
DQ  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 38 -  
 
W9864G6IH  
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
( a ) CAS latency =2  
Command Read  
BST  
Q3  
DQ  
Q4  
Q3  
Q0  
Q1  
Q0  
Q2  
Q1  
( b )CAS latency = 3  
Command  
Read  
BST  
Q2  
DQ  
Q4  
(2) Write cycle  
Command  
Write  
Q0  
BST  
DQ  
Q1  
Q2  
Q3  
Q4  
Note: BST  
represents the Burst stop command  
11.20 Timing Chart of Burst Stop Cycle (Precharge Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
(a) CAS latency =2  
Command  
Read  
Read  
PRCG  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
(b) CAS latency =3  
Command  
PRCG  
Q2  
DQ  
Q4  
(2) Write cycle  
(a) CAS latency =2  
Command  
PRCG  
PRCG  
Write  
tWR  
DQM  
DQ  
Q0  
Q1  
Q1  
Q2  
Q2  
Q3  
Q4  
(b) CAS latency =3  
Command  
Write  
tWR  
DQM  
DQ  
Q0  
Q3  
Q4  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 39 -  
 
W9864G6IH  
11.21 CKE/DQM Input Timing (Write Cycle)  
1
CLK cycle No.  
2
3
4
5
7
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D5  
D6  
DQM MASK  
CKE MASK  
( 1 )  
CLK cycle No.  
External  
2
3
4
5
7
1
6
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D6  
D5  
DQM MASK  
( 2 )  
CKE MASK  
1
2
3
4
5
6
7
CLK cycle No.  
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
( 3 )  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 40 -  
 
W9864G6IH  
11.22 CKE/DQM Input Timing (Read Cycle)  
1
CLK cycle No.  
6
2
3
4
5
7
External  
Internal  
CLK  
CKE  
DQM  
DQ  
Q6  
Q1  
Q2  
Q3  
Q4  
Open  
Open  
( 1 )  
1
2
3
4
5
7
CLK cycle No.  
6
External  
Internal  
CLK  
CKE  
DQM  
DQ  
Q6  
Q3  
Q1  
Q2  
Q4  
Open  
( 2 )  
1
CLK cycle No.  
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q1  
Q4  
Q5  
Q3  
Q2  
( 3 )  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 41 -  
 
W9864G6IH  
12. PACKAGE SPECIFICATION  
12.1 54L TSOP (II)-400 mil  
Publication Release Date:Mar. 31, 2008  
Revision A05  
- 42 -  
 
W9864G6IH  
13. REVISION HISTORY  
VERSION  
P01  
DATE  
PAGE  
All  
DESCRIPTION  
Create preliminary data sheet  
Sep. 14, 2007  
Dec. 12, 2007  
A01  
All  
Initial formal data sheet  
Remove -6I speed grade  
3, 4, 13, 14,  
15, 16  
A02  
A03  
A04  
A05  
Dec. 24, 2007  
Jan. 29, 2008  
Feb. 26, 2008  
Mar. 31, 2008  
Revise overshoot/undershoot pulse width  
Before VIH (max.) = VCC/VCCQ +1.2V for pulse width < 5 nS  
After VIH (max.) = VCC/VCCQ +1.2V for pulse width < 3 nS  
Before VIL (min.) = VSS/VSSQ -1.2V for pulse width < 5 nS  
After VIL (min.) = VSS/VSSQ -1.2V for pulse width < 3 nS  
13  
Revise -7/-7S parts AC parameter CLK cycle time of  
CL2 tCK value from 7nS to 7.5nS  
3, 4, 15  
15  
Revise -6 part AC parameter Access Time from CLK of  
CL2 tAC value from 5.5nS to 6nS  
Revise overshoot/undershoot pulse width  
Before VIH (max.) = VCC/VCCQ +1.2V for pulse width < 3 nS  
After VIH (max.) = VCC/VCCQ +1.5V for pulse width < 5 nS  
Before VIL (min.) = VSS/VSSQ -1.2V for pulse width < 3 nS  
After VIL (min.) = VSS/VSSQ -1.5V for pulse width < 5 nS  
13  
15  
Revise -7/-7S parts AC parameter CLK cycle time of  
CL2 tCK value from 7.5nS to 10nS  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
Publication Release Date:Mar. 31, 2008  
- 43 -  
Revision A05  
 

相关型号:

W9864G6IH-6I

Synchronous DRAM, 4MX16, 5ns, CMOS, PDSO54, 0.400 INCH, ROHS COMPLIANT, TSOP2-54
WINBOND

W9864G6IH-7

1M 】 4BANKS 】 16BITS SDRAM
WINBOND

W9864G6IH-7S

1M 】 4BANKS 】 16BITS SDRAM
WINBOND

W9864G6IH_10

1M × 4BANKS × 16BITS SDRAM
WINBOND

W9864G6JB

1M X 4 BANKS X 16 BITS SDRAM
WINBOND

W9864G6JB-6

Synchronous DRAM, 4MX16, 5ns, CMOS, PBGA60, VFBGA-60
WINBOND

W9864G6JB-6A

1M X 4 BANKS X 16 BITS SDRAM
WINBOND

W9864G6JB-6I

1M X 4 BANKS X 16 BITS SDRAM
WINBOND

W9864G6JB-7

1M X 4 BANKS X 16 BITS SDRAM
WINBOND

W9864G6JH

1M ? 4 BANKS ? 16 BITS SDRAM
WINBOND

W9864G6JH-5

Self Refresh Current: Standard and Low Power, Sequential and Interleave Burst
WINBOND

W9864G6JH-6

Self Refresh Current: Standard and Low Power, Sequential and Interleave Burst
WINBOND