WMS7204010SY [WINBOND]

Digital Potentiometer, 4 Func, 10000ohm, 3-wire Serial Control Interface, 256 Positions, PDSO20, 0.150 INCH, LEAD FREE, SOIC-20;
WMS7204010SY
型号: WMS7204010SY
厂家: WINBOND    WINBOND
描述:

Digital Potentiometer, 4 Func, 10000ohm, 3-wire Serial Control Interface, 256 Positions, PDSO20, 0.150 INCH, LEAD FREE, SOIC-20

数字电位计
文件: 总29页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
WMS7201  
256-TAP NON-VOLATILE DIGITAL POTENTIOMETER  
Publication Release Date: January 2003  
- 1 -  
Revision 1.1  
WMS7201  
1. GENERAL DESCRIPTION  
The WMS7201 is a 256-tap, single-channel non-volatile digital potentiometer available in 10K, 50KΩ  
and 100Kend-to-end resistances. These devices can be used as a three-terminal potentiometer or  
as a two terminal variable resistor in a wide variety of applications.  
The output of the potentiometer is determined by the wiper position, which varies linearly between VA  
and VB terminal according to the content stored in the volatile Tap Register (TR). The settings of the  
TR can be provided either directly by the user through the industry standard SPI interface, or by the  
non-volatile memory (NVMEM0~3) where the previous settings are stored. When changes are made  
to the TR to establish a new wiper position, the value of the setting can be saved into any non-volatile  
memory location (NVMEM0~3) by executing a NVMEM save operation. Upon powerup the content of  
the NVMEM0 is automatically loaded to the Tap Register.  
The WMS7201 contains a single potentiometer in 8-pin PDIP, SOIC, MSOP or 10 pin TSSOP  
packages and can operate over a wide operating voltage range from 2.7V to 5.5V. A selectable output  
buffer is built-in for those applications where an output buffer is required.  
2. FEATURES  
256 taps for the potentiometer  
End-to-end resistance available in 10K, 50Kand 100KΩ  
Selectable output buffer for each channel  
SPI Serial Interface for data transfer and potentiometer control  
Daisy-chain operation for multiple devices (10-pin TSSOP package only)  
Nonvolatile storage of four wiper positions per channel with power-on recall from NVMEM0  
Low standby current (1µA Max. with output buffer inactive)  
Endurance 100K typical stores per bit  
Register Data Retention 100 years  
Industrial temperature range: -40 ~ 85°C  
Wide operating voltage range: 2.7V ~ 5.5V  
Package option:  
8-pin MSOP, 8-pin SOIC, 8-pin PDIP, 10-pin TSSOP  
- 2 -  
WMS7201  
3. BLOCK DIAGRAM  
VA1  
CLK  
VW1  
Serial  
CS  
Interface  
SDI  
VB1  
1
SDO  
NV Memory  
9th  
Power on/Preset Mem Tap  
bit  
1
9th  
bit  
NV Memory  
Control  
WP  
VDD  
VSS  
3 Addressable Preset Tap values  
FIGURE 1 – WMS7201 BLOCK DIAGRAM  
Note 1: Available in 10-pin TSSOP packages only.  
Publication Release Date: January 2003  
Revision 1.1  
- 3 -  
WMS7201  
4. TABLE OF CONTENTS  
1. GENERAL DESCRIPTION.................................................................................................................. 2  
2. FEATURES ......................................................................................................................................... 2  
3. BLOCK DIAGRAM .............................................................................................................................. 3  
4. TABLE OF CONTENTS ...................................................................................................................... 4  
5. PIN CONFIGURATION ....................................................................................................................... 5  
6. PIN DESCRIPTION............................................................................................................................. 5  
7. FUNCTIONAL DESCRIPTION............................................................................................................ 7  
7.1. Potentiometer and Rheostat Modes............................................................................................. 7  
7.1.1. Rheostat Configuration .......................................................................................................... 7  
7.1.2. Potentiometer Configuration .................................................................................................. 7  
7.2. Programming Modes .................................................................................................................... 7  
7.3. Non-Volatile Memory (NVMEM) ................................................................................................... 8  
7.3.1 Write Protect of NVMEM......................................................................................................... 8  
7.4 Flow Control................................................................................................................................... 8  
7.5. Daisy Chain .................................................................................................................................. 9  
7.6. Serial Data Iterface..................................................................................................................... 10  
7.7. Instruction Set............................................................................................................................. 12  
7.8. Basic Operation .......................................................................................................................... 12  
7.8.1 Sending a Command ............................................................................................................ 12  
7.8.2 Wake Up/Sleep/Power Commands ...................................................................................... 13  
7.8.3 Write to Tap Register (TR).................................................................................................... 13  
7.8.4 Programming Non-Volatile Memory (NVMEM)..................................................................... 14  
7.8.5 Reading Tap Register and NVMEM Location (10-pin TSSOP package only)...................... 15  
8. TIMING DIAGRAMS.......................................................................................................................... 16  
9. ABSOLUTE MAXIMUM RATINGS.................................................................................................... 18  
10. ELECTRICAL CHARACTERISTICS............................................................................................... 19  
10.1 Test Circuits............................................................................................................................... 21  
11. TYPICAL APPLICATION CIRCUIT................................................................................................. 22  
11.1. Layout Considerations.............................................................................................................. 24  
12. PACKAGE DRAWINGS AND DEMINSIONS.................................................................................. 25  
13. ORDERING INFORMATION........................................................................................................... 28  
14. VERSION HISTORY ....................................................................................................................... 29  
- 4 -  
WMS7201  
5. PIN CONFIGURATION  
FIGURE 2 – PACKAGE TYPES  
Publication Release Date: January 2003  
Revision 1.1  
- 5 -  
WMS7201  
6. PIN DESCRIPTION  
TABLE 1 – PIN DESCRIPTION  
DESCRIPTION  
PIN NAME PIN NO I/O  
2
Serial Clock pin. Data Shifts in one bit at a time on positive clock  
CLK  
CS  
I
(CLK) edges  
Chip Select pin. When CS is HIGH, WMS7201 is deselected and  
the SDO pin is at high impedance, and (unless an internal write  
cycle is underway) the device will be in the standby state. CS LOW  
enables WMS7201, placing it in the active power mode. It should  
be noted that after a power-up, a HIGH to LOW transition on CS is  
required prior to the start of any operation.  
I
1
3
Serial Data Input pin. All opcodes, byte addresses and data to be  
written to the registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
Serial Data Output pin with open-drain output. During a read cycle,  
data is shifted out on this pin. Data is clocked out by the falling  
edge of the serial clock except for the 1st bit, which is clocked out  
by the falling edge of CS. Also can be used to daisy-chain several  
parts. (Only 10-pin TSSOP package)  
SDI  
I
O
I
NC  
SDO1  
Hardware Write Protect pin. When active LOW WP prevents any  
changes to the present contents except retrieving NVMEM  
contents. (Only 10-pin TSSOP package)  
1
NC  
WP  
VDD  
VSS  
8
4
-
-
Power Supply  
Ground pin, logic ground reference  
7
5
6
A terminal of potentiometer ‘1’, equivalent to the HI terminal  
connection on a mechanical potentiometer  
B terminal of potentiometer ‘1’, equivalent to the LO terminal  
connection on a mechanical potentiometer  
Wiper terminal of potentiometer ‘1’, equivalent to the wiper terminal  
of a mechanical potentiometer  
VA1  
VB1  
VW1  
-
-
O
- 6 -  
WMS7201  
7. FUNCTIONAL DESCRIPTION  
The WMS7201 series, a family of 256-tap, nonvolatile digitally programmable potentiometers is  
designed to operate as both a potentiometer or a variable resistor depending upon the output  
configuration selected.  
The chip can store four 9-bit words in nonvolatile memory (NVMEM0 ~ NVMEM3) and the word stored  
in the NVMEM0 will be used to set the tap register values when the device is powered up.  
The WMS7201 is controlled by a serial SPI interface that allows setting tap register value as well as  
storing data in the nonvolatile memory.  
7.1. POTENTIOMETER AND RHEOSTAT MODES  
The WMS7201 can operate as either a rheostat or as a potentiometer (voltage divider). When in the  
potentiometer configuration there are two possible modes. One is without the output buffer and the  
other mode is with the output buffer. Selecting the mode is done by controlling bit D8 of the data  
register. D8 = 0 sets the output buffer off and D8 = 1 sets it on.  
Note that this bit can only be set by loading the value to the NVMEM with instructions #5 and  
then loading the TAP register with instruction #6 from NVMEM. This bit cannot be controlled by  
directly writing the value to the chip when the tap register is set.  
7.1.1. Rheostat Configuration  
The WMS7201 acts as a two terminal resistive element in the rheostat configuration where one  
terminal is either one of the end point pins of the resistor (VA and VB) and the other terminal is the  
wiper (VW) pin. This configuration controls the resistance between the two terminals and the  
resistance can be adjusted by sending the corresponding tap register setting commands to the  
WMS7201 or loading a pre-set tap register value from nonvolatile memory NVMEM0 ~ MVMEM3.  
7.1.2. Potentiometer Configuration  
In potentiometer configuration an input voltage is connected to one of the end point pins (VA or VB).  
The voltage on the wiper pin will be proportional to the voltage difference between VA and VB and the  
wiper setting. The resistance cannot be directly measured in this configuration.  
7.2. PROGRAMMING MODES  
Two program modes are available for the WMS7201:  
Direct program mode. The tap register setting can be changed either by loading a  
predetermined value from an external microcontroller or by using the UP/DOWN command.  
The UP and DOWN commands change the tap register setting incrementally i.e., 1 LSB at a  
time. The UP and DOWN commands will not wrap around at the ends of the scale.  
NVMEM restore mode. One of the previously stored settings can be loaded into the TR  
register from the non-volatile memory. Four 9-bit non-volatile memories, are available for to  
store the tap register settings. The first register, NVMEM0, stores the favorite or default tap  
register setting that will be loaded into the tap register at system power up or software power  
on reset operation.  
Publication Release Date: January 2003  
- 7 -  
Revision 1.1  
WMS7201  
7.3. NON-VOLATILE MEMORY (NVMEM)  
The WMS7201 has four NVMEM positions available for storing the output buffer operating mode and  
the potentiometer setting. These NVMEM positions can be directly written through the SPI using a  
write command (#5) with address and data bytes. Another command (#7) is available that stores the  
current output buffer operating mode and potentiometer settings into the selected NVMEM position.  
Bit A3 and A2 in the instruction byte decide which NVMEM position is used. (See Table 5)  
The potentiometer is loaded with the value stored in the NVMEM position 0 on power up.  
7.3.1 Write Protect of NVMEM  
Write-Protect ( WP ) disables any changes of current content in the NVMEM regardless of the  
commands, except that NVMEM setting can be retrieved using commands 4, 6 of Table 5. Therefore,  
Write-Protect ( WP ) pin provides hardware NVMEM protection feature with WP tied to Vss. WP ,  
which is active at logic LOW, should be tied directly to VDD if it is not being used. This function is only  
available on the 10-pin package.  
7.4 FLOW CONTROL  
Reading and writing to NVMEM requires an internal access cycle to complete before the next  
command can be sent.  
Read Tap Register (#2)  
Read NVMEM (#4)  
Program NVMEM (#5)  
Load Tap Register(#6)  
Program NVMEM with Tap Register (#7)  
- 8 -  
WMS7201  
7.5. DAISY CHAIN  
Multiple devices can be controlled by the same bus without the need for extra CS lines from the  
microcontroller by daisy chaining the devices with the SDO of the first device connected to SDI of the  
next device as shown in figure 3 when using the 10-pin package.  
VDD  
CS  
CLK  
Micro  
controller  
SDO  
CS  
CS  
CS  
CLK  
CLK  
CLK  
SDI SDO  
SDI SDO  
SDI SDO  
Device  
Device  
Device  
FIGURE 3 – DAISY CHAIN CONFIGURATION [10-PIN TSSOP PACKAGE ONLY]  
A complete command is 24 bits including the instruction and the two data bytes. When shifting 24 bits  
in to the first device in the chain, the 24 bits of the previous command will be shifted out. So to set up  
two devices in a daisy chain, a total of 48 bits must be sent where the first 24 bits will be shifted out to  
the second device and the 24 bits shifted in last will remain in the first device.  
1. Command and data for device 2 is shifted into device 1, this will propagate to Device 2 when  
the next 24 bits are shifted in.  
Device  
Command 1  
Data  
Device  
xx  
2
Data  
2
xx  
xx  
2. Command and data for device 1 is shifted into device 1. Now Device 1 and 2 are correctly set  
up. 10-pin TSSOP package only.  
Device  
Command 2  
Data  
1
Data  
1
Device  
Command 1  
Data  
2
Data  
2
FIGURE 4 – DAISY CHAIN COMMAND EXAMPLE  
Publication Release Date: January 2003  
Revision 1.1  
- 9 -  
WMS7201  
7.6. SERIAL DATA ITERFACE  
The WMS7201 contains a four-wire SPI interface:  
SDO (Serial Data Output) Used for reading out the internal register contents and for daisy  
chaining multiple devices on the 10-pin package.  
SDI (Serial Data Input) Used for clocking in commands and potentiometer settings.  
CS (Chip Select) This pin must be pulled LOW before starting to send a command and pulled  
HIGH to signal the end of the command; this pin can be used to control multiple devices on  
the bus.  
CLK (Clock) The SDI bits are shifted in on the rising edge of the clock and SDO data is  
shifted out on the falling edge of the clock.  
The key features of this interface include:  
Independently programmable Read & Write to all registers  
Direct parallel refresh of Tap register from corresponding internal NVMEM registers  
Increment and decrement instruction for Tap register  
Nonvolatile storage of the present Tap register values into one of the four NVMEM registers  
available.  
Configurable output buffer amplifier to allow both the functions of a potentiometer and a  
variable resistor  
Four 9-bit non-volatile registers store four preset wiper positions and the first one will be  
recalled to set the wiper position during power up.  
The serial interface uses an SPI compatible uniform 24-bit word format as shown below. This format is  
used for all members of the WMS720x family. The data is sent MSB first.  
TABLE 2 – 24-BIT DATA WORD FORMAT  
MSB  
C3  
LSB  
D0  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
C3-C0 are the command bits that control the operation of the digital potentiometer according to the  
command instructions shown in the Instruction Set in Table 5 in Section 7.7.  
A1 and A0 are the address bits that determine which channel is activated in the WMS720x family as  
shown in the table below. For the WMS7201 A0 and A1 are always set to 0.  
- 10 -  
WMS7201  
TABLE 3 – A1 AND A0 ADDRESS BIT DECODE TABLE  
[A1 A0]  
Channel  
[0 0]  
0
[0 1]  
1
[1 0]  
2
[1 1]  
3
A3 and A2 are the address bits that decide which NVMEM memory to be accessed, as shown in the  
table below.  
TABLE 4 – A3 AND A2 ADDRESS BIT DECODE TABLE  
[A3 A2]  
NVMEM  
[0 0]  
0
[0 1]  
1
[1 0]  
2
[1 1]  
3
D7-D0 are the data values to be loaded into the Tap Register to set the wiper position, while D8 is  
used to set the output mode. D8 has to be loaded into the NVMEM0~3 first and then the “Load Tap  
Register” command (#6) has be executed to load D8 into the output-selection MUX to set the output  
mode. D8=0 sets the output to Buffer Off mode while D8=1 sets to Buffer On mode.  
CS is taken LOW  
before command  
starts  
CS is taken HIGH  
after command is  
sent  
CS  
1
2
3
4 5  
6
7
8
9 1  
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
CLK  
SDI  
C3C2 C1 C0 A3 A2 A1 A0 x  
`
x
x
x
x
x
x D8 D7 D6 D5 D4 D3 D2 D1 D0  
Note:  
A multiple of 24 bits must always be sent or the  
command will not be valid  
Bits marked ‘x’ are don’t care bits.  
FIGURE 5 – SPI COMMAND WAVEFORMS  
Publication Release Date: January 2003  
Revision 1.1  
- 11 -  
WMS7201  
7.7. INSTRUCTION SET  
TABLE 5 – INSTRUCTION SET  
Inst  
No.  
Instruction Byte  
Data Byte 1  
Data Byte 2  
Operation  
C3 C2 C1 C0 A3 A2 A1  
A0  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
1
0
1
0
1
0
0
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
No Operation (NOP). Do nothing  
2
x A1 A0  
Read Tap Register and output  
selection MUX register  
3
4
5
0
1
0
1
0
0
0
1
1
0
x
x A1 A0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
D7 D6 D5 D4 D3 D2 D1 D0  
Write to Tap Register with D7-D0  
Read NVMEM pointed to by A3-A0  
0 A3 A2 A1 A0  
0 A3 A2 A1 A0  
x x x x x x x x  
x
D7 D6 D5 D4 D3 D2 D1 D0  
Program NVMEM pointed to by  
D8  
A3-A0 with D8-D0  
6
1
0
1
1 A3 A2 A1 A0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Load Tap Register and output  
selection MUX register with the  
contents of NVMEM pointed to by  
A3-A0  
7
0
0
1
1 A3 A2 A1 A0  
x
x
x
x
x
x
x
Program NVMEM pointed to by  
A3-A0 with the contents of Tap  
Register and output selection MUX  
register  
8
0
1
1
0
1
1
1
1
0
0
1
0
1
1
0
0
0
0
1
1
0
1
x
x
x
x
x A1 A0  
x A1 A0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Up: Increment setting of TR by one  
tap  
9
Down: Decrement setting of TR by  
one tap  
10  
11  
12  
13  
x
x
x
x
x
x
Sleep: Discontinue clock supply to  
the logic and memories  
Wake Up: Clock supply to the logic  
and memories  
1 A3 A2 A1 A0  
Byte-erase NVMEM pointed to by  
A3-A0  
1
x x x x  
Power On Reset: Software reset  
the part to the power up state  
Note: C3-C0 are the command op-code; A3, A2 are the NVMEM address; A1, A0 are the channel address.  
7.8. BASIC OPERATION  
This chapter describes the sequences of commands to send to the WMS7201 and how to use the  
different features.  
7.8.1 Sending a Command  
1. Take the chip out of SLEEP mode.  
2. Check that the write protect is set correctly if writing to NVMEM (10-pin TSSOP package  
only).  
3. Pull the CS pin LOW before sending data to the device.  
- 12 -  
WMS7201  
4. 24 clock pulses are sent for each command. SDI must be valid on the rising edge of the clock,  
SDO is valid on the falling edge of the clock or CS.  
5. Take CS HIGH after the command has completed  
6. If command 2, 4, 5, 6 or 7 is sent, wait TSV time before sending the next command.  
7.8.2 Wake Up/Sleep/Power Commands  
The chip is in SLEEP mode after:  
VDD is applied  
A Power on Reset command is sent  
A SLEEP command is sent  
Before any operations can be performed the WAKE UP command must be sent.  
When a SLEEP command is sent, the chip retains its resistor settings as long as the chip is powered  
up but cannot accept any other commands than a WAKE UP command.  
TABLE 6 – POWER RELATED COMMANDS  
Inst. Command  
Command Byte Data Byte 1  
Data Byte 2  
Comment  
No.  
11  
Name:  
Wake Up  
Sleep  
0 0 0 1 x x x x  
1 0 0 0 x x x x  
x x x x x x x x x x x x x x x x Wake Up entire chip  
x x x x x x x x x x x x x x x x Send chip into power  
save mode  
10  
13  
1
Power on Reset  
NOP  
1 0 0 1 x x x x  
0 0 0 0 x x x x  
x x x x x x x x x x x x x x x x Reset Chip  
x x x x x x x x x x x x x x x x Dummy instruction  
The commands above control the entire chip.  
7.8.3 Write to Tap Register (TR)  
The microcontroller can write a value directly into the tap register or send an increment or decrement  
command to control the tap register. Alternatively, the contents of an NVMEM location can be written  
to the tap register. The only way to change the output buffer mode is to write the desired value of bit  
D8 into an NVMEM location and then load the corresponding NVMEM location into the tap register.  
Publication Release Date: January 2003  
- 13 -  
Revision 1.1  
WMS7201  
TABLE 7 – WRITING TO THE TAP REGISTERS  
Command Byte Data Byte 1 Data Byte 2  
Inst. Comman  
Comment  
No.  
d Name:  
3
Write to  
0 1 0 0  
x
x 0 0  
x x x x x x x x D7 D6 D5 D4 D3 D2 D1 D0 Writes a value to the  
tap register.  
Tap  
Register  
8
9
6
Up  
0 1 1 1  
1 1 1 1  
x
x
x 0 0  
x 0 0  
x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x  
Increment tap  
register value by one  
Down  
Decrement tap  
register value by one  
Load Tap  
Register  
1 0 1 1 A3 A2 0 0  
Load the selected  
NVMEM location into  
the tap register  
7.8.4 Programming Non-Volatile Memory (NVMEM)  
The value stored in the NVMEM location is 9 bits, the 8 bits (D7-D0) of the tap register plus 1 bit (D8)  
of the output buffer mode. The NVMEM position must be erased before writing to it. There are two  
ways to program a value into NVMEM.  
Write a value directly from the microcontroller.  
Load the current potentiometer setting into NVMEM.  
TABLE 8 – PROGRAMMING NVMEM  
Inst. Command Command Byte  
Data Byte 1  
Data Byte 2  
Comment  
No  
Name  
12  
Erase  
1 1 0 1 A3 A2 0 0  
x x x x x x x x  
x
x
x
x
x
x
x
x
Erases the 9 bit word  
pointed to by A3, A2, A1  
and A0.  
NVMEM  
5
7
Program  
NVMEM  
Program  
NVMEM  
with Tap  
Register  
0 0 1 0 A3 A2 0 0  
0 0 1 1 A3 A2 0 0  
x x x x x x x D8  
x x x x x x x x  
D7 D6 D5 D4 D3 D2 D1 D0 Writes a value to the  
NVMEM register.  
x
x
x
x
x
x
x
x
Takes the current  
potentiometer settings and  
saves in the selected  
NVMEM location.  
For programming NVMEM, the following sequence must be followed:  
1. Erase word at NVMEM location  
2. Program word at NVMEM location  
- 14 -  
WMS7201  
7.8.5 Reading Tap Register and NVMEM Location (10-pin TSSOP package only)  
The contents of the tap register or any NVMEM location can be read back through the SDO pin. When  
a command is sent, the data is clocked out on the falling edge of the clock. Since daisy-chain  
operation requires data from one command to be clocked out when the next command arrives, any  
read command must be followed by another command to get the correct data on the SDO pin.  
TABLE 9 – READING THE TAP REGISTER  
Inst. Command Command Byte  
Data Byte 1  
Data Byte 2  
Comment  
No.  
Name:  
4
Read  
1 0 1 0 A3 A2 0 0  
x x x x x x x x  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Read the value of the  
selected NVMEM  
location  
Read the value of the  
selected tap register  
NVMEM  
2
1
Read Tap  
Register  
1 1 0 0  
0 0 0 0  
x
x
x 0 0  
x x x  
x x x x x x x x  
NOP to  
Read  
x x x x x x x D8 D7 D6 D5 D4 D3 D2 D1 D0 Output data to SDO  
pin  
Register  
To read the contents of either the tap register or a NVMEM location, the following sequence must be  
followed.  
1. Send the desired read command (#2 or #4)  
2. Send another command such as NOP and read the SDO pin on the falling edge of the clock.  
The other command could be any command, but to make sure that the chip does not change  
anything, send either another Read command or a NOP command (#1).  
Publication Release Date: January 2003  
- 15 -  
Revision 1.1  
WMS7201  
8. TIMING DIAGRAMS  
CLK  
tCYC  
tWL  
tWH  
tLEAD  
tLAG  
CS  
tCS  
tDSU  
tDH  
LSB  
MSB  
SDI  
tPD  
tLAC  
tLRL  
MSB  
LSB  
SDO  
R/B  
tRSU  
tST  
tSV  
1
tWPSU  
tWPH  
WP
2  
FIGURE 6 – WMS7201 TIMING DIAGRAM  
Notes: (1) Internal signal only. (2) Only on 10-pin TSSOP package.  
- 16 -  
WMS7201  
TABLE 10 – TIMING PARAMETERS  
PARAMETER  
SPI Clock Cycle Time  
SYMBOL  
tCYC  
tWH  
MIN.  
100  
50  
50  
100  
100  
20  
20  
5
MAX.  
UNIT  
ns  
SPI Clock HIGH Time  
SPI Clock LOW Time  
Lead Time  
ns  
tWL  
ns  
tLEAD  
tLAG  
tDSU  
tDH  
ns  
Lag Time  
ns  
SDI Setup Time  
ns  
SDI Hold Time  
CSto SDO – SPI Line Acquire 1  
ns  
tLAC  
ns  
CSto SDO – SPI Line Release 1  
tLRL  
5
ns  
CLK to SDO Propagation Delay 1  
tPD  
1
ns  
Store to NVMEM Save Time  
tSV  
tCS  
2
ms  
ns  
600  
0.1  
10  
CSDeselect Time  
Startup Time  
WP Setup Time 1  
WP Hold Time 1  
tST  
tWPSU  
ms  
ns  
tWPH  
10  
ns  
Note: The interface timing characteristics apply to all parts but are guaranteed by design and not  
subject to production test.  
Note 1: 10-pin package only.  
Publication Release Date: January 2003  
- 17 -  
Revision 1.1  
WMS7201  
9. ABSOLUTE MAXIMUM RATINGS  
TABLE 11 – ABSOLUTE MAXIMUM RATINGS  
Condition  
Value  
Junction temperature  
Storage temperature  
Voltage applied to any pad  
VDD – VSS  
150ºC  
-65º to +150ºC  
(Vss – 0.3V) to (VDD + 0.3V)  
-0.3 to 7.0V  
Note: Exposure to conditions beyond those listed under: Absolute Maximum Ratings, may adversely  
affect the life and reliability of the device.  
- 18 -  
WMS7201  
10. ELECTRICAL CHARACTERISTICS  
TABLE 12 – ELECTRICAL CHARACTERISTICS  
All Parameters apply across specified operating ranges unless noted (VDD: 2.7V~5.5V; Temp: –40°C~85°C)  
Typical values: VDD=5V and T=25°C  
PARAMETER  
SYMBOL  
MIN.  
TYP MAX.  
UNITS CONDITIONS  
Rheostat Mode  
Nominal Resistance  
Different Non Linearity  
Integral Non Linearity  
Rheostat Tempco1  
R
DNL  
INL  
-20  
-1  
-1  
+20  
+1  
+1  
%
LSB  
LSB  
T=25ºC, VW open  
0.3  
0.5  
500  
RAB/T  
ppm/°  
C
Wiper Resistance2  
RW  
VDD=5V,  
50  
80  
100  
120  
I=VDD/RTotal  
VDD=2.7V,  
I=VDD/RTotal  
Potentiometer Mode  
Resolution1  
N
8
-1  
-1  
Bits  
LSB  
LSB  
ppm/°  
C
LSB  
LSB  
Different Non Linearity2  
Integral Non Linearity2  
Potentiometer Tempco1  
DNL  
INL  
+1  
+1  
+20  
Code = 80h  
Vw/T  
Full Scale Error  
VFSE  
VZSE  
-1  
0
0
1
Code = Full Scale  
Code = Zero Scale  
Zero Scale Error  
Resistor Terminal  
Voltage Range1  
VA,VB,VW  
CA, CB  
VSS  
VDD  
V
pF  
pF  
Terminal Capacitance1  
Wiper Capacitance1  
Dynamic Characteristics1  
30  
30  
BW10K  
1.5  
MHz  
VDD=5V, VB=VSS  
Code = Full Scale  
Bandwidth –3dB  
BW50K  
BW100K  
TS  
300  
200  
80  
KHz  
KHz  
uS  
Code = 80h  
CL=30pf  
Settling Time to 1 LSB  
100  
VDD=5.5V=VA,  
VB=VSS  
Analog Output (Buffer enabled)  
Amp Output Current2  
IOUT  
Rout  
THD  
3
mA  
VO=1/2 scale  
Amp Output Resistance2  
1
10  
VA=2.5V, VDD=5V,  
f=1kHz, VIN=1VRMS  
Total Harmonic Distortion1  
0.08  
%
Digital Inputs/Outputs  
Input High Voltage  
VIH  
VIL  
VOL  
ILI  
0.7VDD  
-1  
V
V
Input Low Voltage  
0.3VDD  
0.4  
+1  
Output Low Voltage  
Input Leakage Current  
V
IOL=2mA  
CS=VDD,Vin=Vss  
uA  
Publication Release Date: January 2003  
Revision 1.1  
- 19 -  
WMS7201  
~ VDD  
Output Leakage Current  
ILo  
-1  
+1  
uA  
CS=VDD,Vin=VSS  
~ VDD  
VDD=5V, fc = 1Mhz  
Code = 80h  
Input Capacitance1  
Output Capacitance1  
CIN  
25  
25  
pF  
pF  
VDD=5V, fc = 1Mhz  
Code = 80h  
COUT  
Power Requirements  
Operating Voltage1  
VDD  
IDDR  
2.7  
0.5  
5.5  
1.8  
V
All ops except  
NVMEM program  
During Non-  
volatile memory  
program  
Operating Current  
1
1
mA  
Operating Current  
IDDW  
ISA  
2
1
1
1
mA  
mA  
Buffer is active, ,  
no load  
Standby Current  
Buffer is inactive,  
Power Down, No  
load  
2
ISB  
0.1  
uA  
VDD=5V±10%,  
Code=80h  
Power Supply Rejection Ratio PSRR  
LSB/V  
Note: 1. Not subject to production test; 2. Only on Final Test; 3. VDD = +2.7V to 5.5V, VSS = 0V, T = 25ºC, unless otherwise  
noted.  
- 20 -  
WMS7201  
10.1 TEST CIRCUITS  
±
V+ = V 10%  
DD  
VMS  
PSRR(dB) = 20LOG(  
)
VA  
V+ = VDD  
VDD  
VA  
VB  
VMS  
1LSB= V+/255  
PSS(%/%) =  
VW  
VDD  
VW  
V+  
V+  
VB  
VMS  
*
VMS  
*
WMS7201  
WMS7201  
*Assume infinite input impedance  
*Assume infinite input impedance  
Potentiometer divider nonlinearity error  
test circuit (INL, DNL)  
Power supply sensitivity test circuit (PSS, PSRR)  
WMS7201  
No Connection  
WMS7201  
VA  
VB  
+5V  
VW  
IW  
VA  
W
VW  
VOUT  
VB  
VMS*  
~
VIN  
2.5V DC  
Offset  
*Assume infinite input impedance  
Resistor position nonlinearity error test  
Capacitance test circuit  
circuit (Rheostat Operation: R-INL, R-DNL)  
V
MS  
*
WMS7201  
VA  
VW  
+5V  
I
W
= V /RTotal  
DD  
VA  
VB  
IW  
~
VIN  
VOUT  
VW  
VB  
OFFSET  
GND  
RW = V /IW  
MS  
WMS7201  
2.5V DC  
*Assume infinite input impedance  
Gain vs. frequency test circuit  
Wiper resistance test circuit  
FIGURE 7 – TEST CIRCUITS  
Publication Release Date: January 2003  
Revision 1.1  
- 21 -  
WMS7201  
11. TYPICAL APPLICATION CIRCUIT  
RA  
RB  
Vin  
WMS7201  
_
+
VOUT  
OP  
AMP  
R
B
A
VOUT = - VIN  
R
RAB(256 D)  
RABD  
256  
RA =  
,
RB =  
256  
RAB = Total resistance of potentiometer  
D = Wiper setting for WMS7201  
FIGURE 8 – PROGRAMMABLE INVERTING GAIN AMPLIFIER USING THE WMS7201  
VIN  
+
_
VOUT  
OP  
AMP  
RA  
RB  
WMS7201  
R
B
A
VOUT = VIN (1+  
)
R
RAB(256 D)  
RABD  
256  
RA =  
, RB =  
256  
RAB = Total resistance of potentiometer  
D = Wiper setting for WMS7201  
FIGURE 9 – PROGRAMMABLE NON-INVERTING GAIN AMPLIFIER USING THE WMS7201  
- 22 -  
WMS7201  
V+  
I = 32mA  
VREFH  
VREF = 5.0v  
WMS7201  
GND  
FIGURE 10 – WMS7201 TRIMMING VOLTAGE REFERENCE  
VDD  
L1  
CHOKE  
C1  
0.1uF  
1
2
3
4
8
CS\  
SDI  
CS  
VDD  
VA1  
VW1  
VB1  
RF OUT  
7
6
5
CLK  
CLK  
SDI  
VSS  
Q1  
FILTER  
RF POWER AMP  
WMS7201 WINPOT  
C2  
RF Input  
FIGURE 11 – WMS7201 RF AMP CONTROL  
Publication Release Date: January 2003  
Revision 1.1  
- 23 -  
WMS7201  
11.1. LAYOUT CONSIDERATIONS  
A 0.1µF bypass capacitor as close as possible to the VDD pin is recommended for best performance.  
Often this can be done by placing the surface mount capacitor on the bottom side of the PC board,  
directly between the VDD and VSS pins. Care should be taken to separate the analog and digital traces.  
Sensitive traces should not run under the device or close to the bypass capacitors.  
A dedicated plane for analog ground helps in reducing ground noise for sensitive analog signals.  
FIGURE 12 – WMS7201 LAYOUT  
- 24 -  
WMS7201  
12. PACKAGE DRAWINGS AND DEMINSIONS  
8
5
E
1
4
Control demensions are in milmeters .  
E
θ
FIGURE 13 – 8L SOIC – 150MIL  
Publication Release Date: January 2003  
Revision 1.1  
- 25 -  
WMS7201  
D
8
5
1
E
4
1
B
B
1
E
S
c
2
Base Plane  
1
A
A
A
Seating Plane  
L
e 1  
eA  
α
Dimension in inch  
Dimension in mm  
Symbol  
Min  
Nom  
Max  
0.175  
Min  
Nom  
Max  
4.45  
A
A
A
0.010  
0.25  
3.18  
0.41  
1.47  
0.20  
1
2
0.130  
0.018  
0.060  
0.010  
0.360  
0.135  
0.022  
0.064  
0.014  
0.380  
0.125  
0.016  
0.058  
0.008  
3.30  
0.46  
1.52  
0.25  
9.14  
7.62  
6.35  
2.54  
3.30  
3.43  
0.56  
1.63  
0.36  
9.65  
7.87  
6.48  
2.79  
B
B
c
1
D
0.310  
0.255  
0.110  
0.290  
0.245  
0.090  
0.300  
0.250  
0.100  
7.37  
6.22  
2.29  
E
E
e
1
1
0.140  
15  
3.05  
0
0.120  
0
0.130  
3.56  
15  
L
α
A
e
S
9.53  
1.14  
0.335  
0.355  
0.375  
0.045  
8.51  
9.02  
FIGURE 14 – 8L PDIP  
- 26 -  
WMS7201  
FIGURE 15 – 8L MSOP  
Publication Release Date: January 2003  
Revision 1.1  
- 27 -  
WMS7201  
13. ORDERING INFORMATION  
Winbond’s WinPot Part Number Description:  
WMS72 XX XXX X  
Winbond WinPot Products  
Features:  
01: Single channel with SPI Interface  
02: Dual channels with SPI Interface  
04: Quad channels with SPI Interface  
End-to-end Resistance:  
010: 10KΩ  
050: 50KΩ  
100: 100KΩ  
Package Index:  
T: TSSOP  
S: SOIC  
P: PDIP  
M: MSOP (Available only for single channel  
devices)  
For the latest product information, access Winbond’s worldwide website at  
http://www.winbond-usa.com  
- 28 -  
WMS7201  
14. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
1.0  
Jan. 2003  
All  
Initial issue  
The contents of this document are provided only as a guide for the applications of Winbond  
products. Winbond 
makes no representation or warranties with respect to the accuracy or  
completeness of the contents of this publication and reserves the right to discontinue or make  
changes to specifications and product descriptions at any time without notice. No license, whether  
express or implied, to any intellectual property or other right of Winbond or others is granted by this  
publication. Except as set forth in Winbond's Standard Terms and Conditions of Sale, Winbond  
assumes no liability whatsoever and disclaims any express or implied warranty of merchantability,  
fitness for a particular purpose or infringement of any Intellectual property.  
Winbond products are not designed, intended, authorized or warranted for use as components in  
systems or equipments intended for surgical implantation, atomic energy control instruments,  
airplane or spaceship instruments, transportation instruments, traffic signal instruments,  
combustion control instruments, or for other applications intended to support or sustain life.  
Further, Winbond products are not intended for applications wherein failure of Winbond products  
could result or lead to a situation wherein personal injury, death or severe property or  
environmental injury could occur.  
Headquarters  
Winbond Electronics Corporation America  
Winbond Electronics (Shanghai) Ltd.  
No. 4, Creation Rd. III  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
2727 North First Street, San Jose,  
27F, 299 Yan An W. Rd. Shanghai,  
CA 95134, U.S.A.  
200336 China  
TEL: 1-408-9436666  
TEL: 86-21-62365999  
FAX: 86-21-62356998  
TEL: 886-3-5770066  
FAX: 1-408-5441797  
FAX: 886-3-5665577  
http://www.winbond-usa.com/  
http://www.winbond.com.tw/  
Taipei Office  
Winbond Electronics Corporation Japan  
Winbond Electronics (H.K.) Ltd.  
9F, No. 480, Pueiguang Rd.  
Neihu District  
7F Daini-ueno BLDG. 3-7-18  
Shinyokohama Kohokuku,  
Yokohama, 222-0033  
TEL: 81-45-4781881  
Unit 9-15, 22F, Millennium City,  
No. 378 Kwun Tong Rd.,  
Kowloon, Hong Kong  
Taipei, 114 Taiwan  
TEL: 886-2-81777168  
FAX: 886-2-87153579  
TEL: 852-27513100  
FAX: 81-45-4781800  
FAX: 852-27552064  
Please note that all data and specifications are subject to change without notice.  
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.  
This product incorporates SuperFlash® technology licensed From SST.  
Publication Release Date: January 2003  
Revision 1.1  
- 29 -  

相关型号:

WMS7204010T

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND

WMS7204010TY

Digital Potentiometer, 4 Func, 10000ohm, 3-wire Serial Control Interface, 256 Positions, PDSO20, 4.40 MM, LEAD FREE, TSSOP-20
WINBOND

WMS7204050M

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND

WMS7204050P

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND

WMS7204050PY

Digital Potentiometer, 4 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, PDIP20, 0.300 INCH, LEAD FREE, PLASTIC, DIP-20
WINBOND

WMS7204050S

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND

WMS7204050SY

Digital Potentiometer, 4 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, PDSO20, 0.150 INCH, LEAD FREE, SOIC-20
WINBOND

WMS7204050T

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND

WMS7204050TY

Interface Circuit,
WINBOND

WMS7204100M

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND

WMS7204100P

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND

WMS7204100S

256-TAP NON-VOLATILE DIGITAL POTENTIOMETER
WINBOND