WM8523GEFL/RV [WOLFSON]

24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output;
WM8523GEFL/RV
型号: WM8523GEFL/RV
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output

转换器
文件: 总51页 (文件大小:618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8523  
w
24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output  
DESCRIPTION  
FEATURES  
High performance stereo DAC with ground referenced line  
driver  
Audio Performance  
The WM8523 is a stereo DAC with integral charge pump  
and software control interface. This provides 2Vrms line  
driver outputs using a single 3.3V power supply rail.  
106dB SNR (‘A-weighted’)  
-89dB THD @ -1dBFS  
The device features ground-referenced outputs and the use  
of a DC servo to eliminate the need for line driving coupling  
capacitors and effectively eliminate power on pops and  
clicks.  
Digital Volume control ranging from -100dB to +12dB  
120dB mute attenuation  
All common sample rates from 8kHz to 192kHz supported  
I2C/SPI compatible and hardware control modes  
Data formats: LJ, RJ, I2S, DSP  
The device is controlled and configured either via the  
I2C/SPI compliant serial control interface or a hardware  
control interface.  
De-emphasis supported  
Maximum 1mV DC offset on Line Outputs  
Pop/Click suppressed Power Up/Down Sequencer  
AVDD and LINEVDD +3.3V ±10% allowing single supply  
20-lead TSSOP or 24-lead QFN packages  
Operating temperature range: -40°C to 85°C  
The device supports all common audio sampling rates  
between 8kHz and 192kHz using all common MCLK fs  
rates. Master and Slave modes are available and de-  
emphasis is also supported.  
APPLICATIONS  
The WM8523 has a 3.3V tolerant digital interface, allowing  
logic up to 3.3V to be connected.  
Consumer digital audio applications requiring 2Vrms output  
Set Top Box  
Digital TV  
DVD Players  
Games Consoles  
A/V Receivers  
The device is available in a 20-lead TSSOP or 24-lead  
QFN.  
WOLFSON MICROELECTRONICS plc  
Production Data, August 2011, Rev 4.1  
Copyright ©2011 Wolfson Microelectronics plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews  
WM8523  
Production Data  
BLOCK DIAGRAM  
W
WM8523  
CONTROL INTERFACE  
LEFT  
DAC  
LINEVOUTL  
MCLK  
BCLK  
LRCLK  
DACDAT  
DIGITAL  
AUDIO  
INTERFACE  
DIGITAL  
FILTERS  
RIGHT  
DAC  
LINEVOUTR  
CHARGE PUMP  
PD, Rev 4.1, August 2011  
2
w
Production Data  
WM8523  
TABLE OF CONTENTS  
DESCRIPTION ................................................................................................................... 1  
FEATURES......................................................................................................................... 1  
APPLICATIONS ................................................................................................................. 1  
BLOCK DIAGRAM ............................................................................................................. 2  
TABLE OF CONTENTS ..................................................................................................... 3  
PIN CONFIGURATION....................................................................................................... 4  
ORDERING INFORMATION .............................................................................................. 4  
PIN DESCRIPTION – 20-LEAD TSSOP ............................................................................ 5  
PIN DESCRIPTION – 24-LEAD QFN................................................................................. 6  
ABSOLUTE MAXIMUM RATINGS..................................................................................... 8  
RECOMMENDED OPERATING CONDITIONS ................................................................. 8  
ELECTRICAL CHARACTERISTICS .................................................................................. 9  
TERMINOLOGY..........................................................................................................................9  
POWER CONSUMPTION MEASUREMENTS ..........................................................................10  
SIGNAL TIMING REQUIREMENTS................................................................................. 11  
SYSTEM CLOCK TIMING .........................................................................................................11  
AUDIO INTERFACE TIMING – MASTER MODE ......................................................................11  
AUDIO INTERFACE TIMING – SLAVE MODE..........................................................................12  
CONTROL INTERFACE TIMING – I2C MODE ..........................................................................13  
CONTROL INTERFACE TIMING – SPI MODE .........................................................................14  
POWER ON RESET CIRCUIT ..................................................................................................15  
DEVICE DESCRIPTION................................................................................................... 17  
INTRODUCTION.......................................................................................................................17  
SOFTWARE CONTROL INTERFACE.......................................................................................17  
DIGITAL AUDIO INTERFACE...................................................................................................21  
DIGITAL AUDIO INTERFACE CONTROL.................................................................................24  
DIGITAL AUDIO DATA SAMPLING RATES..............................................................................26  
DAC FEATURES.......................................................................................................................27  
HARDWARE CONTROL INTERFACE......................................................................................32  
POWER DOMAINS ...................................................................................................................34  
REGISTER MAP............................................................................................................... 35  
REGISTER BITS BY ADDRESS ...............................................................................................36  
DIGITAL FILTER CHARACTERISTICS........................................................................... 40  
DAC FILTER RESPONSES.......................................................................................................41  
DIGITAL DE-EMPHASIS CHARACTERISTICS.........................................................................42  
APPLICATIONS INFORMATION ..................................................................................... 43  
RECOMMENDED EXTERNAL COMPONENTS – 20-LEAD TSSOP.........................................43  
RECOMMENDED PCB LAYOUT – 20-LEAD TSSOP ...............................................................44  
RECOMMENDED EXTERNAL COMPONENTS – 24-LEAD QFN .............................................45  
RECOMMENDED PCB LAYOUT – 24-LEAD QFN....................................................................46  
RECOMMENDED ANALOGUE LOW PASS FILTER ................................................................47  
RELEVANT APPLICATION NOTES..........................................................................................47  
PACKAGE DIMENSIONS – 20-LEAD TSSOP ................................................................ 48  
PACKAGE DIMENSIONS – 24-LEAD QFN..................................................................... 49  
IMPORTANT NOTICE...................................................................................................... 50  
ADDRESS.................................................................................................................................50  
REVISION HISTORY........................................................................................................ 51  
PD, Rev 4.1, August 2011  
w
3
WM8523  
Production Data  
PIN CONFIGURATION  
24  
23  
22  
21  
20  
19  
DACDAT  
LRCLK  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
NC  
LINEVOUTL  
LINEVOUTR  
NC  
BCLK  
MCLK  
SDOUT/DEEMPH  
SDA/AIFMODE0  
AVDD  
AVDD  
7
8
9
10  
11  
12  
20-LEAD TSSOP  
24-LEAD QFN (TOP VIEW)  
ORDERING INFORMATION  
ORDER CODE  
WM8523GEDT  
WM8523GEDT/R  
WM8523GEFL/V  
WM8523GEFL/RV  
Note:  
TEMPERATURE  
RANGE  
PACKAGE  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMPERATURE  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
20-lead TSSOP  
(pb-free)  
MSL1  
MSL1  
MSL3  
MSL3  
260oC  
260oC  
260oC  
260oC  
20-lead TSSOP  
(pb-free, tape and reel)  
24-lead QFN  
(pb-free)  
24-lead QFN  
(pb-free, tape and reel)  
TSSOP Reel quantity = 2000  
QFN Reel quantity = 3500  
PD, Rev 4.1, August 2011  
4
w
Production Data  
WM8523  
PIN DESCRIPTION – 20-LEAD TSSOP  
PIN NO  
NAME  
LINEVOUTL  
CPVOUTN  
CPCB  
TYPE  
DESCRIPTION  
1
Analogue Out  
Left line output  
2
3
Analogue Out  
Analogue Out  
Supply  
Charge Pump negative rail decoupling pin  
Charge Pump fly back capacitor pin  
Charge Pump ground  
4
LINEGND  
CPCA  
5
Analogue Out  
Supply  
Charge Pump fly back capacitor pin  
Charge Pump supply  
6
LINEVDD  
ZFLAG  
7
Digital Out  
Digital In  
Zero flag output  
8
Digital audio interface data input  
Digital audio interface left/right clock  
Digital audio interface bit clock  
Master clock  
DACDAT  
LRCLK  
9
Digital I/O  
Digital I/O  
Digital In  
10  
11  
BCLK  
MCLK  
I2C SOFTWARE  
MODE  
SPI SOFTWARE  
HARDWARE MODE  
MODE  
SDOUT/  
I2C address select  
bit[1]  
Serial control interface  
data output pin  
0 – No de-emphasis  
1 – De-emphasis  
12  
13  
Digital I/O  
DEEMPH  
AIFMODE[1:0]  
00 – LJ 24 bits  
01 – I2S 24 bits  
10 – RJ 16 bits  
11 – RJ 24 bits  
Digital I/O  
SDA/  
Serial control interface  
data input pin  
Serial control interface  
data input pin  
Internal pull-down  
AIFMODE0  
Digital I/O  
SCLK/  
Serial control interface  
clock input pin  
Serial control interface  
clock input pin  
14  
Internal pull-down  
AIFMODE1  
C¯ ¯S/  
I2C address select  
bit[0]  
Serial control interface  
chip select  
0 – Mute enabled  
1 – Mute disabled  
15  
16  
17  
18  
19  
20  
Digital In  
M¯ ¯U¯T¯E¯  
0 – I2C compatible  
mode select  
1 – SPI compatible  
mode select  
Digital In  
Tri-level  
Z – Hardware mode  
CIFMODE  
AGND  
Supply  
Analogue Out  
Supply  
Analogue ground  
Analogue midrail decoupling pin  
Analogue supply  
VMID  
AVDD  
Analogue Out  
Right line output  
LINEVOUTR  
Note: Tri-level pins which require the ‘Z’ state to be selected should be left floating (open)  
PD, Rev 4.1, August 2011  
5
w
WM8523  
Production Data  
PIN DESCRIPTION – 24-LEAD QFN  
PIN NO  
NAME  
DACDAT  
LRCLK  
BCLK  
TYPE  
DESCRIPTION  
1
Digital In  
Digital audio interface data input  
2
3
4
Digital I/O  
Digital I/O  
Digital In  
Digital audio interface left/right clock  
Digital audio interface bit clock  
Master clock  
MCLK  
I2C SOFTWARE  
MODE  
SPI SOFTWARE  
HARDWARE MODE  
MODE  
SDOUT/  
I2C address select  
bit[1]  
Serial control interface  
data output pin  
0 – No de-emphasis  
1 – De-emphasis  
5
6
Digital I/O  
Digital I/O  
DEEMPH  
AIFMODE[1:0]  
00 – LJ 24 bits  
01 – I2S 24 bits  
10 – RJ 16 bits  
11 – RJ 24 bits  
SDA/  
Serial control interface  
data input pin  
Serial control interface  
data input pin  
AIFMODE0  
SCLK/  
Serial control interface  
clock input pin  
Serial control interface  
clock input pin  
7
Digital I/O  
Digital In  
AIFMODE1  
C¯ ¯S/  
I2C address select  
bit[0]  
Serial control interface  
chip select  
0 – Mute enabled  
1 – Mute disabled  
8
M¯ ¯U¯T¯E¯  
0 – I2C compatible  
mode select  
1 – SPI compatible  
mode select  
Digital In  
Tri-level  
9
Z – Hardware mode  
CIFMODE  
AGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Supply  
Supply  
Analogue ground  
Analogue ground  
AGND  
Analogue Out  
Supply  
Analogue midrail decoupling pin  
Analogue supply  
VMID  
AVDD  
Supply  
Analogue supply  
AVDD  
No Connect  
Analogue Out  
Analogue Out  
No Connect  
Analogue Out  
Analogue Out  
Supply  
No internal connection  
Right line output  
NC  
LINEVOUTR  
LINEVOUTL  
NC  
Left line output  
No internal connection  
Charge Pump negative rail decoupling pin  
Charge Pump fly back capacitor pin  
Charge Pump ground  
CPVOUTN  
CPCB  
LINEGND  
PD, Rev 4.1, August 2011  
6
w
Production Data  
WM8523  
PIN NO  
NAME  
CPCA  
TYPE  
DESCRIPTION  
22  
Analogue Out  
Charge Pump fly back capacitor pin  
23  
24  
Supply  
Charge Pump supply  
Zero flag output  
LINEVDD  
ZFLAG  
Digital Out  
Note: Tri-level pins which require the ‘Z’ state to be selected should be left floating (open)  
PD, Rev 4.1, August 2011  
w
7
WM8523  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or  
beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically  
susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during  
handling and storage of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+4.5V  
AVDD, LINEVDD  
Voltage range digital inputs  
Voltage range analogue inputs  
Temperature range, TA  
LINEGND -0.3V  
AGND -0.3V  
-40°C  
LINEVDD +0.3V  
AVDD +0.3V  
+125°C  
Storage temperature after soldering  
-65°C  
+150°C  
Notes  
1. Analogue grounds must always be within 0.3V of each other.  
2. LINEVDD and AVDD must always be within 0.3V of each other.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Analogue supply range  
Ground  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AVDD, LINEVDD  
AGND, LINEGND  
2.97  
3.3  
0
3.63  
V
V
PD, Rev 4.1, August 2011  
8
w
Production Data  
WM8523  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
LINEVDD=AVDD=3.3V, LINEGND=AGND=0V, TA=+25°C, Slave Mode, fs=48kHz, MCLK=256fs, 24-bit data, unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analogue Output Levels  
Output Level  
0dBFS  
1.89  
1
2.1  
2.31  
Vrms  
k  
Load Impedance  
Load Capacitance  
No external RC filter  
300  
1
pF  
With filter shown in  
Error! Reference  
source not found.  
μF  
DAC Performance  
Signal to Noise Ratio  
SNR  
RL = 10kΩ  
A-weighted  
RL = 10kΩ  
Un-weighted  
RL = 10kΩ  
A-weighted  
RL = 10kΩ  
-1dBFS  
100  
106  
104  
104  
-89  
-86  
dB  
dB  
dB  
dB  
dB  
Dynamic Range  
DNR  
THD  
Total Harmonic Distortion  
RL = 10kΩ  
0dBFS  
AVDD + LINEVDD  
PSRR  
100Hz  
54  
54  
dB  
dB  
Power Supply Rejection Ratio  
1kHz  
20kHz  
50  
dB  
Channel Separation  
1kHz  
dB  
100  
20Hz to 20kHz  
dB  
95  
0
System Absolute Phase  
Channel Level Matching  
Mute Attenuation  
degrees  
dB  
0.1  
-120  
0
dB  
DC Offset at LINEVOUTL and  
LINEVOUTR  
-1  
1
mV  
Digital Logic Levels  
Input HIGH Level  
VIH  
VIL  
0.7×  
V
V
V
V
LINEVDD  
Input LOW Level  
Output HIGH Level  
Output LOW Level  
0.3×  
LINEVDD  
VOH  
VOL  
0.9×  
LINEVDD  
IOL = 1mA  
0.1×  
LINEVDD  
IOH = -1mA  
Input Capacitance  
Input Leakage  
10  
pF  
-0.9  
0.9  
μA  
TERMINOLOGY  
1. Signal-to-Noise Ratio (dB) – SNR is a measure of the difference in level between the maximum theoretical full scale output signal  
and the output with no input signal applied.  
2. Total Harmonic Distortion (dB) – THD is the level of the rms value of the sum of harmonic distortion products relative to the  
amplitude of the measured output signal.  
3. All performance measurements carried out with 20kHz low pass filter, and where noted an A-weighted filter. Failure to use such a  
filter will result in higher THD and lower SNR readings than are found in the Electrical Characteristics. The low pass filter removes  
out of band noise; although it is not audible it may affect dynamic specification values.  
4. Mute Attenuation – This is a measure of the difference in level between the full scale output signal and the output with mute  
applied.  
PD, Rev 4.1, August 2011  
w
9
WM8523  
Production Data  
POWER CONSUMPTION MEASUREMENTS  
Test Conditions  
LINEVDD=AVDD=3.3V, LINEGND=AGND=0V, TA=+25°C, Slave Mode, quiescent (no signal)  
TEST CONDITIONS  
IAVDD  
(mA)  
ILINEVDD  
(mA)  
TOTAL  
(mA)  
No clocks applied  
SYS_ENA[1:0]=00  
Off  
0.8  
1.1  
1.9  
fs=48kHz, MCLK=256fs  
Standby  
SYS_ENA[1:0]=01  
SYS_ENA[1:0]=11  
0.2  
4.8  
2.2  
6.0  
2.4  
Playback  
10.8  
fs=96kHz, MCLK=256fs  
Standby  
SYS_ENA[1:0]=01  
SYS_ENA[1:0]=11  
0.2  
5.5  
2.9  
8.5  
3.1  
Playback  
14.0  
fs=192kHz, MCLK=128fs  
Standby  
SYS_ENA[1:0]=01  
SYS_ENA[1:0]=11  
0.2  
5.5  
2.9  
8.5  
3.1  
Playback  
14.0  
PD, Rev 4.1, August 2011  
10  
w
Production Data  
WM8523  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
Figure 1 System Clock Timing Requirements  
Test Conditions  
LINEVDD=AVDD=2.97~3.63V, LINEGND=AGND=0V, TA=+25°C  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Master Clock Timing Information  
MCLK cycle time  
tMCLKY  
tMCLKH  
tMCLKL  
27  
11  
500  
ns  
ns  
ns  
%
MCLK high time  
MCLK low time  
11  
MCLK duty cycle (tMCLKH/tMCLKL)  
40:60  
60:40  
AUDIO INTERFACE TIMING – MASTER MODE  
Figure 2 Master Mode Digital Audio Data Timing  
Test Conditions  
LINEVDD=AVDD=2.97~3.63, LINEGND=AGND=0V, TA=+25°C, Master Mode  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
16  
UNIT  
Audio Data Input Timing Information  
LRCLK propagation delay from BCLK falling edge  
DACDAT setup time to BCLK rising edge  
DACDAT hold time to BCLK falling edge  
tDL  
4
ns  
ns  
ns  
tDST  
tDHT  
22  
25  
Table 1 Master Mode Audio Interface Timing  
PD, Rev 4.1, August 2011  
11  
w
WM8523  
Production Data  
AUDIO INTERFACE TIMING – SLAVE MODE  
Figure 3 Digital Audio Data Timing – Slave Mode  
Test Conditions  
LINEVDD=AVDD=2.97~3.63V, LINEGND=AGND=0V, TA=+25°C, Slave Mode  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
tLRSU  
tLRH  
tDH  
27  
11  
11  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
LRCLK set-up time to BCLK rising edge  
LRCLK hold time from BCLK rising edge  
DACDAT hold time from LRCLK rising edge  
DACDAT set-up time to BCLK rising edge  
5
5
tDS  
7
Table 2 Slave Mode Audio Interface Timing  
Note:  
BCLK period should always be greater than or equal to MCLK period.  
PD, Rev 4.1, August 2011  
12  
w
Production Data  
WM8523  
CONTROL INTERFACE TIMING – I2C MODE  
I2C mode is selected by driving the CIFMODE pin low.  
Figure 4 Control Interface Timing – I2C Control Mode  
Test Conditions  
LINEVDD=AVDD=2.97~3.63V, LINEGND=AGND=0V, TA=+25°C  
PARAMETER  
Program Register Input Information  
SCLK Frequency  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
100  
100  
600  
600  
100  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
SDA, SCLK Rise Time  
300  
300  
SDA, SCLK Fall Time  
Setup Time (Stop Condition)  
Data Hold Time  
600  
2
900  
8
Pulse width of spikes that will be suppressed  
Table 3 Control Interface Timing – I2C Control Mode  
PD, Rev 4.1, August 2011  
13  
w
WM8523  
Production Data  
CONTROL INTERFACE TIMING – SPI MODE  
SPI mode is selected by connecting the CIFMODE pin high.  
Figure 5 Control Interface Timing – SPI Control Mode (Read Cycle)  
Test Conditions  
LINEVDD=AVDD=2.97~3.63V, LINEGND=AGND=0V, TA=+25°C  
PARAMETER  
Program Register Input Information  
SCLK rising edge to CSB falling edge  
SCLK falling edge to CSB rising edge  
SCLK pulse cycle time  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
tCSU  
tCHO  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tDL  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
160  
64  
SCLK pulse width low  
SCLK pulse width high  
64  
SDA to SCLK set-up time  
20  
SDA to SCLK hold time  
40  
SDOUT propagation delay from SCLK falling  
edge  
5
8
Pulse width of spikes that will be suppressed  
tps  
2
ns  
Table 4 Control Interface Timing –SPI Control Mode  
PD, Rev 4.1, August 2011  
14  
w
Production Data  
WM8523  
POWER ON RESET CIRCUIT  
Figure 6 Internal Power on Reset Circuit Schematic  
The WM8523 includes an internal Power-On-Reset circuit, as shown in Figure 6, which is used to reset  
the DAC digital logic into a default state after power up. The POR circuit is powered by AVDD and has  
as its inputs VMID and LINEVDD. It asserts POR low if VMID or LINEVDD are below a minimum  
threshold.  
Figure 7 Typical Power Timing Requirements  
Figure 7 shows a typical power-up sequence where LINEVDD comes up with AVDD. When AVDD goes  
above the minimum threshold, Vpora, there is enough voltage for the circuit to guarantee POR is asserted  
low and the chip is held in reset. In this condition, all writes to the control interface are ignored. After  
VMID rises to Vpord_hi and AVDD rises to Vpora_hi, POR is released high and all registers are in their default  
state and writes to the control interface may take place.  
On power down, PORB is asserted low whenever LINEVDD or AVDD drop below the minimum threshold  
Vpora_low  
.
PD, Rev 4.1, August 2011  
15  
w
WM8523  
Production Data  
Test Conditions  
LINEVDD = AVDD = 3.3V AGND = LINEGND = 0V, TA = +25oC  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply Input Timing Information  
VDD level to POR defined  
(LINEVDD/AVDD rising)  
Vpora  
Measured from LINEGND  
Measured from LINEGND  
Measured from LINEGND  
Measured from LINEGND  
158  
0.8  
mV  
V
VDD level to POR rising edge  
(VMID rising)  
Vpord_hi  
Vpora_hi  
Vpora_lo  
0.63  
1.44  
0.96  
1
VDD level to POR rising edge  
(LINEVDD/AVDD rising)  
1.8  
2.18  
1.97  
V
VDD level to POR falling edge  
(LINEVDD/AVDD falling)  
1.46  
V
Table 5 Power on Reset  
Note: All values are simulated results  
PD, Rev 4.1, August 2011  
16  
w
Production Data  
WM8523  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8523 provides high fidelity, 2Vrms ground referenced stereo line output from a single supply line  
with minimal external components. The integrated DC servo eliminates the requirement for external  
mute circuitry by minimising DC transients at the output during power up/down. The device is well-suited  
to both stereo and multi-channel systems.  
The device supports all common audio sampling rates between 8kHz and 192kHz using common MCLK  
fs rates. Master and slave modes are available.  
The WM8523 supports both hardware and software control modes.  
In hardware control mode, the digital audio interface format is switchable between 16 to 24bits LJ, RJ  
and I2S. Mute and de-emphasis control pins are also available.  
In software control modes the digital audio interface is highly programmable, with four control interface  
addresses to allow multiple WM8523 devices to be configured independently.  
SOFTWARE CONTROL INTERFACE  
Software Control Mode is selected by logic 1 or 0 on the CIFMODE pin. The logic level is referenced to  
the LINEVDD power domain. When software mode is selected, the associated multi-function control  
pins are defined as described in Table 6.  
PIN NAME  
SDOUT  
PIN NUMBER  
DESCRIPTION  
TSSOP  
QFN  
12  
5
I2C Mode - Device Address[1]  
SPI Mode - Serial Data Output  
Serial Data Input  
SDA  
SCLK  
C¯ ¯S  
13  
14  
15  
6
7
8
Serial Data Clock  
I2C Mode - Device Address[0]  
SPI Mode - Chip Select  
Control Interface Mode  
0 = I2C Mode  
CIFMODE  
16  
9
1 = SPI Mode  
Z = Hardware Mode  
Table 6 Software Control Pin Configuration  
In software control mode, the WM8523 is controlled by writing to its control registers. Readback is  
available for all registers, including device ID and power management status bits. The control interface  
can operate as an I2C or SPI control interface: register read-back is provided on the bi-directional pin  
SDA in I2C mode, and on the SDOUT pin in SPI mode. The WM8523 software control interface is  
supplied by the LINEVDD power domain.  
The available software control interface modes are summarised as follows:  
.
.
I2C mode uses pins SCLK and SDA.  
SPI mode uses pins C¯ ¯S, SCLK and SDA and SDOUT.  
I2C mode is selected by setting the CIFMODE pin to logic 0. When CIFMODE is set to logic 1, SPI mode  
is selected.  
PD, Rev 4.1, August 2011  
17  
w
WM8523  
Production Data  
I2C CONTROL MODE  
In I2C mode, the WM8523 is a slave device on the control interface; SCLK is a clock input, while SDA is  
a bi-directional data pin. To allow arbitration of multiple slaves (and/or multiple masters) on the same  
interface, the WM8523 transmits logic 1 by tri-stating the SDA pin, rather than pulling it high. An external  
pull-up resistor is required to pull the SDA line high so that the logic 1 can be recognised by the master.  
In order to allow many devices to share a single I2C control bus, every device on the bus has a unique 7-  
bit device address (this is not the same as the 8-bit address of each register in the WM8523). The  
device address is determined by the logic level on the SDOUT and C¯ ¯S pins as shown in Table 7. The  
LSB of the device address is the R/¯W¯ bit; this bit is set to logic 1 for “Read” and logic 0 for “Write”.  
SDOUT  
C¯ ¯S  
DEVICE ADDRESS  
ADDR1  
ADDR0  
0
0
1
1
0
1
0
1
0011 0100 (34h)  
0011 0110 (36h)  
0011 1100 (3Ch)  
0011 1110 (3Eh)  
Table 7 Control Interface Device Address Selection  
The WM8523 operates as an I2C slave device only. The controller indicates the start of data transfer  
with a high to low transition on SDA while SCLK remains high. This indicates that a device address,  
register address and data will follow. All devices on the I2C bus respond to the start condition and shift in  
the next eight bits on SDA (7-bit device address + Read/Write bit, MSB first). If the device address  
received matches the device address of the WM8523, then the WM8523 responds by pulling SDA low on  
the next clock pulse (ACK). If the device address is not recognised or the R/¯W¯ bit is ‘1’ when operating  
in write only mode, the WM8523 returns to the idle condition and waits for a new start condition and valid  
address.  
If the device address matches the device address of the WM8523, the data transfer continues as  
described below. The controller indicates the end of data transfer with a low to high transition on SDA  
while SCLK remains high. After receiving a complete address and data sequence the WM8523 returns  
to the idle state and waits for another start condition. If a start or stop condition is detected out of  
sequence at any point during data transfer (i.e. SDA changes while SCLK is high), the device returns to  
the idle condition.  
The WM8523 supports the following read and write operations:  
Single write  
Single read  
PD, Rev 4.1, August 2011  
18  
w
Production Data  
WM8523  
The sequence of signals associated with a single register write operation is illustrated in Figure 8.  
Figure 8 Control Interface I2C Register Write  
The sequence of signals associated with a single register read operation is illustrated in Figure 9.  
Figure 9 Control Interface I2C Register Read  
Figure 10 Single Register Write to Specified Address  
Figure 11 Single Register Read from Specified Address  
PD, Rev 4.1, August 2011  
19  
w
WM8523  
Production Data  
SPI CONTROL MODE  
The WM8523 can also be controlled by writing to registers through a SPI control interface. A control  
word consists of 24 bits. The first bit is the read/write bit (R/¯W¯ ), which is followed by 7 address bits (A6  
to A0) that determine which control register is accessed. The remaining 16 bits (B15 to B0) are data bits,  
corresponding to the 16 bits in each control register.  
Volume update registers R06h and R07h are unavailable in SPI control mode. To use volume update in  
software control mode, I2C mode must be used.  
In SPI mode, every rising edge of SCLK clocks in one data bit from the SDA pin. A rising edge on C¯ ¯S  
latches in a complete control word consisting of the last 24 bits.  
The SPI mode write operation protocol is illustrated in Figure 12.  
Figure 12 SPI Control Interface – write operation  
In Write operations (R/¯W¯ =0), all SDA bits are driven by the controlling device.  
In Read operations (R/¯W¯ =1), the SDA pin is ignored following receipt of the valid register address. The  
data bits are output by the WM8523 on the SDOUT pin.  
The SPI mode read operation protocol is illustrated in Figure 13.  
Figure 13 SPI Control Interface – read operation  
REGISTER RESET  
Any write to register R0 (00h) will reset the WM8523. All register bits are reset to their default values.  
DEVICE ID AND REVISION  
Reading from register R0 (00h) returns the device ID. Reading from register R1 returns the device  
revision number.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R0  
DEVICE_ID  
00h  
15:0 DEVICE_ID  
[15:0]  
10000101  
00100011  
Device ID  
A read of this register will return the device  
ID, 0x8523.  
R1  
2:0  
CHIP_REV  
[2:0]  
N/A  
Device Revision  
REVISION  
01h  
A read of this register will return the device  
revision number. This number is  
sequentially incremented if the device  
design is updated.  
Table 8 Device ID and Revision Number  
PD, Rev 4.1, August 2011  
20  
w
Production Data  
WM8523  
DIGITAL AUDIO INTERFACE  
The digital audio interface is used for inputting audio data to the WM8523. The digital audio interface  
uses three pins:  
DACDAT: DAC data input  
LRCLK: Left/Right data alignment clock  
BCLK: Bit clock, for synchronisation  
In software control mode, all interface data formats and modes of operation can be selected. In  
hardware control mode, only a subset of formats and modes are supported – see the Hardware Interface  
Control section on page 32 for details.  
MASTER AND SLAVE MODE OPERATION  
The WM8523 digital audio interface can operate as a master or as a slave as shown in Figure 14 and  
Figure 15.  
Figure 14 Slave Mode  
Figure 15 Master Mode  
INTERFACE FORMATS  
The WM8523 supports five different audio data formats:  
Left justified  
Right justified  
I2S  
DSP Mode A  
DSP Mode B  
PCM operation is supported using the DSP mode. All seven of these modes are MSB first. They are  
described in Audio Data Formats on page 22. Refer to the “Electrical Characteristics” section for timing  
information. Refer to Table 10 for interface control format register settings.  
PD, Rev 4.1, August 2011  
21  
w
WM8523  
Production Data  
AUDIO DATA FORMATS  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK transition.  
All other bits are transmitted before (MSB first). Depending on word length, BCLK frequency and sample  
rate, there may be unused BCLK cycles after each LRCLK transition.  
Figure 16 Right Justified Audio Interface (assuming n-bit word length)  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK transition.  
The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency  
and sample rate, there may be unused BCLK cycles before each LRCLK transition.  
Figure 17 Left Justified Audio Interface (assuming n-bit word length)  
In I2S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition. The  
other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and  
sample rate, there may be unused BCLK cycles between the LSB of one sample and the MSB of the  
next.  
Figure 18 I2S Justified Audio Interface (assuming n-bit word length)  
PD, Rev 4.1, August 2011  
22  
w
Production Data  
WM8523  
In DSP mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising edge of  
BCLK (selectable by AIF_LRCLK_INV) following a rising edge of LRCLK. Right channel data  
immediately follows left channel data. Depending on word length, BCLK frequency and sample rate,  
there may be unused BCLK cycles between the LSB of the right channel data and the next sample.  
In device master mode, the LRCLK output will resemble the frame pulse shown in Figure 19 and Figure  
20. In device slave mode, Figure 21 and Figure 22, it is possible to use any length of frame pulse less  
than 1/fs, providing the falling edge of the frame pulse occurs greater than one BCLK period before the  
rising edge of the next frame pulse.  
Figure 19 DSP Mode Audio Interface (mode A, AIF_LRCLK_INV=0, Master)  
Figure 20 DSP Mode Audio Interface (mode B, AIF_LRCLK_INV=1, Master)  
Figure 21 DSP Mode Audio Interface (mode A, AIF_LRCLK_INV=0, Slave)  
PD, Rev 4.1, August 2011  
23  
w
WM8523  
Production Data  
Figure 22 DSP Mode Audio Interface (mode B, AIF_LRCLK_INV=1, Slave)  
DIGITAL AUDIO INTERFACE CONTROL  
The control of the audio interface in software mode is achieved by register write. Dynamically changing  
the audio data format may cause erroneous operation and is not recommended.  
Digital audio data is transferred to the WM8523 via the digital audio interface. The DAC operates in  
master or slave mode.  
The DAC audio interface requires left/right frame clock (LRCLK) and bit clock (BCLK). These can be  
supplied externally (slave mode) or they can be generated internally (master mode). Selection of master  
and slave mode is achieved by setting AIF_MSTR bit in Register 3.  
The frequency of LRCLK in master mode is dependent upon the DAC master clock frequency and the  
AIF_SR[2:0] bits. The frequency of BCLK in master mode can be selected by AIF_BCLKDIV[2:0]. In  
slave mode, the MCLK to LRCLK ratio can be auto-detected or set manually using the AIF_SR[2:0] bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R3  
AIF_CTRL1  
03h  
7
AIF_MSTR  
0
Master/Slave Select  
0 = Slave  
1 = Master  
R4  
2:0  
AIF_SR[2:0  
000  
MCLK:LRCLK Ratio  
000 = Auto detect  
001 = 128fs  
AIF_CTRL2  
04h  
010 = 192fs  
011 = 256fs  
100 = 384fs  
101 = 512fs  
110 = 768fs  
111 = 1152fs  
5:3  
AIF_BCLK  
DIV[2:0]  
000  
BCLK Divider Control (Master Mode)  
000 = MCLK/4  
001 = MCLK/8  
010 = 32fs  
011 = 64fs  
100 = 128fs  
101 - 111 reserved  
Table 9 DAC Clocking Mode Control  
PD, Rev 4.1, August 2011  
24  
w
Production Data  
WM8523  
Interface timing is such that the input data and left/right clock are sampled on the rising edge of BCLK.  
By setting the appropriate BCLK and LRCLK polarity bits, the WM8523 DAC can sample data on the  
opposite clock edges.  
The control of audio interface formats and clock polarities is summarised in Table 10.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R3  
AIF_CTRL1  
03h  
1:0  
AIF_FMT  
10  
Audio Data Interface Format  
00 = Right justified  
01 = Left justified  
10 = I2S format  
11 = DSP mode  
2
Reserved  
AIF_WL  
0
Reserved  
4:3  
10  
Audio Data Word Length  
00 = 16 bits  
01 = 20 bits  
10 = 24 bits  
11 = 32 bits  
5
AIF_BCLK_  
INV  
0
BCLK Inversion Control  
Slave mode:  
0 = use rising edge  
1 = use falling edge  
Master mode:  
0 = BCLK normal  
1 = BCLK inverted  
LRCLK Inversion Control  
0 = normal polarity  
1 = inverted polarity  
When AIF_FMT[2:0]=011 (DSP Mode):  
0 = mode A (2nd clock)  
1 = mode B (1st clock)  
6
AIF_LRCLK  
_INV  
0
Table 10 Audio Interface Control  
PD, Rev 4.1, August 2011  
25  
w
WM8523  
Production Data  
DIGITAL AUDIO DATA SAMPLING RATES  
The external master clock is applied directly to the MCLK input pin. In a system where there are a  
number of possible sources for the reference clock, it is recommended that the clock source with the  
lowest jitter be used for the master clock to optimise the performance of the WM8523.  
In slave mode the WM8523 has a detection circuit that automatically determines the relationship  
between the master clock frequency (MCLK) and the sampling rate (LRCLK), to within ±32 system clock  
periods. The MCLK must be synchronised with the LRCLK, although the device is tolerant of phase  
variations or jitter on the MCLK.  
If the device is configured in slave mode using auto-detect or in hardware mode, and during sample rate  
change the ratio between MCLK and LRCLK varies more than once within 1026 LRCLK periods, then it is  
recommended that the device be taken into the standby state or the off state before the sample rate  
change and held in standby until the sample rate change is complete. This will ensure correct operation  
of the detection circuit on the return to the enabled state. For details on the standby state, please refer to  
the Software Control Interface (software mode, page 17) and Power Up and Down Control In Hardware  
Mode section of the datasheet (hardware mode, on page 33).  
The DAC supports MCLK to LRCLK ratios of 128fs to 1152fs and sampling rates of 8kHz to 192kHz,  
provided the internal signal processing of the DAC is programmed to operate at the correct rate.  
Table 11 shows typical master clock frequencies and sampling rates supported by the WM8523 DAC.  
MASTER CLOCK FREQUENCY (MHz)  
SAMPLING  
RATE LRCLK  
128fs  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
11.2896  
192fs  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
16.9344  
256fs  
2.048  
384fs  
3.072  
512fs  
4.096  
768fs  
6.144  
1152fs  
9.216  
8kHz  
32kHz  
8.192  
12.288  
16.384  
24.576  
36.864  
44.1kHz  
48kHz  
11.2896  
12.288  
16.9344  
18.432  
22.5792  
33.8688  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
24.576  
36.864  
88.2kHz  
96kHz  
22.5792  
24.576  
33.8688  
36.864  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
12.288  
18.432  
176.4kHz  
192kHz  
22.5792  
33.8688  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
24.576  
36.864  
Table 11 MCLK Frequencies and Audio Sample Rates  
PD, Rev 4.1, August 2011  
26  
w
Production Data  
WM8523  
DAC FEATURES  
SYSTEM ENABLE  
The WM8523 includes a number of enable and disable mechanisms to allow the device to be powered  
on and off in a pop-free manner. The SYS_ENA[1:0] control bits enable the DAC and analogue paths.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2  
PSCTRL1  
02h  
1:0  
SYS_  
00  
System Power Control  
ENA[1:0]  
00 = Off  
01 = Power down  
10 = Power up and mute  
11 = Power up and unmute  
Table 12 System Enable Control  
Note: MCLK must be present at all times when using the SYS_ENA[1:0] bits. If MCLK is stopped at any  
point the device will power down to the ‘off’ state, but all register settings will remain. Restarting MCLK  
will start the device internal power sequence and the device will return to the power state set by the  
SYS_ENA[1:0] bits.  
The power up and power down sequences are summarised in Figure 23. There is no requirement to  
manually cycle the device through the sequence via register writes, as the device will always  
automatically step through each stage in the sequence.  
Power Up  
When SYS_ENA[1:0]=00, the internal clocks are stopped and all analogue and digital blocks are  
disabled for maximum power saving. The device starts up in this state in software mode. Setting  
SYS_ENA[1:0]=01 enables the internal charge pump and required control circuitry, but the signal path  
remains powered down. When SYS_ENA[1:0]=10 all blocks are powered up sequentially and full system  
configuration is achieved. Once this is complete, the device is ready to pass audio but is muted. Setting  
SYS_ENA[1:0]=11 releases the mute and audio playback begins.  
Power Down  
When SYS_ENA[1:0]=11 the device is powered up and passing audio. Changing SYS_ENA[1:0]=10  
applies a digital softmute to the output. Setting SYS_ENA[1:0]=01 sequentially powers down all circuit  
blocks but leaves the charge pump and required control circuitry enabled. This can be considered the  
low-power standby state. Finally, setting SYS_ENA[1:0]=00 will disable all circuit blocks including the  
charge pump, and full system initialisation will be required to restart the device.  
PD, Rev 4.1, August 2011  
27  
w
WM8523  
Production Data  
Figure 23 SYS_ENA[1:0] Power Up and Down Sequences  
DIGITAL VOLUME CONTROL  
The WM8523 DAC includes digital volume control, allowing the digital gain to be adjusted between  
100dB and +12dB in 0.25dB steps. Volume update bits allow the user to write both left and right  
channel volume changes before the volume is updated. Digital volume control is only available in I2C  
mode.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DAC Digital Volume  
R6  
DAC_GAINL  
06h  
8:0  
DACL  
110001000  
_VOL[8:0]  
0 0000 0000 = 100dB  
0 0000 0001 = 99.75dB  
0 0000 0010 = 99.5dB  
…0.25dB steps  
R7  
DAC_GAINR  
07h  
8:0  
9
DACR  
1 1001 0000 = 0dB  
_VOL[8:0]  
…0.25dB steps  
1 1011 1110 = +11.75dB  
1 11XX XXXX = +12dB  
DAC Digital Volume Update  
R6  
DAC_GAINL  
06h  
DACL_VU  
DACR_VU  
0
0
0 = Latch DAC volume setting into  
Register Map but do not update volume  
1 = Latch DAC volume setting into  
Register Map and update left and right  
channels simultaneously  
R7  
DAC_GAINR  
07h  
9
Table 13 DAC Digital Volume Control  
PD, Rev 4.1, August 2011  
28  
w
Production Data  
WM8523  
VOLUME CHANGE MODES  
Volume can be adjusted by step change (either using zero cross or not) or by soft ramp. The volume  
change mode is controlled by the DAC_VOL_DOWN_RAMP and DAC_VOL_UP_RAMP bits in R5:  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5  
DAC_CTRL3  
05h  
0
DAC_VOL  
_DOWN_  
RAMP  
1
DAC Digital Volume Decrease Control  
0 = apply volume decreases instantly (step)  
1 = ramp volume decreases  
1
DAC_VOL  
_UP_  
0
DAC Digital Volume Increase Control  
0 = apply volume increases instantly (step)  
1 = ramp volume increases  
RAMP  
Table 14 Volume Ramp Control  
Figure 24 illustrates the effect of the volume ramp:  
Figure 24 Volume Ramp Functionality  
PD, Rev 4.1, August 2011  
29  
w
WM8523  
Production Data  
Ramp Volume Changes  
If ramp volume changes are selected, the ramp rate is dependent upon the sampling rate. The ramp  
rates for common audio sample rates are shown in Table 15.  
SAMPLE RATE FOR DAC (kHz)  
GAIN RAMP RATE  
(ms/dB)  
1
8
32  
0.25  
0.18  
0.17  
0.1  
44.1  
48  
88.2  
96  
0.08  
0.05  
0.04  
176.4  
192  
Table 15 Volume Ramp Rate  
For example, when using a sample rate of 48kHz, the time taken for a volume change from an initial  
setting of 0dB to -20dB is calculated as follows:  
Volume Change (dB) x Volume Ramp Rate (ms/dB) = 20 x 0.17 = 3.4ms  
Zero cross is not used when ramping. The volume level in the DAC is set by the user in 0.25dB  
increments, but during the volume ramp increments of 0.125dB are actually used. This step size is  
inaudible and means there is no requirement to wait until a zero crossing occurs. Another benefit of not  
using zero cross when ramping is that predictable ramp times are produced – there is no signal  
dependency on the ramp time.  
Step Volume Changes and Zero Cross  
The step volume control includes optional zero cross functionality. When zero cross is enabled, by  
setting DAC_ZCEN=1, volume changes are not applied until the signal crosses zero so no discontinuity  
is seen in the output signal. Zero cross helps to prevent pop and click noise when changing volume  
settings and is therefore recommended if using step volume changes.  
The zero cross function includes a timeout which forces volume changes if a zero cross event does not  
occur. The timeout period is 14400 samples, equivalent to 300ms at 48kHz sample rate.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5  
DAC_CTRL3  
05h  
4
DAC_  
ZCEN  
0
Zero Cross Enable  
0 = Do not use zero cross  
1 = Use zero cross  
Table 16 Zero Cross Control  
Table 17 gives a summary of the volume mode settings and their effect.  
DAC_VOL_  
DAC_VOL_  
DAC_ZCEN  
VOLUME CHANGE  
UP  
VOLUME CHANGE  
DOWN  
UP_RAMP  
DOWN_RAMP  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
Step, no zero cross  
Step, no zero cross  
Ramp  
Step, no zero cross  
Ramp  
Step, no zero cross  
Ramp  
Ramp  
Step, use zero cross Step, use zero cross  
Step, use zero cross  
Ramp  
Ramp  
Step, use zero cross  
Ramp  
Ramp  
Table 17 Volume Change Summary  
PD, Rev 4.1, August 2011  
30  
w
Production Data  
WM8523  
MUTE  
A digital mute can be applied to left and right channels independently.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5  
DAC_CTRL3  
05h  
2
DACL_  
MUTE  
0
Left DAC Mute  
0 = Normal operation  
1 = Mute  
R5  
3
DACR_  
MUTE  
0
Right DAC Mute  
0 = Normal operation  
1 = Mute  
DAC_CTRL3  
05h  
Table 18 DAC Mute Control  
The DAC mute function in software mode is controlled by the register settings DAC_VOL_UP_RAMP,  
DAC_VOL_DOWN_RAMP and DAC_ZCEN as described in Table 17.  
DIGITAL MONOMIX CONTROL  
The DAC can be set to output a range of mono and stereo options using DAC_OP_MUX[1:0].  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R4  
AIF_CTRL2  
04h  
7:6  
DAC_OP_  
MUX[1:0]  
00  
DAC Digital Monomix  
00 = Stereo (Normal Operation)  
01 = Mono (Left data to DACR)  
10 = Mono (Right data to DACL)  
11 = Digital Monomix, (L+R)/2  
Table 19 Digital Monomix Control  
DE-EMPHASIS  
A digital de-emphasis filter may be applied to the DAC output when the sampling frequency is 44.1kHz.  
Operation at 48kHz and 32kHz is also possible, but with an increase in the error from the ideal response.  
Details of the de-emphasis filter characteristic for 32kHz, 44.1kHz and 48kHz can be seen in Figure 31 to  
Figure 36.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R3  
AIF_CTRL1  
03h  
6
DAC  
0
DAC De-emphasis  
_DEEMP  
0 = No de-emphasis  
1 = Apply de-emphasis  
Table 20 De-emphasis Control  
ZERO DETECT  
The infinite zero detect allows the user to select the number of zero samples received before the ZFLAG  
pin is asserted high, as described in Table 21.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R8  
ZERO_DETECT  
08h  
0
ZD_  
0
Zero Detect Count Control  
0 = 1024  
COUNT  
1 = 2048  
Table 21 Zero Detect Control  
PD, Rev 4.1, August 2011  
31  
w
WM8523  
Production Data  
HARDWARE CONTROL INTERFACE  
The WM8523 can be controlled in hardware mode or in software modes. In hardware mode, the device  
is configured according to logic levels applied to hardware pins.  
Hardware control mode is selected by leaving CIFMODE pin open-circuit (high-impedance). When  
hardware mode is selected, the associated multi-function control pins are defined as described in Table  
22.  
PIN NAME  
PIN NAME  
PIN NUMBER  
DESCRIPTION  
TSSOP  
QFN  
ZFLAG  
7
24  
Zero Flag Output  
0 = Normal operation  
1 = Infinite zero detect is triggered or mute is applied  
De-emphasis Filter Select  
0 = Filter disabled  
DEEMPH  
12  
5
1 = Filter enabled  
AIFMODE0  
AIFMODE1  
M¯ ¯U¯T¯E¯  
13  
14  
15  
6
7
8
AIFMODE1  
AIFMODE0  
FORMAT  
0
0
1
0
1
24-bit Left Justified  
24-bit I2S  
0
1
16-bit Right Justified  
24-bit Right Justified  
1
Mute Control  
0 = Mute  
1 = Normal operation  
Control Interface Mode  
0 = I2C Mode  
CIFMODE  
16  
9
1 = SPI Mode  
Z = Hardware Mode  
Table 22 Hardware Control Pin Configuration  
DE-EMPHASIS  
A digital de-emphasis filter may be applied to the DAC output when the sampling frequency is 44.1kHz.  
Operation at 48kHz and 32kHz is also possible, but with an increase in the error from the ideal response.  
Details of the de-emphasis filter characteristic for 32kHz, 44.1kHz and 48kHz can be seen in Figure 31 to  
Figure 36.  
MUTE  
In hardware mode, the M¯ ¯U¯T¯E¯ pin controls the DAC mute to both left and right channels. When the mute  
is asserted a softmute is applied to ramp the signal down, with the ramp rate related to the sample rate  
as defined in Table 15 on page 30. Once mute is achieved, the ZFLAG is asserted. When the mute is  
de-asserted the signal returns to full scale in one step and the ZFLAG is de-asserted.  
ZERO DETECT  
The zero detect function in hardware mode will assert the ZFLAG pin high when 1024 zero count  
samples are input to the digital audio interface. Additionally, the ZFLAG is asserted when the device is  
muted using the M¯ ¯U¯T¯E¯ pin and also until the device comes out of reset.  
PD, Rev 4.1, August 2011  
32  
w
Production Data  
WM8523  
POWER UP AND DOWN CONTROL IN HARDWARE MODE  
In hardware mode the MCLK, BCLK and M¯ ¯U¯T¯E¯ pins are monitored to control how the device powers up  
or down, and this is summarised in Figure 25 below.  
Figure 25 Hardware Power Sequence Diagram  
Off to Enable  
To power up the device to enabled, start MCLK and BCLK and set M¯ ¯U¯T¯E¯ = 1.  
Off to Standby  
To power up the device to standby, start MCLK and BCLK and set M¯ ¯U¯T¯E¯ = 0. Once the device is in  
standby mode, BCLK can be disabled and the device will remain in standby mode.  
Standby to Enable  
To transition from the standby state to the enabled state, set the M¯ ¯U¯T¯E¯ pin to logic 1 and start BCLK.  
Enable to Standby  
To power down to a standby state leaving the charge pump running, either set the M¯ ¯U¯T¯E¯ pin to logic 0 or  
stop BCLK. MCLK must continue to run in these situations. The device will automatically mute and  
power down quietly in either case.  
Note: It is recommended that the device is placed in standby mode before sample rate change if the sample rate changes more than once  
in 1026 LRCLK periods, as detailed in Digital Audio Data Sampling Rates on page 26.  
Enable to Off  
To power down the device completely, stop MCLK at any time. It is recommended that the device is  
placed into standby mode as described above before stopping MCLK to allow a quiet shutdown.  
For the timing of the off state to enabled state transition (power on to audio out timing), and the enabled  
state to standby state transition (the shutdown timing), please refer to WTN0302.  
PD, Rev 4.1, August 2011  
33  
w
WM8523  
Production Data  
POWER DOMAINS  
Figure 26 Power Domain Diagram  
Power Domain  
Name  
Blocks Using  
This Domain  
Domain Description  
Analogue Supply  
Analogue Supply  
DAC Power Supplies  
3.3V ± 10%  
AVDD  
Line Driver  
DAC  
DC Servo  
3.3V ± 10%  
LINEVDD  
Charge Pump  
Digital LDO  
Digital Pad buffers  
Internally Generated Power Supplies and References  
1.65V ± 10%  
-3.3V ± 10%  
VMID  
DAC, LDO  
Line Driver  
Ext decoupled resistor string  
CPVOUTN  
Charge pump generated voltage  
Table 23 Power Domains  
PD, Rev 4.1, August 2011  
34  
w
Production Data  
WM8523  
REGISTER MAP  
The complete register map is shown below. The detailed description can be found in the relevant text of the device description. The WM8523 can be configured using the Control Interface. All  
unused bits should be set to '0' and access to unlisted registers should be avoided.  
REG  
NAME  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEFAULT  
DEVICE_ID /  
SW RESET  
R0 (0h)  
CHIP_ID[15:0]  
8523h  
R1 (1h)  
R2 (2h)  
R3 (3h)  
R4 (4h)  
REVISION  
PSCTRL1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CHIP_REV[2:0]  
0000h  
0000h  
1812h  
0000h  
0
0
SYS_ENA[1:0]  
AIF_FMT[1:0]  
AIF_  
LRCLK_  
INV  
AIF_  
BCLK_  
INV  
DAC_  
AIF_  
AIF_CTRL1  
AIF_CTRL2  
AIF_WL[1:0]  
DEEMP  
MSTR  
0
0
DAC_OP_MUX[1:0]  
AIF_BCLKDIV[2:0]  
AIF_SR[2:0]  
DAC_  
DAC_  
VOL_  
DACR_  
MUTE  
DACL_  
MUTE  
VOL_  
UP_  
R5 (5h)  
DAC_CTRL3  
0
0
0
0
0
0
0
0
0
0
DAC_ZC  
0001h  
DOWN_  
RAMP  
RAMP  
DACL_  
VU  
R6 (6h)  
R7 (7h)  
DAC_GAINL  
DAC_GAINR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DACL_VOL[8:0]  
DACR_VOL[8:0]  
0
0190h  
0190h  
0000h  
DACR_  
VU  
ZD_  
R8 (8h) ZERO_DETECT  
0
0
0
0
0
0
0
0
COUNT  
Table 24 Register Map  
PD, Rev 4.1, August 2011  
35  
w
WM8523  
Production Data  
REGISTER BITS BY ADDRESS  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
R0 (00h)  
DEVICE_ID/  
SW RESET  
15:0  
CHIP_ID[15:0] 1000_0101_0010_0011 Read this register to obtain Device ID in hex  
Page 20  
Write any value to this register to reset all  
register values to default.  
Register 00h DEVICE_ID / SW RESET  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Device Revision Number  
REFER TO  
R1 (01h)  
2:0  
CHIP_REV[2:0]  
000  
Page 20  
REVISION  
This number is incrementally updated each time the  
silicon is revised.  
Register 01h REVISION  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
R2 (02h)  
PSCTRL1  
1:0  
SYS_ENA[1:0]  
00  
System Power Control  
00 = Off  
Page 27  
01 = Power down  
10 = Power up to mute  
11 = Power up to unmute  
Register 02h PSCTRL1  
PD, Rev 4.1, August 2011  
36  
w
Production Data  
WM8523  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DAC De-emphasis Control  
REFER TO  
R3 (03h)  
AIF_CTRL1  
8
DAC_DEEMP  
0
Page 31  
Page 24  
Page 24  
0 = No de-emphasis  
1 = De-emphasis enabled  
Master/Slave Select  
0 = Slave mode  
7
6
AIF_MSTR  
0
0
1 = Master mode  
AIF_LRCLK_  
INV  
LRCLK Inversion Control  
0 = Normal polarity  
1 = Inverted polarity  
When AIF_FMT[2:0]=011 (DSP Mode):  
0 = Mode A (2nd clock)  
1 = Mode B (1st clock)  
BCLK Inversion Control  
Slave mode:  
5
AIF_BCLK_INV  
0
Page 24  
0 = Use rising edge  
1 = Use falling edge  
Master mode:  
0 = BCLK normal  
1 = BCLK inverted  
Audio Data Word Length  
00 = 16 bits  
4:3  
AIF_WL[1:0]  
10  
Page 24  
Page 24  
01 = 20 bits  
10 = 24 bits  
11 = 32 bits  
2
Reserved  
0
Reserved  
2:0  
AIF_FMT[1:0]  
10  
Audio Data Interface Format  
00 = Right justified  
01 = Left justified  
10 = I2S format  
11 = DSP mode  
Register 03h AIF_CTRL1  
PD, Rev 4.1, August 2011  
37  
w
WM8523  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Digital Monomix Control  
REFER TO  
R4 (04h)  
AIF_CTRL2  
7:6  
DAC_OP_  
MUX[1:0]  
00  
Page 31  
00 = Stereo (normal operation)  
01 = Mono (Left data to DACR)  
10 = Mono (Right data to DACL)  
11 = Digital monomix, (L+R)/2  
BCLK Divider Control (Master Mode)  
000 = MCLK/4  
5:3  
AIF_  
000  
Page 24  
BCLKDIV[2:0]  
001 = MCLK/8  
010 = 32fs  
011 = 64fs  
100 = 128fs  
101 - 111 reserved  
MCLK:LRCLK Ratio  
000 = Auto detect  
001 = 128fs  
2:0  
AIF_SR[2:0]  
000  
Page 24  
010 = 192fs  
011 = 256fs  
100 = 384fs  
101 = 512fs  
110 = 768fs  
111 = 1152fs  
Register 04h AIF_CTRL2  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
R5 (05h)  
4
DAC_ZC  
0
Zero Cross Enable  
Page 28  
DAC_CTRL3  
0 = Do not use zero cross  
1 = Use zero cross  
3
2
1
0
DACR_MUTE  
DACL_MUTE  
0
0
0
1
Right DAC Mute  
Page 31  
Page 31  
Page 29  
Page 29  
0 = Normal operation  
1 = Mute  
Left DAC Mute  
0 = Normal operation  
1 = Mute  
DAC_VOL_  
UP_RAMP  
DAC Digital Volume Increase Control  
0 = Apply volume increases instantly (step)  
1 = Ramp volume increases  
DAC Digital Volume Decrease Control  
0 = Apply volume decreases instantly (step)  
1 = Ramp volume decreases  
DAC_VOL_  
DOWN_RAMP  
Register 05h DAC_CTRL3  
PD, Rev 4.1, August 2011  
38  
w
Production Data  
WM8523  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
R6 (06h)  
DAC_GAINL  
9
DACL_VU  
0
Left DAC Digital Volume Update  
Page 28  
Page 28  
0 = Latch Left DAC volume setting into register map  
but do not update volume  
1 = Latch Left DAC volume setting into register map  
and update left and right channels simultaneously  
8:0  
DACL_VOL[8:0] 1_1001_0000 Left DAC Digital Volume Control  
0 0000 0000 = -100dB  
0 0000 0001 = -99.75dB  
0 0000 0010 = -99.5dB  
…0.25dB steps  
1 1001 0000 = 0dB  
…0.25dB steps  
1 1011 1110 = +11.75dB  
1 11XX XXXX = +12dB  
Register 06h DAC_GAINL  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
R7 (07h)  
DAC_GAIN  
R
9
DACR_VU  
0
Right DAC Digital Volume Update  
Page 28  
0 = Latch Right DAC volume setting into register  
map but do not update volume  
1 = Latch Right DAC volume setting into register  
map and update left and right channels  
simultaneously  
8:0  
DACR_VOL[8:0] 1_1001_0000 Right DAC Digital Volume Control  
0 0000 0000 = -100dB  
Page 28  
0 0000 0001 = -99.75dB  
0 0000 0010 = -99.5dB  
…0.25dB steps  
1 1001 0000 = 0dB  
…0.25dB steps  
1 1011 1110 = +11.75dB  
1 11XX XXXX = +12dB  
Register 07h DAC_GAINR  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Zero Detect Count Control  
REFER  
TO  
R8 (08h)  
ZERO_  
0
ZD_COUNT[1:0]  
0
Page 31  
0 = 1024  
1 = 2048  
DETECT  
Register 08h ZERO_DETECT  
PD, Rev 4.1, August 2011  
39  
w
WM8523  
Production Data  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
14.5  
6.5  
MAX  
UNIT  
DAC Filter – 256fs to 1152fs  
Passband  
0.1dB  
f > 0.546fs  
0.1dB  
0.454fs  
0.1  
Passband Ripple  
Stopband  
dB  
0.546fs  
-50  
Stopband attenuation  
Group Delay  
dB  
Fs  
DAC Filter – 128fs and 192fs  
Passband  
0.247fs  
0.1  
Passband Ripple  
Stopband  
dB  
0.753fs  
-50  
Stopband attenuation  
Group Delay  
f > 0.753fs  
dB  
Fs  
TERMINOLOGY  
1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple – any variation of the frequency response in the pass-band region  
PD, Rev 4.1, August 2011  
40  
w
Production Data  
WM8523  
DAC FILTER RESPONSES  
0.2  
0.15  
0.1  
0
-20  
0.05  
0
-40  
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Figure 27 DAC Digital Filter Frequency Response  
– 256fs to 1152fs Clock Modes  
Figure 28 DAC Digital Filter Ripple – 256fs to 1152fs  
Clock Modes  
0.2  
0
0
-20  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40  
-60  
-80  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
-100  
Frequency (Fs)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency (Fs)  
Figure 29 DAC Digital Filter Frequency Response  
– 128fs and 192fs Clock Modes  
Figure 30 DAC Digital Filter Ripple – 128fs to 192fs Clock  
Modes  
PD, Rev 4.1, August 2011  
41  
w
WM8523  
Production Data  
DIGITAL DE-EMPHASIS CHARACTERISTICS  
0
1
0.5  
0
-2  
-4  
-0.5  
-1  
-6  
-1.5  
-2  
-8  
-2.5  
-3  
-10  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Frequency (kHz)  
Frequency (kHz)  
Figure 31 De-Emphasis Frequency Response (32kHz)  
Figure 32 De-Emphasis Error (32kHz)  
Figure 33 De-Emphasis Frequency Response (44.1kHz)  
Figure 34 De-Emphasis Error (44.1kHz)  
0
1
0.8  
0.6  
0.4  
0.2  
0
-2  
-4  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-8  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 35 De-Emphasis Frequency Response (48kHz)  
Figure 36 De-Emphasis Error (48kHz)  
PD, Rev 4.1, August 2011  
42  
w
Production Data  
WM8523  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS – 20-LEAD TSSOP  
Figure 37 Recommended External Components  
Notes:  
1. Wolfson recommend using a single, common ground plane. Where this is not possible, care should be taken to  
optimise split ground configuration for audio performance.  
2. Charge Pump fly-back capacitor C5 should be placed as close to WM8523 as possible, followed by Charge Pump  
decoupling capacitor C1, then LINEVDD and VMID decoupling capacitors. See Recommended PCB Layout on p44.  
3. Capacitor types should be chosen carefully. Capacitors with very low ESR are recommended for optimum  
performance.  
PD, Rev 4.1, August 2011  
43  
w
WM8523  
Production Data  
RECOMMENDED PCB LAYOUT – 20-LEAD TSSOP  
Figure 38 Recommended PCB Layout  
Notes:  
1. C5 should be placed as close to WM8523 as possible, with minimal track lengths to reduce inductance and maximise  
performance of the charge pump. Vias should be avoided in the tracking to C5.  
2. C1 is then next most important and should also be placed as close as possible to the WM8523. Again, minimise  
track lengths and avoid vias to reduce parasitic inductance.  
3. C2 and C4 are then next most important, and lastly C3.  
4. The WM8523 evaluation board, details available at www.wolfsonmicro.com, shows an example of good component  
placement and layout to maximise performance with a minimal BOM.  
PD, Rev 4.1, August 2011  
44  
w
Production Data  
WM8523  
RECOMMENDED EXTERNAL COMPONENTS – 24-LEAD QFN  
Figure 39 Recommended External Components  
Notes:  
1. Wolfson recommend using a single, common ground plane. Where this is not possible, care should be taken to  
optimise split ground configuration for audio performance.  
2. Charge Pump fly-back capacitor C5 should be placed as close to WM8523 as possible, followed by Charge Pump  
decoupling capacitor C1, then LINEVDD and VMID decoupling capacitors. See Recommended PCB Layout on p44.  
3. Capacitor types should be chosen carefully. Capacitors with very low ESR are recommended for optimum  
performance.  
PD, Rev 4.1, August 2011  
45  
w
WM8523  
Production Data  
RECOMMENDED PCB LAYOUT – 24-LEAD QFN  
Figure 40 Recommended PCB Layout  
Notes:  
1. C5 should be placed as close to WM8523 as possible, with minimal track lengths to reduce inductance and maximise  
performance of the charge pump. Vias should be avoided in the tracking to C5.  
2. C1 is then next most important and should also be placed as close as possible to the WM8523. Again, minimise  
track lengths and avoid vias to reduce parasitic inductance.  
3. C2 and C4 are then next most important, and lastly C3.  
4. The WM8523 evaluation board, details available at www.wolfsonmicro.com, shows an example of good component  
placement and layout to maximise performance with a minimal BOM.  
PD, Rev 4.1, August 2011  
46  
w
Production Data  
WM8523  
RECOMMENDED ANALOGUE LOW PASS FILTER  
Figure 41 Recommended Analogue Low Pass Filter (one channel shown)  
An external single-pole RC filter is recommended if the device is driving a wideband  
amplifier. Other filter architectures may provide equally good results.  
The filter shown in Figure 41 has a -3dB cut-off at 105.26kHz and a droop of 0.15dB at  
20kHz. The typical output from the WM8523 is 2.1Vrms – when a 10kload is placed at the  
output of this recommended filter the amplitude across this load is 1.99Vrms.  
RELEVANT APPLICATION NOTES  
The following application notes, available from www.wolfsonmicro.com, may provide  
additional guidance for use of the WM8523.  
DEVICE PERFORMANCE:  
WAN0129 – Decoupling and Layout Methodology for Wolfson DACs, ADCs and CODECs  
WAN0144 – Using Wolfson Audio DACs and CODECs with Noisy Supplies  
WTN0302 - WM8524 Recommended Power Sequence and Timing (for hardware mode)  
GENERAL:  
WAN0108 – Moisture Sensitivity Classification and Plastic IC Packaging  
WAN0109 – ESD Damage in Integrated Circuits: Causes and Prevention  
WAN0158 – Lead-Free Solder Profiles for Lead-Free Components  
WAN0161 – Electronic End-Product Design for ESD  
PD, Rev 4.1, August 2011  
47  
w
WM8523  
Production Data  
PACKAGE DIMENSIONS – 20-LEAD TSSOP  
DT: 20 PIN TSSOP (6.5 x 4.4 x 1.0 mm)  
DM008.D  
b
e
20  
11  
E1  
E
GAUGE  
PLANE  
θ
1
10  
D
0.25  
c
L
A1  
A2  
A
-C-  
0.1  
C
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A
A1  
A2  
b
c
D
e
E
E1  
L
0.05  
0.80  
0.19  
0.09  
6.40  
-----  
1.00  
-----  
-----  
6.50  
0.65 BSC  
6.4 BSC  
4.40  
4.30  
0.45  
0o  
4.50  
0.75  
8o  
0.60  
-----  
θ
REF:  
JEDEC.95, MO-153  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM.  
D. MEETS JEDEC.95 MO-153, VARIATION = AC. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PD, Rev 4.1, August 2011  
48  
w
Production Data  
WM8523  
PACKAGE DIMENSIONS – 24-LEAD QFN  
FL: 24 PIN QFN PLASTIC PACKAGE 4 X 4 X 0.75 mm BODY, 0.50 mm LEAD PITCH  
DM061.A  
DETAIL 1  
D
D2  
19  
24  
1
18  
EXPOSED  
GROUND  
PADDLE  
INDEX AREA  
(D/2 X E/2)  
4
6
E2  
A
E
SEE DETAIL 2  
13  
6
aaa  
C
2 X  
12  
7
1
b
aaa  
C
2 X  
M
A
B
bbb  
C
e
TOP VIEW  
BOTTOM VIEW  
ccc  
C
DETAIL 1  
DETAIL 2  
A3  
A
L
5
0.08  
C
Datum  
45  
degrees  
A1  
Terminal  
Tip  
e/2  
C
SIDE VIEW  
0.3mm  
EXPOSED  
GROUND  
PADDLE  
DETAIL 3  
SEATING PLANE  
e
R
A3  
G
b
Exposed lead  
DETAIL 3  
Symbols  
MIN  
0.70  
0
NOM  
0.75  
MAX  
NOTE  
A
A1  
A3  
b
0.80  
0.05  
0.02  
0.203 REF  
0.25  
0.20  
2.65  
2.65  
0.30  
2.75  
2.75  
1
D
4.00 BSC  
2.70  
D2  
E
2
2
4.00 BSC  
2.70  
E2  
e
0.50 BSC  
0.625  
G
L
0.35  
0.40  
0.45  
Tolerances of Form and Position  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
REF:  
JEDEC, MO-220  
NOTES:  
1. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.  
2. FALLS WITHIN JEDEC, MO-220.  
3. ALL DIMENSIONS ARE IN MILLIMETRES.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEDEC 95-1 SPP-002.  
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
6. REFER TO APPLICATIONS NOTE WAN_0118 FOR FURTHER INFORMATION REGARDING PCB FOOTPRINTS AND QFN PACKAGE SOLDERING.  
7. DEPENDING ON THE METHOD OF LEAD TERMINATION AT THE EDGE OF THE PACKAGE, PULL BACK (L1) MAY BE PRESENT.  
8. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
PD, Rev 4.1, August 2011  
49  
w
WM8523  
Production Data  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the  
right to make changes to its products and specifications or to discontinue any product or service without notice. Customers  
should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer  
product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for  
such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where  
malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Any use of products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other  
intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or  
services might be or are used. Any provision or publication of any third party’s products or services does not constitute  
Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document  
belong to the respective third party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is  
not liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in  
this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or  
accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any  
reliance placed thereon by any person.  
ADDRESS  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: apps@wolfsonmicro.com  
PD, Rev 4.1, August 2011  
w
50  
Production Data  
WM8523  
REVISION HISTORY  
DATE  
REV  
ORIGINATOR  
CHANGES  
PAGE  
23/08/10  
4.1  
BT  
Added minimum A-weighted SNR limit of 100dB  
9
BT  
Changed Group delay of 256/128fs filters from 10fs to 14.5fs and 6.5fs 40  
PD, Rev 4.1, August 2011  
51  
w

相关型号:

WM8523GEFL/V

24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output
WOLFSON

WM8524

24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output
WOLFSON

WM8524CGEDT

D/A Converter, 1 Func, Serial Input Loading, PDSO16, 5 X 4.40 MM, 1 MM HEIGHT, LEAD FREE, MO-153AB, TSSOP-16
CIRRUS

WM8524CGEDT/R

D/A Converter, 1 Func, Serial Input Loading, PDSO16, 5 X 4.40 MM, 1 MM HEIGHT, LEAD FREE, MO-153AB, TSSOP-16
CIRRUS

WM8533

24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output
WOLFSON

WM8533ECSN/R

24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output
WOLFSON

WM8569

24-bit, 192kHz Stereo CODEC with Volume Control
WOLFSON

WM8569GEDS

24-bit, 192kHz Stereo CODEC with Volume Control
WOLFSON

WM8569GEDS/RV

24-bit, 192kHz Stereo CODEC with Volume Control
WOLFSON

WM8569GEDS/V

24-bit, 192kHz Stereo CODEC with Volume Control
WOLFSON

WM8569GEDSRV

24-bit, 192kHz Stereo CODEC with Volume Control
WOLFSON

WM8569GEDSV

24-bit, 192kHz Stereo CODEC with Volume Control
WOLFSON