WM8751L [WOLFSON]

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS; 立体声DAC便携式音频应用
WM8751L
型号: WM8751L
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS
立体声DAC便携式音频应用

便携式
文件: 总41页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8751L  
STEREO DAC FOR PORTABLE AUDIO APPLICATIONS  
DESCRIPTION  
FEATURES  
DAC SNR 98dB, THD -95dB (‘A’ weighted @ 48kHz, 3.3V)  
On-chip 400mW BTL Speaker Driver (mono)  
On-chip Headphone Driver  
The WM8751L is a low power, high qualitystereo DAC with  
integrated headphone and loudspeaker amplifiers, designed  
to reduce external component requirements in portable digital  
audio applications.  
°
°
40mW output power on 16/ 3.3V  
THD –80dB at 20mW, SNR 90dB with 16load  
The on-chip headphone amplifiers can deliver 40mW into a  
16load. Advanced on-chip digital signal processing  
performs bass and treble tone control.  
Stereo and Mono Line-in mix into DAC output  
SeparatelyMixed Stereo and Mono Outputs  
Digital Tone Control and Bass Boost  
Low Power  
The WM8751L can operate as a master or a slave, with  
various master clock frequencies including 12 or 24MHz for  
USB devices or standard 256fs rates like 12.288MHz and  
24.576MHz. Different audio sample rates such as 96kHz,  
48kHz, 44.1kHz are generated directlyfrom the master clock  
without the need for an external PLL.  
Low SupplyVoltages  
°
°
°
Analogue 1.8V to 3.6V  
Digital core: 1.42V to 3.6V  
Digital I/O: 1.42V to 3.6V  
256fs / 384fs or USB master clock rates: 12MHz, 24MHz  
Audio sample rates: 8, 11.025, 12, 16, 22.05, 24, 32, 44.1,  
48, 88.2, 96kHz generated internallyfrom master clock  
32-pin QFN package, 5x5x0.9mm size, 0.5mm lead pitch  
The WM8751L operates on supplyvoltages from 1.8V up to  
3.6V, although the digital core can operate on a separate  
supplydown to 1.42V, saving power. Different sections of the  
chip can also be powered down under software control.  
APPLICATIONS  
The WM8751L is supplied in a verysmall and thin 5x5mm  
QFN package, ideal for use in hand-held and portable  
systems.  
Digital Audio Player  
MP3 Phone  
Minidisc Player  
BLOCK DIAGRAM  
DBVDD DCVDD  
DGND  
HPGND  
HPVDD  
MONOOUT  
-1  
M
U
X
OUT3  
DIFF. IN  
LI2LO  
W
WM8751L  
ROUT1  
VREF  
LEFT  
MIXER  
LD2LO  
RD2LO  
LD2MO  
RD2MO  
LD2RO  
RD2RO  
LOUT1  
CSB  
SDIN  
LOUT1VOL  
MONOVOL  
MI2LO  
LI2MO  
DAC  
DAC  
CONTROL  
INTERFACE  
MONO  
MIXER  
DIGITAL  
FILTERS  
SCLK  
MODE  
MONOOUT  
TONE  
CONTROL  
RI2MO  
MI2RO  
BCLK  
DACLRC  
DACDAT  
DIGITAL  
AUDIO  
INTERFACE  
RIGHT  
MIXER  
ROUT1  
LOUT2  
ROUT1VOL  
LOUT2VOL  
RI2RO  
MCLK  
Loudspeaker  
L - (-R)  
= L+R  
VREF  
ROUT2  
INV  
-1  
50K  
50K  
ROUT2  
ROUT2VOL  
HPDETECT  
WOLFSON MICROELECTRONICS PLC  
www.wolfsonmicro.com  
Product Preview, May2003, Rev 1.42  
Copyright 2003 Wolfson Microelectronics Ltd.  
WM8751L  
Product Preview  
PIN CONFIGURATION  
ORDERING INFORMATION  
ORDER CODE  
TEMPERATURE  
RANGE  
PACKAGE  
WM8751LEFL  
-25°C to +85°C  
32-pin QFN  
(5x5x0.9mm)  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
16  
15  
14  
LOUT2  
ROUT2  
HPGND  
MONOIN-  
MONOIN+  
LINEINR  
13 LOUT1  
LINEINL  
MODE  
ROUT1  
OUT3  
12  
11  
CSB  
10 MONOOUT  
SDIN  
SCLK 32  
9
AGND2  
1
2
3
4
5
6
7
8
Product Preview Rev 1.42 May2003  
w
2
Product Preview  
WM8751L  
PIN DESCRIPTION  
PIN #  
NAME  
MCLK  
TYPE  
DESCRIPTION  
1
2
3
4
5
6
7
8
9
Digital Input  
Master Clock  
DCVDD  
DBVDD  
DGND  
BCLK  
SupplyDigital Core Supply  
SupplyDigital Buffer (I/O) Supply  
SupplyDigital Ground (return path for both DCVDD and DBVDD)  
Digital Input / Output  
Audio Interface Bit Clock  
DAC Digital Audio Data  
DACDAT  
DACLRC  
NC  
Digital Input  
Digital Input / Output  
No Connect  
Audio Interface Left / Right Clock  
No Internal Connection  
AGND2  
SuppclyoInnntercnteadllyto AGND. Leave this pin floating or connect to  
AGND.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
MONOOUT  
OUT3  
Analogue Output  
Mono Output  
Analogue Output  
Analogue Output  
Analogue Output  
Output 3 (can be used as Headphone Pseudo Ground)  
Right Output 1 (Line or Headphone)  
Left Output 1 (Line or Headphone)  
ROUT1  
LOUT1  
HPGND  
ROUT2  
LOUT2  
HPVDD  
AVDD  
SufpoprlAySnuaplopglyue Output Drivers (LOUT1/2, ROUT1/2)  
Analogue Output  
Analogue Output  
Right Output 1 (Line or Headphone or Speaker)  
Left Output 1 (Line or Headphone or Speaker)  
SufpoprlAySnuaplopglyue Output Drivers (LOUT1/2, ROUT1/2, MONOUT)  
SupplyAnalogue Supply  
AGND  
SupplyAnalogue Ground (return path for AVDD)  
VREF  
Analogue Output  
Reference Voltage Decoupling Capacitor  
Midrail Voltage Decoupling Capacitor  
No Internal Connection  
VMID  
Analogue Output  
No Connect  
NC  
HPDETECT  
NC  
Logic Input  
Headphone / Speaker switch (referred to AVDD)  
No Internal Connection  
No Connect  
MONOIN-  
MONOIN+  
LINEINR  
LINEINL  
MODE  
CSB  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Digital Input  
Negative end of MONOIN+, for differential mono signals  
Analogue Line-in to mixers (mono channel)  
Analogue Line-in to mixers (right channel)  
Analogue Line-in to mixers (left channel)  
Control Interface Selection  
Digital Input  
Chip Select / Device Address Selection  
Control Interface Data Input / 2-wire Acknowledge output  
Control Interface Clock Input  
SDIN  
Digital Input/Output  
Digital Input  
SCLK  
Product Preview Rev 1.42 May2003  
w
3
WM8751L  
Product Preview  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device maybe caused bycontinuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore genericallysusceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
CONDITION  
MIN  
-0.3V  
MAX  
+3.63V  
Supplyvoltages  
Voltage range digital inputs  
Voltage range analogue inputs  
DGND -0.3V  
AGND -0.3V  
-25°C  
DBVDD +0.3V  
AVDD +0.3V  
+85°C  
Operating temperature range, TA  
Storage temperature prior to soldering  
Storage temperature after soldering  
Package bodytemperature (soldering 10 seconds)  
Package bodytemperature (soldering 2 minutes)  
Notes  
30°C max / 85% RH max  
-65°C  
+150°C  
+260°C  
+183°C  
1. Analogue and digital grounds must always be within 0.3V of each other.  
2. All digital and analogue supplies are completelyindependent from each other.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
DCVDD  
TEST CONDITIONS  
MIN  
1.42  
1.8  
TYP  
2.0  
2.0  
2.0  
0
MAX  
3.6  
UNIT  
Digital supplyrange (Core)  
Digital supplyrange (Buffer)  
Analogue supplies range  
Ground  
V
V
V
V
DBVDD  
3.6  
AVDD, HPVDD  
DGND, AGND, HPGND  
1.8  
3.6  
Product Preview Rev 1.42 May2003  
w
4
Product Preview  
WM8751L  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
DCVDD = 1.5V, AVDD = HPVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
DAC to Line-Out (LOUT1/2, ROUT1/2, MONOOUT with 10k/ 50pF load)  
Signal to Noise Ratio  
(A-weighted)  
SNR  
THD  
AVDD = 3.3V  
AVDD = 1.8V  
AVDD = 3.3V  
AVDD = 1.8V  
1kHz signal  
98  
95  
Total Harmonic Distortion  
-95  
-90  
90  
dB  
Channel Separation  
dB  
Analogue Mixer Inputs (LINEINL, LINEINR, MONOIN+)  
Full-scale Input Signal Level  
VINFS  
AVDD = 3.3V  
AVDD = 1.8V  
AVDD = 3.3V  
AVDD = 1.8V  
1.0  
0.516  
95  
V rms  
dB  
Signal to Noise Ratio  
Line-in to Line-Out  
(A-weighted)  
SNR  
90  
Total Harmonic Distortion  
THD  
AVDD = 3.3V  
AVDD = 1.8V  
-92  
-92  
20  
10  
10  
5
dB  
dB  
kΩ  
Input Resistance  
RLINEIN  
PGA gain = 0dB  
PGA gain = +6dB  
PGA gain = 0dB  
PGA gain = +6dB  
anygain  
(signal enters one mixer only)  
Input Resistance  
(signal enters two mixers)  
MONOIN- input resistance  
Programmable Gain  
RMONOIN-  
20  
k Ω  
dB  
dB  
dB  
-15  
+6  
+6  
Programmable Gain Step Size  
Mute Attenuation  
Monotonic  
3
TBD  
Analogue Outputs (LOUT1/2, ROUT1/2, MONOOUT)  
0dB Full scale output voltage  
AVDD/3.3  
Vrms  
dB  
Programmable Gain  
Programmable Gain Steps  
Mute attenuation  
1kHz signal  
-67  
80  
Monotonic  
80  
85  
90  
steps  
dB  
1kHz, full scale signal  
Channel Separation  
dB  
Headphone Output (LOUT1/2, ROUT1/2 with 16 or 32 Ohm load)  
Output Power per channel  
Total Harmonic Distortion  
PO  
Output power is verycloselycorrelated with THD; see below.  
THD  
HPVDD=1.8V, RL=32Ω  
0.013  
-78  
dB  
%
PO=5mW  
HPVDD=1.8V, RL=16Ω  
PO=5mW  
0.013  
-78  
HPVDD=3.3V, RL=32,  
0.01  
-80  
PO=20mW  
HPVDD=3.3V, RL=16,  
0.01  
-80  
PO=20mW  
Signal to Noise Ratio  
(A-weighted)  
SNR  
HPVDD = 3.3V  
HPVDD = 1.8V  
90  
dB  
90  
Product Preview Rev 1.42 May2003  
w
5
WM8751L  
Product Preview  
Test Conditions  
DCVDD = 1.5V, AVDD = HPVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Speaker Output (LOUT2/ROUT2 with 8bridge tied load, ROUT2INV=1)  
Output Power  
PO  
HPVDD=3.3V, RL=8Ω  
HPVDD=3.0V, RL=8Ω  
HPVDD=2.7V, RL=8Ω  
HPVDD=3.3V, RL=8Ω  
HPVDD=3.0V, RL=8Ω  
HPVDD=2.7V, RL=8Ω  
400  
300  
230  
75  
mW  
Signal to Noise Ratio  
(A-weighted)  
SNR  
THD  
dB  
75  
75  
Total Harmonic Distortion  
Po=150mW, RL=8,  
-60  
0.1  
-50  
0.3  
dB  
%
HPVDD=3.3V  
Po=300mW, RL=8Ω  
HPVDD=3.3V  
Analogue Reference Levels  
Midrail Reference Voltage  
Buffered Reference Voltage  
VREF source current  
VREF sink current  
VMID  
VREF  
IVREF  
–3%  
–3%  
AVDD/2  
AVDD/2  
+3%  
+3%  
5
V
V
mA  
mA  
IVREF  
5
Digital Input / Output  
Input HIGH Level  
VIH  
VIL  
0.7×DBVDD  
0.9×DBVDD  
V
V
V
V
Input LOW Level  
0.3×DBVDD  
0.1×DBVDD  
Output HIGH Level  
VOH  
VOL  
Output LOW Level  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full scale output and the output  
with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
2. Dynamic range (dB) - DR is a measure of the difference between the highest and lowest portions of a signal.  
Normallya THD+N measurement at 60dB below full scale. The measured signal is then corrected byadding the 60dB  
to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Channel Separation (dB) - Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Normallymeasured bysending a full scale signal down one channel and measuring the other.  
Product Preview Rev 1.42 May2003  
w
6
Product Preview  
WM8751L  
OUTPUT PGA’S LINEARITY  
10.000  
0.000  
Output PGA Gains  
-10.000  
-20.000  
-30.000  
-40.000  
-50.000  
-60.000  
-70.000  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONOOUT  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
XXXVOL Register Setting (binary)  
2.000  
1.750  
1.500  
1.250  
1.000  
0.750  
0.500  
0.250  
0.000  
Output PGA GainStep Size  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONOOUT  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
XXXVOL Register Setting (binary)  
Product Preview Rev 1.42 May2003  
w
7
WM8751L  
Product Preview  
HEADPHONE OUTPUT THD VERSUS POWER (SIMULATION)  
0
Headphone Power vs THD+N (32Ohm load)  
-20  
-40  
AVDD=1.8V  
AVDD=1.8V, capless  
AVDD=3.3V  
-60  
AVDD=3.3V, capless  
-80  
-100  
0
5
10  
15  
20  
25  
30  
Pow er (mW)  
0
-20  
Headphone Power vs THD+N (16Ohm load)  
AVDD=1.8V  
-40  
AVDD=1.8V, capless  
AVDD=3.3V  
-60  
AVDD=3.3V, capless  
-80  
-100  
0
10  
20  
30  
40  
50  
60  
Pow er (mW)  
Product Preview Rev 1.42 May2003  
w
8
Product Preview  
WM8751L  
SPEAKER OUTPUT THD VERSUS POWER (SIMULATION)  
-10  
-20  
-30  
-40  
-50  
AVDD=1.8V  
AVDD=2.5V  
AVDD=3.3V  
Speaker Power vs THD+N (8Ohm BTL load)  
-60  
-70  
0
100  
200  
300  
400  
500  
Pow er (mW)  
10  
8
Speaker Power vs THD+N (8 Ohm BTL load)  
6
AVDD=1.8V  
AVDD=2.5V  
AVDD=3.3V  
4
2
0
0
100  
200  
300  
400  
500  
Power (mW)  
Product Preview Rev 1.42 May2003  
w
9
WM8751L  
Product Preview  
POWER CONSUMPTION  
The power consumption of the WM8751L depends on the following factors.  
Supplyvoltages: Reducing the supplyvoltages also reduces supplycurrents, and therefore results in significant power  
savings.  
Operating mode: Power consumption is lower in mono modes than in stereo, as one DAC is switched OFF. Unused  
analogue outputs should be switched off.  
Control Register  
R25  
R26 (1Ah)  
R24 R23 R38  
Other settings  
Clocks stopped  
AVDD  
DCVDD  
DBVDD  
HPVDD  
Tot. Power  
Bit  
V
I (mA)  
V
I (mA)  
V
I (mA)  
V
I (mA)  
(mW)  
<0.01  
<0.01  
<0.01  
<0.02  
<0.02  
<0.02  
40  
20  
9
34  
19  
OFF  
00  
0
0
0
0
0
0
0
0
0
0
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
0
0
0
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
3.3 TBD 3.3 TBD 3.3 TBD 3.3 TBD  
2.5 TBD 2.5 TBD 2.5 TBD 2.5 TBD  
1.8 TBD 1.5 TBD 1.5 TBD 1.8 TBD  
Low-power standby(LPS)  
using 500 KOhm VMID string  
10  
01  
01  
01  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Playback to Line-out  
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
Playback to Line-out  
(64x oversampling mode)  
1
1
8.5  
40  
20  
9
Playback  
to 16 Ohm headphone  
using caps on HPOUTL/R  
Play back  
to 16 Ohm headphone  
capless mode using OUT3  
Playback  
01  
1
1
1
1
1
0
0
0
1
0
11  
0
R24, OUT3SW=00  
R24, ROUT2INV=1  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
01  
01  
01  
01  
1
1
1
1
1
0
0
0
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
0
0
0
0
to 8 Ohm BTL speaker  
Headphone Amp  
line-in to 16 Ohm h/phone  
0
0
1
Speaker Amp  
line-in to 8 Ohm speaker  
R24, ROUT2INV=1  
Phone Call  
diff. mono line-in to h/phone,  
diff. mono line-out to TX  
0
1
Table 1 Supply Current Consumption (Target)  
Notes:  
1. TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 12.288 MHz (256fs), 24-bit data  
2. All figures are quiescent, with no signal.  
3. The power dissipated in the headphone itself is not included in the above table.  
Product Preview Rev 1.42 May2003  
w
10  
Product Preview  
WM8751L  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
tMCLKL  
MCLK  
tMCLKH  
tMCLKY  
Figure 1 System Clock Timing Requirements  
Test Conditions  
DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock pulse width high  
MCLK System clock pulse width low  
MCLK System clock cycle time  
tMCLKL  
tMCLKH  
tMCLKY  
16  
16  
27  
ns  
ns  
ns  
AUDIO INTERFACE TIMING – MASTER MODE  
BCLK  
(Output)  
tDL  
DACLRC  
(Output)  
tDST  
tDHT  
DACDAT  
Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)  
Test Conditions  
DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
DACLRC propagation delayfrom BCLK falling edge  
DACDAT setup time to BCLK rising edge  
DACDAT hold time from BCLK rising edge  
tDL  
10  
ns  
ns  
ns  
tDST  
tDHT  
10  
10  
AUDIO INTERFACE TIMING – SLAVE MODE  
tBCH  
tBCL  
BCLK  
DACLRC  
DACDAT  
tBCY  
tLRSU  
tDS  
tLRH  
Figure 3 Digital Audio Data Timing – Slave Mode (see Control Interface)  
Product Preview Rev 1.42 May2003  
11  
w
WM8751L  
Product Preview  
Test Conditions  
DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
tLRSU  
tLRH  
tDH  
50  
20  
20  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
DACLRC setup time to BCLK rising edge  
DACLRC hold time from BCLK rising edge  
DACDAT hold time from BCLK rising edge  
CONTROL INTERFACE TIMING – 3-WIRE MODE  
tCSL  
tCSH  
CSB  
tCSS  
tSCY  
tSCS  
tSCH  
tSCL  
SCLK  
SDIN  
LSB  
tDSU  
tDHO  
Figure 4 Control Interface Timing – 3-Wire Serial Control Mode  
Test Conditions  
DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
tSCS  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
tps  
500  
200  
80  
80  
40  
40  
40  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
CSB pulse width high  
CSB rising to SCLK rising  
Pulse width of spikes that will be suppressed  
5
Product Preview Rev 1.42 May2003  
12  
w
Product Preview  
WM8751L  
CONTROL INTERFACE TIMING – 2-WIRE MODE  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t9  
Figure 5 Control Interface Timing – 2-Wire Serial Control Mode  
Test Conditions  
DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
0
400  
kHz  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
600  
1.3  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
0
900  
5
Pulse width of spikes that will be suppressed  
Product Preview Rev 1.42 May2003  
13  
w
WM8751L  
Product Preview  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8751L is a low power audio DAC offering a combination of high qualityaudio, advanced  
features, low power and small size. These characteristics make it ideal for portable digital audio  
applications such as portable music players and smartphones.  
The device has a configurable digital audio interface where digital audio data is fed to the internal  
digital filters and then the DAC. The interface supports a number of audio data formats including I2S,  
DSP Mode (a burst mode in which frame sync plus 2 data packed words are transmitted), Left  
Justified and Right Justified formats, and can operate in master or slave modes.  
The on-chip digital filters perform tone control and digital volume control according to the user  
setting, and convert the audio data into oversampled bitstreams, which are passed to the left and  
right channel DACs. A multi-bit, low-order Σ∆ DAC architecture with dynamic element matching is  
used, delivering optimum performance with low power consumption.  
The DAC output signal enters an analogue mixer where analogue input signals can be added to it.  
The WM8751L has a total of six analogue output pins, which can be configured as stereo line-outs,  
mono line-outs, differential mono line-outs, stereo headphone outputs or differential mono (BTL)  
speaker outputs.  
The WM8751L master clock can be either an industrystandard 256/384 f clock or a 12MHz/24MHz  
s
USB clock. Sample rates of 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 32kHz, 44.1kHz, 48kHz,  
88.2kHz and 96kHz can be generated directlyfrom the master clock, without an external PLL. The  
digital filters are optimised for each sample rate.  
To allow full software control over all its features, the WM8751L offers a choice of 2 or 3 wire MPU  
control interface. It is fullycompatible and an ideal partner for a wide range of industrystandard  
microprocessors, controllers and DSPs.  
The design of the WM8751L has given much attention to power consumption without compromising  
performance. It operates at verylow voltages, and includes the abilityto power off parts of the  
circuitryunder software control, including standbyand power off modes.  
Product Preview Rev 1.42 May2003  
14  
w
Product Preview  
WM8751L  
SIGNAL PATH  
The WM8751L signal paths consists of digital filters, DACs, analogue mixers and output drivers.  
Each circuit block can be enabled or disabled separatelyusing the control bits in register 26 (see  
“Power Management”). Thus it is possible to utilise the analogue mixing and amplification provided  
bythe WM8751L, irrespective of whether the DACs are running or not.  
The WM8751L receives digital input data on the DACDAT pin. The digital filter block processes the  
data to provide the following functions:  
Digital volume control  
Tone control and Bass Boost  
Digital Mono Mix  
Sigma-Delta Modulation  
Two high performance, sigma-delta audio DACs convert the digital data into two analogue signals  
(left and right). These can then be mixed with analogue signals from the LINEINL, LINEINR and  
MONOIN pins, and the mix is fed to the output drivers, LOUT1/ROUT1, LOUT2/ROUT2, and  
MONOOUT.  
LOUT1/ROUT1: can drive 16or 32stereo headphones or stereo line output.  
LOUT2/ROUT2: can drive an 8mono speaker, stereo headphones or a stereo line-out.  
MONOOUT: line output designed to drive a 10kload.  
OUT3: multi-function output, maybe used for capacitor-less headphone drive, differential  
mono-out, line-out or 32earpiece driver.  
Product Preview Rev 1.42 May2003  
w
15  
WM8751L  
Product Preview  
DIGITAL VOLUME CONTROL  
The WM8751L has on-chip digital attenuation from –127dB to 0dB in 0.5dB steps, allowing the user  
to adjust the volume of each channel separately. The level of attenuation for an eight-bit code X is  
given by:  
-0.5 × (255 – X) dB for 1 X 255;  
MUTE for X = 0  
The LDVU and RDVU control bits control the loading of digital volume control data. When LDVU or  
RDVU are set to 0, the LDACVOL or RDACVOL control data is loaded into an intermediate register,  
but the actual gain does not change. Both left and right gain settings are updated simultaneously  
when either LDVU or RDVU are set to 1.  
REGISTER  
ADDRESS  
BIT  
7:0  
LABEL  
DEFAULT  
DESCRIPTION  
R10 (0Ah)  
LDACVOL[7:0] 11111111 Left DAC Digital Volume Control  
Left Channel  
Digital Volume  
( 0dB )  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
8
LDVU  
0
Left DAC Volume Update  
0 = Store LDACVOL in intermediate latch  
(no gain change)  
1 = Update left and right channel gains  
(left = LDACVOL, right = intermediate  
latch)  
R11 (0Bh)  
7:0  
8
RDACVOL[7:0] 11111111 Right DAC Digital Volume Control  
Right Channel  
Digital Volume  
( 0dB )  
0
similar to LDACVOL  
RDVU  
Right DAC Volume Update  
0 = Store RDACVOL in intermediate latch  
(no gain change)  
1 = Update left and right channel gains  
(left = intermediate latch, right =  
RDACVOL)  
Table 2 Digital Volume Control  
Product Preview Rev 1.42 May2003  
w
16  
Product Preview  
WM8751L  
TONE CONTROL  
The WM8751L provides separate controls for bass and treble with programmable gains and filter  
characteristics. This function operates on digital audio data before it is passed to the audio DACs.  
Bass control can take two different forms:  
Linear bass control: bass signals are amplified or attenuated bya user programmable  
gain. This is independent of signal volume, and veryhigh bass gains on loud signals  
maylead to signal clipping.  
Adaptive bass boost: The bass volume is amplified bya variable gain. When the bass  
volume is low, it is boosted more than when the bass volume is high. This method is  
recommended because it prevents clipping, and usuallysounds more pleasant to the  
human ear.  
Treble control applies a user programmable gain, without anyadaptive boost function.  
REGISTER  
ADDRESS  
BIT  
LABEL  
BB  
DEFAULT  
DESCRIPTION  
R12 (0Ch)  
7
0
0
Bass Mode  
Bass Control  
0 = Linear bass control  
1 = Adaptive bass boost  
6
BC  
Bass Filter Characteristic  
0 = Low Cutoff (130 Hz at 48kHz sampling)  
1 = High Cutoff (200 Hz at 48kHz sampling)  
Bass Intensity  
3:0  
BASS  
1111 (OFF)  
Code  
0000  
0001  
0010  
BB=0  
BB=1  
15 (max)  
14  
+9dB  
+9dB  
+7.5dB  
(1.5dB steps)  
0dB  
13  
0111  
8
(1.5dB steps)  
1011-1101 -6dB  
4-2  
1110  
1111  
-6dB  
1 (min)  
Bypass (OFF)  
R13 (0Dh)  
6
TC  
0
Treble Filter Characteristic  
Treble Control  
0 = High Cutoff (8kHz at 48kHz sampling)  
1 = Low Cutoff (4kHz at 48kHz sampling)  
Treble Intensity  
3:0  
TRBL  
1111  
(Disabled)  
0000 or 0001 = +9dB  
0010 = +7.5dB  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
Table 3 Tone Control  
Note:  
1. All cut-off frequencies change proportionallywith the DAC sample rate.  
Product Preview Rev 1.42 May2003  
17  
w
WM8751L  
Product Preview  
DIGITAL TO ANALOGUE CONVERTER (DAC)  
Treble and linear bass enhancement mayproduce signals that exceed full-scale. In order to avoid  
limiting under these conditions, it is recommended to set the DAT bit to attenuate the digital input  
signal by6dB. The gain at the outputs should be increased by6dB to compensate for the  
attenuation. Cut-onlytone adjustment and adaptive bass boost cannot produce signals above full-  
scale and therefore do not require the DAT bit to be set.  
After passing through the tone control filters, digital ‘de-emphasis’ can be applied to the audio data if  
necessary(e.g. when the data comes from a CD with pre-emphasis used in the recording). De-  
emphasis filtering is available for sample rates of 48kHz, 44.1kHz and 32kHz.  
The WM8751L also has a Soft Mute function, which graduallyattenuates the volume of the digital  
signal to zero. This function is enabled bydefault. To playback an audio signal, the WM8751L must  
first be unmuted bysetting the DACMU bit to zero.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DAT  
DEFAULT  
DESCRIPTION  
R5 (05h)  
DAC Control  
7
0
DAC 6dB attenuate enable  
0 = disabled (0dB)  
1 = -6dB enabled  
3
DACMU  
1
DAC Digital Soft Mute  
1 = mute  
0 = no mute (signal active)  
De-emphasis Control  
11 = 48kHz sample rate  
10 = 44.1kHz sample rate  
01 = 32kHz sample rate  
00 = No De-emphasis  
2:1  
DEEMPH  
00  
Table 4 DAC Control  
The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital  
interpolation filters. The bitstream data enters two multi-bit, sigma-delta DACs, which convert them to  
high qualityanalogue audio signals. The multi-bit DAC architecture reduces high frequencynoise and  
sensitivityto clock jitter. It also uses a Dynamic Element Matching technique for high linearityand  
low distortion.  
In normal operation, the left and right channel digital audio data are converted to analogue in two  
separate DACs. However, it is also possible to disable one channel, so that the same signal (left or  
right) appears on both analogue output channels. Additionally, there is a mono-mix mode where the  
two audio channels are mixed together digitallyand then converted to analogue using onlyone DAC,  
while the other DAC is switched off. The mono-mix signal can be selected to appear on both  
analogue output channels (see Analogue Outputs).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R23 (17h)  
5:4  
DMONOMIX[1:0]  
00  
DAC mono mix  
Additional (1)  
00: stereo  
01: mono ((L+R)/2) into DACL, ‘0’ into  
DACR  
10: mono ((L+R)/2) into DACR, ‘0’ into  
DACL  
11: mono ((L+R)/2) into DACL & DACR  
Table 5 DAC Mono Mix Select  
Product Preview Rev 1.42 May2003  
18  
w
Product Preview  
WM8751L  
LINE INPUTS AND OUTPUT MIXERS  
The WM8751L provides the option to mix the DAC output signal with analogue line-in signals from  
the LINEINL, LINEINR and MONOIN pins. The level of the mixed-in signals can be controlled with  
PGAs (Programmable Gain Amplifiers).  
LINEINL, LINEINR, MONOIN+ and MONOIN- are high impedance, low capacitance AC coupled  
analogue inputs. Theyare biased internallyto the reference voltage VREF. Whenever these inputs  
are muted or the device placed into standbymode, the inputs remain biased to VREF using special  
anti-thump circuitry. This reduces any audible clicks that may otherwise be heard when re-activating  
the inputs.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2LO  
DEFAULT  
DESCRIPTION  
Left DAC to Left Mixer  
R34 (22h)  
8
0
0
Left Mixer (1)  
0 = Disable (Mute)  
1 = Enable Path  
7
LI2LO  
LINEINL Signal to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
LI2LOVOL  
101  
LINEINL Signal to Left Mixer Volume  
000 = +6dB  
(-9dB)  
… (3dB steps)  
111 = -15dB  
R35 (23h)  
8
RD2LO  
0
0
Right DAC to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
Left Mixer (2)  
7
MI2LO  
MONOIN Signal to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
MI2LOVOL  
101  
MONOIN Signal to Left Mixer Volume  
000 = +6dB  
(-9dB)  
… (3dB steps)  
111 = -15dB  
Table 6 Left Output Mixer Control  
Product Preview Rev 1.42 May2003  
w
19  
WM8751L  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2RO  
DEFAULT  
DESCRIPTION  
Left DAC to Right Mixer  
R36 (24h)  
8
0
0
Right Mixer (1)  
0 = Disable (Mute)  
1 = Enable Path  
7
MI2RO  
MONOIN Signal to Right Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
MI2ROVOL  
101  
MONOIN Signal to Right Mixer Volume  
000 = +6dB  
(-9dB)  
… (3dB steps)  
111 = -15dB  
R37 (25h)  
8
RD2RO  
0
0
Right DAC to Right Mixer  
0 = Disable (Mute)  
1 = Enable Path  
Right Mixer (2)  
7
RI2RO  
LINEINR Signal to Right Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
RI2ROVOL  
101  
LINEINR Signal to Right Mixer Volume  
000 = +6dB  
(-9dB)  
… (3dB steps)  
111 = -15dB  
Table 7 Right Output Mixer Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2MO  
DEFAULT  
DESCRIPTION  
R38 (26h)  
8
0
0
Left DAC to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
Mono Mixer (1)  
7
LI2MO  
LINEINL Signal to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
LI2MOVOL  
101  
LINEINL Signal to Right Mono Volume  
000 = 0dB  
(-9dB)  
… (3dB steps)  
111 = -21dB  
R39 (27h)  
8
RD2MO  
0
0
Right DAC to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
Mono Mixer (2)  
7
RI2MO  
LINEINR Signal to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
RI2MOVOL  
101  
LINEINR Signal to Mono Mixer Volume  
000 = 0dB  
(-9dB)  
… (3dB steps)  
111 = -21dB  
Table 8 Mono Output Mixer Control  
Note: The mono mixer has half the gain of the left and right mixers (i.e. 6dB less), to ensure that the  
left and right channels can be mixed to mono without clipping.  
Product Preview Rev 1.42 May2003  
20  
w
Product Preview  
WM8751L  
DIFFERENTIAL MONO LINE-IN  
The WM8751L can take either a single-ended or a differential mono signal and mix it into the  
LOUT1/2 and ROUT1/2 outputs. In both cases, LINEINL and LINEINR still remain available as stereo  
line-in. Differential mono input mode is enabled bysetting the DMEN bit, as shown below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DMEN  
DEFAULT  
DESCRIPTION  
R38 (26h)  
0
0
Differential mono line-in enable  
0 = Single-ended line-in from MONOIN+  
1 = Differential line-in  
Mono Mixer (1)  
Table 9 Differential Mono Line-in Enable  
MONO OUT(-)  
DEVICE WITH  
DIFFERENTIAL  
MONO OUTPUT  
MONO OUT(+)  
DMEN = 1  
(ON)  
DIFF. IN  
LI2LO  
LEFT  
MIXER  
LD2LO  
RD2LO  
LD2MO  
RD2MO  
LD2RO  
RD2RO  
LOUT1  
LOUT1VOL  
MI2LO  
LI2MO  
DAC  
DAC  
MONO  
MIXER  
MONOOUT  
MONOVOL  
RI2MO  
MI2RO  
RIGHT  
MIXER  
ROUT1  
LOUT2  
ROUT1VOL  
LOUT2VOL  
RI2RO  
Loudspeaker  
L - (-R)  
= L+R  
W
WM8751L  
ROUT2  
INV  
-1  
ROUT2  
ROUT2VOL  
Figure 6 Differential Mono Line-in Configuration  
DEVICE WITH  
MONO OUT  
SINGLE-ENDED  
MONO OUTPUT  
DMEN = 0  
(OFF)  
DIFF. IN  
LI2LO  
LEFT  
MIXER  
LD2LO  
RD2LO  
LD2MO  
RD2MO  
LD2RO  
RD2RO  
LOUT1  
LOUT1VOL  
MONOVOL  
MI2LO  
LI2MO  
DAC  
DAC  
MONO  
MIXER  
MONOOUT  
RI2MO  
MI2RO  
RIGHT  
MIXER  
ROUT1  
LOUT2  
ROUT1VOL  
LOUT2VOL  
RI2RO  
Loudspeaker  
L - (-R)  
= L+R  
W
WM8751L  
ROUT2  
INV  
-1  
ROUT2  
ROUT2VOL  
Figure 7 Single-ended Mono Line-in Configuration  
Product Preview Rev 1.42 May2003  
w
21  
WM8751L  
Product Preview  
ANALOGUE OUTPUTS  
ENABLING THE OUTPUTS  
Each analogue output of the WM8751L can be separatelyenabled or disabled. The analogue mixer  
associated with each output is powered on or off along with the output pin. All outputs are disabled by  
default. To save power, unused outputs should remain disabled.  
Outputs can be enabled at anytime, except when the WM8751L is in OFF mode, as this maycause  
pop noise (see Minimising Pop Noise at the Analogue Outputs)  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R26 (1Ah)  
8
7
5
4
2
LOUT1  
0
0
0
0
0
0
LOUT1 Enable  
Power  
Management  
(2)  
ROUT1  
LOUT2  
ROUT2  
MONO  
OUT3  
ROUT1 Enable  
LOUT2 Enable  
ROUT2 Enable  
MONOOUT Enable  
OUT3 Enable  
1
Note: All “Enable” bits are 1 = ON, 0 = OFF  
Table 10 Analogue Output Control  
HEADPHONE SWITCH  
The HPDETECT pin can be used as a headphone switch control input to automaticallydisable the  
speaker output and enable the headphone output e.g. when a headphone is plugged into a jack  
socket. In this mode, enabled bysetting HPSWEN, HPDETECT switches between headphone and  
speaker outputs (typically, the pin is connected to a mechanical switch in the headphone socket to  
detect plug-in). The HPSWPOL bit reverses the pin’s polarity. HPDETECT has CMOS thresholds at  
0.3 AVDD / 0.7 AVDD. Note that the LOUT1, ROUT1, LOUT2 and ROUT2 bits in register 26 must  
also be set to enable headphone and speaker outputs (see tables below).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R24 (18h)  
6
HPSWEN  
0
0
Headphone Switch Enable  
Additional (1)  
0 : Headphone switch disabled  
1 : Headphone switch enabled  
Headphone Switch Polarity  
5
HPSWPOL  
0 : HPDETECT high = headphone  
1 : HPDETECT high = speaker  
Table 11 Headphone Switch  
HPSWEN HPSWPOL HPDETECT L/ROUT1 L/ROUT2 Headphone  
Speaker  
(PIN23)  
(reg. 26)  
(reg. 26)  
enabled  
no  
enabled  
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
0
0
0
0
1
1
1
1
X
X
X
X
0
0
1
1
0
0
1
1
0
0
1
1
X
X
0
1
X
X
0
1
0
1
0
1
0
1
X
X
0
1
X
X
no  
y
no  
es  
es  
yes  
yes  
no  
no  
yes  
no  
y
no  
no  
no  
no  
no  
no  
no  
y
yes  
no  
yes  
no  
no  
es  
Table 12 Headphone Switch Operation  
Product Preview Rev 1.42 May2003  
22  
w
Product Preview  
WM8751L  
AVDD  
/
HPSWEN = 1  
HPSWPOL = 1  
L/ROUT1 = L/ROUT2 = 1  
-
-
ROUT1  
LOUT1  
L
R
47k  
headphone /  
speaker  
switching  
100k  
HPDETECT  
switch closes  
on insertion  
Figure TBD Example Headset Detection circuit using normally-open switch  
AVDD  
HPSWEN = 1  
HPSWPOL = 0  
L/ROUT1 = L/ROUT2 = 1  
-
-
ROUT1  
LOUT1  
L
R
47k  
/  
headphone /  
speaker  
switching  
100k  
switch opens  
on insertion  
HPDETECT  
Figure TBD Example Headset Detection circuit using normally-closed switch  
THERMAL SHUTDOWN  
The speaker and headphone outputs can drive verylarge currents. To protect the WM8751L from  
overheating, a thermal shutdown circuit is included. If the device temperature reaches approximately  
1500C and the thermal shutdown circuit is enabled (TSDEN = 1 ) then the speaker and headphone  
amplifiers (outputs OUT1L/R, OUT2L/R & OUT3) will be disabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
TSDEN  
DEFAULT  
DESCRIPTION  
R23 (17h)  
8
0
Thermal Shutdown Enable  
0 : thermal shutdown disabled  
1 : thermal shutdown enabled  
Additional (1)  
Table 13 Thermal Shutdown  
Product Preview Rev 1.42 May2003  
w
23  
WM8751L  
Product Preview  
LOUT1/ROUT1 OUTPUTS  
The LOUT1 and ROUT1 pins can drive a 16or 32headphone or a line output (see Headphone  
Output and Line Output sections, respectively). The signal volume on LOUT1 and ROUT1 can be  
independentlyadjusted under software control bywriting to LOUT1VOL and ROUT1VOL,  
respectively. Note that gains over 0dB may cause clipping if the signal is large. Any gain setting  
below 0101111 (minimum gain) mutes the output driver. The corresponding output pin remains at the  
same DC level (the reference voltage on the VREF pin), so that no click noise is produced when  
muting or un-muting.  
The analogue outputs have a zero cross detect feature to minimize audible clicks and zipper noise  
when on gain changes (i.e. the updating of the gain value is delayed until the signal passes through  
zero). Bydefault, this includes a time-out function, which forces the gain to update if no zero crossing  
occurs within a certain period of time.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2 (02h)  
LOUT1  
Volume  
6:0  
LOUT1VOL  
1111001  
(0dB)  
LOUT1 Volume  
1111111 = +6dB  
… (80 steps)  
0110000 = -67dB  
0101111 to 0000000 = Analogue MUTE  
LOUT1 zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left Volume Update  
7
LO1ZC  
LO1VU  
0
0
8
0 = Store LOUT1VOL in intermediate  
latch (no gain change)  
1 = Update left and right channel gains  
(left = LOUT1VOL, right =  
intermediate latch)  
R3 (03h)  
ROUT1  
Volume  
6:0  
7
ROUT1VOL  
RO1ZC  
1111001  
ROUT1 Volume  
Similar to LOUT1VOL  
ROUT1 zero cross enable  
Similar to LO1ZC  
0
0
8
RO1VU  
Right Volume Update  
0 = Store ROUT1VOL in intermediate  
latch (no gain change)  
1 = Update left and right channel gains  
(left = intermediate latch, right =  
ROUT1VOL)  
R23 (17h)  
0
TOEN  
1
Time-out enable for zero-cross detectors  
0 = time-out disabled (i.e. gains are never  
updated if there is no zero crossing)  
1 = time-out enabled  
Table 14 LOUT1/ROUT1 Volume Control  
Product Preview Rev 1.42 May2003  
24  
w
Product Preview  
WM8751L  
LOUT2/ROUT2 OUTPUTS  
The LOUT2 and ROUT2 output pins are essentiallysimilar to LOUT1 and ROUT1, but theyare  
independentlycontrolled and can also drive an 8 mono speaker. For speaker drive, the ROUT2  
signal must be inverted (ROUT2INV = 1), so that the left and right channel are mixed to mono in the  
speaker [L–(-R) = L+R].  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
similar to LOUT1VOL  
R40 (28h)  
LOUT2  
6:0  
LOUT2VOL  
1111001  
(0dB)  
0
Volume  
7
LO2ZC  
Left zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
similar to LO1VU  
8
LO2VU  
0
R41 (29h)  
ROUT2  
6:0  
ROUT2VOL  
1111001  
(0dB)  
0
similar to ROUT1VOL  
Volume  
7
RO2ZC  
Left zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
similar to RO1VU  
8
RO2VU  
TOEN  
0
1
0
R23 (17h)  
0
as for LOUT1 / ROUT1  
R24 (18h)  
3
ROUT2INV  
ROUT2 Invert  
Additional (2)  
0 = No Inversion (0° phase shift)  
1 = Signal inverted (180° phase shift)  
Table 15 LOUT2/ROUT2 Control  
MONO OUTPUT  
The MONOOUT pin can drive a mono line output. The signal volume on MONOOUT can be adjusted  
under software control bywriting to MONOOUTVOL.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R42 (2Ah)  
MONOOUT  
Volume  
6:0  
MONOOUT  
VOL  
1111001  
(0dB)  
MONOOUT Volume  
1111111 = +6dB  
… (80 steps)  
0110000 = -67dB  
0101111 to 0000000 = Analogue MUTE  
MONOOUT zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
as for LOUT1 / ROUT1  
7
MOZC  
TOEN  
0
1
R23 (17h)  
0
Table 16 MONOOUT Volume Control  
OUT3 OUTPUT  
The OUT3 pin can drive a 16or 32headphone or a line output or be used as a DC reference for a  
headphone output. It can be selected to either drive out an inverted ROUT1 or inverted MONOOUT  
for e.g. an earpiece drive between OUT3 and LOUT1 or differential output between OUT3 and  
MONOOUT.  
OUT3SW selects the mode of operation required.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
00  
DESCRIPTION  
R24 (18h)  
8:7  
OUT3SW  
OUT3 select  
00 : VREF  
Additional (2)  
01 : ROUT1  
10 : MONOOUT  
11 : right mixer output  
Table 17 OUT3 select  
Product Preview Rev 1.42 May2003  
w
25  
WM8751L  
Product Preview  
DIGITAL AUDIO INTERFACE  
The digital audio interface is used for feeding audio data into the WM8751L. It uses three pins:  
DACDAT: DAC data input  
DACLRC: DAC data alignment clock  
BCLK: Bit clock, for synchronisation  
The clock signals BCLK and DACLRC can be outputs when the WM8751L operates as a master, or  
inputs when it is a slave (see Master and Slave Mode Operation, below).  
Four different audio data formats are supported:  
Left justified  
Right justified  
I2S  
DSP mode  
All four of these modes are MSB first. Theyare described in Audio Data Formats, below. Refer to the  
Electrical Characteristic section for timing information.  
MASTER AND SLAVE MODE OPERATION  
The WM8751L can be configured as either a master or slave mode device. As a master device the  
WM8751L generates BCLK and DACLRC and thus controls sequencing of the data transfer on  
DACDAT. In slave mode, the WM8751L responds with data to clocks it receives over the digital  
audio interface. The mode can be selected bywriting to the MS control bit. Master and slave modes  
are illustrated below.  
BCLK  
DACLRC  
DACDAT  
BCLK  
DACLRC  
DACDAT  
WM8751  
DAC  
DSP /  
DECODER  
WM8751  
DAC  
DSP /  
DECODER  
Figure 8 Master Mode  
AUDIO DATA FORMATS  
Figure 9 Slave Mode  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following a DACLRC  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequencyand sample rate, there maybe unused BCLK ccyles before each DACLRC  
transition.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC  
BCLK  
DACDAT  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Note: Input word length is defined bythe WL register.  
Timing is shown with LRP = 1  
Input Word Length (WL)  
Figure 10 Left Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a DACLRC  
transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK  
frequencyand sample rate, there maybe unused BCLK cycles after each DACLRC transition.  
Product Preview Rev 1.42 May2003  
26  
w
Product Preview  
WM8751L  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC  
BCLK  
DACDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Data Word Length (WL)  
Note: Word length is defined bythe WL register.  
Timing is shown with LRP = 1  
Figure 11 Right Justified Audio Interface (assuming n-bit word length)  
In I2S mode, the MSB is available on the second rising edge of BCLK following a DACLRC transition.  
The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK  
frequencyand sample rate, there maybe unused BCLK cycles between the LSB of one sample and  
the MSB of the next.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC  
BCLK  
1 BCLK  
1 BCLK  
DACDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Note: Word length is defined bythe WL register.  
Timing is shown with LRP = 1  
Data Word Length (WL)  
Figure 12 I2S Justified Audio Interface (assuming n-bit word length)  
In DSP mode, the left channel MSB is available on either the first or second rising edge of BCLK  
(selectable byLRP) following a rising edge of DACLRC. Right channel data immediatelyfollows left  
channel data. Depending on word length, BCLK frequencyand sample rate, there maybe unused  
BCLK cycles between the LSB of the right channel data and the next sample.  
1/fs  
1 BCLK  
DACLRC  
BCLK  
RIGHT CHANNEL  
n-2 n-1  
LEFT CHANNEL  
DACDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
MSB  
LSB  
Data Word Length (WL)  
Note: Word length is defined bythe WL register.  
Timing is shown with LRP = 1  
Figure 13 DSP Mode Audio Interface (Mode A; LRP = 0)  
Product Preview Rev 1.42 May2003  
27  
w
WM8751L  
Product Preview  
1/fs  
1 BCLK  
DACLRC/  
ADCLRC  
BCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n-2 n-1  
n
n-2 n-1  
MSB  
LSB  
Input Word Length (WL)  
Figure 14 DSP Mode Audio Interface (Mode B; LRP = 1)  
AUDIO INTERFACE CONTROL  
The register bits controlling audio format, word length and master / slave mode are summarised  
below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7 (07h)  
1:0  
FORMAT  
10  
Audio Data Format Select  
Digital Audio  
Interface  
Format  
11 = DSP Mode  
10 = I2S Format  
01 = Left justified  
00 = Right justified  
Audio Data Word Length  
11 = 32 bits (see Note)  
10 = 24 bits  
3:2  
WL  
10  
0
01 = 20 bits  
00 = 16 bits  
4
LRP  
I2S, LJ, RJ Formats  
DSP Format  
1: Right Channel data 1: MSB available on  
when DACLRC high  
2nd BCLK rising edge  
after LRC rising edge  
0: Right Channel data  
when DACLRC low  
0: MSB available on  
1st BCLK rising edge  
after LRC rising edge  
5
6
7
LRSWAP  
MS  
0
0
0
Swap Left and Right Channels  
0: No swap (L to L, R to R)  
1: Swap (L to R, R to L)  
Master / Slave Mode Control  
1: Master Mode  
0: Slave Mode  
BCLKINV  
BCLK Invert  
1: BCLK inverted  
0: BCLK not inverted  
Table 18 Audio Data Format Control  
Note: Right Justified mode does not support 32-bit data. If WL=11 in Right justified mode, the actual  
word length will be 24 bits.  
Product Preview Rev 1.42 May2003  
28  
w
Product Preview  
WM8751L  
MASTER CLOCK AND AUDIO SAMPLE RATES  
The WM8751L supports a wide range of master clock frequencies on the MCLK pin, and can  
generate manycommonlyused audio sample rates directlyfrom the master clock.  
There are two clocking modes:  
‘Normal’ mode supports master clocks of 128fs, 192fs, 256fs, 384fs, and their multiples  
USB mode supports 12MHz or 24MHz master clocks. This mode is intended for use in  
systems with a USB interface, and eliminates the need for an external PLL to generate  
another clock frequencyfor the audio DAC.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
6
MCLKDIV2  
0
Core Clock Divide by2  
0: Core clock = MCLK  
1: Core clock = MCLK / 2  
Sample Rate Control  
Clocking Mode Select  
1: USB Mode  
5:1  
0
SR [4:0]  
USB  
0000  
0
0: ‘Normal’ Mode  
Table 19 Clocking and Sample Rate Control  
The clocking of the WM8751L is controlled using the MCLKDIV2, USB, and SR control bits. Setting  
the MCLKDIV2 bit divides MCLK bytwo internally. The USB bit selects between ‘Normal’ and USB  
mode. Each combination of the SR4 to SR0 control bits selects one MCLK division ratio and hence  
one sample rate (see next page). The digital filter characteristics are automaticallyadjusted to suit  
the MCLK and sample rate selected (see Digital Filter Characteristics).  
Since all sample rates are generated bydividing MCLK, their accuracydepends on the accuracyof  
MCLK. If MCLK changes, the sample rates change proportionately. Note that some sample rates  
(e.g. 44.1kHz in USB mode) are approximated, i.e. theydiffer from their target value bya verysmall  
amount. This is not audible, as the maximum deviation is only0.27% (8.0214kHz instead of 8kHz in  
USB mode - for comparison, a half-tone step corresponds to a 5.9% change in pitch).  
Product Preview Rev 1.42 May2003  
29  
w
WM8751L  
Product Preview  
MCLK  
MCLK  
DAC SAMPLE RATE  
USB  
SR [4:0]  
FILTER  
TYPE  
BCLK  
MCLKDIV2=0  
MCLKDIV2=1  
(MS=1)  
‘Normal’ Clock Mode (‘*’ indicates backward compatibilitywith WM8711 and WM8721)  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/2  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/2  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/3  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/3  
12.288MHz  
24.576MHz  
8 kHz (MCLK/1536)  
12 kHz (MCLK/1024)  
16 kHz (MCLK/768)  
24 kHz (MCLK/512)  
32 kHz (MCLK/384)  
48 kHz (MCLK/256)  
96 kHz (MCLK/128)  
8.0182 kHz (MCLK/1408)  
11.025 kHz (MCLK/1024)  
22.05 kHz (MCLK/512)  
44.1 kHz (MCLK/256)  
88.2 kHz (MCLK/128)  
8 kHz (MCLK/2304)  
12 kHz (MCLK/1536)  
16 kHz (MCLK/1152)  
24 kHz (MCLK/768)  
32 kHz (MCLK/576)  
48 kHz (MCLK/384)  
96 kHz (MCLK/192)  
8.0182 kHz (MCLK/2112)  
11.025 kHz (MCLK/1536)  
22.05 kHz (MCLK/768)  
44.1 kHz (MCLK/384)  
88.2 kHz (MCLK/192)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00010 *  
01000  
1
1
1
1
1
1
3
1
1
1
1
3
1
1
1
1
1
1
3
1
1
1
1
3
01010  
11100  
01100 *  
00000 *  
01110 *  
10010  
11.2896MHz  
18.432MHz  
22.5792MHz  
36.864MHz  
11000  
11010  
10000 *  
11110 *  
00011 *  
01001  
01011  
11101  
01101 *  
00001 *  
01111 *  
10011 *  
11001  
16.9344MHz  
33.8688MHz  
11011  
10001 *  
11111 *  
USB Mode (‘*’ indicates backward compatibilitywith WM8711 and WM8721)  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
12.000MHz  
24.000MHz  
8 kHz (MCLK/1500)  
11.0259 kHz (MCLK/1088)  
12kHz (MCLK/1000)  
16kHz (MCLK/750)  
1
1
1
1
1
1
1
1
1
1
1
00010 *  
11001  
0
1
0
0
1
0
0
1
0
3
2
01000  
01010  
22.0588 kHz (MCLK/544)  
24kHz (MCLK/500)  
11011  
11100  
32 kHz (MCLK/375)  
01100 *  
10001 *  
00000 *  
11111 *  
01110 *  
44.118 kHz (MCLK/272)  
48 kHz (MCLK/250)  
88.235kHz (MCLK/136)  
96 kHz (MCLK/125)  
Table 20 Master Clock and Sample Rates  
Product Preview Rev 1.42 May2003  
30  
w
Product Preview  
WM8751L  
CONTROL INTERFACE  
SELECTION OF CONTROL MODE  
The WM8751L is controlled bywriting to registers through a serial control interface. A control word  
consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is  
accessed. The remaining 9 bits (B8 to B0) are register bits, corresponding to the 9 bits in each  
control register. The control interface can operate as either a 3-wire or 2-wire MPU interface. The  
MODE pin selects the interface format.  
MODE  
Low  
INTERFACE FORMAT  
2 wire  
3 wire  
High  
Table 21 Control Interface Mode Selection  
3-WIRE SERIAL CONTROL MODE  
In 3-wire mode, everyrising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on  
CSB latches in a complete control word consisting of the last 16 bits.  
latch  
CSB  
SCLK  
SDIN  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
control register address  
control register data bits  
Figure 15 3-Wire Serial Control Interface  
2-WIRE SERIAL CONTROL MODE  
The WM8751L supports software control via a 2-wire serial bus. Manydevices can be controlled by  
the same bus, and each device has a unique 7-bit address (this is not the same as the 7-bit address  
of each register in the WM8751L).  
The WM8751L operates as a slave device only. The controller indicates the start of data transfer with  
a high to low transition on SDIN while SCLK remains high. This indicates that a device address and  
data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight  
bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the  
address of the WM8751L and the R/W bit is ‘0’, indicating a write, then the WM8751L responds by  
pulling SDIN low on the next clock pulse (ACK). If the address is not recognised or the R/W bit is ‘1’,  
the WM8751L returns to the idle condition and wait for a new start condition and valid address.  
Once the WM8751L has acknowledged a correct address, the controller sends the first byte of  
control data (B15 to B8, i.e. the WM8751L register address plus the first bit of register data). The  
WM8751L then acknowledges the first data byte by pulling SDIN low for one clock pulse. The  
controller then sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register  
data), and the WM8751L acknowledges again bypulling SDIN low.  
The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.  
After receiving a complete address and data sequence the WM8751L returns to the idle state and  
waits for another start condition. If a start or stop condition is detected out of sequence at anypoint  
during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.  
Product Preview Rev 1.42 May2003  
31  
w
WM8751L  
Product Preview  
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
SDIN  
SCLK  
START  
STOP  
register address and  
1st register data bit  
remaining 8 bits of  
register data  
Figure 16 2-Wire Serial Control Interface  
The WM8751L has two possible device addresses, which can be selected using the CSB pin.  
CSB STATE  
Low  
DEVICE ADDRESS  
0011010  
High  
0011011  
Table 22 2-Wire MPU Interface Address Selection  
Product Preview Rev 1.42 May2003  
32  
w
Product Preview  
WM8751L  
POWER SUPPLIES  
The WM8751L can use up to four separate power supplies:  
AVDD / AGND: Analogue supply, powers all analogue functions except the headphone drivers.  
AVDD can range from 1.8V to 3.6V and has the most significant impact on overall power  
consumption (except for power consumed in the headphone). A large AVDD slightlyimproves  
audio quality.  
HPVDD / HPGND: Headphone supply, powers the headphone drivers. HPVDD can range from  
1.8V to 3.6V. HPVDD is normallytied to AVDD, but it requires separate layout and decoupling  
capacitors to curb harmonic distortion. With a larger HPVDD, louder headphone outputs can be  
achieved with lower distortion. If HPVDD is lower than AVDD, the output signal maybe clipped.  
DCVDD: Digital core supply, powers all digital functions except the audio and control  
interfaces. DCVDD can range from 1.42V to 3.6V, and has no effect on audio quality. The  
return path for DCVDD is DGND, which is shared with DBVDD.  
DBVDD: Digital buffer supply, powers the audio and control interface buffers. This makes it  
possible to run the digital core at verylow voltages, saving power, while interfacing to other  
digital devices using a higher voltage. DBVDD draws much less power than DCVDD, and has  
no effect on audio quality. The return path for DBVDD is DGND, which is shared with DCVDD.  
It is possible to use the same supplyvoltage on all four. However, digital and analogue supplies  
should be routed and decoupled separatelyto keep digital switching noise out of the analogue signal  
paths.  
POWER MANAGEMENT  
The WM8751L has two control registers that allow users to select which functions are active. For  
minimum power consumption, unused functions should be disabled. To avoid anypop or click noise,  
it is important to enable or disable functions in the correct order (see Applications Information)  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
00  
DESCRIPTION  
R25 (19h)  
8:7  
VMIDSEL  
VMID resistor divider select  
Power  
00 – VMID disabled  
Management  
(1)  
01 – 50kdivider enabled  
10 – 500kdivider enabled  
VREF (necessaryfor all other functions)  
DAC Left  
6
8
7
6
5
4
3
2
1
VREF  
0
0
0
0
0
0
0
0
0
R26 (1Ah)  
DACL  
Power  
Management  
(2)  
DACR  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MOUT  
OUT3  
DAC Right  
LOUT1 Output Buffer*  
ROUT1 Output Buffer*  
LOUT2 Output Buffer*  
ROUT2 Output Buffer*  
MONOOUT Output Buffer and Mono Mixer  
OUT3 Output Buffer  
Note: All control bits are 0=OFF, 1=ON  
* The left mixer is enabled when LOUT1=1 or LOUT2=1. The right mixer is enabled when  
ROUT1=1 or ROUT2=1.  
Table 23 Power Management  
Product Preview Rev 1.42 May2003  
33  
w
WM8751L  
Product Preview  
STOPPING THE MASTER CLOCK  
In order to minimise power consumed in the digital core of the WM8751L, the master clock should be  
stopped in Standbyand OFF modes. If this is cannot be done externallyat the clock source, the  
DIGENB bit (R25, bit 0) can be set to stop the MCLK signal from propagating into the device core.  
However, since setting DIGENB has no effect on the power consumption of other system  
components external to the WM8751L, it is preferable to disable the master clock at its source  
wherever possible.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R25 (19h)  
1
DIGENB  
0
Master clock disable  
Additional Control  
(1)  
0: master clock enabled  
1: master clock disabled  
Table 2 ADC and DAC Oversampling Rate Selection  
NOTE: Before DIGENB can be set, the control bits DACL and DACR must be set to zero and a  
waiting time of 1ms must be observed. Any failure to follow this procedure may prevent DACs  
and ADCs from re-starting correctly.  
SAVING POWER BY REDUCING OVERSAMPLING RATE  
Bydefault, the oversampling rate of the DAC digital filters is 128x. However, this can be changed to  
64x bywriting to the DACOSR bit. In the 64x oversampling mode, the digital filters consumes less  
power. However, the signal-to-noise ratio is slightlyreduced.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R24 (18h)  
0
DACOSR  
0
DAC oversample rate select  
1 = 64x (lowest power)  
0 = 128x (best SNR)  
Additional  
Functions (2)  
Table 24 Oversampling Rate Selection  
SAVING POWER AT LOW SUPPLY VOLTAGES  
The analogue supplies to the WM8751L can run from 1.8V to 3.6V. Bydefault, all analogue circuitry  
on the device is optimized to run at 3.3V. This set-up is also good for all other supplyvoltages down  
to 1.8V. However, at lower voltages, it is possible to save power byreducing the internal bias  
currents used in the analogue circuitry. This is controlled as shown below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R23 (17h)  
7:6  
VSEL[1:0]  
11  
Analogue Bias optimization  
Additional  
Control(1)  
00 : Lowest bias current, optimized for 1.8V  
01 : Low bias current, optimized for 2.5V  
10, 11 : Default bias current, optimized for 3.3V  
Table 25 Analogue Bias Selection  
Product Preview Rev 1.42 May2003  
w
34  
Product Preview  
WM8751L  
REGISTER MAP  
REGISTER ADDRESS REMARKS  
(BIT 15 – 9)  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
R0 (00h)  
R1 (01h)  
R2 (02h)  
R3 (03h)  
R4 (04h)  
R5 (05h)  
R6 (06h)  
R7 (07h)  
R8 (08h)  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
Reserved  
Reserved  
LOUT1  
000000000  
000000000  
LO1VU  
RO1VU  
LO1ZC  
RO1ZC  
LOUT1VOL  
ROUT1VOL  
ROUT1  
Reserved  
DAC Control  
Reserved  
000000000  
0
0
DAT  
0
0
DACMU  
DEEMPH  
0
000000000  
LRP  
0000111 Audio Interface  
0
0
BCLKINV  
BCLK  
MS  
LRSWAP  
WL  
FORMAT  
0001000  
Clocking  
MCLK  
DIV2  
SR  
USB  
DIV2  
R9 (09h)  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
Reserved  
Left Gain  
Right Gain  
Bass  
000000000  
R10 (0Ah)  
R11 (0Bh)  
R12 (0Ch)  
R13 (0Dh)  
R14 (0Eh)  
R15 (0Fh)  
R16 – R22  
R23 (17h)  
R24 (18h)  
R25 (19h)  
R26 (1Ah)  
R27 – R33  
R34 (22h)  
R35 (23h)  
R36 (24h)  
R37 (25h)  
R38 (26h)  
R39 (27h)  
R40 (28h)  
R41 (29h)  
R42 (2Ah)  
LDVU  
LDACVOL (Right DAC Digital Volume)  
RDACVOL (Right DAC Digital Volume)  
RDVU  
0
0
BB  
0
BC  
TC  
0
0
0
0
BASS (Bass Intensity)  
TRBL (Treble Intensity)  
Treble  
TBD  
000000000  
Reset  
writing 000000000 to this register resets all registers to their default state  
000000  
Reserved  
0010111 Additional (1) TSDEN  
VSEL  
DMONOMIX  
0
HPZC  
0
0
DACINV  
TOEN  
DACOSR  
DIGENB  
0
0011000 Additional (2)  
0011001 Pwr Mgmt (1)  
0011010 Pwr Mgmt (2)  
Reserved  
OUT3SW  
VMIDSEL  
HPSWEN HPSWPOL ROUT2INV  
0
0
0
0
VREF  
0
0
DACL  
DACR  
LOUT1  
ROUT1  
LOUT2  
000000  
ROUT2  
MOUT  
OUT3  
0100010  
0100011  
Left Mix (1)  
Left Mix (2)  
LD2LO  
RD2LO  
LD2RO  
RD2RO  
LI2LO  
MI2LO  
MI2RO  
RI2RO  
LI2MO  
RI2MO  
LO2ZC  
RO2ZC  
MOZC  
LI2LOVOL  
MI2LOVOL  
MI2ROVOL  
RI2ROVOL  
LI2MOVOL  
RI2MOVOL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0100101 Right Mix (2)  
0100100 Right Mix (1)  
0
0
0
0
0
DMEN  
0
0100110 Mono Mix (1) LD2MO  
0100111 Mono Mix (2) RD2MO  
0
0101000  
0101001  
0101010  
LOUT2  
ROUT2  
LO2VU  
RO2VU  
0
LOUT2VOL  
ROUT2VOL  
ROUT2VOL  
MONOOUT  
Product Preview Rev 1.42 May2003  
35  
w
WM8751L  
Product Preview  
DIGITAL FILTER CHARACTERISTICS  
Depending on the MCLK frequencyand sample rate selected, 4 different types of digital filter can be  
used in the DAC, called Type 0, 1, 2 and 3 (see “Master Clock and Audio Sample Rates”). The  
performance of Types 0 and 1 is listed in the table below, the responses of all filters is shown in the  
following pages.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.416fs  
+/-0.03  
UNIT  
DAC Filter Type 0 (USB mode, 250fs operation)  
Passband  
+/- 0.03dB  
-6dB  
0
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.584fs  
-50  
Stopband Attenuation  
f > 0.584fs  
DAC Filter Type 1 (USB mode, 272fs or Normal mode operation)  
Passband  
+/- 0.03dB  
-6dB  
0
0.4535fs  
+/- 0.03  
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.5465fs  
-50  
Stopband Attenuation  
f > 0.5465fs  
Table 26 Digital Filter Characteristics  
TERMINOLOGY  
1. Stop Band Attenuation (dB) – the degree to which the frequencyspectrum is attenuated (outside audio band)  
2. Pass-band Ripple – anyvariation of the frequencyresponse in the pass-band region  
DAC FILTER RESPONSES  
0.02  
0
0.01  
-20  
0
-0.01  
-40  
-0.02  
-60  
-0.03  
-0.04  
-80  
-0.05  
-100  
0
0.5  
1
1.5  
2
2.5  
3
-0.06  
Frequency (Fs)  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Figure 17 DAC Filter Frequency Response – Type 0  
Figure 18 DAC Filter Ripple – Type 0  
Product Preview Rev 1.42 May2003  
36  
w
Product Preview  
WM8751L  
0.02  
0.01  
0
0
-20  
-40  
-60  
-80  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-100  
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 19 DAC Filter Frequency Response – Type 1  
Figure 20 DAC Filter Ripple – Type 1  
0.02  
0.01  
0
0
-20  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-40  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 21 DAC Filter Frequency Response – Type 2  
Figure 22 DAC Filter Ripple – Type 2  
0
-0.05  
-0.1  
0
-20  
-40  
-0.15  
-0.2  
-60  
-80  
-0.25  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 23 DAC Filter Frequency Response – Type 3  
Figure 24 DAC Filter Ripple – Type 3  
Product Preview Rev 1.42 May2003  
37  
w
WM8751L  
Product Preview  
PACKAGE DIMENSIONS  
FL: 32 PIN QFN PLASTIC PACKAGE 5  
X
5
X
0.9 mm BODY, 0.50 mm LEAD PITCH  
DM030.C  
SEE DETAIL A  
D
CORNER  
TIE BAR  
D2  
B
D2/2  
5
25  
32  
L
1
24  
INDEX AREA  
(D/2 X E/2)  
E2/2  
A
E2  
E
SEE DETAIL B  
17  
8
aaa  
C
2 X  
16 15  
9
b
aaa  
C
2 X  
B
e
TOP VIEW  
DETAIL A  
ccc  
C
(A3)  
1
CORNER  
TIE BAR  
A
0.08  
C
1
32x b  
A
C B  
5
M
A1  
bbb  
C
SEATING PLANE  
DETAIL B  
EXPOSED  
CENTRE  
PAD  
1
L1  
Symbols  
Dimensions (mm)  
MIN  
0.85  
0
NOM  
0.90  
0.02  
MAX  
1.00  
0.05  
NOTE  
A
A1  
A3  
b
D
D2  
E
E2  
e
L
L1  
R
K
0.2 REF  
0.23  
5.00  
3.3  
5.00  
0.18  
4.90  
3.2  
0.30  
5.10  
3.4  
5.10  
3.4  
1
2
2
4.90  
3.2  
3.3  
0.5 BSC  
0.4  
0.35  
0.45  
0.1  
1
b(min)/2  
0.20  
Tolerances of Form and Position  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
JEDEC, MO-220, VARIATION VKKD-2  
REF:  
NOTES:  
1. DIMENSION b APPLIED TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. DIMENSION L1 REPRESENTS TERMINAL PULL BACK FROM  
PACKAGE SIDE WALL. MAXIMUM OF 0.1mm IS ACCEPTABLE. WHERE TERMINAL PULL BACK EXISTS, ONLY UPPER HALF OF LEAD IS VISIBLE ON PACKAGE SIDE WALL DUE TO HALF  
ETCHING OF LEADFRAME.  
2. FALLS WITHIN JEDEC, MO-220 WITH THE EXCEPTION OF D2, E2:  
D2,E2: LARGER PAD SIZE CHOSEN WHICH IS JUST OUTSIDE JEDEC SPECIFICATION  
3. ALL DIMENSIONS ARE IN MILLIMETRES  
4. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
5. SHAPE AND SIZE OF CORNER TIE BAR MAY VARY WITH PACKAGE TERMINAL COUNT. CORNER TIE BAR IS CONNECTED TO EXPOSED PAD INTERNALLY  
Product Preview Rev 1.42 May2003  
38  
w
Product Preview  
WM8751L  
APPLICATIONS INFORMATION  
MINIMISING POP NOISE AT THE ANALOGUE OUTPUTS  
To minimise anypop or click noise when the system is powered up or down, the following procedures  
are recommended.  
POWER UP  
Switch on power supplies. Bydefault the WM8751L is in OFF Mode (i.e. onlythe control  
interface is powered up)  
Enable the reference voltage VREF bysetting the WM8751L to Standbymode. DO NOT  
enable anyof the analogue outputs at this point.  
Allow VREF to settle. The settling time depends on the value of the capacitor connected at  
VMID (formula TBD).  
Enable outputs, DACs, etc. (sequence TBD)  
Set ACTIVE = 1 to enable the Audio Interface  
Set DACMU = 0 to soft-un-mute the audio DACs.  
POWER DOWN  
Set DACMU = 1 to soft-mute the audio DACs.  
Disable functions (sequence TBD)  
Switch off the power supplies.  
LINE OUTPUT CONFIGURATION  
All the analogue outputs, LOUT1/ROUT1, LOUT2/ROUT2, and MONOOUT, can be used as line  
outputs. Recommended external components are shown below.  
C1  
R1  
1uF  
100 Ohm  
LINE-OUT SOCKET  
(LEFT)  
LOUT2  
ROUT2  
AGND  
AGND  
WM8751L  
LINE-OUT SOCKET  
(RIGHT)  
C2  
1uF  
R2  
100 Ohm  
Figure 25 Recommended Circuit for Line Output  
The DC blocking capacitors and the load resistance together determine the lower cut-off frequency,  
fc. Assuming a 10 kOhm load and C1, C2 = 10µF:  
fc = 1 / 2π (RL+R1) C1 = 1 / (2π x 10.1kx 1µF) = 16 Hz  
Increasing the capacitance lowers fc, improving the bass response. Smaller values of C1 and C2 will  
diminish the bass response. The function of R1 and R2 is to protect the line outputs from damage  
when used improperly.  
Product Preview Rev 1.42 May2003  
39  
w
WM8751L  
Product Preview  
HEADPHONE OUTPUT CONFIGURATION  
The analogue outputs LOUT1/ROUT1, LOUT2/ROUT2, and OUT3 can drive a 16or 32Ω  
headphone load, either through DC blocking capacitors, or DC coupled without anycapacitor.  
DC Coupled Headphone Output  
(OUT3SW = 00)  
Headphone Output using DC blocking  
capacitors  
C1 220uF  
LOUT1  
LOUT1  
ROUT1  
WM8751L  
HPDCEN = 1  
WM8751L  
C2 220uF  
ROUT1  
HPGND = 0V  
HPDC = AVDD/2  
Figure 26 Recommended Headphone Output Configurations  
When DC blocking capacitors are used, then their capacitance and the load resistance together  
determine the lower cut-off frequency, fc. Increasing the capacitance lowers fc, improving the bass  
response. Smaller capacitance values will diminish the bass response. Assuming a 16 Ohm load and  
C1 = 220µF:  
fc = 1 / 2π RLC1 = 1 / (2π x 16x 220µF) = 45 Hz  
In the DC coupled configuration, the headphone “ground” is connected to the OUT3 pin, which must  
be enabled bysetting O3 = 1 and OUT3SW = 00. As the OUT3 pin produces a DC voltage of  
AVDD/2 (=VREF), there is no DC offset between LOUT1/ROUT1 and OUT3, and therefore no DC  
blocking capacitors are required. This saves space and material cost in portable applications.  
It is recommended to connect the DC coupled headphone outputs onlyto headphones, and not to  
the line input of another device. Although the built-in short circuit protection will prevent anydamage  
to the headphone outputs, such a connection maybe noisy, and maynot function properlyif the  
other device is grounded.  
SPEAKER OUTPUT CONFIGURATION  
LOUT2 and ROUT2 can differentiallydrive a mono 8 speaker as shown below.  
LEFT  
MIXER  
LOUT2  
LOUT2VOL  
WM8751L  
ROUT2INV = 1  
VSPKR = L-(-R) = L+R  
-1  
ROUT2  
RIGHT  
MIXER  
ROUT2VOL  
Figure 27 Speaker Output Connection  
The right channel is inverted bysetting the ROUT2INV bit, so that the signal across the loudspeaker  
is the sum of left and right channels.  
Product Preview Rev 1.42 May2003  
w
40  
Product Preview  
WM8751L  
IMPORTANT NOTICE  
Wolfson Microelectronics Ltd (WM) reserve the right to make changes to their products or to discontinue anyproduct or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of  
liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM’s  
standard warranty. Testing and other qualitycontrol techniques are utilised to the extent WM deems necessaryto support this  
warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used by  
the customer to minimise inherent or procedural hazards.  
WM assumes no liabilityfor applications assistance or customer product design. WM does not warrant or represent that any  
license, either express or implied, is granted under anypatent right, copyright, mask work right, or other intellectual property  
right of WM covering or relating to anycombination, machine, or process in which such products or services might be or are  
used. WM’s publication of information regarding anythird party’s products or services does not constitute WM’s approval,  
license, warrantyor endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissable onlyif reproduction is without alteration and is  
accompanied byall associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for anysuch use.  
Resale of WM’s products or services with statements different from or beyond the parameters stated byWM for that product  
or service voids all express and anyimplied warranties for the associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for anysuch use.  
ADDRESS:  
Wolfson Microelectronics Ltd  
20 Bernard Terrace  
Edinburgh  
EH8 9NX  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
Product Preview Rev 1.42 May2003  
w
41  

相关型号:

WM8751LEFL

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS
WOLFSON

WM8751LSEFL

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS
WOLFSON

WM8751LSEFR

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS
WOLFSON

WM8753

HI FI AND TELEPHONY DUAL CODEC
WOLFSON

WM8753L

HI FI AND TELEPHONY DUAL CODEC
WOLFSON

WM8753LEB/RV

HI FI AND TELEPHONY DUAL CODEC
WOLFSON

WM8753LEB/V

HI FI AND TELEPHONY DUAL CODEC
WOLFSON

WM8753LEFL/V

PCM Codec, 1-Func, CMOS, PQCC48, 7 X 7 MM, 0.90 MM HEIGHT, 0.50 MM PITCH, PLASTIC, MO-220VKKD-2, QFN-48
CIRRUS

WM8753LGEB/RV

Hi-Fi and Telephony Dual CODEC
WOLFSON

WM8753LGEB/V

Hi-Fi and Telephony Dual CODEC
WOLFSON

WM8753LGEF

HI FI AND TELEPHONY DUAL CODEC
WOLFSON

WM8753LGEFL

HI FI AND TELEPHONY DUAL CODEC
WOLFSON