WM8758CBGEFL/RV [WOLFSON]

Stereo CODEC with Headphone Driver and Line Out; 立体声编解码器与耳机驱动器和线路输出
WM8758CBGEFL/RV
型号: WM8758CBGEFL/RV
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

Stereo CODEC with Headphone Driver and Line Out
立体声编解码器与耳机驱动器和线路输出

解码器 驱动器 编解码器
文件: 总90页 (文件大小:1394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8758B  
w
Stereo CODEC with Headphone Driver and Line Out  
DESCRIPTION  
FEATURES  
Stereo CODEC:  
The WM8758B is a low power, high quality stereo CODEC  
designed for portable applications such as MP3 audio player.  
DAC SNR 100dB, THD -86dB (‘A’ weighted @ 48kHz)  
ADC SNR 92.5dB, THD -75dB (‘A’ weighted @ 48kHz)  
Headphone Driver  
40mW per channel output power into 16/ 3.3V AVDD2  
Line output  
The device integrates preamps for stereo differential mics, and  
drivers for headphone and differential or stereo line output.  
External component requirements are reduced as no separate  
microphone or headphone amplifiers are required. Headphone  
and line common feedback improves crosstalk and noise  
performance.  
Mic Preamps:  
Stereo Differential or mono microphone Interfaces  
Programmable preamp gain  
Psuedo differential inputs with common mode rejection  
Programmable ALC / Noise Gate in ADC path  
Low-noise bias supplied for electret microphones  
Advanced on-chip digital signal processing includes a 5-band  
equaliser, a mixed signal Automatic Level Control for the  
microphone or line input through the ADC as well as a purely  
digital limiter function for record or playback. Additional digital  
filtering options are available in the ADC path, to cater for  
application filtering such as ‘wind noise reduction’ and notch  
filter.  
Other Features:  
Enhanced 3-D function for improved stereo separation  
Digital playback limiter  
5-band Equaliser (record or playback)  
Programmable ADC High Pass Filter (wind noise reduction)  
Programmable ADC Notch Filter  
PLL supporting various clocks between 8MHz-50MHz  
Sample rates supported (kHz): 8, 11.025, 12, 16, 22.05, 24,  
32, 44.1, 48  
The WM8758B digital audio interface can operate in master or  
slave mode with an integrated PLL.  
The WM8758B operates at analogue supply voltages from 2.5V  
to 3.3V, although the digital supply voltages can operate at  
voltages down to 1.71V to save power. Additional power  
management control enables individual sections of the chip to  
be powered down under software control.  
Low power, low voltage  
2.5V to 3.6V analogue supplies  
1.71V to 3.6V digital supplies  
5x5mm 32-lead QFN package  
APPLICATIONS  
BLOCK DIAGRAM  
Portable audio player  
Production Data, January 2012, Rev 4.4  
WOLFSON MICROELECTRONICS plc  
Copyright 2012 Wolfson Microelectronics plc  
To receive regular email updates, sign up at http://www.wolfsonmcro.com/enews  
WM8758B  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION....................................................................................................... 1  
BLOCK DIAGRAM ................................................................................................ 1  
FEATURES............................................................................................................ 1  
APPLICATIONS..................................................................................................... 1  
TABLE OF CONTENTS......................................................................................... 2  
PIN CONFIGURATION.......................................................................................... 4  
ORDERING INFORMATION.................................................................................. 4  
PIN DESCRIPTION................................................................................................ 5  
RECOMMENDED OPERATING CONDITIONS..................................................... 6  
ELECTRICAL CHARACTERISTICS ..................................................................... 7  
TERMINOLOGY ............................................................................................................ 12  
HEADPHONE OUTPUT PERFORMANCE.......................................................... 13  
POWER CONSUMPTION.................................................................................... 14  
AUDIO PATHS OVERVIEW ................................................................................ 15  
SIGNAL TIMING REQUIREMENTS .................................................................... 16  
SYSTEM CLOCK TIMING............................................................................................. 16  
AUDIO INTERFACE TIMING – MASTER MODE.......................................................... 16  
AUDIO INTERFACE TIMING – SLAVE MODE ............................................................. 17  
CONTROL INTERFACE TIMING – 3-WIRE MODE...................................................... 18  
CONTROL INTERFACE TIMING – 2-WIRE MODE...................................................... 19  
INTERNAL POWER ON RESET CIRCUIT.......................................................... 20  
RECOMMENDED POWER UP/DOWN SEQUENCE.................................................... 22  
DEVICE DESCRIPTION ...................................................................................... 25  
INTRODUCTION ........................................................................................................... 25  
INPUT SIGNAL PATH ................................................................................................... 26  
ANALOGUE TO DIGITAL CONVERTER (ADC) ........................................................... 33  
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)............................................ 37  
OUTPUT SIGNAL PATH ............................................................................................... 42  
3D STEREO ENHANCEMENT...................................................................................... 49  
ANALOGUE OUTPUTS................................................................................................. 49  
DIGITAL AUDIO INTERFACES..................................................................................... 61  
AUDIO SAMPLE RATES............................................................................................... 68  
MASTER CLOCK AND PHASE LOCKED LOOP (PLL) ................................................ 68  
GENERAL PURPOSE INPUT/OUTPUT........................................................................ 70  
OUTPUT SWITCHING (JACK DETECT)....................................................................... 72  
CONTROL INTERFACE................................................................................................ 73  
RESETTING THE CHIP ................................................................................................ 74  
POWER SUPPLIES....................................................................................................... 75  
POWER MANAGEMENT .............................................................................................. 75  
POP MINIMISATION ..................................................................................................... 77  
REGISTER MAP.................................................................................................. 78  
DIGITAL FILTER CHARACTERISTICS .............................................................. 80  
TERMINOLOGY ............................................................................................................ 80  
DAC FILTER RESPONSES .......................................................................................... 81  
ADC FILTER RESPONSES .......................................................................................... 81  
HIGHPASS FILTER....................................................................................................... 82  
5-BAND EQUALISER.................................................................................................... 83  
PD, Rev 4.4, January 2012  
w
2
Production Data  
WM8758B  
APPLICATIONS INFORMATION ........................................................................ 87  
RECOMMENDED EXTERNAL COMPONENTS ........................................................... 87  
PACKAGE DIAGRAM ......................................................................................... 88  
IMPORTANT NOTICE ......................................................................................... 89  
ADDRESS: .................................................................................................................... 89  
PD, Rev 4.4, January 2012  
w
3
WM8758B  
Production Data  
PIN CONFIGURATION  
31 0 28 7 225  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
AGND2  
LIP  
LIN  
ROUT2  
OUT3  
OUT4  
L2/GPIO2  
RIP  
TOVIW  
RIN  
LINE_COM  
HP_COM  
MODE  
R2/GPIO3  
LRC  
SDIN  
BCLK  
9
10 11 12 13 14 15 16  
ORDERING INFORMATION  
ORDER CODE  
TEMPERATURE  
RANGE  
PACKAGE  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMPERATURE  
WM8758CBGEFL/V  
-40C to +85C  
32-lead QFN (5 x 5 mm)  
(Pb-free)  
MSL3  
MSL3  
260oC  
WM8758CBGEFL/RV  
-40C to +85C  
32-lead QFN (5 x 5 mm)  
(Pb-free, tape and reel)  
260oC  
Note:  
Reel quantity = 3,500  
PD, Rev 4.4, January 2012  
4
w
Production Data  
WM8758B  
PIN DESCRIPTION  
PIN  
1
NAME  
LIP  
TYPE  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Digital Input / Output  
Digital Input / Output  
Digital Output  
Digital Input  
DESCRIPTION  
Left MIC pre-amp positive input  
Left MIC pre-amp negative input  
2
LIN  
Left channel line input/secondary mic pre-amp positive input/GPIO2 pin  
Right MIC pre-amp positive input  
3
L2/GPIO2  
RIP  
4
Right MIC pre-amp negative input  
5
RIN  
Right channel line input/secondary mic pre-amp positive input/GPIO3 pin  
DAC and ADC sample rate clock  
6
R2/GPIO3  
LRC  
7
Digital audio bit clock  
8
BCLK  
ADC digital audio data output  
9
ADCDAT  
DACDAT  
MCLK  
DAC digital audio data input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Digital Input  
Master clock input  
Supply  
Digital ground  
DGND  
DCVDD  
DBVDD  
CSB/GPIO1  
SCLK  
Supply  
Digital core logic supply  
Supply  
Digital buffer (I/O) supply  
Digital Input / Output  
Digital Input  
3-Wire control interface chip select / GPIO1 pin  
3-Wire control interface clock input / 2-wire control interface clock input  
3-Wire control interface data input / 2-Wire control interface data input  
Control interface selection  
Digital Input / Output  
Digital Input  
SDIN  
MODE  
HP_COM  
LINE_COM  
OUT4  
Analogue Input  
Analogue Input  
Analogue Output  
Analogue Output  
Analogue Output  
Supply  
Headphone ground common feedback input  
Line out ground common feedback input  
Right line output / mono mix output  
Left line output / mono mix output  
OUT3  
Line output right 2  
ROUT2  
AGND2  
LOUT2  
AVDD2  
VMID  
Analogue ground (return path for ROUT2/LOUT2)  
Line output left 2  
Analogue Output  
Supply  
Analogue supply (supply for output amplifiers ROUT2/LOUT2)  
Decoupling for ADC and DAC reference voltage  
Reference  
Supply  
Analogue ground (return path for all input amplifiers, PLL, ADC and  
DAC, internal bias circuits, output amplifiers LOUT1, ROUT1 and  
OUT3/OUT4 on AVDD1 AGND1)  
AGND1  
Analogue Output  
Analogue Output  
Supply  
Line or headphone output right 1  
Line or headphone output left 1  
29  
30  
31  
ROUT1  
LOUT1  
AVDD1  
Analogue supply (feeds all input amplifiers, PLL, ADC and DAC, internal  
bias circuits, output amplifiers LOUT1, ROUT1))  
Analogue Output  
Microphone bias  
32  
MICBIAS  
Note:  
It is recommended that the QFN ground paddle should be connected to analogue ground on the application PCB.  
PD, Rev 4.4, January 2012  
w
5
WM8758B  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
DBVDD, DCVDD, AVDD1, AVDD2 supply voltages  
Voltage range digital inputs  
MIN  
MAX  
-0.3V  
+3.63V  
DGND -0.3V  
AGND1 -0.3V  
DVDD +0.3V  
AVDD1 +0.3V  
Voltage range analogue inputs  
Storage temperature prior to soldering  
Storage temperature after soldering  
Notes  
30C max / 85% RH max  
-65C  
+150C  
1. Analogue and digital grounds must always be within 0.3V of each other.  
2. All digital and analogue supplies are internally independent (i.e. not connected).  
3. Analogue supply voltages should not be less than digital supply voltages.  
4. DBVDD must be greater than or equal to DCVDD.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Digital supply range (Core)  
Digital supply range (Buffer)  
Analogue supply range  
Ground  
DCVDD  
DBVDD  
1.711,2  
1.71  
1.8  
3.3  
3.3  
0
3.6  
3.6  
3.6  
V
V
V
V
AVDD1, AVDD2  
DGND, AGND1, AGND2  
2.51  
Notes  
1. Analogue supply voltages must not be less than digital supply voltages.  
2. DBVDD must be greater than or equal to DCVDD.  
PD, Rev 4.4, January 2012  
6
w
Production Data  
WM8758B  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
DCVDD=1.8V, AVDD1=AVDD2=3.0V, DBVDD=3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Vrms  
Vrms  
uV  
Microphone Preamp Inputs (LIP, LIN, RIP, RIN, L2, R2)  
Full-scale Input Signal Level –  
Single-ended input via LIN/RIN  
VINFS  
VINFS  
PGABOOST = 0dB  
INPPGAVOL = 0dB  
PGABOOST = 0dB  
INPPGAVOL = 0dB  
0 to 20kHz  
AVDD1/3.3  
Full-scale Input Signal Level –  
Pseudo-differential input  
AVDD1*0.7/  
3.3  
Mic PGA equivalent input noise  
At 35.25dB  
gain  
150  
Input resistance (LIN, RIN)  
Input resistance (LIN, RIN)  
Input resistance (LIN, RIN)  
Input resistance (LIP, RIP)  
Input resistance (L2, R2)  
RMICIN  
RMICIN  
RMICIN  
RMICIP  
RL2R2  
Gain set to 35.25dB  
Gain set to 0dB  
1.6  
46  
71  
90  
90  
k  
k  
k  
k  
k  
Gain set to -12dB  
L/RIP2INPPGA = 1,  
L/R2_2BOOSTVOL = 000  
Input resistance (L2, R2)  
Input resistance (L2, R2)  
RL2R2  
RL2R2  
L/RIP2INPPGA = 0, Gain set  
to 6dB  
11  
22  
k  
k  
L/RIP2INPPGA = 0,  
Gain set to 0dB  
Input resistance (L2, R2)  
RL2R2  
L/RIP2INPPGA = 0,  
Gain set to -12dB  
60  
k  
Input Capacitance  
CMICIN  
10  
+35.25  
-12  
pF  
dB  
dB  
dB  
dB  
dB  
dB  
Maximum Programmable Gain  
Minimum Programmable Gain  
Programmable Gain Step Size  
MIC Mute Attenuation  
Guaranteed monotonic  
INPPGAMUTEL/R=1  
PGABOOSTL/R=0  
PGABOOSTL/R=1  
0.75  
100  
0
MIC Gain Boost  
20  
L2, R2 Line Input Programmable Gain  
Maximum Gain from L/R2 input  
to boost/mixer  
+6  
dB  
dB  
Gain adjusted by  
L2_2BOOSTVOL  
R2_2BOOSTVOL  
Minimum Gain from L/R2 input  
to boost/mixer  
-12  
Gain adjusted by  
L2_2BOOSTVOL  
R2_2BOOSTVOL  
L2/R2 boost step size  
L2/R2 Mute attenuation  
OUT4 to Left or Right Input Boost Record Path  
Maximum Gain  
Guaranteed monotonic  
3
dB  
dB  
100  
+6  
-12  
3
dB  
dB  
dB  
dB  
Minimum Gain  
Gain step size  
Guaranteed monotonic  
Mute attenuation  
100  
Automatic Level Control (ALC)  
Target Record Level  
-22.5  
-12  
-1.5  
dB  
Programmable gain  
35.25  
PD, Rev 4.4, January 2012  
7
w
WM8758B  
Production Data  
Test Conditions  
DCVDD=1.8V, AVDD1=AVDD2=3.0V, DBVDD=3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Analogue to Digital Converter (ADC) - Input from LIN/P and RIN/P, PGA and boost gains=0dB  
Signal to Noise Ratio (Note 5,6)  
SNR  
A-weighted  
AVDD1=AVDD2=3.0V  
A-weighted  
92.5  
91.5  
90  
AVDD1=AVDD2=2.5V  
22Hz to 20kHz  
AVDD1=AVDD2=3.0V  
22Hz to 20kHz  
90  
AVDD1=AVDD2=2.5V  
-12dBFS Input  
Total Harmonic Distortion  
(Note 7)  
THD  
-75  
-75  
-72  
-72  
100  
92.5  
92.5  
90  
AVDD1=AVDD2=3.0V  
-12dBFS Input  
AVDD1=AVDD2=2.5V  
-12dBFS Input  
Total Harmonic Distortion + Noise  
(Note 7)  
THD+N  
AVDD1=AVDD2=3.0V  
-12dBFS Input  
AVDD1=AVDD2=2.5V  
1kHz full scale input signal  
Channel Separation (Note 8)  
Analogue to Digital Converter (ADC) - Input from L2, R2  
Signal to Noise Ratio (Note 5,6)  
SNR  
A-weighted  
AVDD1=AVDD2=3.0V  
A-weighted  
85  
AVDD1=AVDD2=2.5V  
22Hz to 20kHz  
AVDD1=AVDD2=3.0V  
22Hz to 20kHz  
90  
AVDD1=AVDD2=2.5V  
-3dBFS Input  
Total Harmonic Distortion  
(Note 7)  
THD  
-83  
-66  
-81  
-65  
100  
-75  
-70  
AVDD1=AVDD2=3.0V  
-3dBFS Input  
AVDD1=AVDD2=2.5V  
-3dBFS Input  
Total Harmonic Distortion + Noise  
(Note 7)  
THD+N  
AVDD1=AVDD2=3.0V  
-3dBFS Input  
AVDD1=AVDD2=2.5V  
1kHz input signal  
Channel Separation (Note 8)  
PD, Rev 4.4, January 2012  
8
w
Production Data  
WM8758B  
Test Conditions  
DCVDD=1.8V, AVDD1=AVDD2=3.0V, DBVDD=3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC to L/R Mix to Line-Out (LOUT1/ROUT1 with 10k/ 50pF load, analogue volume controls set to 0dB)  
Full-scale output  
PGA gains set to 0dB  
A-weighted  
AVDD1/3.3  
100  
Vrms  
dB  
Signal to Noise Ratio (Note 5,6)  
SNR  
AVDD1=AVDD2=3.0V  
A-weighted  
96  
95.5  
93.5  
-86  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
AVDD1=AVDD2=2.5V  
22Hz to 20kHz  
AVDD1=AVDD2=3.0V  
22Hz to 20kHz  
AVDD1=AVDD2=2.5V  
full-scale signal  
Total Harmonic Distortion  
(Note 7)  
THD  
AVDD1=AVDD2=3.0V  
full-scale signal  
-86  
AVDD1=AVDD2=2.5V  
full-scale signal  
Total Harmonic Distortion + Noise  
(Note 7)  
THD+N  
-84  
AVDD1=AVDD2=3.0V  
full-scale signal  
-84  
AVDD1=AVDD2=2.5V  
1kHz signal  
Channel Separation (Note 8)  
Ground noise rejection  
100  
40  
dB  
dB  
10mV, 20kHz noise on  
HPCOM, HPCOM enabled  
DAC to L/R Mix to Line-Out (LOUT2/ROUT2 with 10k/ 50pF load, analogue volume controls set to 0dB)  
Full-scale output  
PGA gains set to 0dB  
A-weighted  
AVDD1/3.3  
100  
Vrms  
dB  
Signal to Noise Ratio (Note 5,6)  
SNR  
95  
AVDD1=AVDD2=3.0V  
A-weighted  
96  
95.5  
93.5  
-87  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
AVDD1=AVDD2=2.5V  
22Hz to 20kHz  
AVDD1=AVDD2=3.0V  
22Hz to 20kHz  
AVDD1=AVDD2=2.5V  
full-scale signal  
Total Harmonic Distortion  
(Note 7)  
THD  
-80  
-75  
AVDD1=AVDD2=3.0V  
full-scale signal  
-82  
AVDD1=AVDD2=2.5V  
full-scale signal  
Total Harmonic Distortion + Noise  
(Note 7)  
THD+N  
-85  
AVDD1=AVDD2=3.0V  
full-scale signal  
-80  
AVDD1=AVDD2=2.5V  
1kHz signal  
Channel Separation (Note 8)  
Ground noise rejection  
100  
40  
dB  
dB  
10mV, 20kHz noise on  
LCOM, LCOM enabled  
PD, Rev 4.4, January 2012  
9
w
WM8758B  
Production Data  
Test Conditions  
DCVDD=1.8V, AVDD1=AVDD2=3.0V, DBVDD=3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC to L/R Mix to Headphone (LOUT1/ROUT1, analogue volume controls set to 0dB)  
Full-scale output  
PGA gains set to 0dB  
A-weighted  
22Hz to 20kHz  
Po = 20mW  
RL=16  
AVDD1/3.3  
100  
Vrms  
dB  
Signal to Noise Ratio (Note 5,6)  
SNR  
THD  
95.5  
dB  
Total Harmonic Distortion  
(Note 7)  
-75  
dB  
Po = 20mW  
RL=32Ω  
-79  
-75  
-79  
dB  
dB  
dB  
Total Harmonic Distortion + Noise  
(Note 7)  
THD+N  
Po = 20mW  
RL=16Ω  
Po = 20mW  
RL=32Ω  
Channel Separation (Note 8)  
Ground noise rejection  
1kHz signal  
100  
40  
dB  
dB  
10mV, 20kHz noise on  
HPCOM, HPCOM enabled  
DAC to L/R Mix to Headphone (LOUT2/ROUT2, analogue volume controls set to 0dB)  
Full-scale output  
PGA gains set to 0dB  
A-weighted  
22Hz to 20kHz  
Po = 20mW  
AVDD1/3.3  
Vrms  
dB  
Signal to Noise Ratio (Note 5,6)  
SNR  
THD  
90  
97  
95.5  
-79  
dB  
Total Harmonic Distortion  
(Note 7)  
dB  
RL=16Ω  
Po = 20mW  
-82  
dB  
RL=32Ω  
Channel Separation (Note 8)  
Ground noise rejection  
1kHz signal  
100  
40  
dB  
dB  
10mV, 20kHz noise on  
LCOM, LCOM enabled  
Bypass Paths to Output Mixers  
Maximum PGA gain into mixer  
Minimum PGA gain into mixer  
PGA gain step into mixer  
Mute attenuation  
+6  
-15  
3
dB  
dB  
dB  
dB  
Guaranteed monotonic  
100  
Analogue Outputs (LOUT1, ROUT1, LOUT2, ROUT2)  
Maximum Programmable Gain  
+6  
-57  
1
dB  
dB  
dB  
dB  
Minimum Programmable Gain  
Programmable Gain step size  
Mute attenuation  
Guaranteed monotonic  
1kHz, full scale signal  
85  
PD, Rev 4.4, January 2012  
10  
w
Production Data  
WM8758B  
Test Conditions  
DCVDD=1.8V, AVDD1=AVDD2=3.0V, DBVDD=3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MIC PGA to Input Boost to OUT3/OUT4 outputs (with 10k/ 50pF load)  
Full-scale output voltage, 0dB  
gain (Note 9)  
AVDD2/3.3  
98  
Vrms  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal to Noise Ratio (Note 5,6)  
SNR  
A-weighted  
90  
AVDD1=AVDD2=3.0V  
A-weighted  
96  
AVDD1=AVDD2=2.5V  
22Hz to 22kHz  
95.5  
93.5  
-84  
AVDD1=AVDD2=3.0V  
22Hz to 22kHz  
AVDD1=AVDD2=2.5V  
full-scale signal  
Total Harmonic Distortion  
(Note 7)  
THD  
AVDD1=AVDD2=3.0V  
full-scale signal  
-82  
AVDD1=AVDD2=2.5V  
full-scale signal  
Total Harmonic Distortion + Noise  
(Note 7)  
THD+N  
-82  
AVDD1=AVDD2=3.0V  
full-scale signal  
-80  
AVDD1=AVDD2=2.5V  
Channel Separation  
100  
MIC PGA Bypass to LOUT1/ROUT1 (with 16load)  
Full-scale output voltage, 0dB  
gain (Note 9)  
AVDD1/3.3  
100  
Vrms  
dB  
Signal to Noise Ratio (Note 5,6)  
SNR  
A-weighted  
AVDD1=AVDD2=3.0V  
A-weighted  
90  
96  
95.5  
93.5  
-87  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
AVDD1=AVDD2=2.5V  
22Hz to 22kHz  
AVDD1=AVDD2=3.0V  
22Hz to 22kHz  
AVDD1=AVDD2=2.5V  
-5dBFS signal  
Total Harmonic Distortion  
(Note 7)  
THD  
-75  
-73  
AVDD1=AVDD2=3.0V  
-5dBFS signal  
-69  
AVDD1=AVDD2=2.5V  
-5dBFS signal  
Total Harmonic Distortion + Noise  
(Note 7)  
THD+N  
-85  
AVDD1=AVDD2=3.0V  
-5dBFS signal  
-68  
AVDD1=AVDD2=2.5V  
1kHz full scale signal  
Channel separation  
100  
PD, Rev 4.4, January 2012  
11  
w
WM8758B  
Production Data  
Test Conditions  
DCVDD=1.8V, AVDD1=AVDD2=3.0V, DBVDD=3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
Microphone Bias  
Bias Voltage  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VMICBIAS  
MBVSEL=0  
MBVSEL=1  
0.9*AVDD1  
V
V
0.65*AVDD1  
Bias Current Source  
Output Noise Voltage  
Digital Input / Output  
Input HIGH Level  
IMICBIAS  
Vn  
for VMICBIAS within +/-3%  
1kHz to 20kHz  
3
mA  
15  
nV/Hz  
VIH  
VIL  
0.7DBV  
DD  
V
V
Input LOW Level  
0.3  
DBVDD  
Output HIGH Level  
Output LOW Level  
VOH  
VOL  
IOL=1mA  
IOH-1mA  
0.9DBV  
DD  
V
V
0.1x  
DBVDD  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) – SNR is a measure of the difference in level between the full scale output and the output  
with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
2. THD+N (dB) – THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
3. Channel Separation (dB) – Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Normally measured by sending a full scale signal down one channel and measuring the other.  
4. THD (dB) – THD is a ratio of the rms value of the first seven harmonics compared to the rms value of the fundamental.  
PD, Rev 4.4, January 2012  
w
12  
Production Data  
WM8758B  
HEADPHONE OUTPUT PERFORMANCE  
SNR Graphs TBA:  
SNR vs AVDD1=AVDD2 L/ROUT1 (DAC path) for 16, 32  
SNR vs AVDD1=AVDD2 L/ROUT2 (DAC path) for 16, 32  
THD+N Graphs TBA:  
THD+N vs output power (Analogue in to L/ROUT1) 16, 32  
Plots for AVDD1=AVDD2=2.7, 3.0, 3.3, 3.6V  
THD+N vs output power (Analogue in to L/ROUT2) 16, 32  
Plots for AVDD1=AVDD2=2.7, 3.0, 3.3, 3.6V  
PSRR Graphs TBA:  
AVDD1 PSRR vs Frequency (DAC to L/ROUT1), 16  
AVDD1 PSRR vs Frequency (DAC to L/ROUT2), 16  
AVDD2 PSRR vs Frequency (DAC to L/ROUT2), 16  
PD, Rev 4.4, January 2012  
13  
w
WM8758B  
Production Data  
POWER CONSUMPTION  
TYPICAL SCENARIOS  
Estimated current consumption for typical scenarios are shown below.  
All measurements are made with quiescent signal.  
Power delivered to the load is not included.  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
0.001  
0
0
0.001  
0
0
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
0
0
0
0
0
0
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
0.01  
0.008  
0.008  
0.145  
0.115  
0.115  
5.8  
4.3  
4.3  
5.1  
3.8  
3.8  
5.1  
3.8  
3.8  
8.1  
6.5  
6.5  
7.6  
6.05  
6.05  
7.1  
5.24  
5.24  
2.15  
1.54  
1.54  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
3.3  
2.5  
2.5  
0
0
0
0
0
0.036  
0.020  
0.020  
0.482  
0.288  
OFF  
Standby  
No clocks  
No clocks  
None  
None  
None  
None  
None  
N/A  
All default  
R1= 009, R49 = 006  
0
0.288  
6.8  
4.8  
3.2  
6.8  
4.8  
3.2  
6.88  
4.82  
3.2  
7.3  
5.1  
3.45  
7.5  
5.2  
3.55  
3.06  
2.18  
3.7  
0.001  
0
0.008  
0.005  
0.003  
0.008  
0.005  
0.003  
0.008  
0.005  
0.003  
0.04  
0.03  
0.02  
0.04  
0.03  
0.02  
7.9  
0.7  
0.5  
0.5  
0.7  
0.5  
0.5  
0.7  
0.5  
0.5  
0
0
0
0
0
0
0
0
0
43.916  
24.013  
17.765  
41.606  
22.763  
16.515  
41.870  
22.813  
16.515  
50.952  
29.075  
22.496  
49.962  
28.200  
21.551  
59.598  
27.300  
22.640  
7.102  
L/ROUT1  
Clocks on  
R1=009, R2=180, R3=06F, R4=050, R6=000,  
R32=001, R33=001  
L/ROUT2  
Clocks on  
R1=009, R3=06F, R4=050, R11=024, R17=004,  
R6=000, R32=001, R33=001  
OUT3/OUT4 Stereo line out  
ADC Stereo Record (psuedo MIC)  
ADC Stereo Record (line in)  
L/ROUT1 Master mode  
BYPASS to OUT3/OUT4  
Clocks on  
R1=1FF, R3=1EF, R4=050, R6=000, R38=001,  
R39=001  
R1=OCD, R2=1BF, R4=050, R6=000, R2C=033,  
R2D=110, R2F=000, R2E=110, R30=000  
Clocks on  
R1=0CD, R2=1BF, R4=050, R6=000, R2F=050,  
R30=050  
Clocks on  
N/A  
R1=029, R2=180, R3=00F, R4=050, R6=149,  
Master mode / MCLK=13MHz  
No clocks  
None R32=001, R33=001, R24=007,R25=023, R26=1EA,  
R27=126  
3.5  
1.6  
0.001  
0
0
0
0
0
None  
3.850  
3.850  
R1=0CD, R2=03C, R3=180, R2F=050, R38=004,  
R30=050, R39=004  
0
PD, Rev 4.4, January 2012  
14  
w
Production Data  
WM8758B  
AUDIO PATHS OVERVIEW  
Figure 1 Audio Paths Overview  
PD, Rev 4.4, January 2012  
15  
w
WM8758B  
Production Data  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
tMCLKL  
MCLK  
tMCLKH  
tMCLKY  
Figure 2 System Clock Timing Requirements  
Test Conditions  
DCVDD=1.8V, DBVDD=3.3V, AVDD1=AVDD2=3.0V, DGND=AGND1=AGND2=0V, TA = +25oC, Slave Mode  
PARAMETER  
SYMBOL  
TMCLKY  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK=SYSCLK (=256fs)  
MCLK input to PLL Note 1  
81.38  
20  
ns  
ns  
MCLK cycle time  
MCLK duty cycle  
TMCLKDS  
60:40  
40:60  
Note:  
1. PLL pre-scaling and PLL N and K values should be set appropriately so that SYSCLK is no greater than 12.288MHz.  
AUDIO INTERFACE TIMING – MASTER MODE  
Figure 3 Digital Audio Data Timing – Master Mode (see Control Interface)  
PD, Rev 4.4, January 2012  
16  
w
Production Data  
WM8758B  
Test Conditions  
DCVDD=1.8V, DBVDD=3.3V, AVDD1=AVDD2=3.0V, DGND=AGND1=AGND2=0V, TA=+25oC, Master Mode, fs=48kHz,  
MCLK=256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
LRC propagation delay from BCLK falling edge  
ADCDAT propagation delay from BCLK falling edge  
DACDAT setup time to BCLK rising edge  
DACDAT hold time from BCLK rising edge  
tDL  
10  
10  
ns  
ns  
ns  
ns  
tDDA  
tDST  
tDHT  
10  
10  
AUDIO INTERFACE TIMING – SLAVE MODE  
Figure 4 Digital Audio Data Timing – Slave Mode  
Test Conditions  
DCVDD=1.8V, DBVDD=3.3V, AVDD1=AVDD2=3.0V, DGND=AGND1=AGND2=0V, TA=+25oC, Slave Mode, fs=48kHz,  
MCLK= 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
tLRSU  
tLRH  
tDH  
50  
20  
20  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
LRC set-up time to BCLK rising edge  
LRC hold time from BCLK rising edge  
DACDAT hold time from BCLK rising edge  
ADCDAT propagation delay from BCLK falling edge  
tDD  
10  
Note:  
BCLK period should always be greater than or equal to MCLK period.  
PD, Rev 4.4, January 2012  
17  
w
WM8758B  
Production Data  
CONTROL INTERFACE TIMING – 3-WIRE MODE  
3-wire mode is selected by connecting the MODE pin high.  
Figure 5 Control Interface Timing – 3-Wire Serial Control Mode  
Test Conditions  
DCVDD=1.8V, DBVDD=3.3V, AVDD1=AVDD2=3.0V, DGND = AGND1 = AGND2 = 0V, TA=+25oC, Slave Mode, fs=48kHz,  
MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
tSCS  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
tps  
80  
200  
80  
80  
40  
40  
40  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
CSB pulse width high  
CSB rising to SCLK rising  
Pulse width of spikes that will be suppressed  
5
PD, Rev 4.4, January 2012  
18  
w
Production Data  
WM8758B  
CONTROL INTERFACE TIMING – 2-WIRE MODE  
2-wire mode is selected by connecting the MODE pin low.  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t9  
Figure 6 Control Interface Timing – 2-Wire Serial Control Mode  
Test Conditions  
DCVDD=1.8V, DBVDD=3.3V, AVDD1=AVDD2=3.0V, DGND=AGND1=AGND2=0V, TA=+25oC, Slave Mode, fs=48kHz,  
MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
0
526  
kHz  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
1.3  
600  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
0
900  
5
Pulse width of spikes that will be suppressed  
PD, Rev 4.4, January 2012  
19  
w
WM8758B  
Production Data  
INTERNAL POWER ON RESET CIRCUIT  
Figure 7 Internal Power on Reset Circuit Schematic  
The WM8758B includes an internal Power-On-Reset Circuit, as shown in Figure 7, which is used to  
reset the digital logic into a default state after power up. The POR circuit is powered from AVDD1 and  
monitors DCVDD. It asserts PORB low if AVDD1 or DCVDD is below a minimum threshold.  
Figure 8 Typical Power up Sequence where AVDD1 is Powered before DCVDD  
Figure 8 shows a typical power-up sequence where AVDD1 comes up first. When AVDD1 goes  
above the minimum threshold, Vpora, there is enough voltage for the circuit to guarantee PORB is  
asserted low and the chip is held in reset. In this condition, all writes to the control interface are  
ignored. Now AVDD1 is at full supply level. Next DCVDD rises to Vpord_on and PORB is released high  
and all registers are in their default state and writes to the control interface may take place.  
On power down, where AVDD1 falls first, PORB is asserted low whenever AVDD1 drops below the  
minimum threshold Vpora_off  
.
PD, Rev 4.4, January 2012  
20  
w
Production Data  
WM8758B  
Figure 9 Typical Power up Sequence where DCVDD is Powered before AVDD1  
Figure 9 shows a typical power-up sequence where DCVDD comes up first. First it is assumed that  
DCVDD is already up to specified operating voltage. When AVDD1 goes above the minimum  
threshold, Vpora, there is enough voltage for the circuit to guarantee PORB is asserted low and the  
chip is held in reset. In this condition, all writes to the control interface are ignored. When AVDD1  
rises to Vpora_on, PORB is released high and all registers are in their default state and writes to the  
control interface may take place.  
On power down, where DCVDD falls first, PORB is asserted low whenever DCVDD drops below the  
minimum threshold Vpord_off  
.
SYMBOL  
Vpora  
MIN  
0.4  
0.9  
0.4  
0.5  
0.4  
TYP  
0.6  
1.2  
0.6  
0.7  
0.6  
MAX  
0.8  
1.6  
0.8  
0.9  
0.8  
UNIT  
V
V
V
V
V
Vpora_on  
Vpora_off  
Vpord_on  
Vpord_off  
Table 1 Typical POR Operation (typical values, not tested)  
Notes:  
If AVDD1 and DCVDD suffer a brown-out (i.e. drop below the minimum recommended operating level  
but do not go below Vpora_off or Vpord_off) then the chip will not reset and will resume normal operation  
when the voltage is back to the recommended level again.  
The chip will enter reset at power down when AVDD1 or DCVDD falls below Vpora_off or Vpord_off. This  
may be important if the supply is turned on and off frequently by a power management system.  
The minimum tpor period is maintained even if DCVDD and AVDD1 have zero rise time. This  
specification is guaranteed by design rather than test.  
PD, Rev 4.4, January 2012  
21  
w
WM8758B  
Production Data  
RECOMMENDED POWER UP/DOWN SEQUENCE  
In order to minimise output pop and click noise, it is recommended that the WM8758B device is  
powered up and down under control using the following sequences:  
Power Up:  
1. Turn on external power supplies. Wait for supply voltage to settle.  
2. Set low bias mode, BIASCUT = 1.  
3. Enable HPCOM = 1, LINECOM = 1.  
4. Mute all Outputs and set PGAs to minimum gain, R52 to R57 = 0x140h.  
5. Enable L/ROUT1  
6. Enable L/ROUT2  
7. Enable VMID independent current bias, POBCTRL = 1.  
8. Enable required DACs and mixers.  
9. Enable VMIDSEL=01, BIASEN = 1 and BUFIOEN = 1  
10. Setup digital interface, input amplifiers, PLL, ADCs and DACs for desired operation.  
11. Wait 100ms to allow VMID to rise sufficiently before unmuting outputs  
12. Unmute L/ROUT1 and set desired volume, e.g. for 0dB R52 and R53 = 0x139h.  
13. Unmute L/ROUT2 and set desired volume, e.g. for 0dB R54 and R55 = 0x139h.  
14. Disable VMID independent current bias, POBCTRL = 0.  
Power Down:  
1. Disable Thermal shutdown  
2. Enable VMIDTOG = 1  
3. Disable VMIDSEL=00 and BUFIOEN=0  
4. Wait for VMID to discharge  
5. Power off registers R1, R2, R3 = 0x000h  
6. Remove external power supplies  
Notes:  
1. Charging time constant is determined by impedance selected by VMIDSEL and the value of  
decoupling capacitor connected to VMID pin.  
2. It is possible to interrupt the power down sequence and power up to VMID before the allocated  
VMID discharge time.  
PD, Rev 4.4, January 2012  
22  
w
Production Data  
WM8758B  
Figure 10 ADC Power Up and Down Sequence (not to scale)  
SYMBOL  
tmidrail_on  
MIN  
TYPICAL  
300  
MAX  
UNIT  
ms  
tmidrail_off  
>6  
s
tadcint  
2/fs  
n/fs  
n/fs  
ADC Group Delay  
29/fs  
Table 2 Typical POR Operation (typical values, not tested)  
Notes:  
1. The analogue input pin charge time, tmidrail_on, is determined by the VMID pin charge time. This  
time is dependent upon the value of VMID decoupling capacitor and VMID pin input resistance  
and AVDD power supply rise time.  
2. The analogue input pin discharge time, tmidrail_off, is determined by the analogue input coupling  
capacitor discharge time. The time, tmidrail_off, is measured using a 1μF capacitor on the analogue  
input but will vary dependent upon the value of input coupling capacitor.  
3. While the ADC is enabled there will be LSB data bit activity on the ADCDAT pin due to system  
noise but no significant digital output will be present.  
4. The VMIDSEL and BIASEN bits must be set to enable analogue input midrail voltage and for  
normal ADC operation.  
5. ADCDAT data output delay from power up - with power supplies starting from 0V - is determined  
primarily by the VMID charge time. ADC initialisation and power management bits may be set  
immediately after POR is released; VMID charge time will be significantly longer and will dictate  
when the device is stabilised for analogue input.  
6. ADCDAT data output delay at power up from device standby (power supplies already applied) is  
determined by ADC initialisation time, 2/fs.  
PD, Rev 4.4, January 2012  
23  
w
WM8758B  
Production Data  
Vpor_on  
Vpora  
Vpor_off  
Power Supply  
POR  
DGND  
No Power  
Device Ready  
DNC  
Internal POR active  
tpor  
POR Undefined  
I2S Clocks  
DNC  
tdacint  
tdacint  
Power down  
Init  
Normal Operation  
PD  
Init  
Normal Operation  
Power down  
DAC Internal State  
tline_midrail_on  
(Note 1)  
tline_midrail_off  
(Note 3)  
AVDD/2  
AVDD/2  
Line Out Outputs  
HP Outputs  
(Note 2)  
thp_midrail_on  
(Note 4)  
thp_midrail_off  
(Note 5)  
GD  
GD  
GD  
DACDAT pin  
DACEN bit  
DAC enabled  
DAC enabled  
DAC disabled  
DAC off  
DAC disabled  
Analogue outputs  
enable bits  
Analogue outputs enabled  
VMID enabled  
VMIDSEL/  
(Note 6)  
BIASEN bits  
Figure 11 DAC Power Up and Down Sequence (not to scale)  
SYMBOL  
tline_midrail_on  
tline_midrail_off  
thp_midrail_on  
MIN  
TYPICAL  
300  
MAX  
UNIT  
ms  
s
>6  
300  
ms  
s
thp__midrail_off  
tdacint  
>6  
2/fs  
n/fs  
n/fs  
DAC Group Delay  
29/fs  
Table 3 Typical POR Operation (typical values, not tested)  
Notes:  
1. The lineout charge time, tline_midrail_on, is determined by the VMID pin charge time. This time is  
dependent upon the value of VMID decoupling capacitor and VMID pin input resistance and  
AVDD power supply rise time. The values above were measured using a 4.7μF capacitor.  
2. It is not advisable to allow DACDAT data input during initialisation of the DAC. If the DAC data  
value is not zero at point of initialisation, then this is likely to cause a pop noise on the analogue  
outputs. The same is also true if the DACDAT is removed at a non-zero value, and no mute  
function has been applied to the signal beforehand.  
3. The lineout discharge time, tline_midrail_off, is determined by the VMID pin discharge time. This time  
is dependent upon the value of VMID decoupling capacitor and VMID pin input resistance. The  
values above were measured using a 4.7μF capacitor.  
4. The headphone charge time, thp_midrail_on, is dependent upon the value of VMID decoupling  
capacitor and VMID pin input resistance and AVDD power supply rise time. The values above  
were measured using a 4.7μF VMID decoupling capacitor.  
5. The headphone discharge time, thp_midrail_off, is dependent upon the value of VMID decoupling  
capacitor and VMID pin input resistance. The values above were measured using a 4.7μF VMID  
decoupling capacitor.  
6. The VMIDSEL and BIASEN bits must be set to enable analogue output midrail voltage and for  
normal DAC operation.  
PD, Rev 4.4, January 2012  
24  
w
Production Data  
WM8758B  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8758B is a low power audio codec combining a high quality stereo audio DAC and ADC, with  
flexible line and microphone input and output processing.  
FEATURES  
The chip offers great flexibility in use, and so can support many different modes of operation as  
follows:  
MICROPHONE INPUTS  
Two pairs of stereo microphone inputs are provided, allowing a pair of stereo microphones to be  
pseudo-differentially connected, with user defined gain. The provision of the common mode input pin  
for each stereo input allows for rejection of common mode noise on the microphone inputs (level  
depends on gain setting chosen). A microphone bias is output from the chip which can be used to  
bias both microphones. The signal routing can be configured to allow manual adjustment of mic  
levels, or to allow the ALC loop to control the level of mic signal that is transmitted.  
Total gain through the microphone paths of up to +55.25dB can be selected.  
PGA AND ALC OPERATION  
A programmable gain amplifier is provided in the input path to the ADC. This may be used manually  
or in conjunction with a mixed analogue/digital automatic level control (ALC) which keeps the  
recording volume constant.  
ADC  
The stereo ADC uses a 24-bit high-order oversampling architecture to deliver optimum performance  
with low power consumption.  
HI-FI DAC  
The hi-fi DAC provides high quality audio playback suitable for all portable audio hi-fi type  
applications, including MP3 players and portable disc players of all types.  
OUTPUT MIXERS  
Flexible mixing is provided on the outputs of the device. A stereo mixer is provided for the stereo  
headphone or line outputs, LOUT1/ROUT1, and additional summers on the OUT3/OUT4 outputs  
allow for an optional differential or stereo line output on these pins. Gain adjustment PGAs are  
provided for the LOUT1/ROUT1 and LOUT2/ROUT2 outputs, and signal switching is provided to allow  
for all possible signal combinations.  
OUT3 and OUT4 can be configured to provide an additional stereo or mono differential lineout from  
the output of the DACs, the mixers or the input microphone boost stages. They can also provide a  
midrail reference for pseudo differential inputs to external amplifiers. OUT3 and OUT4 should not be  
used as a buffered midrail reference in capless mode.  
AUDIO INTERFACES  
The WM8758B has a standard audio interface, to support the transmission of stereo data to and from  
the chip. This interface is a 3 wire standard audio interface which supports a number of audio data  
formats including:  
I2S  
DSP/PCM Mode (a burst mode in which LRC sync plus 2 data packed words are  
transmitted)  
MSB-First, left justified  
MSB-First, right justified  
The interface can operate in master or slave modes.  
CONTROL INTERFACES  
To allow full software control over all features, the WM8758B offers a choice of 2 or 3 wire control  
interface. It is fully compatible and an ideal partner for a wide range of industry standard  
microprocessors, controllers and DSPs.  
Selection of the mode is via the MODE pin. In 2 wire mode, the address of the device is fixed as  
0011010b.  
PD, Rev 4.4, January 2012  
25  
w
WM8758B  
Production Data  
CLOCKING SCHEMES  
WM8758B offers the normal audio DAC clocking scheme operation, where 256fs MCLK is provided to  
the DAC and ADC. A PLL is included which may be used to generate these clocks in the event that  
they are not available from the system controller. This PLL can accept a range of common input clock  
frequencies between 8MHz and 50MHz to generate high quality audio clocks. If this PLL is not  
required for generation of these clocks, it can be reconfigured to generate alternative clocks which  
may then be output on the GPIO pins and used elsewhere in the system.  
POWER CONTROL  
The design of the WM8758B has given much attention to power consumption without compromising  
performance. It operates at very low voltages, includes the ability to power off any unused parts of the  
circuitry under software control, and includes standby and power off modes.  
INPUT SIGNAL PATH  
The WM8758B has a number of flexible analogue inputs. There are two input channels, Left and  
Right, each of which consists of an input PGA stage followed by a boost/mix stage which drives into  
the hi-fi ADC. Each input path has three input pins which can be configured in a variety of ways to  
accommodate single-ended, differential or dual differential microphones. A bypass path exists from  
the output of the boost/mix stage into the output left/right mixers.  
MICROPHONE INPUTS  
The WM8758B can accommodate a variety of microphone configurations including single ended and  
differential inputs. The inputs to the left differential input PGA are LIN, LIP and L2. The inputs to the  
right differential input PGA are RIN, RIP and R2.  
In single-ended microphone input configuration the microphone signal should be input to LIN or RIN  
and the internal NOR gate configured to clamp the non-inverting input of the input PGA to VMID.  
In differential mode the larger signal should be input to LIP or RIP and the smaller (e.g. noisy ground  
connection) should be input to LIN or RIN.  
Figure 12 Microphone Input PGA Circuit  
The input PGAs are enabled by the IPPGAENL/R register bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2  
2
3
INPPGAENL  
0
Left channel input PGA enable  
0 = disabled  
Power  
Management  
2
1 = enabled  
INPPGAENR  
0
Right channel input PGA enable  
0 = disabled  
1 = enabled  
Table 4 Input PGA Enable Register Settings  
PD, Rev 4.4, January 2012  
26  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R44  
0
LIP2INPPGA  
1
Connect LIP pin to left channel input PGA  
amplifier positive terminal.  
Input  
Control  
0 = LIP not connected to input PGA  
1 = input PGA amplifier positive terminal  
connected to LIP (constant input  
impedance)  
1
2
LIN2INPPGA  
L2_2INPPGA  
1
0
Connect LIN pin to left channel input PGA  
negative terminal.  
0 = LIN not connected to input PGA  
1 = LIN connected to input PGA amplifier  
negative terminal.  
Connect L2 pin to left channel input PGA  
positive terminal.  
0 = L2 not connected to input PGA  
1 = L2 connected to input PGA amplifier  
positive terminal (constant input  
impedance).  
4
RIP2INPPGA  
1
Connect RIP pin to right channel input  
PGA amplifier positive terminal.  
0 = RIP not connected to input PGA  
1 = right channel input PGA amplifier  
positive terminal connected to RIP  
(constant input impedance)  
5
6
RIN2INPPGA  
R2_2INPPGA  
1
0
Connect RIN pin to right channel input  
PGA negative terminal.  
0 = RIN not connected to input PGA  
1 = RIN connected to right channel input  
PGA amplifier negative terminal.  
Connect R2 pin to right channel input PGA  
positive terminal.  
0 = R2 not connected to input PGA  
1 = R2 connected to input PGA amplifier  
positive terminal (constant input  
impedance).  
Table 5 Input PGA Control  
INPUT PGA VOLUME CONTROLS  
The input microphone PGAs have a gain range from -12dB to +35.25dB in 0.75dB steps. The gain  
from the LIN/RIN input to the PGA output and from the L2/R2 amplifier to the PGA output are always  
common and controlled by the register bits INPPGAVOLL/R[5:0]. These register bits also affect the  
LIP pin when LIP2INPPGA=1, the L2 pin when L2_2INPPGA=1, the RIP pin when RIP2INPPGA=1  
and the L2 pin when L2_2INPPGA=1.  
When the Automatic Level Control (ALC) is enabled the input PGA gains are controlled automatically  
and the INPPGAVOLL/R bits should not be used.  
PD, Rev 4.4, January 2012  
27  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R45  
5:0  
INPPGAVOLL  
010000  
Left channel input PGA volume  
Left channel  
input PGA  
volume  
000000 = -12dB  
000001 = -11.25db  
.
control  
010000 = 0dB  
.
111111 = +35.25dB  
6
7
INPPGAMUTEL  
INPPGAZCL  
0
0
Mute control for left channel input PGA:  
0 = Input PGA not muted, normal  
operation  
1 = Input PGA muted (and disconnected  
from the following input BOOST stage).  
Left channel input PGA zero cross  
enable:  
0 = Update gain when gain register  
changes  
1 = Update gain on 1st zero cross after  
gain register write.  
8
INPPGAVU  
Not  
latched  
INPPGA left and INPPGA right volume  
do not update until a 1 is written to  
INPPGAVU (in reg 45 or 46)  
(See “Volume Updates” below)  
R46  
5:0  
INPPGAVOLR  
010000  
Right channel input PGA volume  
Right  
000000 = -12dB  
channel  
input PGA  
volume  
control  
000001 = -11.25db  
.
010000 = 0dB  
.
111111 = +35.25dB  
6
7
INPPGAMUTER  
INPPGAZCR  
0
0
Mute control for right channel input PGA:  
0 = Input PGA not muted, normal  
operation  
1 = Input PGA muted (and disconnected  
from the following input BOOST stage).  
Right channel input PGA zero cross  
enable:  
0 = Update gain when gain register  
changes  
1 = Update gain on 1st zero cross after  
gain register write.  
8
INPPGAVU  
ALCSEL  
Not  
latched  
INPPGA left and INPPGA right volume  
do not update until a 1 is written to  
INPPGAVU (in reg 45 or 46)  
(See “Volume Updates” below)  
ALC function select:  
00 = ALC off  
R32  
8:7  
00  
ALC control  
1
01 = ALC right only  
10 = ALC left only  
11 = ALC both on  
Table 6 Input PGA Volume Control  
PD, Rev 4.4, January 2012  
28  
w
Production Data  
WM8758B  
VOLUME UPDATES  
Volume settings will not be applied to the PGAs until a ‘1’ is written to one of the INPPGAVU bits.  
This is to allow left and right channels to be updated at the same time, as shown in Figure 13.  
Figure 13 Simultaneous Left and Right Volume Updates  
If the volume is adjusted while the signal is a non-zero value, an audible click can occur as shown in  
Figure 14.  
Figure 14 Click Noise during Volume Update  
In order to prevent this click noise, a zero cross function is provided. When enabled, this will cause  
the PGA volume to update only when a zero crossing occurs, equalizer click noise as shown in  
Figure 15.  
PD, Rev 4.4, January 2012  
29  
w
WM8758B  
Production Data  
Figure 15 Volume Update using Zero Cross Detection  
If there is a long period where no zero-crossing occurs, a timeout circuit in the WM8758B will  
automatically update the volume. The volume updates will occur between one and two timeout  
periods, depending on when the INPPGAVU bit is set as shown in Figure 16.  
Figure 16 Volume Update after Timeout  
PD, Rev 4.4, January 2012  
30  
w
Production Data  
WM8758B  
INPUT BOOST  
Each of the stereo input PGA stages is followed by an input BOOST circuit. The input BOOST circuit  
has 3 selectable inputs: the input microphone PGA output, the L2/R2 input pin (can be used as a line  
input, bypassing the input PGA), and OUT4 mixer output. These three inputs can be mixed together  
and have individual gain boost/adjust as shown in Figure 17.  
Figure 17 Input Boost Stage  
The input PGA paths can have  
a +20dB boost (PGABOOSTL/R=1), a 0dB pass through  
(PGABOOSTL/R=0) or be completely isolated from the input boost circuit (INPPGAMUTEL/R=1).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R47  
8
PGABOOSTL  
1
Boost enable for left channel input  
PGA:  
Left Input  
BOOST  
control  
0 = PGA output has +0dB gain through  
input BOOST stage.  
1 = PGA output has +20dB gain  
through input BOOST stage.  
R48  
8
PGABOOSTR  
1
Boost enable for right channel input  
PGA:  
Right Input  
BOOST  
control  
0 = PGA output has +0dB gain through  
input BOOST stage.  
1 = PGA output has +20dB gain  
through input BOOST stage.  
Table 7 Input BOOST Stage Control  
PD, Rev 4.4, January 2012  
31  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R42  
OUT4 to ADC  
8:6  
OUT4_2ADCVOL  
000  
Controls the OUT4 to ADC input  
boost stage:  
000 = Path disabled  
(disconnected)  
001 = -12dB gain through boost  
stage  
010 = -9dB gain through boost  
stage  
111 = +6dB gain through boost  
stage  
5
OUT4_2LNR  
0
OUT4 to L or R ADC input  
0 = Right ADC input  
1 = Left ADC input  
R47  
6:4  
L2_2BOOSTVOL  
000  
Controls the L2 pin to the left  
channel input boost stage:  
Left channel  
Input BOOST  
control  
000 = Path disabled  
(disconnected)  
001 = -12dB gain through boost  
stage  
010 = -9dB gain through boost  
stage  
111 = +6dB gain through boost  
stage  
R48  
6:4  
R2_2BOOSTVOL  
000  
Controls the R2 pin to the right  
channel input boost stage:  
Right channel  
Input BOOST  
control  
000 = Path disabled  
(disconnected)  
001 = -12dB gain through boost  
stage  
010 = -9dB gain through boost  
stage  
111 = +6dB gain through boost  
stage  
Table 8 Input BOOST Stage Control  
The BOOST stage is enabled under control of the BOOSTEN register bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2  
4
BOOSTENL  
0
Left channel Input BOOST enable  
0 = Boost stage OFF  
Power  
management  
2
1 = Boost stage ON  
5
BOOSTENR  
0
Right channel Input BOOST enable  
0 = Boost stage OFF  
1 = Boost stage ON  
Table 9 Input BOOST Enable Control  
PD, Rev 4.4, January 2012  
32  
w
Production Data  
WM8758B  
MICROPHONE BIASING CIRCUIT  
The MICBIAS output provides a low noise reference voltage suitable for biasing electret type  
microphones and the associated external resistor biasing network. Refer to the Applications  
Information section for recommended external components. The MICBIAS voltage can be altered via  
the MBVSEL register bit. When MBVSEL=0, MICBIAS=0.9*AVDD1 and when MBVSEL=1,  
MICBIAS=0.65*AVDD1. The output can be enabled or disabled using the MICBEN control bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
4
MICBEN  
0
Microphone Bias Enable  
0 = OFF (high impedance output)  
1 = ON  
Power  
management 1  
Table 10 Microphone Bias Enable Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R44  
Input control  
8
MBVSEL  
0
Microphone Bias Voltage Control  
0 = 0.9 * AVDD1  
1 = 0.65 * AVDD1  
Table 11 Microphone Bias Voltage Control  
The internal MICBIAS circuitry is shown in Figure 18. Note that the maximum source current  
capability for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit  
the MICBIAS current to 3mA.  
MBVSEL=0  
MICBIAS  
= 1.8 x VMID  
= 0.9 X AVDD  
VMI  
MICBE  
internal  
resistor  
MBVSEL=1  
MICBIAS  
= 1.3 x VMID  
= 0.65 X AVDD  
internal  
resistor  
AGND1  
Figure 18 Microphone Bias Schematic  
ANALOGUE TO DIGITAL CONVERTER (ADC)  
The WM8758B uses stereo multi-bit, oversampled sigma-delta ADCs. The use of multi-bit feedback  
and high oversampling rates reduces the effects of jitter and high frequency noise. The ADC Full  
Scale input level is proportional to AVDD1. With a 3.3V supply voltage, the full scale level is 1.0Vrms  
Any voltage greater than full scale may overload the ADC and cause distortion.  
.
ADC DIGITAL FILTERS  
The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data  
from the ADC to the correct sampling frequency to be output on the digital audio interface. The digital  
filter path for each ADC channel is illustrated in Figure 19.  
PD, Rev 4.4, January 2012  
33  
w
WM8758B  
Production Data  
Figure 19 ADC Digital Filter Path  
The ADCs are enabled by the ADCENL/R register bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2  
0
ADCENL  
0
Enable ADC left channel:  
0 = ADC disabled  
Power  
management 2  
1 = ADC enabled  
1
ADCENR  
0
Enable ADC right channel:  
0 = ADC disabled  
1 = ADC enabled  
Table 12 ADC Enable Control  
The polarity of the output signal can also be changed under software control using the  
ADCLPOL/ADCRPOL register bit. The oversampling rate of the ADC can be adjusted using the  
ADCOSR register bit. With ADCOSR=0 the oversample rate is 64x which gives lowest power  
operation and when ADCOSR=1 the oversample rate is 128x which gives best performance.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R14  
ADC Control  
0
ADCLPOL  
0
ADC left channel polarity adjust:  
0 = normal  
1 = inverted  
1
3
ADCRPOL  
ADCOSR  
0
0
ADC right channel polarity adjust:  
0 = normal  
1 = inverted  
ADC oversample rate select:  
0 = 64x (lower power)  
1 = 128x (best performance)  
Table 13 ADC Control  
SELECTABLE HIGH PASS FILTER  
A selectable high pass filter is provided. To disable this filter set HPFEN=0. The filter has two  
modes controlled by HPFAPP. In Audio Mode (HPFAPP=0) the filter is first order, with a cut-off  
frequency of 3.7Hz. In Application Mode (HPFAPP=1) the filter is second order, with a cut-off  
frequency selectable via the HPFCUT register. The cut-off frequencies when HPFAPP=1 are shown  
in Table 15.  
PD, Rev 4.4, January 2012  
34  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
High Pass Filter Enable  
R14  
ADC Control  
8
7
HPFEN  
1
0 = disabled  
1 = enabled  
HPFAPP  
0
Select audio mode or application mode  
0 = Audio mode (1st order, fc = ~3.7Hz)  
1 = Application mode (2nd order, fc =  
HPFCUT)  
6:4  
HPFCUT  
000  
Application mode cut-off frequency  
See Table 15 for details.  
Table 14 ADC Enable Control  
HPFCUT  
[2:0]  
SR=101/100  
SR=011/010  
fs (kHz)  
22.05  
SR=001/000  
44.1  
8
11.025  
12  
16  
24  
32  
48  
000  
001  
010  
011  
100  
101  
110  
111  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
102  
131  
163  
204  
261  
327  
408  
102  
131  
163  
204  
261  
327  
408  
102  
131  
163  
204  
261  
327  
408  
Table 15 High Pass Filter Cut-off Frequencies (HPFAPP=1)  
Note that the High Pass filter values (when HPFAPP=1) are calculated on the assumption that the  
SR register bits are set correctly for the actual sample rate as shown in Table 15.  
PD, Rev 4.4, January 2012  
35  
w
WM8758B  
Production Data  
PROGRAMMABLE NOTCH FILTER  
A programmable notch filter is provided. This filter has a variable centre frequency and bandwidth,  
programmable via two coefficients, a0 and a1. a0 and a1 are represented by the register bits  
NFA0[13:0] and NFA1[13:0]. Because these coefficient values require four register writes to setup  
there is an NFU (Notch Filter Update) flag which should be set only when all four registers are setup.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R27  
0
0
6:0  
NFA0[13:7]  
NFEN  
Notch Filter a0 coefficient, bits [13:7]  
Notch filter enable:  
Notch Filter 1  
7
8
0 = Disabled  
1 = Enabled  
0
NFU  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
Notch Filter a0 coefficient, bits [6:0]  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
Notch Filter a1 coefficient, bits [13:7]  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
Notch Filter a1 coefficient, bits [6:0]  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
R28  
0
0
6:0  
8
NFA0[6:0]  
NFU  
Notch Filter 2  
R29  
0
0
6:0  
8
NFA1[13:7]  
NFU  
Notch Filter 3  
R30  
0
0
0-6  
8
NFA1[6:0]  
NFU  
Notch Filter 4  
Table 16 Notch Filter Function  
The coefficients are calculated as follows:  
1tan(wb / 2)  
a0   
1tan(wb / 2)  
a1  (1a0 )cos(w0 )  
Where:  
w0 2fc / fs  
wb 2fb / fs  
fc = centre frequency in Hz, fb = -3dB bandwidth in Hz, fs = sample frequency in Hz  
The actual register values can be determined from the coefficients as follows:  
NFA0 = -a0 x 213  
NFA1 = -a1 x 212  
DIGITAL ADC VOLUME CONTROL  
The output of the ADCs can be digitally attenuated over a range from –127dB to 0dB in 0.5dB steps.  
The gain for a given eight-bit code X is given by:  
0.5 (G-255) dB for 1 G 255;  
MUTE for G = 0  
PD, Rev 4.4, January 2012  
36  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R15  
7:0  
ADCLVOL  
[7:0]  
11111111  
( 0dB )  
Left ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Left channel  
ADC Digital  
Volume  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
8
ADCVU  
Not  
latched  
ADC left and ADC right volume do not  
update until a 1 is written to ADCVU (in  
reg 15 or 16)  
R16  
7:0  
ADCRVOL  
[7:0]  
11111111  
( 0dB )  
Right ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Right channel  
ADC Digital  
Volume  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
8
ADCVU  
Not  
latched  
ADC left and ADC right volume do not  
update until a 1 is written to ADCVU (in  
reg 15 or 16)  
Table 17 ADC Digital Volume Control  
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)  
The WM8758B has an automatic PGA gain control circuit, which can function as an input peak limiter  
or as an automatic level control (ALC).  
In input peak limiter mode (ALCMODE bit = 1), a digital peak detector detects when the input signal  
goes above a predefined level and will ramp the PGA gain down to prevent the signal becoming too  
large for the input range of the ADC. When the signal returns to a level below the threshold, the PGA  
gain is slowly returned to its starting level. The peak limiter cannot increase the PGA gain above its  
static level.  
Figure 20 Input Peak Limiter Operation  
PD, Rev 4.4, January 2012  
37  
w
WM8758B  
Production Data  
In ALC mode (ALCMODE bit = 0) the circuit aims to keep a constant recording volume irrespective of  
the input signal level. This is achieved by continuously adjusting the PGA gain so that the signal level  
at the ADC input remains constant. A digital peak detector monitors the ADC output and changes the  
PGA gain if necessary.  
Figure 21 ALC Operation  
The ALC/Limiter function is enabled by setting the register bit ALCSEL. When enabled, the recording  
volume can be programmed between –1dB and –22.5dB (relative to ADC full scale) using the  
ALCLVL register bits. An upper limit for the PGA gain can be imposed by setting the ALCMAX  
control bits and a lower limit for the PGA gain can be imposed by setting the ALCMIN control bits.  
ALCHLD, ALCDCY and ALCATK control the hold, decay and attack times, respectively:  
Hold time is the time delay between the peak level detected being below target and the PGA gain  
beginning to ramp up. It can be programmed in power-of-two (2n) steps, e.g. 2.67ms, 5.33ms,  
10.67ms etc. up to 43.7s. Alternatively, the hold time can also be set to zero. The hold time is not  
active in limiter mode (ALCMODE = 1). The hold time only applies to gain ramp-up, there is no delay  
before ramping the gain down when the signal level is above target.  
Decay (Gain Ramp-Up) Time is the time that it takes for the PGA gain to ramp up and is given as a  
time per gain step, time per 6dB change and time to ramp up over 90% of it’s range. The decay time  
can be programmed in power-of-two (2n) steps, from 3.3ms/6dB, 6.6ms/6dB, 13.1ms/6dB, etc. to  
3.36s/6dB.  
Attack (Gain Ramp-Down) Time is the time that it takes for the PGA gain to ramp down and is given  
as a time per gain step, time per 6dB change and time to ramp down over 90% of it’s range. The  
attack time can be programmed in power-of-two (2n) steps, from 832us/6dB, 1.66ms/6dB,  
3.328us/6dB, etc. to 852ms/6dB.  
NB, In peak limiter mode the gain control circuit runs approximately 4x faster to allow reduction of fast  
peaks. Attack and Decay times for peak limiter mode are given below.  
The hold, decay and attack times given in Table 18 are constant across sample rates so long as the  
SR bits are set correctly. E.g. when sampling at 48kHz the sample rates stated in Table 18 will only  
be correct if the SR bits are set to 000 (48kHz). If the actual sample rate was only 44.1kHz then the  
hold, decay and attack times would be scaled down by 44.1/48.  
PD, Rev 4.4, January 2012  
38  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
ALCSEL  
DEFAULT  
00  
DESCRIPTION  
R32  
8:7  
ALC function select  
00 = ALC disabled  
ALC Control  
1
01 = Right channel ALC enabled  
10 = Left channel ALC enabled  
11 = Both channels ALC enabled  
Set Maximum Gain of PGA  
111 = +35.25dB  
110 = +29.25dB  
101 = +23.25dB  
100 = +17.25dB  
011 = +11.25dB  
010 = +5.25dB  
5:3  
ALCMAXGAIN 111  
(+35.25dB)  
[2:0]  
001 = -0.75dB  
000 = -6.75dB  
2:0  
ALCMINGAIN  
[2:0]  
000 (-12dB)  
Set minimum gain of PGA  
000 = -12dB  
001 = -6dB  
010 = 0dB  
011 = +6dB  
100 = +12dB  
101 = +18dB  
110 = +24dB  
111 = +30dB  
R33  
7:4  
ALCHLD  
[3:0]  
0000  
ALC hold time before gain is  
increased.  
ALC Control  
2
(0ms)  
0000 = 0ms  
0001 = 2.67ms  
0010 = 5.33ms  
… (time doubles with every step)  
1111 = 43.7s  
3:0  
ALCLVL  
[3:0]  
1011  
ALC target – sets signal level at ADC  
input  
(-6dB)  
1111 = -1.5dBFS  
1110 = -1.5dBFS  
1101 = -3dBFS  
1100 = -4.5dBFS  
...... (-1.5dB steps)  
0001 = -21dBFS  
0000 = -22.5dBFS  
PD, Rev 4.4, January 2012  
39  
w
WM8758B  
Production Data  
DESCRIPTION  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
R34  
8
ALCMODE  
0
Determines the ALC mode of  
operation:  
ALC Control  
3
0 = ALC mode  
1 = Limiter mode.  
Decay (gain ramp-up) time  
(ALCMODE ==0)  
7:4  
ALCDCY  
[3:0]  
0011  
(13.1ms/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
0000  
0001  
0010  
410us  
820us  
1.64ms  
3.3ms  
6.6ms  
13.1ms  
24ms  
48ms  
192ms  
… (time doubles with every step)  
1010  
or  
420ms  
3.36s  
24.576s  
higher  
0011  
Decay (gain ramp-up) time  
(ALCMODE ==1)  
(2.9ms/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
0000  
0001  
0010  
90.8us  
726.4us 5.26ms  
10.53ms  
363.2us 2.905ms 21.06ms  
181.6us 1.453ms  
… (time doubles with every step)  
1010 93ms 744ms 5.39s  
3:0  
ALCATK  
[3:0]  
0010  
ALC attack (gain ramp-down) time  
(ALCMODE == 0)  
(832us/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
0000  
0001  
0010  
104us  
208us  
416us  
832us  
6ms  
1.664ms 12ms  
3.328ms 24.1ms  
… (time doubles with every step)  
1010  
or  
106ms  
852ms  
6.18s  
higher  
0010  
ALC attack (gain ramp-down) time  
(ALCMODE == 1)  
(182us/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
0000  
0001  
0010  
22.7us  
45.4us  
90.8us  
182.4us 1.31ms  
363.2us 2.62ms  
726.4us 5.26ms  
… (time doubles with every step)  
1010 23.2ms 186ms 1.348s  
Table 18 ALC Control Registers  
When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input  
gain update must be made by writing to the INPPGAVOLL/R register bits.  
PD, Rev 4.4, January 2012  
40  
w
Production Data  
WM8758B  
MINIMUM AND MAXIMUM GAIN  
The ALCMINGAIN and ALCMAXGAIN register sets the minimum/maximum gain value that the PGA  
can be set to whilst under the control of the ALC. This has no effect on the PGA when ALC is not  
enabled.  
PEAK LIMITER  
To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a  
limiter function. If the ADC input signal exceeds 87.5% of full scale (–1.16dB), the PGA gain is  
ramped down at the maximum attack rate (as when ALCATK = 0000), until the signal level falls below  
87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.  
(Note: If ALCATK = 0000, then the limiter makes no difference to the operation of the ALC. It is  
designed to prevent clipping when long attack times are used).  
NOISE GATE  
When the signal is very quiet and consists mainly of noise, the ALC function may cause “noise  
pumping”, i.e. loud hissing noise during silence periods. The WM8758B has a noise gate function  
that prevents noise pumping by comparing the signal level at the input pins against a noise gate  
threshold, NGTH. The noise gate cuts in when:  
Signal level at ADC [dBFS] < NGTH [dBFS] + PGA gain [dB] + Mic Boost gain [dB]  
This is equivalent to:  
Signal level at input pin [dBFS] < NGTH [dBFS]  
The PGA gain is then held constant (preventing it from ramping up as it normally would when the  
signal is quiet).  
The table below summarises the noise gate control register. The NGTH control bits set the noise  
gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 6dB steps.  
Levels at the extremes of the range may cause inappropriate operation, so care should be taken with  
set–up of the function. The noise gate only operates in conjunction with the ALC and cannot be used  
in limiter mode.  
REGISTER  
ADDRESS  
BIT  
LABEL  
NGTH  
DEFAULT  
000  
DESCRIPTION  
R35  
Noise gate threshold:  
2:0  
ALC Noise Gate  
Control  
000 = -39dB  
001 = -45dB  
010 = -51db  
… (6dB steps)  
111 = -81dB  
NGATEN  
0
Noise gate function enable  
1 = enable  
3
0 = disable  
Table 19 ALC Noise Gate Control  
PD, Rev 4.4, January 2012  
w
41  
WM8758B  
Production Data  
OUTPUT SIGNAL PATH  
The WM8758B output signal paths consist of digital application filters, up-sampling filters, stereo  
Hi-Fi DACs, analogue mixers, stereo headphone and stereo line/mono/midrail output drivers. The  
digital filters and DAC are enabled by register bits DACENL and DACENR. The mixers and output  
drivers can be separately enabled by individual control bits (see Analogue Outputs). Thus it is  
possible to equalizer the analogue mixing and amplification provided by the WM8758B, irrespective  
of whether the DACs are running or not.  
The WM8758B DACs receive digital input data on the DACDAT pin. The digital filter block processes  
the data to provide the following functions:  
.
.
.
.
Digital volume control  
Graphic equaliser  
A digital peak limiter.  
Sigma-Delta Modulation  
High performance sigma-delta audio DAC converts the digital data into an analogue signal.  
Figure 22 DAC Digital Filter Path  
The analogue outputs from the DACs can then be mixed with the ADC analogue inputs. The mix is  
fed to the output drivers for headphone (LOUT1/ROUT1, LOUT2/ROUT2) or line (OUT3/OUT4).  
OUT3 and OUT4 have additional mixers which allow them to output different signals to the  
headphone and line outputs.  
DIGITAL PLAYBACK (DAC) PATH  
Digital data is passed to the WM8758B via the flexible audio interface and is then passed through a  
variety of advanced digital filters as shown in Figure 22 to the hi-fi DACs. The DACs are enabled by  
the DACENL/R register bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R3  
0
DACENL  
0
Left channel DAC enable  
0 = DAC disabled  
Power  
Management 3  
1 = DAC enabled  
1
DACENR  
0
Right channel DAC enable  
0 = DAC disabled  
1 = DAC enabled  
Table 20 DAC Enable Control  
The WM8758B also has a Soft Mute function, which when enabled, gradually attenuates the volume  
of the digital signal to zero. When disabled, the gain will ramp back up to the digital gain setting. This  
function is enabled by default. To play back an audio signal, it must first be disabled by setting the  
SOFTMUTE bit to zero.  
PD, Rev 4.4, January 2012  
42  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R10  
DAC Control  
DACPOL  
0
Left DAC output polarity:  
0 = non-inverted  
0
1 = inverted (180 degrees phase shift)  
Right DAC output polarity:  
0 = non-inverted  
DACRPOL  
AMUTE  
0
0
0
1
2
3
1 = inverted (180 degrees phase shift)  
Automute enable  
0 = Amute disabled  
1 = Amute enabled  
DACOSR  
DAC oversampling rate:  
0 = 64x (lowest power & best  
performance)  
1 = 128x  
SOFTMUTE  
0
Softmute enable:  
0 = Enabled  
1 = Disabled  
6
Table 21 DAC Control Register  
The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital  
interpolation filters. The bitstream data enters the multi-bit, sigma-delta DACs, which convert it to a  
high quality analogue audio signal. The multi-bit DAC architecture reduces high frequency noise and  
sensitivity to clock jitter. It also uses a Dynamic Element Matching technique for high linearity and low  
distortion.  
The DAC output phase defaults to non-inverted. Setting DACLPOL will invert the DAC output phase  
on the left channel and DACRPOL inverts the phase on the right channel.  
AUTO-MUTE  
The DAC has an auto-mute function which applies an analogue mute when 1024 consecutive zeros  
are detected. The mute is released as soon as a non-zero sample is detected. Auto-mute can be  
disabled using the AMUTE control bit.  
DIGITAL HI-FI DAC VOLUME (GAIN) CONTROL  
The signal volume from each Hi-Fi DAC can be controlled digitally. The gain range is –127dB to 0dB  
in 0.5dB steps. The level of attenuation for an eight-bit code X is given by:  
0.5 (X-255) dB for 1 X 255;  
MUTE for X = 0  
PD, Rev 4.4, January 2012  
43  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R11  
7:0  
DACLVOL  
[7:0]  
11111111  
( 0dB )  
Left DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Left DAC  
Digital Volume  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
8
DACVU  
Not  
latched  
DAC left and DAC right volume do  
not update until a 1 is written to  
DACVU (in reg 11 or 12)  
R12  
7:0  
DACRVOL  
[7:0]  
11111111  
( 0dB )  
Right DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Right DAC  
Digital Volume  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
8
DACVU  
Not  
latched  
DAC left and DAC right volume do  
not update until a 1 is written to  
DACVU (in reg 11 or 12)  
Table 22 DAC Digital Volume Control  
Note: An additional gain of up to 12dB can be added using the gain block embedded in the  
digital peak limiter circuit (see DAC OUTPUT LIMITER section).  
5-BAND EQUALISER  
A 5-band graphic equalizer function which can be used to change the output frequency levels to suit  
the environment. This can be applied to the ADC or DAC path and is described in the 5-BAND  
EQUALISER section for further details on this feature.  
3-D ENHANCEMENT  
The WM8758B has an advanced digital 3-D enhancement feature which can be used to vary the  
perceived stereo separation of the left and right channels. Like the 5-band equalizer this feature can  
be applied to either the ADC record path or the DAC equalizer path but not both simultaneously.  
Refer to the 3-D STEREO ENHANCEMENT section for further details on this feature.  
DAC DIGITAL OUTPUT LIMITER  
The WM8758B has a digital output limiter function. The operation of this is shown in Figure 23. In  
this diagram the upper graph shows the envelope of the input/output signals and the lower graph  
shows the gain characteristic.  
PD, Rev 4.4, January 2012  
44  
w
Production Data  
WM8758B  
Figure 23 DAC Digital Limiter Operation  
The limiter has a programmable upper threshold which is close to 0dB. Referring to Figure 23, in  
normal operation (LIMBOOST=000 => limit only) signals below this threshold are unaffected by the  
limiter. Signals above the upper threshold are attenuated at a specific attack rate (set by the LIMATK  
register bits) until the signal falls below the threshold. The limiter also has a lower threshold 1dB  
below the upper threshold. When the signal falls below the lower threshold the signal is amplified at  
a specific decay rate (controlled by LIMDCY register bits) until a gain of 0dB is reached. Both  
threshold levels are controlled by the LIMLVL register bits. The upper threshold is 0.5dB above the  
value programmed by LIMLVL and the lower threshold is 0.5dB below the LIMLVL value.  
PD, Rev 4.4, January 2012  
45  
w
WM8758B  
Production Data  
VOLUME BOOST  
The limiter has programmable upper gain which boosts signals below the threshold to compress the  
dynamic range of the signal and increase its perceived loudness. This operates as an ALC function  
with limited boost capability. The volume boost is from 0dB to +12dB in 1dB steps, controlled by the  
LIMBOOST register bits.  
The output limiter volume boost can also be used as a stand alone digital gain boost when the limiter  
is disabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LIMATK  
DEFAULT  
DESCRIPTION  
R24  
3:0  
0010  
Limiter Attack time (per 6dB gain  
change) for 44.1kHz sampling. Note  
that these are proportionally related to  
sample rate.  
DAC digital  
limiter control  
1
0000 = 94us  
0001 = 188s  
0010 = 375us  
0011 = 750us  
0100 = 1.5ms  
0101 = 3ms  
0110 = 6ms  
0111 = 12ms  
1000 = 24ms  
1001 = 48ms  
1010 = 96ms  
1011 to 1111 = 192ms  
7:4  
LIMDCY  
0011  
Limiter Decay time (per 6dB gain  
change) for 44.1kHz sampling. Note  
that these are proportionally related to  
sample rate:  
0000 = 750us  
0001 = 1.5ms  
0010 = 3ms  
0011 = 6ms  
0100 = 12ms  
0101 = 24ms  
0110 = 48ms  
0111 = 96ms  
1000 = 192ms  
1001 = 384ms  
1010 = 768ms  
1011 to 1111 = 1.536s  
Enable the DAC digital limiter:  
0=disabled  
8
LIMEN  
0
1=enabled  
R25  
3:0  
LIMBOOST  
0000  
Limiter volume boost (can be used as a  
stand alone volume boost when  
LIMEN=0):  
DAC digital  
limiter control  
2
0000 = 0dB  
0001 = +1dB  
0010 = +2dB  
… (1dB steps)  
1011 = +11dB  
1100 = +12dB  
1101 to 1111 = reserved  
PD, Rev 4.4, January 2012  
46  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
LIMLVL  
DEFAULT  
000  
DESCRIPTION  
6:4  
Programmable signal threshold level  
(determines level at which the limiter  
starts to operate)  
000 = -1dB  
001 = -2dB  
010 = -3dB  
011 = -4dB  
100 = -5dB  
101 to 111 = -6dB  
Table 23 DAC Digital Limiter Control  
5-BAND GRAPHIC EQUALISER  
A 5-band graphic equalizer is provided, which can be applied to the ADC or DAC path, together with  
3D enhancement, under control of the EQ3DMODE register bit. The ADCs and DACs should be  
disabled before changing the EQ3DMODE bit.  
By default, the WM8758B operates in low power mode, and the DSP core runs at half of the normal  
rate. In DAC low power mode, only 2-Band equalizer functionality is permitted, where only Band 1  
(low shelf) and Band 5 (high shelf) can be used. For ADC low power, the equalizer and 3D cannot be  
used. To enable full 5-band operation, set M128ENB = 1.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R18  
EQ Control 1  
8
EQ3DMODE  
1
0 = Equaliser and 3D Enhancement  
applied to ADC path  
1 = Equaliser and 3D Enhancement  
applied to DAC path  
Table 24 EQ and 3D Enhancement DAC or ADC Path Select  
The equalizer consists of low and high frequency shelving filters (Band 1 and 5) and three peak filters  
for the centre bands. Each has adjustable cut-off or centre frequency, and selectable boost (+/- 12dB  
in 1dB steps). The peak filters have selectable bandwidth.  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ1G  
EQ1C  
DEFAULT  
DESCRIPTION  
R18  
4:0  
01100  
(0dB)  
01  
Band 1 Gain Control. See Table 30 for  
details.  
EQ Band 1  
Control  
6:5  
Band 1 Cut-off Frequency:  
00 = 80Hz  
01 = 105Hz  
10 = 135Hz  
11 = 175Hz  
Table 25 EQ Band 1 Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ2G  
DEFAULT  
DESCRIPTION  
R19  
4:0  
01100  
(0dB)  
01  
Band 2 Gain Control. See Table 30 for  
details.  
EQ Band 2  
Control  
6:5  
EQ2C  
Band 2 Centre Frequency:  
00 = 230Hz  
01 = 300Hz  
10 = 385Hz  
11 = 500Hz  
8
EQ2BW  
0
Band 2 Bandwidth Control  
0 = narrow bandwidth  
1 = wide bandwidth  
Table 26 EQ Band 2 Control  
PD, Rev 4.4, January 2012  
47  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ3G  
DEFAULT  
DESCRIPTION  
R20  
4:0  
01100  
(0dB)  
01  
Band 3 Gain Control. See Table 30 for  
details.  
EQ Band 3  
Control  
6:5  
EQ3C  
Band 3 Centre Frequency:  
00 = 650Hz  
01 = 850Hz  
10 = 1.1kHz  
11 = 1.4kHz  
8
EQ3BW  
0
Band 3 Bandwidth Control  
0 = narrow bandwidth  
1 = wide bandwidth  
Table 27 EQ Band 3 Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ4G  
DEFAULT  
DESCRIPTION  
R21  
4:0  
01100  
(0dB)  
01  
Band 4 Gain Control. See Table 30 for  
details  
EQ Band 4  
Control  
6:5  
EQ4C  
Band 4 Centre Frequency:  
00 = 1.8kHz  
01 = 2.4kHz  
10 = 3.2kHz  
11 = 4.1kHz  
8
EQ4BW  
0
Band 4 Bandwidth Control  
0 = narrow bandwidth  
1 = wide bandwidth  
Table 28 EQ Band 4 Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ5G  
EQ5C  
DEFAULT  
DESCRIPTION  
R22  
4:0  
01100  
(0dB)  
01  
Band 5 Gain Control. See Table 30 for  
details.  
EQ Band 5  
Gain Control  
6:5  
Band 5 Cut-off Frequency:  
00 = 5.3kHz  
01 = 6.9kHz  
10 = 9kHz  
11 = 11.7kHz  
Table 29 EQ Band 5 Control  
GAIN REGISTER  
GAIN  
+12dB  
+11dB  
+10dB  
00000  
00001  
00010  
…. (1dB steps)  
01100  
0dB  
-1dB  
01101  
11000 to 11111  
Table 30 Gain Register Table  
-12dB  
See also Figure 49 to Figure 66 for equaliser and high pass filter responses.  
PD, Rev 4.4, January 2012  
48  
w
Production Data  
WM8758B  
3D STEREO ENHANCEMENT  
The WM8758B has a digital 3D enhancement option to increase the perceived separation between  
the left and right channels. Selection of 3D for record or playback is controlled by register bit  
EQ3DMODE. Switching this bit from record to playback or from playback to record may only be done  
when ADC and DAC are disabled. The WM8758B control interface will only allow EQ3DMODE to be  
changed when ADC and DAC are disabled (ie ADCENL = 0, ADCENR = 0, DACENL = 0 and  
DACENR = 0).  
The DEPTH3D setting controls the degree of stereo expansion.  
When 3D enhancement is used, it may be necessary to attenuate the signal by 6dB to avoid limiting.  
In ADC low power mode (See Power Management section), the equaliser and 3D cannot be used. To  
enable 3D enhancement and 5-band EQ operation, set M128ENB = 1.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R41 (29h)  
3D Control  
3:0  
DEPTH3D[3:0]  
0000  
Stereo depth  
0000 = 0% (minimum 3D effect)  
0001 = 6.67%  
....  
1110 = 93.3%  
1111 = 100% (maximum 3D effect)  
Table 31 3D Stereo Enhancement Function  
ANALOGUE OUTPUTS  
The WM8758B has three sets of stereo analogue outputs. These are:  
LOUT1 and ROUT1 which can be used as headphone or line drivers.  
LOUT2 and ROUT2 – which can be used as headphone or line drivers.  
OUT3 and OUT4 – can be configured as a stereo line out (OUT3 is left output and  
OUT4 is right output). OUT4 can also be used to provide a mono mix of left and  
right channels.  
The outputs LOUT2 and ROUT2 are powered from AVDD2 and are capable of driving a 1V rms  
signal (AVDD1/3.3).  
LOUT1, ROUT1, OUT3 and OUT4 are powered from AVDD1.  
LOUT1, ROUT1, LOUT2 and ROUT2 have individual analogue volume PGAs with -57dB to +6dB  
gain ranges.  
There are four output mixers in the output signal path, the left and right channel mixers which control  
the signals to headphone (and optionally the line outputs) and also dedicated OUT3 and OUT4  
mixers.  
LEFT AND RIGHT OUTPUT CHANNEL MIXERS  
The left and right output channel mixers are shown in Figure 24. These mixers allow the ADC bypass  
and the DAC left and right channels to be combined as desired. This allows a mono mix of the DAC  
channels to be performed as well as mixing in speech from the input bypass path.  
The bypass inputs have individual volume control from -15dB to +6dB and the DAC volume can be  
adjusted in the digital domain if required. The output of these mixers is connected to both the stereo  
headphone drivers (LOUT1, ROUT1, LOUT2 and ROUT2) and can optionally be connected to the  
OUT3 and OUT4 mixers.  
PD, Rev 4.4, January 2012  
49  
w
WM8758B  
Production Data  
Figure 24 Left/Right Output Channel Mixers  
PD, Rev 4.4, January 2012  
50  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R43  
8
BYPL2RMIX  
0
Left bypass path (from the Left  
channel input PGA stage) to right  
output mixer  
Output mixer  
control  
0 = not selected  
1 = selected  
R43  
7
BYPR2LMIX  
0
Right bypass path (from the right  
channel input PGA stage) to Left  
output mixer  
Output mixer  
control  
0 = not selected  
1 = selected  
R49  
5
6
0
1
DACR2LMIX  
DACL2RMIX  
DACL2LMIX  
BYPL2LMIX  
Right DAC output to left output mixer  
0 = not selected  
0
0
0
0
Output mixer  
control  
1 = selected  
Left DAC output to right output mixer  
0 = not selected  
1 = selected  
R50  
Left DAC output to left output mixer  
0 = not selected  
Left channel  
output mixer  
control  
1 = selected  
Left bypass path (from the left  
channel input PGA stage) to left  
output mixer  
0 = not selected  
1 = selected  
4:2  
BYPLMIXVOL  
000  
Left bypass volume contol to output  
channel mixer:  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
R51  
0
1
DACR2RMIX  
BYPR2RMIX  
0
0
Right DAC output to right output  
mixer  
Right channel  
output mixer  
control  
0 = not selected  
1 = selected  
Right bypass path (from the right  
channel input PGA stage) to right  
output mixer  
0 = not selected  
1 = selected  
4:2  
BYPRMIXVOL  
000  
Right bypass volume control to  
output channel mixer:  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
PD, Rev 4.4, January 2012  
51  
w
WM8758B  
Production Data  
DESCRIPTION  
REGISTER  
ADDRESS  
BIT  
LABEL  
LMIXEN  
DEFAULT  
R3  
2
0
Left output channel mixer enable:  
0 = disabled  
Power  
management  
3
1= enabled  
3
RMIXEN  
0
Right output channel mixer enable:  
0 = disabled  
1 = enabled  
Table 32 Left and Right Output Mixer Control  
HEADPHONE OUTPUTS (LOUT1 AND ROUT1)  
The headphone outputs LOUT1 and ROUT1 can drive a 16or 32headphone load, either through  
DC blocking capacitors, or DC-coupled to a buffered midrail reference (LOUT2 or ROUT2), saving a  
capacitor (capless mode). When using capless mode, AVDD1 and AVDD2 should use the same  
supply to equalize supply rejection. OUT3 and OUT4 should not be used as a buffered midrail  
reference in capless mode.  
Each headphone output has an analogue volume control PGA with a gain range of -57dB to +6dB as  
shown in Figure 25.  
In order to provide common mode rejection of ground noise on the left and right outputs, a  
headphone common ground feedback option is provided. HP_COM input may be used as HPCOM  
common ground feedback signal. This signal is compared to the chip internal midrail voltage and the  
difference used as the reference input to the headphone output buffer amplifier, as shown in Figure  
25, and in more detail in the analog internal circuit diagram.  
Figure 25 Headphone Outputs LOUT1 and ROUT1  
Headphone Output using DC Blocking Capacitors: with HPCOM  
common mode feedback applied  
DC Coupled Headphone Output: no HPCOM feedback  
Figure 26 Recommended Headphone Output Configurations  
PD, Rev 4.4, January 2012  
52  
w
Production Data  
WM8758B  
When DC blocking capacitors are used, their capacitance and the load resistance together determine  
the lower cut-off frequency of the output signal, fc. Increasing the capacitance lowers fc, improving the  
bass response. Smaller capacitance values will diminish the bass response. Assuming a 16load  
and C1, C2 = 220F:  
fc = 1 / 2RLC1 = 1 / (2x 16x 220F) = 45 Hz  
The AC coupling capacitor into the HP_COM feedback input requires to be a much smaller value,  
typically 4.7uF as the internal resistance it is driving into is typically 22kohm.  
In the DC coupled configuration, the headphone pseudo-ground is connected to the buffered midrail  
reference pin (LOUT2 or ROUT2). The L/ROUT2 pins can be configured as a DC output driver by  
setting the LOUT2MUTE and ROUT2MUTE register bits. The DC voltage on VMID in this  
configuration is equal to the DC offset on the LOUT1 and ROUT1 pins therefore no DC blocking  
capacitors are required. This saves space and material cost in portable applications.  
It is not recommended to use DC-coupling to line inputs of another device. Although the built-in short  
circuit protection on the headphone outputs would be tolerant of shorts to ground, such a connection  
may be noisy, and may not function properly if the other device is grounded. DC-coupled  
configurations should only be used with headphones.  
COMMON MODE DEFAULT  
The common mode feedback mode is enabled by writing a 1 to HP_COM or LINE_COM (reg 49 bits  
7 and 8). Under normal operation these registers defaults 0 (common mode disabled). However the  
polarity of these registers can be inverted by using 2-wire control interface mode and holding the  
CSB_GPIO1 pin high. In this mode of operation HP_COM=0 enables HP common mode, and  
HP_COM=1 disables HP common mode. Similarly LINE_COM=0 enables LINE common mode and  
LINE_COM=1 disables LINE common mode. Note that if the CSB_GPIO1 is configured as a GPIO  
the operation of HP_COM and LINE_COM revert back to non-inverted operation.  
PD, Rev 4.4, January 2012  
53  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R49  
8
HP_COMEN  
0
Headphone common ground enable:  
1 = Use external common ground  
0 = use internal VMID  
0
0
Function inverts if MODE = 2-wire  
And CSB/GPIO1 = ‘hi’  
0 = Use external common ground  
1 = Use internal VMID  
R52  
7
LOUT1ZC  
Headphone volume zero cross  
enable:  
LOUT1  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left headphone output mute:  
0 = Normal operation  
1 = Mute  
Volume  
control  
6
LOUT1MUTE  
LOUT1VOL  
0
5:0  
111001  
Left headphone output volume:  
000000 = -57dB  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
7
HPVU  
LOUT1 and ROUT1 volumes do not  
update until a 1 is written to HPVU  
(in reg 52 or 53)  
Not latched  
0
R53  
ROUT1ZC  
Headphone volume zero cross  
enable:  
ROUT1  
Volume  
control  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right headphone output mute:  
0 = Normal operation  
1 = Mute  
6
ROUT1MUTE  
ROUT1VOL  
0
5:0  
Right headphone output volume:  
000000 = -57dB  
111001  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
HPVU  
LOUT1 and ROUT1 volumes do not  
update until a 1 is written to HPVU  
(in reg 52 or 53)  
Not latched  
Table 33 OUT1 Volume Control  
HEADPHONE OUTPUTS (LOUT2 AND ROUT2)  
The outputs LOUT2 and ROUT2 are designed to drive two headphone loads of 16or 32or line  
outputs (See Headphone Output and Line Output sections, respectively). Each output has an  
individual volume control PGA, a mute and an enable control bit as shown in Figure 27. LOUT2 and  
ROUT2 output the left and right channel mixer outputs respectively.  
The LOUT2/ROUT2 outputs also have the option of incorporating common ground feedback from the  
output signal ground, via a connection to the LINE_COM input. This common ground feedback signal  
should be AC-coupled via a 4.7uF capacitor as for the headphone common mode feedback path. AC  
coupling of these outputs if they are used as LINE level outputs requires similar 1 to 4.7uF AC  
coupling capacitors depending upon LINE load resistance.  
PD, Rev 4.4, January 2012  
54  
w
Production Data  
WM8758B  
Figure 27 LOUT2 and ROUT2 Headphone Configuration with Feedback  
Figure 28 LOUT2 and ROUT2 Line Output Configuration with Feedback  
The signal output on LOUT2/ROUT2 comes from the Left/Right Mixer circuits and can be any  
combination of the DAC output and the bypass path (output of the input boost stage). The  
LOUT2/ROUT2 volume is controlled by the LOUT2VOL/ ROUT2VOL register bits. Gains over 0dB  
may cause clipping if the input signal is too high. The LOUT2MUTE/ ROUT2MUTE register bits  
cause these outputs to be muted (the output DC level is driven out). The output pins remain at the  
same DC level, so that no click noise is produced when muting or un-muting.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R49  
7
LINE_COMEN  
0
Line common ground enable:  
1 = Use external common ground  
0 = use internal VMID  
0
Function inverts if MODE = 2-wire  
And CSB/GPIO1 = ‘hi’  
0 = Use external common ground  
1 = Use internal VMID  
Table 34 Line Common Control  
PD, Rev 4.4, January 2012  
55  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
LOUT2ZC  
DEFAULT  
DESCRIPTION  
R54  
7
0
LOUT2 volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left output mute:  
0 = Normal operation  
1 = Mute  
LOUT2  
Volume  
control  
6
LOUT2MUTE  
LOUT2VOL  
0
5:0  
111001  
Left output volume:  
000000 = -57dB  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
7
SPKVU  
LOUT2 and ROUT2 volumes do not  
update until a 1 is written to SPKVU  
(in reg 54 or 55)  
Not latched  
0
R55  
ROUT2ZC  
ROUT2 volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right output mute:  
0 = Normal operation  
1 = Mute  
ROUT2  
Volume  
control  
6
ROUT2MUTE  
ROUT2VOL  
0
5:0  
Right output volume:  
000000 = -57dB  
111001  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
SPKVU  
LOUT2 and ROUT2 volumes do not  
update until a 1 is written to SPKVU  
(in reg 54 or 55)  
Not latched  
Table 35 OUT2 Volume Control  
ZERO CROSS TIMEOUT  
A zero-cross timeout function is provided so that if zero cross is enabled on the input or output PGAs  
the gain will automatically update after a timeout period if a zero cross has not occurred. This is  
enabled by setting SLOWCLKEN. The timeout period is dependent on the clock input to the digital  
and is equal to 221 * SYSCLK period.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7  
0
SLOWCLKEN  
0
Slow clock enable. Used for both the  
jack insert detect debounce circuit and  
the zero cross timeout.  
Additional  
Control  
0 = slow clock disabled  
1 = slow clock enabled  
Table 36 Timeout Clock Enable Control  
PD, Rev 4.4, January 2012  
56  
w
Production Data  
WM8758B  
OUT3/OUT4 MIXERS AND OUTPUT STAGES  
The OUT3/OUT4 pins provide an additional stereo line output, a mono output, or a differential line  
output. There is a dedicated analogue mixer for OUT3 and one for OUT4 as shown in Figure 29.  
The OUT3 and OUT4 output stages are powered from AVDD1 and AGND1.  
Figure 29 OUT3 and OUT4 Mixers  
OUT3 can provide a midrail reference, a left line output, or a mono mix line output.  
OUT4 can provide a midrail reference, a right line output, or a mono mix line output.  
Note: OUT3 and OUT4 should not be used as a buffered midrail pseudo GND in capless mode.  
A 6dB attenuation function is provided for OUT4, to prevent clipping during mixing of left and right  
signals. This function is enabled by the OUT4ATTN register bit.  
PD, Rev 4.4, January 2012  
57  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R56  
6
OUT3MUTE  
0
0 = Output stage outputs OUT3 mixer  
OUT3 mixer  
control  
1 = Output stage muted – drives out  
VMID. Can be used as VMID reference  
in this mode. (Not to be used for Capless  
HP pseudo GND)  
3
2
1
0
7
6
OUT4_2OUT3  
BYPL2OUT3  
LMIX2OUT3  
LDAC2OUT3  
OUT3_2OUT4  
OUT4MUTE  
0
0
0
1
0
0
OUT4 mixer output to OUT3  
0 = disabled  
1 = enabled  
Left ADC input to OUT3  
0 = disabled  
1 = enabled  
Left DAC mixer to OUT3  
0 = disabled  
1 = enabled  
Left DAC output to OUT3  
0 = disabled  
1 = enabled  
R57  
OUT3 mixer output to OUT4  
0 = disabled  
OUT4 mixer  
control  
1 = enabled  
0 = Output stage outputs OUT4 mixer  
1 = Output stage muted – drives out  
VMID. Can be used as VMID reference  
in this mode. (Not to be used for Capless  
HP pseudo GND)  
5
4
OUT4ATTN  
LMIX2OUT4  
0
0
0 = OUT4 normal output  
1 = OUT4 attenuated by 6dB  
Left DAC mixer to OUT4  
0 = disabled  
1 = enabled  
3
2
1
0
LDAC2OUT4  
BYPR2OUT4  
RMIX2OUT4  
RDAC2OUT4  
0
0
0
1
Left DAC to OUT4  
0 = disabled  
1 = enabled  
Right ADC input to OUT4  
0 = disabled  
1 = enabled  
Right DAC mixer to OUT4  
0 = disabled  
1 = enabled  
Right DAC output to OUT4  
0 = disabled  
1 = enabled  
Table 37 OUT3/OUT4 Mixer Registers  
PD, Rev 4.4, January 2012  
58  
w
Production Data  
WM8758B  
ENABLING THE OUTPUTS  
Each analogue output of the WM8758B can be independently enabled or disabled. The analogue  
mixer associated with each output has a separate enable bit. All outputs are disabled by default. To  
save power, unused parts of the WM8758B should remain disabled.  
Outputs can be enabled at any time, but it is not recommended to do so when BUFIO is disabled  
(BUFIOEN=0), as this may cause pop noise (see “Power Management” and “Applications  
Information” sections).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
2
BUFIOEN  
0
0
0
Unused input/output bias buffer enable  
OUT3 mixer enable  
Power  
Management  
1
6
7
OUT3MIXEN  
OUT4MIXEN  
OUT4 mixer enable  
R2  
8
7
6
ROUT1EN  
LOUT1EN  
SLEEP  
0
0
0
ROUT1 output enable  
LOUT1 output enable  
Power  
Management  
2
0 = Normal device operation  
1 = Supply current reduced in device  
standby mode (see note)  
R3  
2
3
5
6
7
8
LMIXEN  
0
0
0
0
0
0
Left mixer enable  
Right mixer enable  
ROUT2 output enable  
LOUT2 output enable  
OUT3 enable  
Power  
Management  
3
RMIXEN  
ROUT2EN  
LOUT2EN  
OUT3EN  
OUT4EN  
OUT4 enable  
Note: All “Enable” bits are 1 = ON, 0 = OFF  
Table 38 Output Stages Power Management Control  
Note: The SLEEP bit R2[6] should only be used when the device is already in standby mode. The  
SLEEP bit prevents the MCLK from propagating round the device when the external MCLK signal  
cannot be removed.  
THERMAL SHUTDOWN  
To protect the WM8758B from becoming too hot, a thermal sensor has been built in. If the chip  
temperature reaches approximately 150C and the TSDEN and TSOPCTRL bit are set, then all  
outputs will be disabled to avoid further increase of the chip temperature.  
Additionally, when the device is too hot and TSDEN is set, then the WM8758B de-asserts GPIO bit  
11, a virtual GPIO that can be set up to generate an interrupt to the CPU (see “GPIO and Interrupt  
Control” section).  
REGISTER  
ADDRESS  
BIT  
LABEL  
TSDEN  
DEFAULT  
DESCRIPTION  
R49  
Output Control  
1
0
Thermal Sensor Enable  
0 = disabled  
1 = enabled  
2
TSOPCTRL  
0
Thermal Shutdown Output enable  
0 = Disabled  
1 = Enabled, i.e. all outputs will be  
disabled if TI set, i.e. temperature above  
150ºC  
Table 39 Thermal Shutdown  
UNUSED ANALOGUE INPUTS/OUTPUTS  
Whenever an analogue input/output is disabled, it remains connected to a voltage source (AVDD1/2)  
through a resistor. This helps to prevent pop noise when the output is re-enabled. The resistance  
between the voltage buffer and the output pins can be controlled using the VROI control bit. The  
default impedance is low, so that any capacitors on the outputs can charge up quickly at start-up. If a  
high impedance is desired for disabled outputs, VROI can then be set to 1, increasing the resistance  
to about 30k.  
PD, Rev 4.4, January 2012  
59  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
VROI  
DEFAULT  
DESCRIPTION  
R49  
0
0
VREF (AVDD1/2) to analogue output  
resistance  
0 = approx 1k  
1 = approx 30 k  
Table 40 Disabled Outputs to VREF Resistance  
A dedicated buffer is available for biasing unused analogue I/O pins as shown in Figure 30. This  
buffer can be enabled using the BUFIOEN register bit.  
Figure 30 summarises the bias options for the output pins.  
Figure 30 Unused Input/Output Pin Tie-off Buffers  
L/ROUT2EN/  
VROI  
OUTPUT CONFIGURATION  
OUT3/4EN  
1kto AVDD1/2  
0
0
1
0
1
X
30kto AVDD1/2  
Output enabled (DC level=AVDD1/2)  
Table 41 Unused Output Pin Bias Options  
PD, Rev 4.4, January 2012  
60  
w
Production Data  
WM8758B  
DIGITAL AUDIO INTERFACES  
The audio interface has four pins:  
ADCDAT: ADC data output  
DACDAT: DAC data input  
LRC: Data Left/Right alignment clock  
BCLK: Bit clock, for synchronisation  
The clock signals BCLK, and LRC can be outputs when the WM8758B operates as a master, or  
inputs when it is a slave (see Master and Slave Mode Operation, below).  
Five different audio data formats are supported:  
Left justified  
Right justified  
I2S  
DSP mode A  
DSP mode B  
All of these modes are MSB first. They are described in Audio Data Formats, below. Refer to the  
Electrical Characteristic section for timing information.  
MASTER AND SLAVE MODE OPERATION  
The WM8758B audio interface may be configured as either master or slave. As a master interface  
device the WM8758B generates BCLK and LRC and thus controls sequencing of the data transfer on  
ADCDAT and DACDAT. To set the device to master mode register bit MS should be set high. In  
slave mode (MS=0), the WM8758B responds with data to clocks it receives over the digital audio  
interfaces.  
In master mode, the BCLK and LRC clocks are not stopped when the ADC’s are disabled using  
register R2[1:0] and the DAC’s are disabled using register R3{[:0]. The ADCDAT pin continuously  
outputs the last word of data which was transmitted when the ADC was disabled. To prevent this in  
master mode, it is necessary to disable the ADC’s R2[1:0] and DAC’s R3{[:0] and remove the MCLK  
input clock OR by switching the digital audio interface to slave mode.  
AUDIO DATA FORMATS  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following an LRC  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequency and sample rate, there may be unused BCLK cycles before each LRC transition.  
Figure 31 Left Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRC transition.  
All other bits are transmitted before (MSB first). Depending on word length, BCLK frequency and  
sample rate, there may be unused BCLK cycles after each LRC transition.  
PD, Rev 4.4, January 2012  
61  
w
WM8758B  
Production Data  
Figure 32 Right Justified Audio Interface (assuming n-bit word length)  
In I2S mode, the MSB is available on the second rising edge of BCLK following a LRC transition. The  
other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency  
and sample rate, there may be unused BCLK cycles between the LSB of one sample and the MSB of  
the next.  
Figure 33 I2S Audio Interface (assuming n-bit word length)  
In DSP/PCM mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising  
edge of BCLK (selectable by LRP) following a rising edge of LRC. Right channel data immediately  
follows left channel data. Depending on word length, BCLK frequency and sample rate, there may be  
unused BCLK cycles between the LSB of the right channel data and the next sample.  
In device master mode, the LRC output will resemble the LRC pulse shown in Figure 34 and Figure  
35. In device slave mode, Figure 36 and Figure 37, it is possible to use any length of LRC pulse less  
than 1/fs, providing the falling edge of the LRC pulse occurs greater than one BCLK period before the  
rising edge of the next LRC pulse.  
Figure 34 DSP/PCM Mode Audio Interface (mode A, LRP=0, Master)  
PD, Rev 4.4, January 2012  
62  
w
Production Data  
WM8758B  
Figure 35 DSP/PCM Mode Audio Interface (mode B, LRP=1, Master)  
Figure 36 DSP/PCM Mode Audio Interface (mode A, LRP=0, Slave)  
Figure 37 DSP/PCM Mode Audio Interface (mode B, LRP=0, Slave)  
PD, Rev 4.4, January 2012  
63  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
MONO  
DEFAULT  
DESCRIPTION  
R4  
0
0
Selects between stereo and mono  
device operation:  
Audio  
Interface  
Control  
0 = Stereo device operation  
1 = Mono device operation. Data  
appears in ‘left’ phase of LRC.  
1
2
ADCLRSWAP  
DACLRSWAP  
0
0
Controls whether ADC data appears in  
‘right’ or ‘left’ phases of LRC clock:  
0 = ADC left data appear in ‘left’ phase  
of LRC and right data in ‘right’ phase  
1 = ADC left data appear in ‘right’ phase  
of LRC and right data in ‘left’ phase  
Controls whether DAC data appears in  
‘right’ or ‘left’ phases of LRC clock:  
0 = DAC left data appear in ‘left’ phase  
of LRC and right data in ‘right’ phase  
1 = DAC left data appear in ‘right’ phase  
of LRC and right data in ‘left’ phase  
4:3  
6:5  
7
FMT  
WL  
10  
10  
0
Audio interface Data Format Select:  
00 = Right Justified  
01 = Left Justified  
10 = I2S format  
11 = DSP/PCM mode  
Word length  
00 = 16 bits  
01 = 20 bits  
10 = 24 bits  
11 = 32 bits (see note)  
RJ, LJ & I2S modes – LRC polarity  
0 = normal LRC polarity  
1 = invert LRC polarity  
DSP Mode – mode A/B select  
LRP  
0 = MSB is available on 2nd BCLK rising  
edge after LRC rising edge (mode A)  
1 = MSB is available on 1st BCLK rising  
edge after LRC rising edge (mode B)  
8
0
BCP  
0
0
BCLK polarity  
0 = normal  
1 = inverted  
R5  
LOOPBACK  
Digital loopback function  
0 = No loopback  
1 = Loopback enabled, ADC data output  
is fed directly into DAC data input.  
Table 42 Audio Interface Control  
Note: Right Justified Mode will only operate with a maximum of 24 bits. If 32-bit mode is selected the  
device will operate in 24-bit mode.  
AUDIO INTERFACE CONTROL  
The register bits controlling audio format, word length and master / slave mode are summarised  
below.  
Register bit MS selects audio interface operation in master or slave mode. In Master mode BCLK and  
LRC are outputs. The frequency of BCLK and LRC in master mode is controlled with BCLKDIV.  
These are divided down versions of master clock. This may result in short BCLK pulses at the end of  
a LRC if there is a non-integer ratio of BCLKs to LRC clocks.  
PD, Rev 4.4, January 2012  
64  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R6  
0
MS  
0
Sets the chip to be master over LRC and  
BCLK  
Clock  
Generation  
Control  
0 = BCLK and LRC clock are inputs  
1 = BCLK and LRC clock are outputs  
generated by the WM8758B (MASTER)  
4:2  
7:5  
8
BCLKDIV  
MCLKDIV  
CLKSEL  
000  
010  
1
Configures the BCLK and LRC output  
frequency, for use when the chip is  
master over BCLK.  
000 = divide by 1 (BCLK=SYSCLK)  
001 = divide by 2 (BCLK=SYSCLK/2)  
010 = divide by 4  
011 = divide by 8  
100 = divide by 16  
101 = divide by 32  
110 = reserved  
111 = reserved  
Sets the scaling for either the MCLK or  
PLL clock output (under control of  
CLKSEL)  
000 = divide by 1  
001 = divide by 1.5  
010 = divide by 2  
011 = divide by 3  
100 = divide by 4  
101 = divide by 6  
110 = divide by 8  
111 = divide by 12  
Controls the source of the clock for all  
internal operation:  
0 = MCLK  
1 = PLL output  
Table 43 Clock Control  
The CLKSEL bit selects the internal source of the Master clock from the PLL (MCLK=1) or from  
MCLK (MCLKSEL=0). When the internal clock is switched from one source to another using the  
CLKSEL bit, the clock originally selected must generate at least one falling edge after CLKSEL has  
changed for the switching of clocks to be successful.  
EXAMPLE:  
If the PLL is the current source of the internal clock (CLKSEL=1) and it is required to switch to the  
MCLK, change CLKSEL to select MCLK (CLKSEL=0) and then disable PLL (PLLEN=0).  
LOOPBACK  
Setting the LOOPBACK register bit enables digital loopback. When this bit is set the output data  
from the ADC audio interface is fed directly into the DAC data input.  
COMPANDING  
The WM8758B supports A-law and -law companding on both transmit (ADC) and receive (DAC)  
sides. Companding can be enabled on the DAC or ADC audio interfaces by writing the appropriate  
value to the DAC_COMP or ADC_COMP register bits respectively.  
PD, Rev 4.4, January 2012  
65  
w
WM8758B  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC companding  
R5  
2:1  
ADC_COMP  
0
Companding  
Control  
00 = off  
01 = reserved  
10 = µ-law  
11 = A-law  
DAC companding  
00 = off  
4:3  
DAC_COMP  
0
0
01 = reserved  
10 = µ-law  
11 = A-law  
0 = off  
5
WL8  
1 = device operates in 8-bit mode.  
Table 44 Companding Control  
Companding involves using a piecewise linear approximation of the following equations (as set out  
by ITU-T G.711 standard) for data compression:  
-law (where =255 for the U.S. and Japan):  
F(x) = ln( 1 + |x|) / ln( 1 + )  
law (where A=87.6 for Europe):  
F(x) = A|x| / ( 1 + lnA)  
-1 x 1  
for x 1/A  
for 1/A x 1  
F(x) = ( 1 + lnA|x|) / (1 + lnA)  
The companded data is also inverted as recommended by the G.711 standard (all 8 bits are inverted  
for -law, all even data bits are inverted for A-law). The data will be transmitted as the first 8 MSB’s  
of data.  
Companding converts 13 bits (-law) or 12 bits (A-law) to 8 bits using non-linear quantization. The  
input data range is separated into 8 levels, allowing low amplitude signals better precision than that  
of high amplitude signals. This is to exploit the operation of the human auditory system, where louder  
sounds do not require as much resolution as quieter sounds. The companded signal is an 8-bit word  
containing sign (1-bit), exponent (3-bits) and mantissa (4-bits).  
Setting the WL8 register bit allows the device to operate with 8-bit data. In this mode it is possible to  
use 8 BCLK’s per LRC frame. When using DSP mode B, this allows 8-bit data words to be output  
consecutively every 8 BCLK’s and can be used with 8-bit data words using the A-law and u-law  
companding functions.  
BIT7  
BIT[6:4]  
BIT[3:0]  
SIGN  
EXPONENT  
MANTISSA  
Table 45 8-bit Companded Word Composition  
PD, Rev 4.4, January 2012  
w
66  
Production Data  
WM8758B  
u-law Companding  
1
120  
100  
80  
60  
40  
20  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Normalised Input  
Figure 38 µ-Law Companding  
A-law Companding  
1
120  
100  
80  
60  
40  
20  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.2  
0.4  
0.6  
0.8  
1
Normalised Input  
Figure 39 A-Law Companding  
PD, Rev 4.4, January 2012  
67  
w
WM8758B  
Production Data  
AUDIO SAMPLE RATES  
The WM8758B filter characteristics for the ADCs and the DACs are set using the SR register bits.  
The cutoffs for the digital filters and the ALC attack/decay times stated are determined using these  
values and assume a 256fs master clock rate.  
If a sample rate that is not explicitly supported by the SR register settings is required then the closest  
SR value to that sample rate should be chosen, the filter characteristics and the ALC attack, decay  
and hold times will scale appropriately.  
REGISTER  
ADDRESS  
BIT  
LABEL  
SR  
DEFAULT  
000  
DESCRIPTION  
R7  
3:1  
Approximate sample rate (configures the  
coefficients for the internal digital filters):  
Additional  
Control  
000 = 48kHz  
001 = 32kHz  
010 = 24kHz  
011 = 16kHz  
100 = 12kHz  
101 = 8kHz  
110-111 = reserved  
Table 46 Sample Rate Control  
MASTER CLOCK AND PHASE LOCKED LOOP (PLL)  
The WM8758B has an on-chip phase-locked loop (PLL) circuit that can be used to:  
Generate master clocks for the WM8758B audio functions from another external clock, e.g. in  
telecoms applications.  
Generate and output (on pin CSB/GPIO1) a clock for another part of the system that is derived from  
an existing audio master clock.  
Figure 40 shows the PLL and internal clocking on the WM8758B.  
The PLL can be enabled or disabled by the PLLEN register bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
5
PLLEN  
0
PLL enable  
0 = PLL off  
1 = PLL on  
Power  
management 1  
Table 47 PLLEN Control Bit  
PD, Rev 4.4, January 2012  
68  
w
Production Data  
WM8758B  
Figure 40 PLL and Clock Select Circuit  
The PLL frequency ratio R = f2/f1 (see Figure 40) can be set using the register bits PLLK and PLLN:  
PLLN = int R  
PLLK = int (224 (R-PLLN))  
EXAMPLE:  
MCLK=12MHz, required clock = 12.288MHz.  
R should be chosen to ensure 5 < PLLN < 13. There is a fixed divide by 4 in the PLL and a selectable  
divide by N after the PLL which should be set to divide by 2 to meet this requirement.  
Enabling the divide by 2 sets the required f2 = 4 x 2 x 12.288MHz = 98.304MHz.  
R = 98.304 / 12 = 8.192  
PLLN = int R = 8  
k = int ( 224 x (8.192 – 8)) = 3221225 = 3126E9h  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R36  
4
PLLPRESCALE  
0
0 = MCLK input not divided (default)  
PLL N value  
1= Divide MCLK by 2 before input to  
PLL  
3:0  
5:0  
PLLN  
1000  
0Ch  
Integer (N) part of PLL input/output  
frequency ratio. Use values greater  
than 5 and less than 13.  
R37  
PLLK [23:18]  
Fractional (K) part of PLL1  
input/output frequency ratio (treat as  
one 24-digit binary number).  
PLL K value  
1
R38  
8:0  
8:0  
PLLK [17:9]  
PLLK [8:0]  
093h  
0E9h  
PLL K Value  
2
R39  
PLL K Value  
3
Table 48 PLL Frequency Ratio Control  
PD, Rev 4.4, January 2012  
69  
w
WM8758B  
Production Data  
The PLL performs best when f2 is around 90MHz. Its stability peaks at N=8. Some example settings  
are shown below.  
MCLK DESIRED  
f2  
R
N
K
N
K REGISTERS  
R38  
OUTPUT  
(MHz)  
REGISTER  
R36[3:0]  
(MHz)  
R37  
R39  
(SYSCLK)  
(f1)  
(MHz)  
12 11.288902590.31122  
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
7.525935 7h 86A3ACh 0111 (XX7h) 000100001 (021h) 101010001 (151h) 110101100 (1ACh)  
8.192 8h 3126E8h 1000 (XX8h) 000001100 (00Ch) 010010011 (093h) 011101000 (0E8h)  
6.947446 6h F28BD4h 0110 (XX6h) 000111100 (03Ch) 101000101 (145h) 111010100 (1D4h)  
7.561846 7h 8FD525h 0111 (XX7h) 000100011 (023h) 111101010 (1Eah) 100100101 (125h)  
6.272 6h 45A1Cah 0110 (XX6h) 000010001 (011h) 011010000 (0D0h) 111001010 (1Cah)  
6.826667 6h D3A06Eh 0110 (XX6h) 000110100 (034h) 111010000 (1D0h) 001101110 (06Eh)  
9.408 9h 6872Afh 1001 (XX9h) 000011010 (01Ah) 000111001 (039h) 010101111 (0Afh)  
10.24 Ah 3D70A3h 1010 (XXAh) 000001111 (00Fh) 010111000 (0B8h) 010100011 (0A3h)  
9.178537 9h 2DB492h 1001 (XX9h) 000001011 (00Bh) 011011010 (0Dah) 010010010 (092h)  
9.990243 9h FD809Fh 1001 (XX9h) 000111111 (03Fh) 011000000 (0C0h) 010011111 (09Fh)  
9.122909 9h 1F76F7h 1001 (XX9h) 000000111 (007h) 110111011 (1BBh) 011110111 (0F7h)  
9.929697 9h EE009Eh 1001 (XX9h) 000111011 (03Bh) 100000000 (100h) 010011110 (09Eh)  
7.525935 7h 86A3ACh 0111 (XX7h) 000100001 (021h) 101010001 (151h) 110101100 (1ACh)  
8.192 8h 3126E8h 1000 (XX8h) 000001100 (00Ch) 010010011 (093h) 011101000 (0E8h)  
6.947446 6h F28BD4h 0110 (XX6h) 000111100 (03Ch) 101000101 (145h) 111010100 (1D4h)  
7.561846 7h 8FD525h 0111 (XX7h) 000100011 (023h) 111101010 (1Eah) 100100101 (125h)  
6.690133 6h B0AC93h 0110 (XX6h) 000101100 (02Ch) 001010110 (056h) 010010011 (093h)  
7.281778 7h 482296h 0111 (XX7h) 000010010 (012h) 000010001 (011h) 010010110 (096h)  
12  
13  
12.288  
11.29  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
13  
12.288  
11.29  
14.4  
14.4  
19.2  
19.2  
19.68  
19.68  
19.8  
19.8  
12.288  
11.29  
12.288  
11.29  
12.288  
11.29  
12.288  
24 11.288902590.31122  
24  
26  
26  
27  
27  
12.288  
11.29  
98.304  
90.3168  
98.304  
90.3168  
98.304  
12.288  
11.29  
12.288  
Table 49 PLL Frequency Examples  
GENERAL PURPOSE INPUT/OUTPUT  
The WM8758B has three dual purpose input/output pins.  
CSB/GPIO1: CSB / GPIO1 pin  
L2/GPIO2: Left channel line input / headphone detection input  
R2/GPIO3: Right channel line input / headphone detection input  
The GPIO2 and GPIO3 functions are provided for use as jack detection inputs.  
The GPIO1 and GPIO2 functions are provided for use as jack detection inputs or general purpose  
outputs.  
The default configuration for the CSB/GPIO1 is to be an input.  
When setup as an input, the CSB/GPIO1 pin can either be used as CSB or for jack detection,  
depending on how the MODE pin is set.  
Table 50 illustrates the functionality of the GPIO1 pin when used as a general purpose output.  
PD, Rev 4.4, January 2012  
70  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R8  
2:0  
GPIO1SEL  
000  
CSB/GPIO1 pin function select:  
GPIO  
000 = input (CSB / Jack detection:  
depending on MODE setting)  
Control  
001 = reserved  
010 = Temp ok  
011 = Amute active  
100 = PLL clk output  
101 = PLL lock  
110 = logic 0  
111 = logic 1  
3
GPIO1POL  
OPCLKDIV  
0
GPIO1 Polarity invert  
0 = Non inverted  
1 = Inverted  
5:4  
00  
PLL Output clock division ratio  
00 = divide by 1  
01 = divide by 2  
10 = divide by 3  
11 = divide by 4  
6
GPIO1GPD  
0
GPIO1 Internal pull-down enable:  
0 = Internal pull-down disabled  
1 = Internal pull-down enabled  
7
8
GPIO1GPU  
GPIO1GP  
0
0
GPIO1 Internal pull-up enable:  
0 = Internal pull-up disabled  
1 = Internal pull-up enabled  
GPIO1 Open drain enable  
0 = Open drain disabled  
1 = Open drain enabled  
Table 50 CSB/GPIO Control  
Note: If MODE is set to 3 wire mode, CSB/GPIO1 is used as CSB input irrespective of the  
GPIO1SEL[2:0] bits.  
For further details of the jack detect operation see the OUTPUT SWITCHING section.  
PD, Rev 4.4, January 2012  
71  
w
WM8758B  
Production Data  
OUTPUT SWITCHING (JACK DETECT)  
When the device is operated using a 2-wire interface the CSB/GPIO1 pin can be used as a switch  
control input to automatically disable one set of outputs and enable another. The L2/GPIO2 and  
R2/GPIO3 pins can also be used for this purpose.  
The GPIO pins have an internal de-bounce circuit when in this mode in order to prevent the output  
enables from toggling multiple times due to input glitches. This de-bounce circuit is clocked from a  
slow clock with period 221 x MCLK.  
Note that the GPIOPOL bit is not relevant for jack detection, it is the signal detected at the pin which  
is used.  
The switching on/off of the outputs is fully configurable by the user. Each output, OUT1, OUT2, OUT3  
and OUT4 has 2 associated enables. OUT1_EN_0, OUT2_EN_0, OUT3_EN_0 and OUT4_EN_0 are  
the output enable signals which are used if the selected jack detection pin is at logic 0 (after de-  
bounce). OUT1_EN_1, OUT2_EN_1, OUT3_EN_1 and OUT4_EN_1 are the output enable signals  
which are used if the selected jack detection pin is at logic 1 (after de-bounce).  
Similar to the output enables, VMID can be output to OUT3. This VMID output can be configured to  
be on/off depending on the jack detection input polarity of VMID_EN_0 and VMID_EN_1.  
The jack detection enables operate as follows:  
All OUT_EN signals have an AND function performed with their normal enable signals (in Table 38).  
When an output is normally enabled at per Table 38, the selected jack detection enable (controlled  
by selected jack detection pin polarity) is set 0, it will turn the output off. If the normal enable signal is  
already OFF (0), the jack detection signal will have no effect due to the AND function.  
During jack detection if the user desires an output to be un-changed whether the jack is in or not,  
both the JD_EN settings i.e. JD_EN0 and JD_EN1, should be set to 0000.  
The VMID_EN signal has an OR function performed with the normal VMID driver enable. If the  
VMID_EN signal is to have no effect to normal functionality when jack detection is enabled, it should  
set to 0 for all JD_EN0 or JD_EN1 settings.  
If jack detection is not enabled (JD_EN=0), the output enables default to all 1’s, allowing the outputs  
to be controlled as normal via the normal output enables found in Table 38. Similarly the VMID_EN  
signal defaults to 0 allowing the VMID driver to be controlled via the normal enable bit.  
PD, Rev 4.4, January 2012  
72  
w
Production Data  
WM8758B  
REGISTER  
ADDRESS  
BIT  
LABEL  
JD_SEL  
DEFAULT  
00  
DESCRIPTION  
R9  
5:4  
Pin selected as jack detection input  
00 = GPIO1  
GPIO control  
01 = GPIO2  
10 = GPIO3  
11 = Reserved  
6
JD_EN  
0
Jack Detection Enable  
0 = disabled  
1 = enabled  
8:7  
3:0  
JD_VMID  
JD_EN0  
00  
[7] VMID_EN_0  
[8] VMID_EN_1  
R13  
0000  
Output enables when selected jack  
detection input is logic 0.  
0000 = OUT1_EN_0  
0001 = OUT2_EN_0  
0010 = OUT3_EN_0  
0011 = OUT4_EN_0  
0100-1111 = Reserved  
7:4  
JD_EN1  
0000  
Output enables when selected jack  
detection input is logic 1  
0000-0011 = Reserved  
0100 = OUT1_EN_1  
0101 = OUT2_EN_1  
0110 = OUT3_EN_1  
0111 = OUT4_EN_1  
1000-1111 = Reserved  
Table 51 Jack Detect Register Control Bits  
CONTROL INTERFACE  
SELECTION OF CONTROL MODE AND 2-WIRE MODE ADDRESS  
The control interface can operate as either a 3-wire or 2-wire control interface. The MODE pin  
determines the 2 or 3 wire mode as shown in Table 52.  
The WM8758B is controlled by writing to registers through a serial control interface. A control word  
consists of 16 bits. The first 7 bits (B15 to B9) are register address bits that select which control  
register is accessed. The remaining 9 bits (B8 to B0) are data bits, corresponding to the 9 data bits in  
each control register.  
MODE  
Low  
INTERFACE FORMAT  
2 wire  
3 wire  
High  
Table 52 Control Interface Mode Selection  
3-WIRE SERIAL CONTROL MODE  
In 3-wire mode, every rising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on  
CSB/GPIO latches in a complete control word consisting of the last 16 bits.  
PD, Rev 4.4, January 2012  
73  
w
WM8758B  
Production Data  
Figure 41 3-Wire Serial Control Interface  
2-WIRE SERIAL CONTROL MODE  
The WM8758B supports software control via a 2-wire serial bus. Many devices can be controlled by  
the same bus, and each device has a unique 7-bit device address (this is not the same as the 7-bit  
address of each register in the WM8758B).  
The WM8758B operates as a slave device only. The controller indicates the start of data transfer with  
a high to low transition on SDIN while SCLK remains high. This indicates that a device address and  
data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight  
bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the  
address of the WM8758B, the WM8758B responds by pulling SDIN low on the next clock pulse  
(ACK). If the address is not equalized or the R/W bit is ‘1’ when operating in write only mode, the  
WM8758B returns to the idle condition and waits for a new start condition and valid address.  
During a write, once the WM8758B has acknowledged a correct address, the controller sends the  
first byte of control data (B15 to B8, i.e. the WM8758B register address plus the first bit of register  
data). The WM8758B then acknowledges the first data byte by driving SDIN low for one clock cycle.  
The controller then sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of  
register data), and the WM8758B acknowledges again by pulling SDIN low.  
Transfer is complete when there is a low to high transition on SDIN while SCLK is high. After a  
complete sequence the WM8758B returns to the idle state and waits for another start condition. If a  
start or stop condition is detected out of sequence at any point during data transfer (i.e. SDIN  
changes while SCLK is high), the control interface returns to the idle condition.  
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 7 TO 0)  
ACK  
(LOW)  
SDIN  
SCLK  
START  
STOP  
register address and  
1st register data bit  
remaining 8 bits of  
register data  
Figure 42 2-Wire Serial Control Interface  
In 2-wire mode the WM8758B has a fixed device address, 0011010.  
In 2-wire mode the CSB/GPIO1 pin controls the inversion of the HP_COM and LINE_COM register  
bits. When CSB/GPIO1 is set, these register bits are inverted (providing CSB/GPIO1 is not  
configured as a GPIO). See the section titled COMMON MODE DEFAULT for more details.  
RESETTING THE CHIP  
The WM8758B can be reset by performing a write of any value to the software reset register (address  
0h). This will cause all register values to be reset to their default values. In addition to this there is a  
Power-On Reset (POR) circuit which ensures that the registers are initially set to default when the  
device is powered up.  
PD, Rev 4.4, January 2012  
74  
w
Production Data  
WM8758B  
POWER SUPPLIES  
The WM8758B requires four separate power supplies:  
AVDD1 and AGND1: Analogue supply, powers all internal analogue functions and  
output drivers LOUT1, ROUT1, OUT3 and OUT4. AVDD1 must be between 2.5V and  
3.6V and has the most significant impact on overall power consumption (except for  
power consumed in the headphones). Higher AVDD will improve audio quality.  
AVDD2 and AGND2: Output driver supplies, power LOUT2 and ROUT2. AVDD2 must  
be between 2.5V and 3.6V. AVDD2 can be tied to AVDD1, but it requires separate  
layout and decoupling capacitors to curb harmonic distortion.  
DCVDD: Digital core supply, powers all digital functions except the audio and control  
interfaces. DCVDD must be between 1.71V and 3.6V, and has no effect on audio  
quality. The return path for DCVDD is DGND, which is shared with DBVDD.  
DBVDD must be between 1.71V and 3.6V. DBVDD return path is through DGND.  
It is possible to use the same supply voltage for all four supplies. However, digital and analogue  
supplies should be routed and decoupled separately on the PCB to keep digital switching noise out of  
the analogue signal paths.  
POWER MANAGEMENT  
SAVING POWER BY REDUCING OVERSAMPLING RATE  
The default mode of operation of the ADC and DAC digital filters is in 64x oversampling mode. Under  
the control of ADCOSR128 the oversampling rate may be doubled. 64x oversampling results in a  
slight decrease in noise performance compared to 128x but lowers the power consumption of the  
device.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R14  
ADC control  
3
ADCOSR128  
0
ADC oversample rate select  
0 = 64x (lowest power)  
1 = 128x (best SNR)  
Table 53 ADC Oversampling Rate Selection  
LOW POWER MODE  
If only DAC or ADC functionality is required, the WM8758B can be put into a low power mode. In this  
mode, the DSP core runs at half of the normal rate, reducing digital power consumption of the core  
by half. For DAC low power only, 3D enhancement with 2-Band equalizer functionality is permitted,  
where only Band 1 (low shelf) and Band 5 (high shelf) can be used. For ADC low power, the  
equalizer and 3D cannot be used.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7  
Additional Ctrl  
Table 54 DSP Core Low Power Mode Control  
8
M128ENB  
0
0 = low power mode enabled  
1 = low power mode disabled  
PD, Rev 4.4, January 2012  
75  
w
WM8758B  
Production Data  
There are 3 modes of low power operation, as detailed below. The device will not enter low power  
unless in one of these register configurations, regardless of M128ENB.  
FUNCTION  
REGISTER BITS  
M128ENB  
ADCENL  
SETTING  
DESCRIPTION  
ADC low power  
0
1
1
0
0
Either or both of ADCENL and  
ADCENR must be set (mono or  
stereo mode)  
ADCENR  
DACENL  
DACENR  
EQ3DMODE  
M128ENB  
ADCENL  
1 (DAC path)  
DAC low power  
0
0
0
1
1
Either or both of DACENL and  
DACENR must be set (mono or  
stereo mode)  
ADCENR  
DACENL  
EQ3DMODE = 0: EQ in ADC path  
EQ3DMODE = 1: EQ in DAC path  
DACENR  
Table 55 DSP Core Low Power Modes for ADC Only and DAC Only Modes  
VMID  
The analogue equalizer will not operate unless VMID is enabled. The impedance of the VMID resistor  
string, together with the decoupling capacitor on the VMID pin will determine the startup time of the  
VMID circuit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
1:0  
VMIDSEL  
00  
Reference string impedance to VMID pin  
(Determines startup time):  
Power  
management 1  
00 = off (250kVMID to AGND1)  
01 = 100kΩ  
10 = 500kΩ  
11 = 10k(for fast startup)  
Table 56 VMID Impedance Control  
BIASEN  
The analogue amplifiers will not operate unless BIASEN is enabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
3
BIASEN  
0
Analogue amplifier bias control  
0 = disabled  
Power  
management 1  
1 = enabled  
Table 57 Analogue Bias Control  
HALFOPBIAS  
HALFOPBIAS halves the bias current to the output drivers (OUT1, OUT2, OUT3). Setting  
HALFOPBIAS will reduce the quiescent current from AVDD by 0.5mA but will degrade the THD+N  
significantly.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R61  
Bias Control  
0
HALFO  
PBIAS  
0
HALFOPBIAS (Do not use)  
0 = disabled  
1 = enabled (Reduces AVDD current by  
0.5mA)  
Table 58 HALFOPBIAS Control  
Wolfson’s recommendation is: Do not use HALFOPBIAS  
PD, Rev 4.4, January 2012  
76  
w
Production Data  
WM8758B  
POP MINIMISATION  
POBCTRL  
WM8758B has two bias generators. A noisy bias derived from AVDD and a low noise bias derived  
from VMID. POBCTRL is use to switch between the two bias generators. During power up, the  
AVDD derived bias is available as soon as AVDD is applied; the VMID derived bias is available once  
the VMID node has charged up.  
VMIDTOG  
Fast VMID discharge is enabled using VMIDTOG bit. Setting to 1 opens a low impedance discharge  
path from VMID to GND. This function can be used during power down to reduce the discharge time  
of the VMID decoupling capacitor. Must be set to 0 for normal operation.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R42  
OUT4 to ADC  
2
POB  
0
POBCTRL (Use during power Up. Reset  
when VMID bias is stable)  
CTRL  
0 = Bias derived from VMID  
1 = Bias derived from AVDD  
Fast VMID discharge  
4
VMID  
TOG  
0
0 = normal operation  
1 = enabled (used during power-down  
sequence  
Table 59 POBCTRL and VMIDTOG Control  
POBCTRL should be asserted during power up to minimize pops and then de-asserted at the end of  
the power up sequence to give best performance. Refer to Recommended Power Up/Down  
Sequence  
PD, Rev 4.4, January 2012  
77  
w
WM8758B  
Production Data  
REGISTER MAP  
REGISTER  
NAME  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEF’T  
VAL  
ADDR  
B[15:9]  
DEC HEX  
(HEX)  
00  
01  
Software Reset  
Software reset  
MICBEN  
0
1
Power manage’t 1  
0
OUT4MIX OUT3MIX  
PLLEN  
BIASEN BUFIOEN  
VMIDSEL  
000  
000  
EN  
Power manage’t 2 ROUT1EN LOUT1EN  
EN  
02  
SLEEP  
BOOST  
ENR  
BOOST  
ENL  
INPGA  
ENR  
INPPGA ADCENR ADCENL  
ENL  
2
03  
04  
05  
Power manage’t 3  
Audio Interface  
Companding ctrl  
OUT4EN  
BCP  
0
OUT3EN LOUT2EN ROUT2EN  
0
RMIXEN  
LMIXEN DACENR DACENL  
DLRSWAP ALRSWAP MONO  
000  
050  
000  
3
4
5
LRP  
0
WL  
FMT  
DAC_COMP  
0
WL8  
0
ADC_COMP  
LOOP  
BACK  
MS  
06  
07  
Clock Gen ctrl  
Additional ctrl  
CLKSEL  
MCLKDIV  
0
BCLKDIV  
0
140  
000  
6
7
M128ENB  
0
0
0
SR  
0
SLOWCLK  
EN  
08  
09  
GPIO Stuff  
GPIO1GP GPIO1GPU GPIO1GPD  
OPCLKDIV  
JD_SEL  
GPIO1POL  
0
GPIO1SEL[2:0]  
0
000  
000  
000  
8
9
Jack detect control JD_VMID1 JD_VMID0 JD_EN  
0
0A DAC Control  
0
0
SOFT  
MUTE  
0
DACOSR AMUTE DACRPOL DACLPOL  
128  
10  
0B Left DAC digital Vol DACVU  
DACLVOL  
DACRVOL  
0FF  
0FF  
000  
100  
11  
12  
0C Right DAC dig’l Vol  
DACVU  
0
13 0D Jack Detect Control  
0E ADC Control  
JD_EN1  
HPFCUT  
JD_EN0  
0 ADCRPOL ADCLPOL  
HPFEN  
HPFAPP  
ADCOSR  
128  
ADCLVOL  
ADCRVOL  
14  
15 0F Left ADC Digital Vol ADCVU  
0FF  
0FF  
10  
Right ADC Digital  
Vol  
ADCVU  
16  
12  
13  
14  
15  
16  
18  
19  
EQ1 – low shelf  
EQ2 – peak 1  
EQ3 – peak 2  
EQ4 – peak 3  
EQ5 – high shelf  
DAC Limiter 1  
DAC Limiter 2  
EQ3DMODE  
EQ2BW  
EQ3BW  
EQ4BW  
0
0
0
0
0
0
EQ1C  
EQ1G  
EQ2G  
EQ3G  
EQ4G  
EQ5G  
12C  
02C  
02C  
02C  
02C  
032  
000  
000  
000  
000  
000  
038  
00B  
032  
000  
008  
18  
19  
20  
21  
22  
24  
25  
27  
28  
29  
30  
32  
33  
34  
35  
36  
EQ2C  
EQ3C  
EQ4C  
EQ5C  
LIMEN  
0
LIMDCY  
LIMLVL  
LIMATK  
LIMBOOST  
0
1B Notch Filter 1  
1C Notch Filter 2  
1D Notch Filter 3  
1E Notch Filter 4  
NFU  
NFEN  
NFA0[13:7]  
NFU  
0
0
0
NFA0[6:0]  
NFA1[13:7]  
NFA1[6:0]  
NFU  
NFU  
20  
21  
22  
23  
24  
ALC control 1  
ALC control 2  
ALC control 3  
Noise Gate  
PLL N  
ALCSEL  
0
ALCMAX  
ALCMIN  
0
ALCHLD  
ALCDCY  
ALCLVL  
ALCATK  
ALCMODE  
0
0
0
0
0
0
0
0
0
NGEN  
NGTH  
PLLPRE  
SCALE  
PLLN[3:0]  
25  
26  
27  
29  
PLL K 1  
PLL K 2  
PLL K 3  
3D control  
0
0
0
PLLK[23:18]  
00C  
093  
0E9  
000  
000  
37  
38  
39  
41  
42  
PLLK[17:9]  
PLLK[8:0]  
DEPTH3D  
2A OUT4 to ADC  
OUT4_2ADCVOL  
OUT4_2 VMIDTOG OUT2DEL POBCTRL DELEN OUT1DEL  
LNR  
2B Beep control  
BYPL2  
RMIX  
BYPR2  
LMIX  
0
0
0
0
DELEN2  
0
0
000  
43  
PD, Rev 4.4, January 2012  
78  
w
Production Data  
WM8758B  
REGISTER  
NAME  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEF’T  
VAL  
ADDR  
B[15:9]  
DEC HEX  
(HEX)  
003  
2C Input ctrl  
MICBVSEL  
0
R2_2  
RIN2  
RIP2  
0
L2_2  
LIN2  
LIP2  
44  
45  
46  
47  
48  
INPPGA  
INPPGA  
MUTEL  
INPPGA  
MUTER  
INPPGA  
INPPGA  
INPPGA  
INPPGA  
INPPGA  
2D Left INP PGA gain INPGAVU  
INPPGA  
ZCL  
INPPGAVOLL  
010  
010  
100  
100  
002  
001  
001  
039  
039  
039  
039  
001  
001  
000  
ctrl  
2E Right INP PGA gain INPGAVU  
INPPGA  
ZCR  
INPPGAVOLR  
ctrl  
2F Left ADC Boost ctrl  
PGA  
BOOSTL  
PGA  
0
L2_2BOOSTVOL  
0
0
000  
000  
30  
Right ADC Boost  
ctrl  
0
R2_2BOOSTVOL  
BOOSTR  
49 31  
Output ctrl  
HP_COM LINE_COM DACL2  
DACR2  
LMIX  
0
OUT4  
OUT3  
TSOP  
CTRL  
TSDEN  
VROI  
RMIX  
ENDEL  
ENDEL  
32  
33  
34  
35  
36  
37  
Left mixer ctrl  
Right mixer ctrl  
0
BYPLMIXVOL  
BYPL2  
LMIX  
DACL2  
LMIX  
50  
51  
52  
53  
54  
55  
0
0
BYPRMIXVOL  
BYPR2  
RMIX  
DACR2  
RMIX  
LOUT1 (HP)  
volume ctrl  
OUT1VU  
LOUT1ZC  
LOUT1  
MUTE  
LOUT1VOL  
ROUT1 (HP)  
volume ctrl  
OUT1VU ROUT1ZC ROUT1  
MUTE  
ROUT1VOL  
LOUT2VOL  
ROUT2VOL  
LOUT2 (SPK)  
volume ctrl  
OUT2VU  
LOUT2ZC  
LOUT2  
MUTE  
ROUT2 (SPK)  
volume ctrl  
OUT2VU ROUT2ZC ROUT2  
MUTE  
56 38  
OUT3 mixer ctrl  
0
0
OUT3  
MUTE  
OUT4  
MUTE  
HALF  
0
0
OUT4_  
BYPL2  
OUT3  
LMIX2  
OUT3  
RMIX2  
OUT4  
LDAC2  
OUT3  
2OUT3  
LDAC2  
OUT4  
39  
OUT4 (MONO)  
mixer ctrl  
0
OUT  
3_2OUT4  
0
OUT4  
ATTN  
0
LMIX2  
OUT4  
BYPR2  
OUT4  
RDAC2  
OUT4  
57  
61  
3D Bias Control  
BIASCUT  
BUFBIAS[1:0]  
ADCBIAS[1:0]  
HALFOP  
BIAS  
I_IPGA  
Table 59 WM8758B Register Map  
PD, Rev 4.4, January 2012  
79  
w
WM8758B  
Production Data  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
ADC Filter  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.454fs  
+/- 0.025  
UNIT  
Passband  
+/- 0.025dB  
-6dB  
0
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.546fs  
-60  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
21/fs  
ADC High Pass Filter  
High Pass Filter Corner  
Frequency  
-3dB  
3.7  
Hz  
-0.5dB  
10.4  
-0.1dB  
21.6  
DAC Filter  
Passband  
+/- 0.035dB  
-6dB  
0
0.454fs  
0.5fs  
Passband Ripple  
Stopband  
+/-0.035  
dB  
dB  
0.546fs  
-55  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
29/fs  
Table 60 Digital Filter Characteristics  
TERMINOLOGY  
1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple – any variation of the frequency response in the pass-band region  
PD, Rev 4.4, January 2012  
w
80  
Production Data  
WM8758B  
DAC FILTER RESPONSES  
3.05  
3
20  
0
2.95  
2.9  
-20  
-40  
2.85  
2.8  
-60  
-80  
2.75  
2.7  
-100  
-120  
-140  
-160  
2.65  
2.6  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
Frequency (fs)  
2
2.5  
Frequency (fs)  
Figure 43 DAC Digital Filter Frequency Response  
(128xOSR)  
Figure 44 DAC Digital Filter Ripple (128xOSR)  
20  
0
3.05  
3
2.95  
2.9  
-20  
-40  
2.85  
2.8  
-60  
-80  
2.75  
2.7  
-100  
-120  
-140  
-160  
2.65  
2.6  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
Frequency (fs)  
2
2.5  
Frequency (fs)  
Figure 45 DAC Digital Filter Frequency Response (64xOSR)  
Figure 46 DAC Digital Filter Ripple (64xOSR)  
ADC FILTER RESPONSES  
0.2  
0.15  
0.1  
0
-20  
0.05  
0
-40  
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 47 ADC Digital Filter Frequency Response  
Figure 48 ADC Digital Filter Ripple  
PD, Rev 4.4, January 2012  
81  
w
WM8758B  
Production Data  
HIGHPASS FILTER  
The WM8758B has a selectable digital highpass filter in the ADC filter path. This filter has two  
modes, audio and applications. In audio mode the filter is a 1st order IIR with a cut-off of around  
3.7Hz. In applications mode the filter is a 2nd order high pass filter with a selectable cut-off frequency.  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
Frequency (Hz)  
Figure 49 ADC Highpass Filter Response, HPFAPP=0  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
Frequency (Hz)  
Frequency (Hz)  
Figure 50 ADC Highpass Filter Responses (48kHz),  
HPFAPP=1, all cut-off settings shown.  
Figure 51 ADC Highpass Filter Responses (24kHz),  
HPFAPP=1, all cut-off settings shown.  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
200  
400  
600  
800  
1000  
1200  
Frequency (Hz)  
Figure 52 ADC Highpass Filter Responses (12kHz),  
HPFAPP=1, all cut-off settings shown.  
PD, Rev 4.4, January 2012  
82  
w
Production Data  
WM8758B  
5-BAND EQUALISER  
The WM8758B has a 5-band equalizer which can be applied to either the ADC path or the DAC path.  
The plots from Figure 53 to Figure 66 show the frequency responses of each filter with a sampling  
frequency of 48kHz, firstly showing the different cut-off/centre frequencies with a gain of 12dB, and  
secondly a sweep of the gain from -12dB to +12dB for the lowest cut-off/centre frequency of each  
filter.  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
10-1  
100  
101  
102  
103  
104  
105  
-15  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 53 EQ Band 1 Low Frequency Shelf Filter Cut-offs  
Figure 54 EQ Band 1 Gains for Lowest Cut-off Frequency  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
10-1  
100  
101  
102  
103  
104  
105  
-15  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 55 EQ Band 2 – Peak Filter Centre Frequencies,  
EQ2BW=0  
Figure 56 EQ Band 2 – Peak Filter Gains for Lowest Cut-off  
Frequency, EQ2BW=0  
15  
10  
5
0
-5  
-10  
-15  
10-2  
10-1  
100  
101  
102  
103  
104  
Frequency (Hz)  
Figure 57 EQ Band 2 – EQ2BW=0, EQ2BW=1  
PD, Rev 4.4, January 2012  
83  
w
WM8758B  
Production Data  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 58 EQ Band 3 – Peak Filter Centre Frequencies, EQ3B Figure 59 EQ Band 3 – Peak Filter Gains for Lowest Cut-off  
Frequency, EQ3BW=0  
15  
10  
5
0
-5  
-10  
-15  
10-2  
10-1  
100  
101  
102  
103  
104  
Frequency (Hz)  
Figure 60 EQ Band 3 – EQ3BW=0, EQ3BW=1  
PD, Rev 4.4, January 2012  
84  
w
Production Data  
WM8758B  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 61 EQ Band 4 – Peak Filter Centre Frequencies, EQ3B Figure 62 EQ Band 4 – Peak Filter Gains for Lowest Cut-off  
Frequency, EQ4BW=0  
15  
10  
5
0
-5  
-10  
-15  
10-2  
10-1  
100  
101  
102  
103  
104  
Frequency (Hz)  
Figure 63 EQ Band 4 – EQ3BW=0, EQ3BW=1  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 64 EQ Band 5 High Frequency Shelf Filter Cut-offs  
Figure 65 EQ Band 5 Gains for Lowest Cut-off Frequency  
PD, Rev 4.4, January 2012  
85  
w
WM8758B  
Production Data  
Figure 66 shows the result of having the gain set on more than one channel simultaneously. The  
blue traces show each band (lowest cut-off/centre frequency) with 12dB gain. The red traces show  
the cumulative effect of all bands with +12dB gain and all bands -12dB gain, with EqxBW=0 for the  
peak filters.  
20  
15  
10  
5
0
-5  
-10  
-15  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Figure 66 Cumulative Frequency Boost/Cut  
PD, Rev 4.4, January 2012  
86  
w
Production Data  
WM8758B  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 67 External Component Diagram  
PD, Rev 4.4, January 2012  
87  
w
WM8758B  
Production Data  
PACKAGE DIAGRAM  
FL: 32 PIN QFN PLASTIC PACKAGE 5 X 5 X 0.9 mm BODY, 0.50 mm LEAD PITCH  
DM101.A  
D
D2  
DETAIL 1  
32  
25  
L
1
24  
4
INDEX AREA  
(D/2 X E/2)  
EXPOSED  
GROUND  
PADDLE  
6
E2  
E
17  
8
aaa  
C
2 X  
16 15  
9
1
b
aaa  
C
2 X  
B
M
C
A
B
bbb  
e
TOP VIEW  
BOTTOM VIEW  
ccc  
C
A3  
A
5
0.08  
C
A1  
C
SIDE VIEW  
SEATING PLANE  
M
45°  
DETAIL 2  
M
0.30  
EXPOSED  
GROUND  
PADDLE  
DETAIL 1  
W
Exposed lead  
T
A3  
G
H
b
Half etch tie bar  
DETAIL 2  
Dimensions (mm)  
Symbols  
NOM  
0.90  
0.02  
MIN  
MAX  
1.00  
0.05  
NOTE  
A
A1  
A3  
b
0.80  
0
0.203 REF  
0.25  
1
0.18  
3.30  
3.30  
0.30  
3.60  
D
5.00 BSC  
2
2
D2  
E
E2  
e
3.45  
5.00 BSC  
3.45  
3.60  
0.50 BSC  
0.20  
G
H
L
0.1  
0.40  
0.103  
0.30  
0.50  
T
W
0.15  
Tolerances of Form and Position  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
REF:  
JEDEC, MO-220, VARIATION VHHD-5.  
NOTES:  
1. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.  
2. FALLS WITHIN JEDEC, MO-220, VARIATION VHHD-5.  
3. ALL DIMENSIONS ARE IN MILLIMETRES.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEDEC 95-1 SPP-002.  
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
6. REFER TO APPLICATION NOTE WAN_0118 FOR FURTHER INFORMATION REGARDING PCB FOOTPRINTS AND QFN PACKAGE SOLDERING.  
7. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
PD, Rev 4.4, January 2012  
88  
w
Production Data  
WM8758B  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the  
right to make changes to its products and specifications or to discontinue any product or service without notice. Customers  
should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer  
product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for  
such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where  
malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Any use of products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other  
intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or  
services might be or are used. Any provision or publication of any third party’s products or services does not constitute  
Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document  
belong to the respective third party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is  
not liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in  
this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or  
accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any  
reliance placed thereon by any person.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD, Rev 4.4, January 2012  
w
89  
WM8758B  
Production Data  
REVISION HISTORY  
DATE  
REV  
ORIGINATOR  
CHANGES  
12/12/11  
4.4  
JMacD  
Order codes changed from WM8758BGEFL/V and WM8758BGEFL/RV to  
WM8758CBGEFL/V and WM8758CBGEFL/RV to reflect change to copper wire  
bonding.  
12/12/11  
4.4  
JMacD  
Package diagram changed to DM101.A.  
PD, Rev 4.4, January 2012  
90  
w

相关型号:

WM8758CBGEFL/V

Stereo CODEC with Headphone Driver and Line Out
WOLFSON

WM8759

24 BIT 192KHZ STEREO DAC WITH HEADPHONE BUFFER
WOLFSON

WM8759ED

24 BIT 192KHZ STEREO DAC WITH HEADPHONE BUFFER
WOLFSON

WM8759ED/RV

24 BIT 192KHZ STEREO DAC WITH HEADPHONE BUFFER
WOLFSON

WM8759ED/V

24 BIT 192KHZ STEREO DAC WITH HEADPHONE BUFFER
WOLFSON

WM8759GED

24 BIT 192KHZ STEREO DAC WITH HEADPHONE BUFFER
WOLFSON

WM8759GED/RV

24 BIT 192KHZ STEREO DAC WITH HEADPHONE BUFFER
WOLFSON

WM8759GED/V

24 BIT 192KHZ STEREO DAC WITH HEADPHONE BUFFER
WOLFSON

WM8759_06

24-bit 192kHz Stereo DAC with Headphone Buffer
WOLFSON

WM8761

24BIT 192KHZ STEREO DAC
WOLFSON

WM8761CGED

24-bit 192kHz Stereo DAC
WOLFSON

WM8761CGED/R

24-bit 192kHz Stereo DAC
WOLFSON