WM8775 [WOLFSON]

24 BIT 96 KHZ ADC WITH 4 CHANNEL I/P MULTIPLEXER; 带4通道I / P多路复用器24位96 kHz的ADC
WM8775
型号: WM8775
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

24 BIT 96 KHZ ADC WITH 4 CHANNEL I/P MULTIPLEXER
带4通道I / P多路复用器24位96 kHz的ADC

复用器
文件: 总36页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8775  
w
24-bit, 96kHz ADC with 4 Channel I/P Multiplexer  
DESCRIPTION  
FEATURES  
Audio Performance  
The WM8775 is a high performance, stereo audio ADC  
with a 4 channel input mixer. The WM8775 is ideal for  
digitising multiple analogue sources for surround sound  
processing applications for home hi-fi, automotive and  
other audio visual equipment.  
102dB SNR (‘A’ weighted @ 48kHz)  
-90dB THD  
ADC Sampling Frequency: 32kHz – 96kHz  
Four stereo ADC inputs with analogue gain adjust from  
+24dB to –21dB in 0.5dB steps  
A stereo 24-bit multi-bit sigma delta ADC is used with a  
four stereo channel input selector. Each channel has  
programmable gain control. Digital audio output word  
lengths from 16-32 bits and sampling rates from 32kHz  
to 96kHz are supported.  
Digital gain adjust from -21.5dB to -103dB.  
Programmable Automatic Level Control (ALC) or Limiter on  
ADC input  
3-Wire SPI Compatible or 2-wire Serial Control Interface  
Master or Slave Clocking Mode  
The audio data interface supports I2S, left justified, right  
justified and DSP digital audio formats.  
Programmable Audio Data Interface Modes  
I2S, Left, Right Justified or DSP  
The device is controlled via a 2 or 3 wire serial interface.  
The interface provides access to all features including  
channel selection, volume controls, mutes, de-emphasis  
and power management facilities.  
16/20/24/32 bit Word Lengths  
2.7V to 5.5V Analogue, 2.7V to 3.6V Digital supply Operation  
5V tolerant digital inputs  
The device is available in a 28-pin SSOP package. The  
WM8775 is software compatible with the WM8776.  
APPLICATIONS  
Surround Sound AV Processors and Hi-Fi systems  
Automotive Audio  
BLOCK DIAGRAM  
W
WM8775  
AINOPL  
AINOPR  
AINVGL  
AINVGR  
AIN1L  
AIN1R  
AUDIO INTERFACE  
MCLK  
AIN2L  
AIN2R  
AIN3L  
AIN3R  
AIN4L  
AIN4R  
DOUT  
STEREO  
ADC  
ALC  
AND  
ADCLRC  
BCLK  
DIGITAL FILTERS  
VMID  
CONTROL INTERFACE  
WOLFSON MICROELECTRONICS plc  
Product Preview, June 2004, Rev 1.8  
w :: www.wolfsonmicro.com  
Copyright 2004 Wolfson Microelectronics plc  
WM8775  
Product Preview  
TABLE OF CONTENTS  
DESCRIPTION ................................................................................................................1  
FEATURES......................................................................................................................1  
BLOCK DIAGRAM ..........................................................................................................1  
PIN CONFIGURATION....................................................................................................3  
ORDERING INFORMATION ...........................................................................................3  
PIN DESCRIPTION .........................................................................................................4  
ABSOLUTE MAXIMUM RATINGS..................................................................................5  
RECOMMENDED OPERATING CONDITIONS ..............................................................5  
ELECTRICAL CHARACTERISTICS ...............................................................................6  
TERMINOLOGY......................................................................................................................7  
MASTER CLOCK TIMING...............................................................................................7  
DIGITAL AUDIO INTERFACE – MASTER MODE...................................................................7  
DIGITAL AUDIO INTERFACE – SLAVE MODE ......................................................................8  
3-WIRE MPU INTERFACE TIMING ......................................................................................10  
2-WIRE MPU INTERFACE TIMING ......................................................................................10  
DEVICE DESCRIPTION................................................................................................12  
INTRODUCTION...................................................................................................................12  
AUDIO DATA SAMPLING RATES.........................................................................................12  
POWERDOWN MODES .......................................................................................................13  
POWER-ON-RESET .............................................................................................................14  
DIGITAL AUDIO INTERFACE...............................................................................................15  
CONTROL INTERFACE OPERATION..................................................................................18  
CONTROL INTERFACE REGISTERS ..................................................................................19  
LIMITER / AUTOMATIC LEVEL CONTROL (ALC)................................................................23  
REGISTER MAP ...................................................................................................................28  
DIGITAL FILTER CHARACTERISTICS........................................................................32  
ADC FILTER RESPONSES...................................................................................................32  
ADC HIGH PASS FILTER .....................................................................................................32  
APPLICATIONS INFORMATION ..................................................................................33  
EXTERNAL CIRCUIT CONFIGURATION .............................................................................33  
RECOMMENDED EXTERNAL COMPONENTS....................................................................34  
IMPORTANT NOTICE...................................................................................................36  
ADDRESS: ............................................................................................................................36  
PP Rev 1.8, June 2004  
w
2
Product Preview  
WM8775  
PIN CONFIGURATION  
28  
27  
26  
25  
24  
23  
22  
21  
AIN1R  
AIN2L  
AIN2R  
1
AIN1L  
BCLK  
MCLK  
2
3
DOUT  
4
AIN3L  
AIN3R  
ADCLRC  
5
6
AIN4L  
DGND  
7
AIN4R  
DVDD  
MODE  
AINOPL  
AINVGL  
8
20  
19  
18  
CE  
9
10  
11  
12  
AINOPR  
AINVGR  
AGND  
DI  
CL  
NC  
17  
16  
15  
VMIDADC  
AVDD  
13  
14  
ADCREFP  
ADCREFGND  
ORDERING INFORMATION  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMP  
DEVICE  
TEMP. RANGE  
-25 to +85oC  
-25 to +85oC  
-25 to +85oC  
PACKAGE  
WM8775EDS  
WM8775EDS/R  
WM8775SEDS  
28-pin SSOP  
MSL1  
MSL1  
MSL1  
240°C  
240°C  
260°C  
28-pin SSOP  
(tape and reel)  
28-pin SSOP  
(lead free)  
28-pin SSOP  
WM8775SEDS/R  
-25 to +85oC  
MSL1  
260°C  
(lead free, tape and reel)  
Note:  
Reel quantity = 2,000  
PP Rev 1.8, June 2004  
3
w
WM8775  
Product Preview  
PIN DESCRIPTION  
PIN  
1
NAME  
AIN1L  
BCLK  
MCLK  
DOUT  
ADCLRC  
DGND  
DVDD  
MODE  
CE  
TYPE  
DESCRIPTION  
Analogue Input  
Channel 1 left input multiplexor virtual ground  
2
Digital input/output ADC audio interface bit clock  
3
Digital input  
Master ADC clock; 256, 384, 512 or 768fs (fs = word clock frequency)  
ADC data output  
4
Digital output  
5
Digital input/output ADC left/right word clock  
6
Supply  
Supply  
Digital negative supply  
7
Digital positive supply  
8
Digital Input  
Digital Input  
Serial Interface Mode select (5V tolerant)  
Serial Interface Latch signal (5V tolerant)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DI  
Digital input/output Serial interface data (5V tolerant)  
CL  
Digital input  
NC  
Serial interface clock (5V tolerant)  
No connection  
VMIDADC  
ADCREFGND  
ADCREFP  
AVDD  
Analogue Output ADC midrail divider decoupling pin; 10uF external decoupling  
Supply  
ADC negative supply and substrate connection  
Analogue Output ADC positive reference decoupling pin; 10uF external decoupling  
Supply  
Supply  
Analogue positive supply  
AGND  
Analogue negative supply and substrate connection  
Right channel multiplexor virtual ground  
AINVGR  
AINOPR  
AINVGL  
AINOPL  
AIN4R  
Analogue Input  
Analogue Output Right channel multiplexor output  
Analogue Input  
Left channel multiplexor virtual ground  
Analogue Output Left channel multiplexor output  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Channel 4 right input multiplexor virtual ground  
AIN4L  
Channel 4 left input multiplexor virtual ground  
Channel 3 right input multiplexor virtual ground  
Channel 3 left input multiplexor virtual ground  
Channel 2 right input multiplexor virtual ground  
Channel 2 left input multiplexor virtual ground  
Channel 1 right input multiplexor virtual ground  
AIN3R  
AIN3L  
AIN2R  
AIN2L  
AIN1R  
Note : Digital input pins have Schmitt trigger input buffers and pins 8, 9, 10 and 11 are 5V tolerant.  
PP Rev 1.8, June 2004  
4
w
Product Preview  
WM8775  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
CONDITION  
MIN  
-0.3V  
MAX  
+3.63V  
Digital supply voltage  
Analogue supply voltage  
-0.3V  
+7V  
Voltage range digital inputs (DI, CL, CE and MODE)  
Voltage range digital inputs (MCLK, ADCLRC and BCLK)  
Voltage range analogue inputs  
Master Clock Frequency  
DGND -0.3V  
DGND -0.3V  
AGND -0.3V  
+7V  
DVDD + 0.3V  
AVDD +0.3V  
37MHz  
Operating temperature range, TA  
Storage temperature  
-25°C  
-65°C  
+85°C  
+150°C  
Notes:  
1. Analogue and digital grounds must always be within 0.3V of each other.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
DVDD  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
3.6  
UNIT  
Digital supply range  
Analogue supply range  
Ground  
V
V
V
V
AVDD  
2.7  
5.5  
AGND, DGND  
0
0
Difference DGND to AGND  
-0.3  
+0.3  
Note: Digital supply DVDD must never be more than 0.3V greater than AVDD.  
PP Rev 1.8, June 2004  
5
w
WM8775  
Product Preview  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Logic Levels (TTL Levels)  
Input LOW level  
VIL  
VIH  
0.8  
V
V
V
V
Input HIGH level  
2.0  
Output LOW  
VOL  
VOH  
I
OL=1mA  
0.1 x DVDD  
Output HIGH  
IOH=1mA  
0.9 x DVDD  
Analogue Reference Levels  
Reference voltage  
VVMID  
RVMID  
AVDD/2  
50k  
V
Potential divider resistance  
ADC Performance  
Input Signal Level (0dB)  
1.0 x  
AVDD/5  
102  
Vrms  
dB  
SNR (Note 1,2)  
SNR (Note 1,2)  
A-weighted, 0dB gain  
@ fs = 48kHz  
93  
A-weighted, 0dB gain  
@ fs = 96kHz  
99  
dB  
64xOSR  
Dynamic Range (note 2)  
A-weighted, -60dB  
full scale input  
102  
dB  
Total Harmonic Distortion (THD)  
1 kHz, 0dBFs  
1kHz, -3dBFs  
1kHz Input  
-90  
-95  
90  
dB  
dB  
dB  
dB  
dB  
-85  
ADC Channel Separation  
Programmable Gain Step Size  
Programmable Gain Range  
(Analogue)  
0.25  
-21  
0.5  
0.75  
+24  
1kHz Input  
1kHz Input  
Programmable Gain Range  
(Digital)  
-82  
+0  
dB  
Mute Attenuation (Note 5)  
Power Supply Rejection Ratio  
1kHz Input, 0dB gain  
1kHz 100mVpp  
76  
50  
45  
dB  
dB  
dB  
PSRR  
20Hz to 20kHz  
100mVpp  
Supply Current  
Analogue supply current  
Digital supply current  
AVDD = 5V  
48  
mA  
mA  
DVDD = 3.3V  
4.5  
Notes:  
1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured ‘A’  
weighted.  
2. All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use  
such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical  
Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic  
specification values.  
3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).  
4. All performance measurement done using certain timing conditions (please refer to section ‘Digital Audio Interface’).  
5. A better MUTE Attenuation can be achieved if the ADC gain is set to minimum.  
PP Rev 1.8, June 2004  
6
w
Product Preview  
WM8775  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full scale output and the output  
with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
2. Dynamic range (dB) - DNR is a measure of the difference between the highest and lowest portions of a signal.  
Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB  
to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Stop band attenuation (dB) - Is the degree to which the frequency spectrum is attenuated (outside audio band).  
5. Channel Separation (dB) - Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Normally measured by sending a full scale signal down one channel and measuring the other.  
6. Pass-Band Ripple - Any variation of the frequency response in the pass-band region.  
MASTER CLOCK TIMING  
tMCLKL  
MCLK  
tMCLKH  
tMCLKY  
Figure 1 Master Clock Timing Requirements  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock pulse width high  
MCLK System clock pulse width low  
MCLK System clock cycle time  
MCLK Duty cycle  
tMCLKH  
tMCLKL  
tMCLKY  
11  
11  
ns  
ns  
ns  
28  
40:60  
60:40  
Table 1 Master Clock Timing Requirements  
DIGITAL AUDIO INTERFACE – MASTER MODE  
BCLK  
DVD  
Controller  
WM8775  
ADC  
ADCLRC  
DOUT  
Figure 2 Audio Interface - Master Mode  
PP Rev 1.8, June 2004  
7
w
WM8775  
Product Preview  
BCLK  
(Output)  
tDL  
ADCLRC  
(Output)  
tDDA  
DOUT  
Figure 3 Digital Audio Data Timing – Master Mode  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND=0V, DGND = 0V, TA = +25oC, Master Mode, fs = 48kHz, MCLK = 256fs unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
ADCLRC propagation delay  
from BCLK falling edge  
tDL  
0
0
10  
10  
ns  
ns  
DOUT propagation delay  
from BCLK falling edge  
tDDA  
Table 2 Digital Audio Data Timing – Master Mode  
DIGITAL AUDIO INTERFACE – SLAVE MODE  
BCLK  
DVD  
Controller  
WM8775  
ADC  
ADCLRC  
DOUT  
Figure 4 Audio Interface – Slave Mode  
PP Rev 1.8, June 2004  
8
w
Product Preview  
WM8775  
tBCH  
tBCL  
BCLK  
ADCLRC  
DOUT  
tBCY  
tDD  
tLRSU  
tLRH  
Figure 5 Digital Audio Data Timing – Slave Mode  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
50  
20  
20  
10  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
ADCLRC set-up time to  
BCLK rising edge  
tLRSU  
ADCLRC hold time from  
BCLK rising edge  
tLRH  
tDD  
10  
0
ns  
ns  
DOUT propagation delay  
from BCLK falling edge  
10  
Table 3 Digital Audio Data Timing – Slave Mode  
Note:  
ADCLRC should be synchronous with MCLK, although the WM8775 interface is tolerant of phase variations or jitter on  
these signals.  
PP Rev 1.8, June 2004  
9
w
WM8775  
Product Preview  
3-WIRE MPU INTERFACE TIMING  
tCSL  
tCSH  
CE  
tSCY  
tCSS  
tSCS  
tSCH  
tSCL  
CL  
DI  
LSB  
tDSU  
tDHO  
Figure 6 SPI Compatible Control Interface Input Timing (MODE=1)  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated  
PARAMETER  
CL rising edge to CE rising edge  
CL pulse cycle time  
SYMBOL  
tSCS  
MIN  
60  
80  
30  
30  
20  
20  
20  
20  
20  
TYP  
MAX  
UNIT  
ns  
tSCY  
ns  
CL pulse width low  
tSCL  
ns  
CL pulse width high  
tSCH  
ns  
DI to CL set-up time  
CL to DI hold time  
tDSU  
ns  
tDHO  
tCSL  
ns  
CE pulse width low  
ns  
CE pulse width high  
tCSH  
ns  
CE rising to CL rising  
tCSS  
ns  
Table 4 3-Wire SPI Compatible Control Interface Input Timing Information  
2-WIRE MPU INTERFACE TIMING  
t3  
t3  
t5  
DI  
t6  
t2  
t4  
t8  
CL  
t7  
t9  
t1  
Figure 7 Control Interface Timing – 2-Wire Serial Control Mode (MODE=0)  
PP Rev 1.8, June 2004  
10  
w
Product Preview  
WM8775  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
CL Frequency  
0
400  
kHz  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL Low Pulse-Width  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
600  
1.3  
600  
600  
100  
CL High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
DI, CL Rise Time  
300  
300  
DI, CL Fall Time  
Setup Time (Stop Condition)  
Data Hold Time  
600  
0
900  
5
Pulse width of spikes that will be suppressed  
Table 5 2-Wire Control Interface Timing Information  
PP Rev 1.8, June 2004  
11  
w
WM8775  
Product Preview  
DEVICE DESCRIPTION  
INTRODUCTION  
WM8775 is a stereo audio ADC, with a flexible four input multiplexor. It is available in a single  
package and controlled by either a 3-wire or a 2-wire interface.  
The input multiplexor to the ADC is configured to allow large signal levels to be input to the ADC,  
using external resistors to reduce the amplitude of larger signals to within the normal operating range  
of the ADC. The ADC has an analogue input PGA and a digital gain control, accessed by one  
register write. The input PGA allows input signals to be gained up to +24dB and attenuated down to -  
21dB in 0.5dB steps. The digital gain control allows attenuation from -21.5dB to -103dB in 0.5dB  
steps. This allows the user maximum flexibility in the use of the ADC.  
The Audio Interface may be configured to operate in either master or slave mode. In Slave mode  
ADCLRC and BCLK are all inputs. In Master mode ADCLRC and BCLK are outputs. The audio data  
interface supports right, left and I2S interface formats along with a highly flexible DSP serial port  
interface. Operation using system clock of 256fs, 384fs, 512fs or 768fs is provided. In Slave mode  
selection between clock rates is automatically controlled. In master mode the master clock to sample  
rate ratio is set by control bit ADCRATE. Master clock sample rates (fs) from less than 32kHz up to  
96kHz are allowed, provided the appropriate system clock is input.  
Control of internal functionality of the device is by 3-wire SPI compatible or 2-wire serial control  
interface. Either interface may be asynchronous to the audio data interface as control data will be re-  
synchronised to the audio processing internally. CE, CL, DI and MODE are 5V tolerant with TTL input  
thresholds, allowing the WM8775 to used with DVDD = 3.3V and be controlled by a controller with 5V  
output.  
AUDIO DATA SAMPLING RATES  
In a typical digital audio system there is only one central clock source producing a reference clock to  
which all audio data processing is synchronised. This clock is often referred to as the audio system’s  
Master Clock. The external master system clock can be applied directly through the MCLK input pin  
with no software configuration necessary. In a system where there are a number of possible sources  
for the reference clock it is recommended that the clock source with the lowest jitter be used to  
optimise the performance of the ADC.  
The master clock for WM8775 supports ADC audio sampling rates from 256fs to 768fs, where fs is  
the audio sampling frequency (ADCLRC) typically 32kHz, 44.1kHz, 48kHz or 96kHz. The master  
clock is used to operate the digital filters and the noise shaping circuits.  
In Slave mode, the WM8775 has a master detection circuit that automatically determines the  
relationship between the master clock frequency and the sampling rate (to within +/- 32 system  
clocks). If there is a greater than 32 clocks error the interface is disabled and maintains the output  
level at the last sample. The master clock must be synchronised with ADCLRC, although the  
WM8775 is tolerant of phase variations or jitter on this clock. Table 6 shows the typical master clock  
frequency inputs for the WM8775.  
The signal processing for the WM8775 typically operates at an oversampling rate of 128fs. For ADC  
operation at 96kHz, it is recommended that the user set the ADCOSR bit. This changes the ADC  
signal processing oversample rate to 64fs.  
SAMPLING  
RATE  
System Clock Frequency (MHz)  
256fs  
384fs  
512fs  
768fs  
(ADCLRC)  
32kHz  
44.1kHz  
48kHz  
8.192  
11.2896  
12.288  
24.576  
12.288  
16.9340  
18.432  
36.864  
16.384  
22.5792  
24.576  
24.576  
33.8688  
36.864  
96kHz  
Unavailable Unavailable  
Table 6 System Clock Frequencies Versus Sampling Rate  
PP Rev 1.8, June 2004  
12  
w
Product Preview  
WM8775  
In Master mode BCLK and ADCLRC are generated by the WM8775. The frequency of ADCLRC is  
set by setting the required ratio of MCLK to ADCLRC using the ADCRATE control bit (Table 7).  
ADCRATE[2:0]  
MCLK:ADCLRC RATIO  
010  
011  
100  
101  
256fs  
384fs  
512fs  
768fs  
Table 7 Master Mode MCLK:ADCLRC Ratio Select  
Table 8 shows the settings for ADCRATE for common sample rates and MCLK frequencies.  
SAMPLING  
RATE  
System Clock Frequency (MHz)  
256fs  
384fs  
512fs  
768fs  
(ADCLRC)  
ADCRATE  
=010  
ADCRATE  
=011  
ADCRATE  
=100  
ADCRATE  
=101  
32kHz  
44.1kHz  
48kHz  
8.192  
11.2896  
12.288  
24.576  
12.288  
16.9340  
18.432  
36.864  
16.384  
22.5792  
24.576  
24.576  
33.8688  
36.864  
96kHz  
Unavailable Unavailable  
Table 8 Master Mode ADCLRC Frequency Selection  
BCLK is also generated by the WM8775. The frequency of BCLK depends on the mode of operation.  
If using 256, 384, 512 or 768fs (ADCRATE=010, 011,100 or 101) BCLK = MCLK/4. However if DSP  
mode is selected as the audio interface mode then BCLK=MCLK.  
POWERDOWN MODES  
The WM8775 has powerdown control bits allowing specific parts of the WM8775 to be powered off  
when not being used. The 4-channel input source selector and input buffer may be powered down  
using control bit AINPD. When AINPD is set all inputs to the source selector (AIN1l/R to AIN4L/R)  
are switched to a buffered VMIDADC. Control bit ADCPD powers off the ADC and also the ADC input  
PGAs. Setting AINPD and ADCPD will powerdown everything except the references VMIDADC and  
ADCREFP. These may be powered down by setting PDWN. Setting PDWN will override all other  
powerdown control bits. It is recommended that the 4-channel input mux and buffer AINPD and  
ADCPD are powered down before setting PDWN. The default is for all powerdown bits to be 0 i.e.  
enabled.  
PP Rev 1.8, June 2004  
13  
w
WM8775  
Product Preview  
POWER-ON-RESET  
The WM8775 has an internal power-on-reset circuit. The reset phase is entered at power-up of  
supplies. The ADC DSP circuitry is also reset when their respective master clocks are stopped.  
Register values are maintained unless either a power-on-reset occurs or a software reset is written.  
A software reset will also cause a reset of the ADC DSP.  
Figure 8 shows the power-on-reset logic, and Figure 9 shows the reset release characteristics.  
Figure 8 Circuit Diagram for Power-on-Reset  
Figure 9 Timing Diagram for Power on Sequence  
PP Rev 1.8, June 2004  
14  
w
Product Preview  
WM8775  
DIGITAL AUDIO INTERFACE  
MASTER AND SLAVE MODES  
The audio interface operates in either Slave or Master mode, selectable using the MS control bit. In  
both Master and Slave modes ADCDAT is always an output. The default is Slave mode.  
In Slave mode (MS=0) ADCLRC and BCLK are inputs to the WM8775 (Figure 10). ADCLRC is  
sampled by the WM8775 on the rising edge of BCLK. ADC data is output on DOUT and changes on  
the falling edge of BCLK. By setting control bit BCLKINV the polarity of BCLK may be reversed so  
that ADCLRC is sampled on the falling edge of BCLK and DOUT changes on the rising edge of  
BCLK.  
BCLK  
DVD  
Controller  
WM8775  
ADC  
ADCLRC  
DOUT  
Figure 10 Slave Mode  
In Master mode (MS=1) ADCLRC and BCLK are outputs from the WM8775 (Figure 11). ADCLRC  
and BITCLK are generated by the WM8775. ADCDAT is output on DOUT and changes on the falling  
edge of BCLK. By setting control bit BCLKINV, the polarity of BCLK may be reversed so that DOUT  
changes on the rising edge of BCLK.  
BCLK  
DVD  
Controller  
WM8775  
ADC  
ADCLRC  
DOUT  
Figure 11 Master Mode  
PP Rev 1.8, June 2004  
15  
w
WM8775  
Product Preview  
AUDIO INTERFACE FORMATS  
Audio data output from the ADC filters, via the Digital Audio Interface. 5 popular interface formats are  
supported:  
Left Justified mode  
Right Justified mode  
I2S mode  
DSP Early mode  
DSP Late mode  
All 5 formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the  
exception of 32 bit right justified mode, which is not supported.  
In left justified, right justified and I2S modes, the digital audio interface outputs ADC data on DOUT.  
Audio Data for each stereo channel is time multiplexed with ADCLRC indicating whether the left or  
right channel is present. ADCLRC is also used as a timing reference to indicate the beginning or end  
of the data words.  
In left justified, right justified and I2S modes, the minimum number of BCLKs per ADCLRC period is 2  
times the selected word length. ADCLRC must be high for a minimum of word length BCLKs and low  
for a minimum of word length BCLKs. Any mark to space ratio on ADCLRC is acceptable provided  
the above requirements are met.  
In DSP early or DSP late mode, the ADC data may also be output, with ADCLRC used as a frame  
sync to identify the MSB of the first word. The minimum number of BCLKs per ADCLRC period is 2  
times the selected word length  
LEFT JUSTIFIED MODE  
In left justified mode, the MSB of the ADC data is output on DOUT and changes on the same falling  
edge of BCLK as ADCLRC and may be sampled on the rising edge of BCLK. ADCLRC is high during  
the left samples and low during the right samples (Figure 12).  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC  
BCLK  
DOUT  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 12 Left Justified Mode Timing Diagram  
RIGHT JUSTIFIED MODE  
In right justified mode, the LSB of the ADC data is output on DOUT and changes on the falling edge  
of BCLK preceding a ADCLRC transition and may be sampled on the rising edge of BCLK. ADCLRC  
is high during the left samples and low during the right samples (Figure 13).  
PP Rev 1.8, June 2004  
16  
w
Product Preview  
WM8775  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC  
BCLK  
DOUT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 13 Right Justified Mode Timing Diagram  
I2S MODE  
In I2S mode, the MSB of the ADC data is output on DOUT and changes on the first falling edge of  
BCLK following an ADCLRC transition and may be sampled on the rising edge of BCLK. ADCLRC is  
low during the left samples and high during the right samples.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC  
BCLK  
1 BCLK  
1 BCLK  
1
2
3
n
1
2
3
n
DOUT  
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 14 I2S Mode Timing Diagram  
DSP EARLY MODE  
The MSB of the left channel ADC data is output on DOUT and changes on the first falling edge of  
BCLK following a low to high ADCLRC transition and may be sampled on the rising edge of BCLK.  
The right channel ADC data is contiguous with the left channel data (Figure 15)  
1 BCLK  
1 BCLK  
1/fs  
ADCLRC  
BCK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
DOUT  
1
2
n
1
2
n
n-1  
n-1  
MSB  
LSB  
Word Length (WL)  
Figure 15 DSP Early Mode Timing Diagram – ADC Data Output  
PP Rev 1.8, June 2004  
17  
w
WM8775  
Product Preview  
DSP LATE MODE  
The MSB of the left channel ADC data is output on DOUT and changes on the same falling  
edge of BCLK as the low to high ADCLRC transition and may be sampled on the rising edge  
of BCLK. The right channel ADC data is contiguous with the left channel data (Figure 16).  
1/fs  
ADCLRC  
BCK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
1
2
n
1
2
n
1
n-1  
n-1  
DOUT  
MSB  
LSB  
Input Word Length (IWL)  
Figure 16 DSP Late Mode Timing Diagram – ADC Data Output  
CONTROL INTERFACE OPERATION  
The WM8775 is controlled using a 3-wire serial interface in a SPI compatible configuration or  
a 2-wire serial interface mode. The interface type is selected by the MODE pin as shown in  
Table 9.  
MODE  
Control Mode  
2 wire interface  
3 wire interface  
0
1
Table 9 Control Interface Selection via MODE pin  
The control interface is 5V tolerant, meaning that the control interface input signals CE, CL and DI as  
well as MODE may have an input high level of 5V while DVDD is 3V. Input thresholds are determined  
by DVDD.  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE  
DI is used for the program data, CL is used to clock in the program data and CE is used to latch the  
program data. DI is sampled on the rising edge of CL. The 3-wire interface protocol is shown in  
Figure 17.  
CE  
CL  
DI  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Figure 17 3-Wire SPI Compatible Interface  
1. B[15:9] are Control Address Bits  
2. B[8:0] are Control Data Bits  
3. CE is edge sensitive – the data is latched on the rising edge of CE.  
PP Rev 1.8, June 2004  
18  
w
Product Preview  
WM8775  
2-WIRE SERIAL CONTROL MODE  
The WM8775 supports software control via a 2-wire serial bus. Many devices can be controlled by  
the same bus, and each device has a unique 7-bit address (this is not the same as the 7-bit address  
of each register in the WM8775).  
The WM8775 operates as a slave device only. The controller indicates the start of data transfer with  
a high to low transition on DI while CL remains high. This indicates that a device address and data  
will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits  
on DI (7-bit address + Read/Write bit, MSB first). If the device address received matches the address  
of the WM8775 and the R/W bit is ‘0’, indicating a write, then the WM8775 responds by pulling DI low  
on the next clock pulse (ACK). If the address is not recognised or the R/W bit is ‘1’, the WM8775  
returns to the idle condition and wait for a new start condition and valid address.  
Once the WM8775 has acknowledged a correct address, the controller sends the first byte of control  
data (B15 to B8, i.e. the WM8775 register address plus the first bit of register data). The WM8775  
then acknowledges the first data byte by pulling DI low for one clock pulse. The controller then sends  
the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the WM8775  
acknowledges again by pulling DI low.  
The transfer of data is complete when there is a low to high transition on DI while CL is high. After  
receiving a complete address and data sequence the WM8775 returns to the idle state and waits for  
another start condition. If a start or stop condition is detected out of sequence at any point during  
data transfer (i.e. DI changes while CL is high), the device jumps to the idle condition.  
Figure 18 2-Wire Serial Interface  
1. B[15:9] are Control Address Bits  
2. B[8:0] are Control Data Bits  
The WM8775 has two possible device addresses, which can be selected using the CE pin.  
CE STATE  
Low  
DEVICE ADDRESS  
0011010 (0 x 34h)  
0011011 (0 x 36h)  
High  
Table 10 2-Wire MPU Interface Address Selection  
CONTROL INTERFACE REGISTERS  
DIGITAL AUDIO INTERFACE CONTROL REGISTER  
Interface format is selected via the FMT[1:0] register bits:  
REGISTER ADDRESS  
R11(0Bh)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Interface format Select  
00 : right justified mode  
01: left justified mode  
10: I2S mode  
1:0 ADCFMT  
[1:0]  
10  
0001011  
ADC Interface Control  
11: DSP (early or late) mode  
In left justified, right justified or I2S modes, the LRP register bit controls the polarity of ADCLRC. If  
this bit is set high, the expected polarity of ADCLRC will be the opposite of that shown Figure 12, 10  
and 11. Note that if this feature is used as a means of swapping the left and right channels, a 1  
sample phase difference will be introduced. In DSP modes, the LRP register bit is used to select  
between early and late modes.  
PP Rev 1.8, June 2004  
19  
w
WM8775  
Product Preview  
DESCRIPTION  
In left/right/ I2S modes:  
ADCLRC Polarity (normal)  
0 : normal ADCLRC polarity  
1: inverted ADCLRC polarity  
In DSP mode:  
REGISTER ADDRESS  
R11(0Bh)  
BIT  
LABEL  
DEFAULT  
2
ADCLRP  
0
0001011  
Interface Control  
0 : Early DSP mode  
1: Late DSP mode  
By default, ADCLRC is sampled on the rising edge of BCLK and should ideally change on the falling  
edge. Data sources that change ADCLRC on the rising edge of BCLK can be supported by setting  
the BCP register bit. Setting BCP to 1 inverts the polarity of BCLK to the inverse of that shown in  
Figures 12, 13, 14, and 15.  
REGISTER ADDRESS  
R11(0Bh)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
BCLK Polarity (DSP modes)  
0 : normal BCLK polarity  
1: inverted BCLK polarity  
3
ADCBCP  
0
0001011  
Interface Control  
The WL[1:0] bits are used to control the input word length.  
REGISTER ADDRESS  
R11(0Bh)  
BIT  
LABEL  
ADCWL  
[1:0]  
DEFAULT  
DESCRIPTION  
Word Length  
5:4  
10  
0001011  
00 : 16 bit data  
01: 20 bit data  
10: 24 bit data  
11: 32 bit data  
Interface Control  
Note:  
1. If 32-bit mode is selected in right justified mode, the WM8775 defaults to 24 bits.  
2. In 24 bit I2S mode, any width of 24 bits or less is supported provided that ADCLRC is high for a  
minimum of 24 BCLKs and low for a minimum of 24 BCLKs.  
ADC MASTER MODE  
Control bit MS selects between audio interface Master and Slave Modes. In Master mode ADCLRC  
and BCLK are outputs and are generated by the WM8775. In Slave mode ADCLRC and BCLK are  
inputs to WM8775.  
REGISTER ADDRESS  
R12(0Ch)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
8
ADCMS  
0
Audio Interface Master/Slave Mode  
select:  
0001100  
0 : Slave Mode  
1: Master Mode  
Interface Control  
MASTER MODE ADCLRC FREQUENCY SELECT  
In Master mode the WM8775 generates ADCLRC and BCLK. These clocks are derived from the  
master clock. The ratio of MCLK to ADCLRC is set by ADCRATE.  
REGISTER ADDRESS  
R12(0Ch)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
2:0 ADCRATE[2:0]  
010  
Master Mode MCLK:ADCLRC  
ratio select:  
0001100  
010: 256fs  
011: 384fs  
100: 512fs  
101: 768fs  
ADCLRC Frequency  
Select  
PP Rev 1.8, June 2004  
20  
w
Product Preview  
WM8775  
ADC OVERSAMPLING RATE SELECT  
For ADC operation at 96kHz it is recommended that the user set the ADCOSR bit. This changes the  
ADC signal processing oversample rate to 64fs.  
REGISTER ADDRESS  
R12(0Ch)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC oversampling rate select  
0: 128x oversampling  
3
ADCOSR  
0
0001100  
ADC Oversampling Rate  
1: 64x oversampling  
POWERDOWN MODE AND ADC DISABLE  
Setting the PDWN register bit immediately powers down the WM8775, including the references,  
overriding all other powerdown control bits. All trace of the previous input samples is removed, but all  
control register settings are preserved. When PDWN is cleared, the digital filters will be re-initialised.  
It is recommended that the 4-channel input mux and buffer, and ADC are powered down before  
setting PDWN.  
The ADC may also be powered down by setting the ADCPD disable bit. Setting ADCPD will disable  
the ADC and select a low power mode. The ADC digital filters will be reset and will reinitialise when  
ADCPD is reset.  
REGISTER ADDRESS  
R13(0Dh)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Power Down Mode Select:  
0 : Normal Mode  
0
PDWN  
0
0001101  
Powerdown Control  
1: Power Down Mode  
ADC Disable:  
1
6
ADCPD  
AINPD  
0
0
0 : Normal Mode  
1: Power Down Mode  
Analogue Input Disable:  
0 : Normal Mode  
1 : Power Down Mode  
ADC GAIN CONTROL  
The ADC has an analogue input PGA and digital gain control for each stereo channel. Both the  
analogue and digital gains are adjusted by the same register, LAG for the left and RAG for the right.  
The analogue PGA has a range of +24dB to -21dB in 0.5dB steps. The digital gain control allows  
further attenuation (after the ADC) from -21.5dB to -103dB in 0.5dB steps. Table 11 shows how the  
register maps the analogue and digital gains.  
LAG/RAG[7:0]  
ATTENUATION  
LEVEL  
ANALOGUE PGA  
DIGITAL  
ATTENTUATION  
00(hex)  
01(hex)  
:
-dB (mute)  
-103dB  
-21dB  
-21dB  
:
Digital mute  
-82dB  
:
:
-21.5dB  
-21dB  
:
A4(hex)  
A5(hex)  
:
-21dB  
-21dB  
:
-0.5dB  
0dB  
:
CF(hex)  
:
0dB  
0dB  
0dB  
:
:
:
FE(hex)  
FF(hex)  
+23.5dB  
+24dB  
+23.5dB  
+24dB  
0dB  
0dB  
Table 11 Analogue and Digital Gain Mapping for ADC  
Left and right inputs may also be independently muted. The LRBOTH control bit allows the user to  
write the same attenuation value to both left and right volume control registers, saving on software  
writes. The ADC volume and mute also applies to the bypass signal path.  
PP Rev 1.8, June 2004  
21  
w
WM8775  
Product Preview  
In addition a zero cross detect circuit is provided for the input PGA. When ZCLA/ZCRA is set with a  
write, the gain will update only when the input signal approaches zero (midrail). This minimises  
audible clicks and ‘zipper’ noise as the gain values change. A timeout clock is also provided which  
will generate an update after a minimum of 131072 master clocks (= ~10.5ms with a master clock of  
12.288MHz). The timeout clock may be disabled by setting TOD.  
REGISTER ADDRESS  
R7 (07h)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
3
TOD  
0
Analogue PGA Zero cross detect  
timeout disable  
0000111  
0 : Timeout enabled  
1: Timeout disabled  
Timeout Clock Disable  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R14(0Eh)  
0001110  
Attenuation  
ADCL  
7:0  
LAG[7:0]  
ZCLA  
11001111  
(0dB)  
Attenuation data for Left channel ADC gain in 0.5dB steps. See  
Table 11.  
8
0
Left channel ADC zero cross enable:  
0: Zero cross disabled  
1: Zero cross enabled  
R15(0Fh)  
0001111  
7:0  
8
RAG[7:0]  
ZCRA  
11001111  
(0dB)  
Attenuation data for right channel ADC gain in 0.5dB steps. See  
Table 11.  
Attenuation  
ADCR  
0
0
0
0
Right channel ADC zero cross enable:  
0: Zero cross disabled  
1: Zero cross enabled  
R21(15h)  
0010101  
8
7
6
LRBOTH  
MUTELA  
MUTERA  
Right channel input PGA controlled by left channel register  
0 : Right channel uses RAG.  
1 : Right channel uses LAG.  
Mute for left channel ADC  
0: Normal Operation  
ADC Input Mux  
R21(15h)  
0010101  
ADC Mute  
1: Mute ADC left  
Mute for right channel ADC  
0: Normal operation  
1: Mute ADC right  
ADC HIGHPASS FILTER DISABLE  
The ADC digital filters contain a digital high pass filter. This defaults to enabled and can be disabled  
using software control bit ADCHPD.  
REGISTER ADDRESS  
R11(0Bh)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC High pass filter disable:  
0: High pass filter enabled  
1: High pass filter disabled  
8
ADCHPD  
0
0001011  
ADC Control  
PP Rev 1.8, June 2004  
22  
w
Product Preview  
WM8775  
LIMITER / AUTOMATIC LEVEL CONTROL (ALC)  
The WM8775 has an automatic pga gain control circuit, which can function as a peak limiter or as an  
automatic level control (ALC). In peak limiter mode, a digital peak detector detects when the input  
signal goes above a predefined level and will ramp the pga gain down to prevent the signal becoming  
too large for the input range of the ADC. When the signal returns to a level below the threshold, the  
pga gain is slowly returned to its starting level. The peak limiter cannot increase the pga gain above  
its static level.  
input  
signal  
PGA  
gain  
signal  
Limiter  
after  
threshold  
PGA  
attack  
time  
decay  
time  
Figure 19 Limiter Operation  
In ALC mode, the circuit aims to keep a constant recording volume irrespective of the input signal  
level. This is achieved by continuously adjusting the PGA gain so that the signal level at the ADC  
input remains constant. A digital peak detector monitors the ADC output and changes the PGA gain  
if necessary.  
input  
signal  
PGA  
gain  
signal  
after  
ALC  
ALC  
target  
level  
hold decay  
time time  
attack  
time  
Figure 20 ALC Operation  
PP Rev 1.8, June 2004  
23  
w
WM8775  
Product Preview  
The gain control circuit is enabled by setting the LCEN control bit. The user can select between  
Limiter mode and three different ALC modes using the LCSEL control bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R17(11h)  
0010001  
8
LCEN  
0
Enable the PGA gain control circuit.  
0 = Disabled  
ALC Control 2  
R16(10h)  
1 = Enabled  
8:7  
LCSEL  
00  
LC function select  
0010000  
00 = Limiter  
ALC Control 1  
01 = ALC Right channel only  
10 = ALC Left channel only  
11 = ALC Stereo  
The limiter function only operates in stereo, which means that the peak detector takes the maximum  
of left and right channel peak values, and any new gain setting is applied to both left and right PGAs,  
so that the stereo image is preserved. However, the ALC function can also be enabled on one  
channel only. In this case, only one PGA is controlled by the ALC mechanism, while the other  
channel runs independently with its PGA gain set through the control register.  
When enabled, the threshold for the limiter or target level for the ALC is programmed using the LCT  
control bits. This allows the threshold/target level to be programmed between -1dB and -16dB in 1dB  
steps. Note that for the ALC, target levels of -1dB and -2dB give a threshold of -3dB. This is  
because the ALC can give erroneous operation if the target level is set too high.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R16(10h)  
0010000  
3:0  
LCT[3:0]  
1011  
Limiter Threshold/ALC target level in  
1dB steps.  
(-5dB)  
0000: -16dB FS  
0001: -15dB FS  
ALC Control 1  
1101: -3dB FS  
1110: -2dB FS  
1111: -1dB FS  
ATTACK AND DECAY TIMES  
The limiter and ALC have different attack and decay times which determine their operation. However,  
the attack and decay times are defined slightly differently for the limiter and for the ALC. DCY and  
ATK control the decay and attack times, respectively.  
Decay time (Gain Ramp-Up). When in ALC mode, this is defined as the time that it takes for the  
PGA gain to ramp up across 90% of its range (e.g. from –21dB up to +20 dB). When in limiter mode,  
it is defined as the time it takes for the gain to ramp up by 6dB.  
The decay time can be programmed in power-of-two (2n) steps. For the ALC this gives times from  
33.6ms, 67.2ms, 134.4ms etc. to 34.41s. For the limiter this gives times from 1.2ms, 2.4ms etc., up  
to 1.2288s.  
Attack time (Gain Ramp-Down) When in ALC mode, this is defined as the time that it takes for the  
PGA gain to ramp down across 90% of its range (e.g. from +20dB down to -21dB gain). When in  
limiter mode, it is defined as the time it takes for the gain to ramp down by 6dB.  
The attack time can be programmed in power-of-two (2n) steps, from 8.4ms, 16.8ms, 33.6ms etc. to  
8.6s for the ALC and from 250us, 500us, etc. up to 256ms.  
The time it takes for the recording level to return to its target value or static gain value therefore  
depends on both the attack/decay time and on the gain adjustment required. If the gain adjustment is  
small, it will be shorter than the attack/decay time.  
PP Rev 1.8, June 2004  
24  
w
Product Preview  
WM8775  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
LC attack (gain ramp-down) time  
R18(12h)  
0010010  
ALC  
3:0  
ATK[3:0]  
0010  
ALC mode  
Limiter Mode  
0000: 250us  
0000: 8.4ms  
Control 3  
0001: 16.8ms  
0001: 500us… 0010:  
1ms  
0010: 33.6ms…  
(time doubles with  
every step)  
(time doubles with  
every step)  
1010 or higher:  
8.6s  
1010 or higher: 256ms  
7:4  
DCY [3:0]  
0011  
LC decay (gain ramp-up) time  
ALC mode  
Limiter mode  
0000: 33.5ms  
0001: 67.2ms  
0010: 134.4ms  
0000: 1.2ms  
0001: 2.4ms  
0010: 4.8ms ….(time  
….(time doubles for doubles for every  
every step)  
step)  
1010 or higher:  
34.3ms  
1010 or higher:  
1.2288s  
TRANSIENT WINDOW (LIMITER ONLY)  
To prevent the limiter responding to to short duration high ampitude signals (such as hand-claps in a  
live performance), the limiter has a programmable transient window preventing it responding to  
signals above the threshold until their duration exceeds the window period. The Transient window is  
set in register TRANWIN.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R20(14h)  
0010100  
6:4  
TRANWIN  
[2:0]  
010  
Length of Transient Window  
000: 0us (disabled)  
001: 62.5us  
Limiter Control  
010: 125us  
…..  
111: 4ms  
ZERO CROSS  
The PGA has a zero cross detector to prevent gain changes introducing noise to the signal. In ALC  
mode the register bit ALCZC allows this to be turned off if desired.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R17(11h)  
0010001  
7
ALCZC  
0
PGA zero cross enable  
0 : disabled  
(disabled)  
ALC Control 2  
1: enabled  
MAXIMUM GAIN (ALC ONLY) AND MAXIMUM ATTENUATION  
To prevent low level signals being amplified too much by the ALC, the MAXGAIN register sets the  
upper limit for the gain. This prevents low level noise being over-amplified. The MAXGAIN register  
has no effect on the limiter operation.  
The MAXATTEN register has different operation for the limiter and for the ALC. For the limiter it  
defines the maximum attenuation below the static (user programmed) gain. For the ALC, it defines  
the lower limit for the gain.  
PP Rev 1.8, June 2004  
25  
w
WM8775  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R16(10h)  
0010000  
6:4  
MAXGAIN  
111 (+24dB) Set maximum gain for the PGA (ALC  
only)  
111 : +24dB  
110 : +20dB  
…..(-4dB steps)  
010 : +4dB  
001 : 0dB  
ALC Control 1  
000 : 0dB  
R20(14h)  
0010100  
3:0  
MAXATTEN  
0110  
Maximum attenuation of PGA  
Limiter  
ALC (lower PGA  
(attenuation  
below static)  
gain limit)  
Limiter Control  
1010 or lower  
: -1dB  
0011 or lower:  
-3dB  
1011 : -5dB  
….. (-4dB steps)  
1110 : -17dB  
1111 : -21dB  
0100: -4dB  
…. (-1dB  
steps)  
1100: -12dB  
HOLD TIME (ALC ONLY)  
The ALC also has a hold time, which is the time delay between the peak level detected being below  
target and the PGA gain beginning to ramp up. It can be programmed in power-of-two (2n) steps, e.g.  
2.67ms, 5.33ms, 10.67ms etc. up to 43.7ms. Alternatively, the hold time can also be set to zero. The  
hold time only applies to gain ramp-up, there is no delay before ramping the gain down when the  
signal level is above target.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R17(11h)  
0010001  
3:0  
HLD[3:0]  
0000  
ALC hold time before gain is  
increased.  
0000: 0ms  
ALC Control 2  
0001: 2.67ms  
0010: 5.33ms  
… (time doubles with every step)  
1111: 43.691s  
OVERLOAD DETECTOR (ALC ONLY)  
To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes an  
overload detector. If the ADC input signal exceeds 87.5% of full scale (–1.16dB), the PGA gain is  
ramped down at the maximum attack rate (as when ATK = 0000), until the signal level falls below  
87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.  
(Note: If ATK = 0000, then the overload detector makes no difference to the operation of the ALC. It  
is designed to prevent clipping when long attack times are used).  
NOISE GATE (ALC ONLY)  
When the signal is very quiet and consists mainly of noise, the ALC function may cause “noise  
pumping”, i.e. loud hissing noise during silence periods. The WM8775 has a noise gate function that  
prevents noise pumping by comparing the signal level at the AINL1/2/3/4 and/or AINR1/2/3/4 pins  
against a noise gate threshold, NGTH. The noise gate cuts in when:  
Signal level at ADC [dB] < NGTH [dB] + PGA gain [dB] + Mic Boost gain [dB]  
This is equivalent to:  
Signal level at input pin [dB] < NGTH [dB]  
PP Rev 1.8, June 2004  
26  
w
Product Preview  
WM8775  
When the noise gate is triggered, the PGA gain is held constant (preventing it from ramping up as it  
would normally when the signal is quiet).  
The table below summarises the noise gate control register. The NGTH control bits set the noise  
gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 6dB steps.  
Levels at the extremes of the range may cause inappropriate operation, so care should be taken with  
set–up of the function. Note that the noise gate only works in conjunction with the ALC function, and  
always operates on the same channel(s) as the ALC (left, right, both, or none).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R19(13h)  
0010011  
0
NGAT  
0
Noise gate function enable  
1 = enable  
Noise Gate  
Control  
0 = disable  
4:2  
NGTH[2:0]  
000  
Noise gate threshold (with respect to  
analogue input level)  
000: -78dBFS  
001: -72dBfs  
… 6 dB steps  
110: -42dBFS  
111: -36dBFS  
ADC INPUT MUX AND POWERDOWN CONTROL  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R21(15h)  
0010101  
3:0  
AMX[3:0]  
0001  
ADC input mixer control bits (see  
Table 12)  
ADC Mux and  
Powerdown  
Control  
Register bits AMX[3:0] control the left and right channel inputs into the stereo ADC. The default is  
AIN1. One bit of AMX is allocated to each stereo input pair to allow the signals to be mixed before  
being digitised by the ADC. For example, if AMX[3:0] is 0101, the input signal to the ADC will be  
(AIN1L+AIN3L) on the left channel and (AIN1R+AIN3R) on the right channel.  
However if the analogue input buffer is powered down, by setting AINPD, then all 4-channel mux  
inputs are switched to buffered VMIDADC.  
AMX[3:0]  
LEFT ADC INPUT  
RIGHT ADC INPUT  
0001  
0010  
0100  
1000  
AIN1L  
AIN2L  
AIN3L  
AIN4L  
AIN1R  
AIN2R  
AIN3R  
AIN4R  
Table 12 ADC Input Mixer Control  
AIN1L/R  
AMX[0]  
AIN2L/R  
AMX[1]  
AIN3L/R  
AMX[2]  
AIN4L/R  
AMX[3]  
Figure 21 ADC Input Mixer  
PP Rev 1.8, June 2004  
27  
w
WM8775  
Product Preview  
SOFTWARE REGISTER RESET  
Writing to register 0010111 will cause a register reset, resetting all register bits to their default  
values.  
REGISTER MAP  
The complete register map is shown below. The detailed description can be found in the relevant text of the device description. The  
WM8775 can be configured using the Control Interface. All unused bits should be set to ‘0’.  
REGISTER  
B
B
B
B
B
B
B
9
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
(HEX)  
000  
15 14 13 12 11 10  
R7 (07h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
1
0
0
1
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
0
0
0
0
0
ADCMCLK  
0
0
0
TOD  
0
0
0
R11 (0Bh)  
R12 (OCh)  
R13 (0Dh)  
R14 (0Eh)  
R15 (0Fh)  
R16 (10h)  
R17 (11h)  
R18 (12h)  
R19 (13h)  
R20 (14h)  
R21 (15h)  
R23 (17h)  
ADCHPD  
ADCMS  
0
ADCWL[1:0]  
0
ADCBCP ADCLRP  
ADCFMT[1:0]  
022  
0
ADCOSR  
0
ADCRATE[2:0]  
022  
AINPD  
0
0
0
ADCPD PWDN  
000  
ZCLA  
ZCRA  
LAG[7:0]  
RAG[7:0]  
0CF  
0CF  
LCSEL[1:0]  
MAXGAIN[2:0]  
0
LCT[3:0]  
07B  
000  
LCEN  
ALCZC  
0
0
0
HLD[3:0]  
ATK[3:0]  
0
DCY[3:0]  
032  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
1
0
1
1
0
0
0
0
0
NGTH[2:0]  
0
NGAT  
000  
TRANWIN [2:0]  
MAXATTEN [3:0]  
AMX[3:0]  
0A6  
LRBOTH  
MUTELA MUTERA  
0
001  
SOFTWARE RESET  
not reset  
PP Rev 1.8, June 2004  
28  
w
Product Preview  
WM8775  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7 (07h)  
0000111  
3
TOD  
0
ADC Analogue PGA Zero cross detect timeout disable  
0 : Timeout enabled  
Timeout Clock  
Disable  
1: Timeout disabled  
R11 (0Bh)  
0001011  
1:0  
2
ADCFMT[1:0]  
ADCLRP  
10  
0
Interface format select  
00: right justified mode  
01: left justified mode  
10: I2S mode  
Interface  
Control  
11: DSP mode  
ADCLRC Polarity or DSP Early/Late mode select  
In left/right/ I2S modes:  
ADCLRC Polarity (normal)  
0 : normal ADCLRC polarity  
1: inverted ADCLRC polarity  
BITCLK Polarity  
DSP Mode  
0: Early DSP mode  
1: Late DSP mode  
3
ADCBCP  
0
0: Normal - ADCLRC sampled on rising edge of BCLK;  
DOUT changes on falling edge of BCLK.  
1: Inverted - ADCLRC sampled on falling edge of BCLK;  
DOUT changes on rising edge of BCLK.  
5:4  
ADCWL[1:0]  
10  
Input Word Length  
00: 16-bit Mode  
01: 20-bit Mode  
10: 24-bit Mode  
11: 32-bit Mode (not supported in right justified mode)  
6
8
ADCMCLK  
ADCHPD  
0
0
ADCMCLK Polarity  
0 : non-inverted  
1: inverted  
ADC High pass Filter Disable:  
0: High pass Filter enabled  
1: High pass Filter disabled  
Master Mode MCLK:ADCLRC ratio select:  
010: 256fs  
12 (0Ch)  
0001100  
2:0  
ADCRATE[2:0]  
010  
Master Mode  
Control  
011: 384fs  
100: 512fs  
101: 768fs  
3
8
ADCOSR  
ADCMS  
0
0
ADC oversample rate select  
0: 128x oversampling  
1: 64x oversampling  
Maser/Slave interface mode select  
0: Slave Mode – ADCLRC and BCLK are inputs  
1: Master Mode – ADCLRC and BCLK are outputs  
R13 (0Dh)  
0001101  
0
1
6
PWDN  
ADCPD  
AINPD  
0
0
0
Chip Powerdown Control (works together with ADCD):  
0: All circuits running, outputs are active  
Powerdown  
Control  
1: All circuits in power save mode, outputs muted  
ADC powerdown:  
0: ADC enabled  
1: ADC disabled  
Input mux and buffer powerdown  
0: Input mux and buffer enabled  
1: Input mux and buffer powered down  
PP Rev 1.8, June 2004  
29  
w
WM8775  
Product Preview  
Attenuation data for left channel ADC gain in 0.5dB steps  
R14 (0Eh)  
0001110  
7:0  
8
LAG[7:0]  
ZCLA  
11001111  
(0dB)  
Attenuation  
ADCL  
0
Left channel ADC zero cross enable:  
0: Zero cross disabled  
1: Zero cross enabled  
R15 (0Fh)  
0001111  
7:0  
8
RAG[7:0]  
ZCRA  
11001111  
(0dB)  
Attenuation data for right channel ADC gain in 0.5dB steps  
Attenuation  
ADCR  
0
Right channel ADC zero cross enable:  
0: Zero cross disabled  
1: Zero cross enabled  
R16 (10h)  
0010000  
3:0  
LCT[3:0]  
1011  
Limiter Threshold/ALC target level in 1dB steps.  
(-5dB)  
0000: -16dB FS  
0001: -15dB FS  
ALC Control 1  
1101: -3dB FS  
1110: -2dB FS  
1111: -1dB FS  
6:4  
MAXGAIN[2:0]  
111 (+24dB) Set Maximum Gain of PGA  
111 : +24dB  
110 : +20dB  
….(-4dB steps)  
010 : +4dB  
001 : 0dB  
000 : 0dB  
8:7  
3:0  
LCSEL[1:0]  
HLD[3:0]  
00  
ALC/Limiter function select  
00 = Limiter  
01 = ALC Right channel only  
10 = ALC Left channel only  
11 = ALC Stereo (PGA registers unused)  
R17 (11h)  
0010001  
0000  
ALC hold time before gain is increased.  
0000: 0ms  
(0ms)  
ALC Control 2  
0001: 2.67ms  
0010: 5.33ms  
… (time doubles with every step)  
1111: 43.691s  
7
8
ALCZC  
LCEN  
0 (zero  
cross off)  
ALC uses zero cross detection circuit.  
0
Enable Gain control circuit.  
0 = Disable  
1 = Enable  
R18 (12h)  
0010010  
3:0  
ATK[3:0]  
0010  
ALC/Limiter attack (gain ramp-down) time  
(24ms)  
ALC mode  
Limiter Mode  
ALC Control 3  
0000: 8.4ms  
0000: 250us  
0001: 16.8ms  
0001: 500us…  
0010: 33.6ms…  
(time doubles with every step)  
1010 or higher: 8.6s  
0010: 1ms  
(time doubles with every step)  
1010 or higher: 256ms  
7:4  
DCY[3:0]  
0011  
(268ms/  
9.6ms)  
ALC/Limiter decay (gain ramp up) time  
ALC mode  
Limiter mode  
0000: 33.5ms  
0001: 67.2ms  
0000: 1.2ms  
0001: 2.4ms  
0010: 134.4ms ….(time  
doubles for every step)  
0010: 4.8ms ….(time doubles  
for every step)  
1010 or higher: 34.3ms  
1010 or higher: 1.2288s  
PP Rev 1.8, June 2004  
w
30  
Product Preview  
WM8775  
R19 (13h)  
0010011  
0
NGAT  
NGTH  
0
Noise gate enable (ALC only)  
0 : disabled  
Noise Gate  
Control  
1 : enabled  
4:2  
000  
Noise gate threshold  
000: -78dBFS  
001: -72dBfs  
… 6 dB steps  
110: -42dBFS  
111: -36dBFS  
R20 (14h)  
0010100  
3:0  
MAXATTEN  
[3:0]  
0110  
Maximum attenuation of PGA  
Limiter  
ALC  
Limiter  
Control  
(attenuation below static)  
0011 or lower: -3dB  
0100: -4dB  
(lower PGA gain limit)  
1010 or lower: -1dB  
1011 : -5dB  
…. (-1dB steps)  
….. (-4dB steps)  
1110 : -17dB  
1100 or higher: -12dB  
1111 : -21dB  
6:4  
3:0  
TRANWIN [2:0]  
010  
Length of Transient Window  
000: 0us (disabled)  
001: 62.5us  
010: 125us  
…..  
111: 4ms  
R21 (15h)  
0010101  
AMX[3:0]  
0001  
ADC left channel input mixer control bits  
ADC Mixer  
Control  
AMX[3:0]  
0001  
ADC LEFT IN  
AIN1L  
ADC RIGHT IN  
AIN1R  
0010  
AIN2L  
AIN2L  
0100  
AIN3L  
AIN3R  
1000  
AIN4L  
AIN4R  
6
7
MUTERA  
MUTELA  
0
0
Mute for right channel ADC  
0: Mute off  
1: Mute on  
Mute for left channel ADC  
0: Mute off  
1: Mute on  
8
LRBOTH  
RESET  
0
Setting LRBOTH will write the same gain value to RAG[7:0] and  
LAG[7:0].  
R23 (17h)  
0010111  
[8:0]  
Not reset  
Writing to this register will apply a reset to the device registers.  
Software  
Reset  
Table 13 Register Map Description  
PP Rev 1.8, June 2004  
31  
w
WM8775  
Product Preview  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
ADC Filter  
Passband  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4535fs  
0.01  
UNIT  
0.01 dB  
-6dB  
0
0.4892fs  
Passband ripple  
Stopband  
dB  
0.5465fs  
-65  
Stopband Attenuation  
Group Delay  
f > 0.5465fs  
dB  
fs  
22  
Table 14 Digital Filter Characteristics  
ADC FILTER RESPONSES  
0.02  
0.015  
0.01  
0
-20  
-40  
-60  
-80  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 23 ADC Digital Filter Ripple  
Figure 22 ADC Digital Filter Frequency Response  
ADC HIGH PASS FILTER  
The WM8775 has a selectable digital highpass filter to remove DC offsets. The filter response is characterised by the  
following polynomial.  
1 - z-1  
H(z) =  
1 - 0.9995z-1  
0
-5  
-10  
-15  
0
0.0005  
0.001  
Frequency (Fs)  
0.0015  
0.002  
Figure 24 ADC Highpass Filter Response  
PP Rev 1.8, June 2004  
32  
w
Product Preview  
WM8775  
APPLICATIONS INFORMATION  
EXTERNAL CIRCUIT CONFIGURATION  
In order to allow the use of 2V rms and larger inputs to the ADC inputs, a structure is used that uses  
external resistors to drop these larger voltages. This also increases the robustness of the circuit to  
external abuse such as ESD pulse. Figure 25 shows the ADC input multiplexor circuit with external  
components allowing 2Vrms inputs to be applied.  
5K  
AINOPL  
AINVGL  
10uF 10K  
AIN1L  
10uF 10K  
AIN2L  
10uF 10K  
AIN3L  
10uF 10K  
AIN4L  
SOURCE  
SELECTOR  
5K  
INPUTS  
AINOPR  
AINVGR  
10uF 10K  
AIN1R  
10uF 10K  
AIN2R  
10uF 10K  
AIN3R  
10uF 10K  
AIN4R  
Figure 25 ADC Input Multiplexor Configuration  
PP Rev 1.8, June 2004  
33  
w
WM8775  
Product Preview  
RECOMMENDED EXTERNAL COMPONENTS  
PP Rev 1.8, June 2004  
34  
w
Product Preview  
WM8775  
PACKAGE DIMENSIONS  
DS: 28 PIN SSOP (10.2 x 5.3 x 1.75 mm)  
DM007.D  
b
e
28  
15  
E1  
E
GAUGE  
PLANE  
Θ
14  
1
D
0.25  
L
c
A1  
L1  
A A2  
-C-  
0.10 C  
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
0.05  
1.65  
0.22  
0.09  
9.90  
MAX  
A
A1  
A2  
b
c
D
e
E
E1  
L
2.0  
0.25  
1.85  
0.38  
0.25  
10.50  
-----  
1.75  
0.30  
-----  
10.20  
0.65 BSC  
7.80  
7.40  
5.00  
0.55  
8.20  
5.60  
0.95  
5.30  
0.75  
L1  
θ
0.125 REF  
0o  
4o  
8o  
JEDEC.95, MO-150  
REF:  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.  
D. MEETS JEDEC.95 MO-150, VARIATION = AH. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PP Rev 1.8, June 2004  
35  
w
WM8775  
Product Preview  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation  
of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM’s  
standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support  
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used  
by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical  
components in life support devices or systems without the express written approval of an officer of the company. Life  
support devices or systems are devices or systems that are intended for surgical implant into the body, or support or  
sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be  
reasonably expected to result in a significant injury to the user. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that  
any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual  
property right of WM covering or relating to any combination, machine, or process in which such products or services might  
be or are used. WM’s publication of information regarding any third party’s products or services does not constitute WM’s  
approval, license, warranty or endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for any such use.  
Resale of WM’s products or services with statements different from or beyond the parameters stated by WM for that  
product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and  
deceptive business practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PP Rev 1.8, June 2004  
36  
w

相关型号:

WM8775EDS

24 BIT 96 KHZ ADC WITH 4 CHANNEL I/P MULTIPLEXER
WOLFSON

WM8775EDS/R

24 BIT 96 KHZ ADC WITH 4 CHANNEL I/P MULTIPLEXER
WOLFSON

WM8775SEDS

24 BIT 96 KHZ ADC WITH 4 CHANNEL I/P MULTIPLEXER
WOLFSON

WM8775SEDS/R

24-bit, 96kHz ADC with 4 Channel I/P Multiplexer
WOLFSON

WM8775SEDS/RV

ADC, Delta-Sigma, 24-Bit, 1 Func, CMOS, PDSO28,
CIRRUS

WM8775_06

24-bit, 96kHz ADC with 4 Channel I/P Multiplexer
WOLFSON

WM8776

24 BIT 192KHZ STEREO CODEC WITH 5 CHANNEL I/P MULTIPLEXER
WOLFSON

WM8776EFT

PCM Codec, 1-Func, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC, TQFP-48
CIRRUS

WM8776EFT

24 BIT 192KHZ STEREO CODEC WITH 5 CHANNEL I/P MULTIPLEXER
WOLFSON

WM8776EFT/R

PCM Codec, 1-Func, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC, TQFP-48
CIRRUS

WM8776EFT/RV

PCM Codec, 1-Func, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC, TQFP-48
CIRRUS

WM8776EFT/V

PCM Codec, 1-Func, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC, TQFP-48
CIRRUS