WM8786_07 [WOLFSON]

24-Bit, 192kHz Stereo ADC; 24位, 192kHz立体声ADC
WM8786_07
型号: WM8786_07
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

24-Bit, 192kHz Stereo ADC
24位, 192kHz立体声ADC

文件: 总24页 (文件大小:267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8786  
w
24-Bit, 192kHz Stereo ADC  
DESCRIPTION  
FEATURES  
SNR 111dB (‘A’ weighted @ 48kHz)  
THD -102dB (at -0.1dB)  
Sampling Frequency: 8 – 192kHz  
Hardware Control Interface  
The WM8786 is a stereo audio ADC with differential inputs  
designed for high performance recordable media applications.  
Data is provided as a PCM output.  
Stereo 24-bit multi-bit sigma-delta ADCs are used with digital  
audio output word lengths of 16 to 32 bits, and sampling rates  
from 8kHz to 192kHz. The device also has a high pass filter to  
remove residual DC offsets.  
Master or Slave Clocking Mode  
Programmable Audio Data Interface Modes  
-
-
I2S, Left, Right Justified or DSP  
24-Bit Word Length  
Supply Voltages  
The device is hardware controlled. Pin programming provides  
access to all features including oversampling rate, audio format,  
-
-
Analogue 4.5 to 5.5V  
Digital core: 2.7V to 3.6V  
powerdown, master/slave  
control  
and digital  
signal  
20-lead SSOP package  
manipulation. The device is supplied in a 20-lead SSOP  
package.  
APPLICATIONS  
Recordable DVD Players  
Personal Video Recorders  
High End Sound Cards  
Studio Audio Processing Equipment  
BLOCK DIAGRAM  
Production Data, February 2007, Rev 4.2  
WOLFSON MICROELECTRONICS plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
Copyright 2007 Wolfson Microelectronics plc  
WM8786  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
BLOCK DIAGRAM .................................................................................................1  
TABLE OF CONTENTS .........................................................................................2  
PIN CONFIGURATION...........................................................................................3  
ORDERING INFORMATION ..................................................................................3  
PIN DESCRIPTION ................................................................................................4  
ABSOLUTE MAXIMUM RATINGS.........................................................................5  
RECOMMENDED OPERATING CONDITIONS .....................................................5  
ELECTRICAL CHARACTERISTICS ......................................................................6  
TERMINOLOGY............................................................................................................ 7  
SIGNAL TIMING REQUIREMENTS.......................................................................8  
SYSTEM CLOCK TIMING ............................................................................................. 8  
AUDIO INTERFACE TIMING – MASTER MODE, PCM DATA ...................................... 8  
AUDIO INTERFACE TIMING – SLAVE MODE, PCM DATA ......................................... 9  
POWER-ON RESET ................................................................................................... 10  
DIGITAL FILTER CHARACTERISTICS...............................................................11  
TERMINOLOGY.......................................................................................................... 11  
HIGH PASS FILTER TRANSFER CHARACTERISTIC................................................ 11  
FILTER RESPONSES..........................................................................................12  
DEVICE DESCRIPTION.......................................................................................16  
INTRODUCTION......................................................................................................... 16  
DIGITAL AUDIO INTERFACE..................................................................................... 16  
AUDIO INTERFACE CONTROL.................................................................................. 19  
OVERSAMPLING RATIOS AND SIGMA-DELTA MODULATOR FREQUENCY.......... 19  
MASTER CLOCK AND AUDIO SAMPLE RATES........................................................ 20  
MLCK AND LRCLK PHASE RELATIONSHIP.............................................................. 20  
APPLICATIONS INFORMATION .........................................................................21  
RECOMMENDED EXTERNAL COMPONENTS.......................................................... 21  
RECOMMENDED PCB LAYOUT ................................................................................ 22  
PACKAGE DIMENSIONS ....................................................................................23  
IMPORTANT NOTICE..........................................................................................24  
ADDRESS: .................................................................................................................. 24  
PD Rev 4.2 February 2007  
w
2
Production Data  
WM8786  
PIN CONFIGURATION  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
AINL+  
AINL-  
AINR+  
AINR-  
VREF  
VREFGND  
AVDD  
VMID  
DGND  
AGND  
LRCLK  
DVDD  
OSR1  
DOUT  
BCLK  
MCLK  
MS0  
OSR0  
AUDIOF1  
AUDIOF0  
ORDERING INFORMATION  
ORDER CODE  
TEMPERATURE  
RANGE  
PACKAGE  
MOISTURE SENSITIVITY  
LEVEL  
PEAK SOLDERING  
TEMPERATURE  
WM8786GEDS/V  
-25°C to +85°C  
20-lead SSOP  
(Pb-free)  
MSL3  
260oC  
WM8786GEDS/RV  
-25°C to +85°C  
20-lead SSOP,  
(Pb-free, tape and reel)  
MSL3  
260oC  
Note:  
Reel quantity = 2,000  
PD Rev 4.2 February 2007  
3
w
WM8786  
Production Data  
PIN DESCRIPTION  
PIN  
1
NAME  
AINL+  
TYPE  
Analogue Input  
Analogue Input  
Analogue Reference  
Supply  
DESCRIPTION  
Left Channel Positive Input  
2
AINL-  
Left Channel Negative Input  
Negative Reference Connection  
Analogue Supply  
3
VREFGND  
AVDD  
4
5
AGND  
Supply  
Analogue Ground (return path for AVDD)  
Audio Interface Left / Right Clock  
ADC Digital Audio Data  
6
LRCLK  
DOUT  
Digital Input / Output  
Digital Output  
Digital Input / Output  
Digital Input  
7
8
BCLK  
Audio Interface Bit Clock  
Master Clock  
9
MCLK  
10  
MS0  
Digital Input  
Master/Slave Control  
(pull down pad)  
0 = Slave Mode Audio Interface  
1 = Master Mode Audio Interface @ 256fs (or @128fs in quad rate)  
Audio Format Selection  
11  
12  
AUDIOF0  
AUDIOF1  
Digital Input  
Digital Input  
00 = 24 bit right justified audio data format  
01 = 24 bit left audio data format  
10 = I2S audio data format  
11 = DSP audio data format  
Oversampling Rate Control  
13  
14  
OSR0  
(pull down pad)  
OSR1  
Digital Input  
Digital Input  
00 = Single rate (48kHz)  
01 = Dual rate (96kHz)  
10 = Quad rate (192kHz)  
11 = Not valid  
15  
16  
17  
18  
19  
20  
DVDD  
DGND  
VMID  
Supply  
Supply  
Digital Supply  
Digital Ground (return path for DVDD)  
Midrail Voltage Decoupling Capacitor  
Reference Voltage Decoupling Capacitor  
Right Channel Negative Input  
Right Channel Positive Input  
Analogue Output  
Analogue Reference  
Analogue Input  
Analogue Input  
VREF  
AINR-  
AINR+  
PD Rev 4.2 February 2007  
4
w
Production Data  
WM8786  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically  
susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling  
and storage of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+3.63V  
Digital supply voltage  
Analogue supply voltage  
Voltage range digital inputs  
Voltage range analogue inputs  
Master Clock Frequency  
-0.3V  
+7V  
DGND -0.3V  
AGND -0.3V  
40  
DVDD + 0.3V  
AVDD +0.3V  
MHz  
Operating temperature range, TA  
Storage temperature after soldering  
Notes  
-25°C  
-65°C  
+85°C  
+150°C  
1. Analogue and digital grounds must always be within 0.3V of each other.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Digital supply range  
Analogue supply range  
Ground  
DVDD  
AVDD  
2.7  
4.5  
3.6  
5.5  
V
V
V
DGND,AGND  
0
PD Rev 4.2 February 2007  
5
w
WM8786  
Production Data  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
DVDD = 3.3V, AVDD = 5.0V, TA = +25oC, 1kHz signal, A-weighted, fs = 48kHz, MCLK = 256fs, 24-bit audio data, Slave Mode  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC Performance  
Full Scale Input Signal Level  
(for ADC 0dB Input)  
Input resistance  
2.0  
Vrms  
10  
k
pF  
dB  
Input capacitance  
10  
Signal to Noise Ratio (Note  
1,2,4)  
SNR  
SNR  
SNR  
THD  
A-weighted,  
@ fs = 48kHz  
Unweighted,  
@ fs = 48kHz  
A-weighted,  
102  
111  
108  
111  
108  
111  
108  
dB  
dB  
dB  
dB  
dB  
Signal to Noise Ratio (Note  
1,2,4)  
@ fs = 96kHz  
Unweighted,  
@ fs = 96kHz  
A-weighted,  
Signal to Noise Ratio (Note  
1,2,4)  
@ fs = 192kHz  
Unweighted,  
@ fs = 192kHz  
Total Harmonic Distortion  
Total Harmonic Distortion  
1kHz, -0.1dB Full Scale  
@ fs = 48kHz  
-102  
-102  
-92  
dB  
dB  
dB  
%
1kHz, -0.1dB Full Scale  
@ fs = 96kHz  
1kHz, -0.1dB Full Scale  
@ fs = 192kHz  
-102  
THD  
1kHz, -0.1dB Full Scale  
@ fs = 48kHz  
0.0008  
0.0008  
0.0008  
0.0025  
1kHz, -0.1dB Full Scale  
@ fs = 96kHz  
%
1kHz, -0.1dB Full Scale  
@ fs = 192kHz  
%
Dynamic Range  
DNR  
-60dBFS  
102  
111  
0.1  
50  
dB  
dB  
dB  
Channel Level Matching  
Power Supply Rejection Ratio  
20kHz signal  
PSRR  
1kHz 100mVpp, applied  
to AVDD, DVDD  
20Hz to 20kHz  
100mVpp  
45  
dB  
Digital Logic Levels (CMOS Levels)  
Input LOW level  
VIL  
VIH  
0.3 x DVDD  
+1  
V
V
Input HIGH level  
0.7 x DVDD  
-1  
Input leakage current  
Input capacitance  
0.2  
5
µA  
pF  
V
Output LOW  
VOL  
VOH  
I
OL=1mA  
0.1 x DVDD  
Output HIGH  
I
OH= -1mA  
0.9 x DVDD  
V
Analogue Reference Levels  
Midrail Reference Voltage  
VMID  
RVMID  
VREF  
AVDD to VMID and  
VMID to VREFGND  
–3%  
50  
AVDD/2  
k
+3%  
+3%  
V
V
Potential Divider Resistance  
Buffered Reference Voltage  
AVDD to VMID and  
VMID to GND  
–3%  
0.8 x AVDD  
PD Rev 4.2 February 2007  
6
w
Production Data  
WM8786  
Test Conditions  
DVDD = 3.3V, AVDD = 5.0V, TA = +25oC, 1kHz signal, A-weighted, fs = 48kHz, MCLK = 256fs, 24-bit audio data, Slave Mode  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply Current  
Analogue supply current  
Digital supply current  
Power Down  
27  
5
mA  
mA  
uA  
22  
Note:  
1. VMID is decoupled with 10uF and 0.1uF capacitors close to the device package. Smaller capacitors may reduce  
performance.  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) – Ratio of output level with 1kHz full scale input, to the output level with all zeros into the  
digital input, over a 20Hz to 20kHz bandwidth. (No Auto-zero or Automute function is employed in achieving these  
results).  
2. Dynamic range (dB) - DR is a measure of the difference between the highest and lowest portions of a signal.  
Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB  
to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Channel Separation (dB) - Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Normally measured by sending a full scale signal down one channel and measuring the other.  
5. All performance measurements are done with a 20kHz low pass filter, and where noted an A-weight filter, except  
where noted. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings  
than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although this is not  
audible, it may affect dynamic specification values.  
PD Rev 4.2 February 2007  
w
7
WM8786  
Production Data  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
Figure 1 System Clock Timing Requirements  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock cycle time  
MCLK duty cycle  
TMCLKY  
25  
ns  
TMCLKDS  
60:40  
40:60  
AUDIO INTERFACE TIMING – MASTER MODE, PCM DATA  
Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, Master Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
LRCLK propagation delay from BCLK falling edge  
DOUT propagation delay from BCLK falling edge  
t
DL 0  
10  
ns  
tDDA  
0
11  
ns  
PD Rev 4.2 February 2007  
8
w
Production Data  
WM8786  
AUDIO INTERFACE TIMING – SLAVE MODE, PCM DATA  
Figure 3 Digital Audio Data Timing – Slave Mode  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
25  
ns  
LRCLK set-up time to BCLK rising edge  
LRCLK hold time from BCLK rising edge  
DOUT propagation delay from BCLK falling edge  
t
LRSU 10  
LRH 10  
tDD  
ns  
ns  
t
0
11  
ns  
PD Rev 4.2 February 2007  
9
w
WM8786  
Production Data  
POWER-ON RESET  
The WM8786 has an internal power-on reset circuit. The reset sequence is entered at power-on or  
power-up (DVDD). Until the internal reset is removed, DOUT is forced to zero. DOUT remains zero  
for a count equal to 32 sample clocks, after power up. (This count is driven by MCLK and is  
independent of any external LRCLK).  
Figure 4 POR Circuit  
Figure 5 POR Timing  
PD Rev 4.2 February 2007  
10  
w
Production Data  
WM8786  
DIGITAL FILTER CHARACTERISTICS  
The WM8786 digital filter characteristics scale with sample rate.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.454fs  
+/- 0.005  
UNIT  
ADC Sample Rate (Single Rate - 48Hz typically)  
Passband  
+/- 0.005dB  
0
-6dB  
0.5fs  
Passband Ripple  
Stopband  
dB  
0.546fs  
-85  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
dB  
s
32/fs  
0.5fs  
ADC Sample Rate (Dual Rate - 96kHz typically)  
Passband  
+/- 0.005dB  
0
0.454fs  
-6dB  
Passband Ripple  
Stopband  
+/- 0.005  
dB  
0.546fs  
-85  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
dB  
s
32/fs  
ADC Sample Rate (Quad Rate - 192kHz typically)  
Passband  
+/- 0.005dB  
-3dB  
0
0.25fs  
0.45fs  
0.5fs  
-6dB  
Passband Ripple  
Stopband  
+/- 0.005  
dB  
dB  
0.75fs  
-85  
Stopband Attenuation  
Group Delay  
f > 0.75fs  
10 s  
/fs  
ADC High Pass Filter  
Corner Frequency  
-3dB  
3.7  
Hz  
-0.5dB  
10.4  
-0.1dB  
21.6  
Table 1 Digital Filter Characteristics  
TERMINOLOGY  
1. Stop Band Attenuation (dB) - the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple – any variation of the frequency response in the pass-band region  
HIGH PASS FILTER TRANSFER CHARACTERISTIC  
The high pass filter response is defined by the following polynomial:  
1-z-1  
H(z) =  
1-(1-α)z-1  
where α = 2-11 for single rate (48k) mode  
α = 2-12 for dual rate (96k) mode  
α = 2-13 for quad rate (192k) mode  
PD Rev 4.2 February 2007  
11  
w
WM8786  
Production Data  
FILTER RESPONSES  
SINGLE RATE 48k  
0
-20  
-40  
-60  
-80  
-100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (Fs)  
Figure 6 Single Rate 48k Filter Response  
0
-20  
-40  
-60  
-80  
-100  
0.4  
0.45  
0.5  
0.55  
0.6  
Frequency (Fs)  
Figure 7 Single Rate 48k Filter Response  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (Fs)  
Figure 8 Single Rate 48k Filter Response  
PD Rev 4.2 February 2007  
12  
w
Production Data  
WM8786  
DUAL RATE 96k  
0
-20  
-40  
-60  
-80  
-100  
.5 00  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (Fs)  
Figure 9 Dual Rate 96k Filter Response  
0
-20  
-40  
-60  
-80  
-100  
0.4  
0.45  
0.5  
0.55  
0.6  
Frequency (Fs)  
Figure 10 Dual Rate 96k Filter Response  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
0
0.1  
0.2  
Frequency (Fs)  
0.3  
0.4  
0.5  
Figure 11 Dual Rate 96k Filter Response  
PD Rev 4.2 February 2007  
13  
w
WM8786  
Production Data  
QUAD RATE 192k  
0
-20  
-40  
-60  
-80  
-100  
.5 00  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (Fs)  
Figure 12 Quad Rate 192k Filter Response  
0
-20  
-40  
-60  
-80  
-100  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency (Fs)  
Figure 13 Quad Rate 192k Filter Response  
-2.5  
-2.6  
-2.7  
-2.8  
-2.9  
-3  
-3.1  
-3.2  
-3.3  
-3.4  
-3.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (Fs)  
Figure 14 Quad Rate 192k Filter Response  
PD Rev 4.2 February 2007  
14  
w
Production Data  
WM8786  
HIGH PASS FILTER  
5
0
-5  
-10  
-15  
-20  
0
0.0005  
0.001  
0.0015  
0.0015  
0.0015  
0.002  
0.002  
0.002  
Frequency (Fs)  
Figure 15 Single Rate 48k High Pass Filter Response  
5
0
-5  
-10  
-15  
-20  
0
0.0005  
0.001  
Frequency (Fs)  
Figure 16 Dual Rate 96k High Pass Filter Response  
5
0
-5  
-10  
-15  
-20  
0
0.0005  
0.001  
Frequency (Fs)  
Figure 17 Quad Rate 192k High Pass Filter Response  
PD Rev 4.2 February 2007  
15  
w
WM8786  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8786 is a high performance stereo audio ADC designed for demanding recording  
applications such as DVD recorders, studio mixers, PVRs, and AV amplifiers. The WM8786 consists  
of stereo line level inputs, followed by a sigma-delta modulator and digital filtering.  
The WM8786 uses a multi-bit high-order oversampling architecture delivering high SNR operating at  
oversampling ratios from 128fs to 32fs according to the sample rate. Sample rates from 8kHz to  
192kHz are supported. The WM8786 supports master clock rates from 128fs to 768fs.  
The digital filter is a high performance linear phase FIR filter. The digital filters are optimised for each  
sample rate. Also included is a high pass filter to remove residual DC offsets from the input signal.  
The output from the ADC is available on a configurable digital audio interface. It supports a number  
of audio data formats including I2S, Left justified and Right justified or DSP, and can operate in  
master or slave modes.  
The WM8786 functionality is controlled in hardware via specific pins. It is fully compatible and an  
ideal partner for a range of industry standard microprocessors, controllers and DSPs.  
The WM8786 can be powered down to reduce system power consumption.  
DIGITAL AUDIO INTERFACE  
The digital audio interface uses three pins:  
DOUT: ADC data output  
LRCLK: ADC data alignment clock  
BCLK: Bit clock, for synchronisation  
The digital audio interface takes the data from the internal ADC digital filters and places it on DOUT  
and LRCLK. DOUT is the formatted digital audio data stream output from the ADC digital filters with  
left and right channels multiplexed together. LRCLK is an alignment clock that controls whether Left  
or Right channel data is present on the DOUT line. DOUT and LRCLK are synchronous with the  
BCLK signal with each data bit transition signified by a BCLK high to low transition. DOUT is always  
an output. BCLK and LRCLK maybe inputs or outputs depending whether the device is in Master or  
Slave mode. (see Master and Slave Mode Operation, below).  
Four different audio data formats are supported:  
Left justified  
Right justified  
I2S  
DSP  
They are described in Audio Data Formats, below. Refer to the Electrical Characteristic section for  
timing information.  
MASTER AND SLAVE MODE OPERATION  
The WM8786 can be configured as either a master or slave mode device. As a master device the  
WM8786 generates BCLK and LRCLK and thus controls sequencing of the data transfer on DOUT.  
In slave mode, the WM8786 responds with data to clocks it receives over the digital audio interface.  
The mode can be selected using the MS0 pin. Master and slave modes are illustrated below.  
MS0 PIN STATUS  
INTERFACE FORMAT  
Slave  
Low  
High  
High  
Master (@256fs in oversampling ratio = single or dual rate)  
Master (@192fs in oversampling ratio = quad rate)  
Table 2 Control Interface Mode Selection  
PD Rev 4.2 February 2007  
16  
w
Production Data  
WM8786  
Figure 18a Master Mode  
AUDIO DATA FORMATS  
Figure 18b Slave Mode  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following an LRCLK  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition.  
Figure 19 Left Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before an LRCLK  
transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles after each LRCLK transition.  
Figure 20 Right Justified Audio Interface (assuming n-bit word length)  
PD Rev 4.2 February 2007  
17  
w
WM8786  
Production Data  
In I2S mode, the MSB is available on the second rising edge of BCLK following an LRCLK transition.  
The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and  
the MSB of the next.  
Figure 21 I2S Justified Audio Interface (assuming n-bit word length)  
In DSP/PCM mode, the left channel MSB is available on the 2nd rising edge of BCLK following a  
rising edge of LRC. Right channel data immediately follows left channel data. Depending on word  
length, BCLK frequency and sample rate, there may be unused BCLK cycles between the LSB of the  
right channel data and the next sample.  
In device master mode, the LRC output will resemble the frame pulse shown in Figure 22. In device  
slave mode, Figure 23 it is possible to use any length of frame pulse less than 1/fs, providing the  
falling edge of the frame pulse occurs greater than one BCLK period before the rising edge of the  
next frame pulse.  
Figure 22 DSP/PCM Mode Audio Interface (mode A, Master)  
Figure 23 DSP/PCM Mode Audio Interface (mode A, Slave)  
PD Rev 4.2 February 2007  
18  
w
Production Data  
WM8786  
AUDIO INTERFACE CONTROL  
AUDIO INTERFACE CONTROL  
The audio interface is controlled using the AUDIOF0 and AUDIOF1 pins. Dynamically changing the  
audio format may cause erroneous operation of the interfaces and is therefore not recommended.  
All ADC data is signed 2’s complement. The length of the digital audio data is always 24 bits.  
AUDIOF1 PIN STATUS  
AUDIOF0 PIN STATUS  
AUDIO INTERFACE  
FORMAT  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
24-bit right justified  
24-bit left justified  
24-bit I2S  
24-bit DSP  
Table 3 Audio Interface Format Selection  
OVERSAMPLING RATIOS AND SIGMA-DELTA MODULATOR FREQUENCY  
For correct operation of the device and optimal performance, the user must select the appropriate  
ADC modulator oversampling ratio. The oversampling ratio is selected using the OSR0 and OSR1  
pins.  
OSR1 PIN STATUS  
OSR0 PIN STATUS  
OVERSAMPLING RATIO  
CONTROL  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Single Rate (128fs)  
Dual Rate (64fs)  
Quad Rate (32fs)  
Not Valid  
Table 4 Oversampling Ratio Selection  
The WM8786 can operate at sample rates from 8kHz to 192kHz. The WM8786 uses a sigma-delta  
modulator that operates at frequencies between 1.024MHz and 6.144MHz  
SAMPLING RATE  
(LRCLK)  
OVERSAMPLING RATIO  
SIGMA-DELTA  
MODULATOR  
FREQUENCY (MHZ)  
8kHz  
32kHz  
44.1kHz  
48kHz  
96kHz  
192kHz  
Single Rate (128fs)  
Single Rate (128fs)  
Single Rate (128fs)  
Single Rate (128fs)  
Dual Rate (64fs)  
1.024  
4.096  
5.6448  
6.144  
6.144  
6.144  
Quad Rate (32fs)  
Table 5 Sigma-delta Modulator Frequency  
PD Rev 4.2 February 2007  
19  
w
WM8786  
Production Data  
MASTER CLOCK AND AUDIO SAMPLE RATES  
The master clock (MCLK) is used to operate the digital filters and the noise shaping circuits. The  
WM8786 supports a wide range of master clock frequencies, and can generate many commonly  
used audio sample rates directly from the master clock. The following tables show the recommended  
Master clock frequencies for different sample rates.  
In Master Mode, with oversampling ratio = single rate or dual rate, Master clock frequency of 256 is  
supported.  
SAMPLING RATE  
(LRCLK)  
OVERSAMPLING  
RATIO  
MASTER CLOCK FREQUENCY (MHz)  
256fs  
8.192  
32kHz  
44.1kHz  
48kHz  
Single Rate  
Single Rate  
Single Rate  
Dual Rate  
11.2896  
12.288  
24.576  
96kHz  
Table 6 Master Mode: Recommended Master Clock Frequency Selection  
In Master Mode, with oversampling ratio = quad rate, Master clock frequency of 192 is supported.  
SAMPLING RATE  
(LRCLK)  
OVERSAMPLING  
RATIO  
MASTER CLOCK FREQUENCY (MHz)  
128fs  
192kHz  
Quad Rate  
24.576  
Table 7 Master Mode: Recommended Master Clock Frequency Selection  
In Slave Mode, Master clock frequencies of 128fs, 192fs, 256fs, 384fs, 512fs and 768fs are supported..  
The WM8786 automatically detects the audio sample rate, in slave mode.  
SAMPLING RATE  
(LRCLK)  
OVERSAMPLING  
MASTER CLOCK FREQUENCY (MHz)  
RATIO  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
32kHz  
44.1kHz  
48kHz  
Single Rate  
Single Rate  
Single Rate  
Dual Rate  
-
-
8.192  
11.2896  
12.288  
24.576  
-
12.288  
16.9344  
18.432  
36.864  
-
16.384  
24.576  
-
-
22.5792  
33.8688  
-
-
24.576  
36.864  
96kHz  
-
-
-
-
-
-
192kHz  
Quad Rate  
24.576  
36.864  
Table 8 Slave Mode: Recommended Master Clock Frequency Selection  
MLCK AND LRCLK PHASE RELATIONSHIP  
The WM8786 does not require a specific phase relationship between MLCK and LRCLK. If the  
relationship between MCLK and LRCLK changes by more than +/-8 BCLKs in a 64 BLCK frame, the  
WM8786 will attempt to re-synchronise During re-synchronisation, data samples may be dropped or  
duplicated.  
PD Rev 4.2 February 2007  
20  
w
Production Data  
WM8786  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Notes:  
1. AGND and DGND should be connected as close to the WM8786 as possible.  
2. C1 to C6 should be placed as close to the WM8786 device as possible.  
3. Capacitor types should be chosen carefully. Capacitors with very low ESR are recommended for optimum performance, such as X7R. VMID and VREF decoupling  
capacitors must be high quality electrolytic capacitors to achieve datasheet performance; ceramic capacitors are not acceptable.  
4. An active input filter is required to achieve datasheet performance. The circuit shown is a tested inverting reference example.  
Figure 24 External Component Diagram  
PD Rev 4.2 February 2007  
21  
w
WM8786  
Production Data  
RECOMMENDED PCB LAYOUT  
The WM8786 is sensitive to the routing of the ground return currents for VREF, VMID and AVDD and  
care should be taken to ensure that these currents do not interfere. Figure 25 below shows a  
recommended PCB layout (with high frequency current paths) for the WM8786 that will demonstrate  
datasheet performance:  
To DVDD  
Supply  
C2  
+
C5  
C6  
C4  
+
C1  
C3  
To AVDD  
Supply  
Top Layer Copper  
Bottom Layer Copper  
Via  
Figure 25 Recommended PCB Layout for VREF, VMID, AVDD and DVDD Decoupling  
Notes:  
1. High frequency noise on VREF is decoupled through C5, and the return path should be directly  
to VREFGND.  
2. The route from the negative terminal of C6 to C5 and then to VREFGND should be made on  
the top layer only and should not connect to the ground flood on the top layer. This ensures  
that the VREF return current is returned directly to VREFGND as shown by the black arrows.  
3. The negative terminal of C6 should be connected to the ground plane on the underside of the  
board only.  
4. High frequency noise on VMID is decoupled through C4, and the return path should be directly  
to AGND.  
5. Via to bottom layer on VMID used to connect to bottom layer route to positive terminal of C3.  
6. The route from C4 to AGND should be made on the top layer only. This ensures that the VMID  
return current is returned to AGND as shown by the white arrows.  
7. AVDD is decoupled to AGND through C1. The ground return currents are not shown in this  
diagram.  
8. DVDD is decoupled to DGND through C2. The ground return currents are not shown in this  
diagram.  
9. DGND should not be connected directly to the ground flood on the top layer under the  
WM8786. This will ensure that noise in the digital ground does not interfere with the critical  
routing of VREF and VMID.  
10. Bottom layer ground flood not shown for clarity.  
11. See the WM8786 Evaluation Board for an example of this layout in use.  
PD Rev 4.2 February 2007  
22  
w
Production Data  
WM8786  
PACKAGE DIMENSIONS  
DS: 20 PIN SSOP (7.2 x 5.3 x 1.75 mm)  
DM0015.C  
b
e
20  
11  
E1  
E
GAUGE  
PLANE  
Θ
1
10  
D
0.25  
L
c
A1  
A A2  
L
1
-C-  
C
0.10  
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
0.05  
1.65  
0.22  
0.09  
MAX  
2.0  
-----  
1.85  
0.38  
0.25  
A
A1  
A2  
b
-----  
1.75  
0.30  
-----  
c
D
e
E
6.907.207.50  
0.65 BSC  
7.407.808.20  
E1  
L
L1  
θ
05.3055..600  
0.55  
0.75  
1.25 REF  
4o  
0.95  
8o  
0o  
-
JEDEC.95, MO 150  
REF:  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.  
D. MEETS JEDEC.95 MO-150, VARIATION = AE. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PD Rev 4.2 February 2007  
23  
w
WM8786  
Production Data  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the  
right to make changes to its products and specifications or to discontinue any product or service without notice. Customers  
should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer  
product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for  
such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where  
malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Any use of products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other  
intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or  
services might be or are used. Any provision or publication of any third party’s products or services does not constitute  
Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document  
belong to the respective third party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is  
not liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in  
this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or  
accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any  
reliance placed thereon by any person.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD Rev 4.2 February 2007  
24  
w

相关型号:

WM8788

High Performance 24-bit Stereo ADC
WOLFSON

WM8802

Digital Audio Interface Transceiver
WOLFSON

WM8802SCFT

Digital Audio Interface Transceiver
WOLFSON

WM8802SCFTV

Digital Audio Interface Transceiver
WOLFSON

WM8802SCFV

Digital Audio Interface Transceiver
WOLFSON

WM8803

DIGITAL AUDIO INTERFACE RECEIVER
WOLFSON

WM8803CDT

DIGITAL AUDIO INTERFACE RECEIVER
WOLFSON

WM8803CDT/V

DIGITAL AUDIO INTERFACE RECEIVER
WOLFSON

WM8803SCDT/V

Consumer Circuit, CMOS, PDSO24, 6.50 X 6.40 MM, 1 MM HEIGHT, TSSOP-24
CIRRUS

WM8804

1:1 Digital Interface Transceiver with PLL
WOLFSON

WM8804GEDS

1:1 Digital Interface Transceiver with PLL
WOLFSON

WM8804GEDS/V

Consumer Circuit, CMOS, PDSO20, 7.20 X 5.30 MM, 1.75 MM HEIGHT, LEAD FREE, MO-150AE, SSOP-20
CIRRUS