WM8976_06 [WOLFSON]

Stereo CODEC With Speaker Driver; 立体声编解码器,扬声器驱动器
WM8976_06
型号: WM8976_06
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

Stereo CODEC With Speaker Driver
立体声编解码器,扬声器驱动器

解码器 驱动器 编解码器
文件: 总108页 (文件大小:1227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8976  
w
Stereo CODEC With Speaker Driver  
DESCRIPTION  
FEATURES  
Stereo CODEC:  
The WM8976 is a low power, high quality CODEC designed for  
portable applications such as multimedia phone, digital still  
camera or digital camcorder.  
DAC SNR 98dB, THD -84dB (‘A’ weighted @ 48kHz)  
ADC SNR 95dB, THD -84dB (‘A’ weighted @ 48kHz)  
On-chip Headphone Driver with ‘capless’ option  
The device integrates a preamp for differential microphone, and  
includes drivers for speakers, headphone and differential or  
stereo line output. External component requirements are  
reduced as no separate microphone or headphone amplifiers  
are required.  
-
40mW per channel into 16/ 3.3V SPKVDD  
0.9W output power into 8BTL speaker / 5V SPKVDD  
-
-
Capable of driving piezo speakers  
Stereo speaker drive configuration  
Mic Preamps:  
Differential or single-ended microphone interfaces  
Advanced on-chip digital signal processing includes a 5-band  
equaliser, a mixed signal Automatic Level Control for the  
microphone or line input through the ADC as well as a purely  
digital limiter function for record or playback. Additional digital  
filtering options are available in the ADC path, to cater for  
application filtering such as ‘wind noise reduction’.  
-
-
-
Programmable preamp gain  
Psuedo differential input with common mode rejection  
Programmable ALC / Noise Gate in ADC path  
Low-noise bias supplied for electret microphone  
Other Features:  
Enhanced 3-D function for improved stereo separation  
Digital playback limiter  
The WM8976 digital audio interface can operate as a master or  
a slave. An internal PLL can generate all required audio clocks  
for the CODEC from common reference clock frequencies, such  
as 12MHz and 13MHz.  
5-band Equaliser (record or playback)  
Programmable ADC High Pass Filter (wind noise reduction)  
Programmable ADC Notch Filter  
Aux inputs for stereo analog input signals or ‘beep’  
On-chip PLL supporting 12, 13, 19.2MHz and other clocks  
Support for 8, 11.025, 12, 16, 22.05, 24, 32, 44.1 and  
48kHz sample rates  
The WM8976 operates at analogue supply voltages from 2.5V  
to 3.3V, although the digital core can operate at voltages down  
to 1.71V to save power. The speaker outputs and OUT3/4 line  
outputs can run from a 5V supply if increased output power is  
required. Individual sections of the chip can also be powered  
down under software control.  
Low power, low voltage  
-
2.5V to 3.6V (digital: 1.71V to 3.6V)  
5x5mm 32-lead QFN package  
APPLICATIONS  
Stereo Camcorder or DSC  
Multimedia Phone  
Pre-Production, April 2006, Rev 3.0  
WOLFSON MICROELECTRONICS plc  
Copyright 2006 Wolfson Microelectronics plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
WM8976  
Pre-Production  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
TABLE OF CONTENTS .........................................................................................2  
PIN CONFIGURATION...........................................................................................4  
ORDERING INFORMATION ..................................................................................4  
PIN DESCRIPTION ................................................................................................5  
ABSOLUTE MAXIMUM RATINGS.........................................................................6  
RECOMMENDED OPERATING CONDITIONS .....................................................6  
ELECTRICAL CHARACTERISTICS ......................................................................7  
TERMINOLOGY.......................................................................................................... 10  
SPEAKER OUTPUT THD VERSUS POWER ......................................................11  
POWER CONSUMPTION ....................................................................................12  
AUDIO PATHS OVERVIEW.................................................................................14  
SIGNAL TIMING REQUIREMENTS.....................................................................15  
SYSTEM CLOCK TIMING ........................................................................................... 15  
AUDIO INTERFACE TIMING – MASTER MODE ........................................................ 15  
AUDIO INTERFACE TIMING – SLAVE MODE............................................................ 16  
CONTROL INTERFACE TIMING – 3-WIRE MODE .................................................... 17  
CONTROL INTERFACE TIMING – 2-WIRE MODE .................................................... 18  
DEVICE DESCRIPTION.......................................................................................19  
INTRODUCTION......................................................................................................... 19  
INPUT SIGNAL PATH................................................................................................. 21  
ANALOGUE TO DIGITAL CONVERTER (ADC).......................................................... 25  
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) .......................................... 29  
OUTPUT SIGNAL PATH ............................................................................................. 41  
3D STEREO ENHANCEMENT.................................................................................... 48  
ANALOGUE OUTPUTS............................................................................................... 48  
DIGITAL AUDIO INTERFACES................................................................................... 63  
AUDIO SAMPLE RATES............................................................................................. 68  
MASTER CLOCK AND PHASE LOCKED LOOP (PLL)............................................... 68  
COMPANDING............................................................................................................ 70  
GENERAL PURPOSE INPUT/OUTPUT...................................................................... 72  
OUTPUT SWITCHING (JACK DETECT)..................................................................... 73  
CONTROL INTERFACE.............................................................................................. 74  
RESETTING THE CHIP .............................................................................................. 75  
POWER SUPPLIES .................................................................................................... 76  
RECOMMENDED POWER UP/DOWN SEQUENCE .................................................. 77  
POWER MANAGEMENT ............................................................................................ 81  
REGISTER MAP...................................................................................................82  
REGISTER BITS BY ADDRESS..........................................................................84  
DIGITAL FILTER CHARACTERISTICS...............................................................99  
TERMINOLOGY.......................................................................................................... 99  
DAC FILTER RESPONSES....................................................................................... 100  
ADC FILTER RESPONSES....................................................................................... 100  
HIGHPASS FILTER................................................................................................... 101  
5-BAND EQUALISER................................................................................................ 102  
APPLICATION INFORMATION..........................................................................106  
RECOMMENDED EXTERNAL COMPONENTS........................................................ 106  
PP Rev 3.0 April 2006  
w
2
Pre-Production  
WM8976  
PACKAGE DIAGRAM ........................................................................................107  
IMPORTANT NOTICE........................................................................................108  
ADDRESS: ................................................................................................................ 108  
PP Rev 3.0 April 2006  
w
3
WM8976  
Pre-Production  
PIN CONFIGURATION  
ORDERING INFORMATION  
ORDER CODE  
TEMPERATURE  
RANGE  
PACKAGE  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMPERATURE  
WM8976GEFL/V  
-25°C to +85°C  
32-lead QFN (5 x 5 mm)  
(Pb-free)  
MSL3  
MSL3  
260oC  
WM8976GEFL/RV  
-25°C to +85°C  
32-lead QFN (5 x 5 mm)  
(Pb-free, tape and reel)  
260oC  
Note:  
Reel quantity = 3,500  
PP Rev 3.0 April 2006  
4
w
Pre-Production  
WM8976  
PIN DESCRIPTION  
PIN  
1
NAME  
LIP  
TYPE  
Analogue input  
Analogue input  
Analogue input  
Do not connect  
Do not connect  
Do not connect  
Digital Input / Output  
Digital Input / Output  
Digital Output  
Digital Input  
DESCRIPTION  
Mic Pre-amp positive input  
Mic Pre-amp negative input  
2
LIN  
3
L2/GPIO2  
DNC  
Line input/secondary mic pre-amp positive input/GPIO2 pin  
Leave this pin floating  
4
5
DNC  
Leave this pin floating  
6
DNC  
Leave this pin floating  
7
LRC  
DAC and ADC Sample Rate Clock  
Digital Audio Port Clock  
8
BCLK  
9
ADCDAT  
DACDAT  
MCLK  
ADC Digital Audio Data Output  
DAC Digital Audio Data Input  
Master Clock Input  
10  
11  
12  
13  
14  
15  
16  
Digital Input  
DGND  
DCVDD  
DBVDD  
CSB/GPIO1  
SCLK  
Supply  
Digital ground  
Supply  
Digital core logic supply  
Supply  
Digital buffer (I/O) supply  
Digital Input / Output  
Digital Input  
3-Wire Control Interface Chip Select / GPIO1 pin  
3-Wire Control Interface Clock Input / 2-Wire Control Interface Clock  
Input  
17  
18  
19  
20  
21  
SDIN  
MODE  
AUXL  
AUXR  
OUT4  
Digital Input / Output  
Digital Input  
3-Wire Control Interface Data Input / 2-Wire Control Interface Data Input  
Control Interface Selection  
Analogue input  
Analogue input  
Analogue Output  
Left Auxillary input  
Right Auxillary input  
Buffered midrail Headphone pseudo-ground, or Right line output or MONO  
mix output  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
OUT3  
ROUT2  
SPKGND  
LOUT2  
SPKVDD  
VMID  
Analogue Output  
Analogue Output  
Supply  
Buffered midrail Headphone pseudo-ground, or Left line output  
Second right output, or BTL speaker driver positive output  
Speaker ground (feeds speaker amp and OUT3/OUT4)  
Second left output, or BTL speaker driver negative output  
Speaker supply (feed speaker amp only)  
Decoupling for ADC and DAC reference voltage  
Analogue ground (feeds ADC and DAC)  
Headphone or Line Output Right  
Analogue Output  
Supply  
Reference  
AGND  
Supply  
ROUT1  
LOUT1  
AVDD  
Analogue Output  
Analogue Output  
Supply  
Headphone or Line Output Left  
Analogue supply (feeds ADC and DAC)  
MICBIAS  
Analogue Output  
Microphone Bias  
Note:  
It is recommended that the QFN ground paddle should be connected to analogue ground on the application PCB. Refer to  
the application note WAN_0118 on “Guidelines on How to Use QFN Packages and Create Associated PCB Footprints”  
PP Rev 3.0 April 2006  
w
5
WM8976  
Pre-Production  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
DBVDD, DCVDD, AVDD supply voltages  
SPKVDD supply voltage  
MIN  
-0.3V  
MAX  
+4.5V  
-0.3V  
+7V  
Voltage range digital inputs  
DGND -0.3V  
AGND -0.3V  
-25°C  
DVDD +0.3V  
AVDD +0.3V  
+85°C  
Voltage range analogue inputs  
Operating temperature range, TA  
Storage temperature after soldering  
Notes  
-65°C  
+150°C  
1. Analogue and digital grounds must always be within 0.3V of each other.  
2. All digital and analogue supplies are completely independent from each other, i.e. not internally connected.  
3. Analogue supply has to be to digital.  
4. In non-boosted mode, SPKVDD should = AVDD, if boosted SPKVDD should be 1.5x AVDD.  
5. When using PLL, DCVDD should be 1.9V.  
6. DBVDD must be greater than or equal to DCVDD.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Digital supply range (Core)  
Digital supply range (Buffer)  
Analogue core supply range  
Analogue output supply range  
Ground  
DCVDD  
DBVDD  
1.711  
1.71  
2.5  
3.6  
3.6  
3.6  
5.5  
V
V
V
V
V
AVDD  
SPKVDD  
DGND, AGND,  
SPKGND  
2.5  
0
Notes  
1. When using the PLL, DCVDD must not be less than 1.9V.  
PP Rev 3.0 April 2006  
6
w
Pre-Production  
WM8976  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
DCVDD=1.8V, AVDD=DBVDD=SPKVDD= 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Microphone Preamp Inputs (LIP, LIN, RIP)  
Full-scale Input Signal Level –  
note this changes in proportion  
to AVDD (Note 1)  
VINFS  
PGABOOST = 0dB  
INPPGAVOL = 0dB  
1.0  
0
Vrms  
dBV  
Mic PGA equivalent input noise  
At 35.25dB  
gain  
0 to 20kHz  
150  
uV  
Input resistance  
RMICIN  
RMICIN  
RMICIN  
RMICIP  
CMICIN  
Gain set to 35.25dB  
Gain set to 0dB  
1.6  
47  
75  
94  
10  
kΩ  
kΩ  
kΩ  
kΩ  
pF  
Gain set to -12dB  
L/RIP2INPPGA = 1  
MIC Programmable Gain Amplifier (PGA)  
Programmable Gain  
-12  
-12  
35.25  
dB  
dB  
dB  
Programmable Gain Step Size  
Mute Attenuation  
Guaranteed monotonic  
0.75  
120  
Selectable Input Gain Boost (0/+20dB)  
Gain Boost on PGA input  
Boost disabled  
Boost enabled  
0
dB  
dB  
dB  
20  
Gain range from AUXL or L2  
input to boost/mixer  
+6  
Gain step size to boost/mixer  
3
dB  
Auxilliary Analogue Inputs (AUXL, AUXR)  
Full-scale Input Signal Level  
(0dB) – note this changes in  
proportion to AVDD  
VINFS  
AVDD/3.3  
0
Vrms  
dBV  
Input Capacitance  
CMICIN  
10  
pF  
Automatic Level Control (ALC)  
Target Record Level  
-22.5  
-12  
-1.5  
dB  
ms  
ms  
Programmable gain  
35.25  
Gain Hold Time (Note 3,5)  
tHOLD  
tDCY  
MCLK = 12.288MHz  
(Note 3)  
0, 2.67, 5.33, 10.67, … , 43691  
(time doubles with each step)  
3.3, 6.6, 13.1, … , 3360  
Gain Ramp-Up (Decay) Time  
(Note 4,5)  
ALCMODE=0 (ALC),  
MCLK=12.288MHz  
(Note 3)  
(time doubles with each step)  
ALCMODE=1 (limiter),  
MCLK=12.288MHz  
(Note 3)  
0.73, 1.45, 2.91, … , 744  
(time doubles with each step)  
Gain Ramp-Down (Attack) Time  
(Note 4,5)  
tATK  
ALCMODE=0 (ALC),  
MCLK=12.288MHz  
(Note 3)  
0.83, 1.66, 3.33, … , 852  
ms  
(time doubles with each step)  
ALCMODE=1 (limiter),  
MCLK=12.288MHz  
(Note 3)  
0.18, 0.36, 0.73, … , 186  
(time doubles with each step)  
Mute Attenuation  
120  
dB  
Analogue to Digital Converter (ADC)  
Signal to Noise Ratio (Note 6)  
Total Harmonic Distortion  
(Note 7)  
SNR  
THD  
A-weighted, 0dB gain  
-3dBFS input  
95  
dB  
dB  
-84  
PP Rev 3.0 April 2006  
7
w
WM8976  
Pre-Production  
Test Conditions  
DCVDD=1.8V, AVDD=DBVDD=SPKVDD= 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital to Analogue Converter (DAC) to Line-Out (LOUT1, ROUT1 with 10k/ 50pF load)  
Full-scale output  
PGA gains set to 0dB,  
OUT34BOOST=0  
AVDD/3.3  
Vrms  
PGA gains set to 0dB,  
OUT34BOOST=1  
A-weighted  
1.5x  
(AVDD/3.3)  
98  
Signal to Noise Ratio (Note 6)  
Total Harmonic Distortion  
(Note 7)  
SNR  
THD  
dB  
dB  
RL = 10kΩ  
-84  
full-scale signal  
1kHz signal  
Channel Separation (Note 9)  
Output Mixers (LMX1, RMX1)  
PGA gain range into mixer  
PGA gain step into mixer  
110  
dB  
-15  
-57  
0
3
+6  
+6  
dB  
dB  
Analogue Outputs (LOUT1, ROUT1, LOUT2, ROUT2)  
Programmable Gain range  
0
1
dB  
dB  
dB  
Programmable Gain step size  
Monotonic  
1kHz, full scale signal  
Mute attenuation  
85  
Headphone Output (LOUT1, ROUT1 with 32load)  
0dB full scale output voltage  
AVDD/3.3  
102  
Vrms  
dB  
%
Signal to Noise Ratio  
SNR  
THD  
A-weighted  
RL = 16, Po=20mW  
AVDD=3.3V  
Total Harmonic Distortion  
0.003  
-92  
dB  
%
RL = 32 , Po=20mW  
AVDD=3.3V  
0.008  
- 82  
dB  
Speaker Output (LOUT2, ROUT2 with 8bridge tied load, INVROUT2=1)  
Full scale output voltage, 0dB  
gain. (Note 9)  
SPKBOOST=0  
SPKBOOST=1  
SPKVDD/3.3  
Vrms  
(SPKVDD/3.3)*1.5  
Output Power  
PO  
Output power is very closely correlated with THD; see below  
Total Harmonic Distortion  
THD  
PO =200mW, RL = 8,  
0.04  
-68  
1.0  
-40  
0.02  
-74  
1.0  
-40  
90  
%
dB  
%
SPKVDD=3.3V  
PO =320mW, RL = 8,  
SPKVDD=3.3V  
dB  
%
PO =500mW, RL = 8,  
SPKVDD=5V  
dB  
%
P
O =860mW, RL = 8,  
SPKVDD=5V  
dB  
dB  
Signal to Noise Ratio  
SNR  
SPKVDD=3.3V,  
RL = 8Ω  
SPKVDD=5V,  
RL = 8Ω  
90  
dB  
Power Supply Rejection Ratio  
(50Hz-22kHz)  
PSRR  
RL = 8BTL  
RL = 8BTL  
80  
69  
dB  
dB  
SPKVDD=5V (boost)  
OUT3/OUT4 outputs (with 10k/ 50pF load)  
Full-scale output voltage, 0dB  
gain (Note 9)  
OUT3BOOST=0/  
OUT4BOOST=0  
OUT3BOOST=1  
OUT4BOOST=1  
A-weighted  
SPKVDD/3.3  
Vrms  
Vrms  
(SPKVDD/3.3)*1.5  
Signal to Noise Ratio (Note 6)  
Total Harmonic Distortion  
(Note 7)  
SNR  
THD  
98  
dB  
dB  
RL = 10 kΩ  
-84  
full-scale signal  
1kHz signal  
Channel Separation (Note 8)  
100  
dB  
PP Rev 3.0 April 2006  
8
w
Pre-Production  
WM8976  
Test Conditions  
DCVDD=1.8V, AVDD=DBVDD=SPKVDD= 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
52  
MAX  
UNIT  
dB  
Power Supply Rejection Ratio  
(50Hz-22kHz)  
PSRR  
RL = 10kΩ  
RL = 10kΩ  
56  
dB  
SPKVDD=5V (boost)  
Microphone Bias  
Bias Voltage  
VMICBIAS  
MBVSEL=0  
MBVSEL=1  
0.9*AVDD  
V
V
0.65*AVDD  
Bias Current Source  
Output Noise Voltage  
Digital Input / Output  
Input HIGH Level  
Input LOW Level  
IMICBIAS  
Vn  
3
mA  
1K to 20kHz  
15  
nV/Hz  
VIH  
VIL  
0.7×DBVDD  
0.9×DBVDD  
V
V
0.3×DBVDD  
Output HIGH Level  
Output LOW Level  
Input capacitance  
Input leakage  
VOH  
VOL  
IOL=1mA  
IOH-1mA  
V
0.1xDBVDD  
V
TBD  
TBD  
pF  
pA  
PP Rev 3.0 April 2006  
9
w
WM8976  
Pre-Production  
TERMINOLOGY  
1. Input level to LIP is limited to a maximum of -3dB or THD+N performance will be reduced.  
2. Note when BEEP path is not enabled then AUXL and AUXR have the same input impedances.  
3. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain. It does  
not apply to ramping down the gain when the signal is too loud, which happens without a delay.  
4. Ramp-up and Ramp-Down times are defined as the time it takes for the PGA to sweep across 90% of its gain range.  
5. All hold, ramp-up and ramp-down times scale proportionally with MCLK  
6. Signal-to-noise ratio (dB) – SNR is a measure of the difference in level between the full scale output and the output  
with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
7. THD+N (dB) – THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
8. Channel Separation (dB) – Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Measured by applying a full scale signal to one channel input and measuring the level of signal apparent at  
the other channel output.  
9. The maximum output voltage can be limited by the speaker power supply. If OUT3BOOST, OUT4BOOST or  
SPKBOOST is set then SPKVDD should be 1.5xAVDD to prevent clipping taking place in the output stage (when  
PGA gains are set to 0dB).  
PP Rev 3.0 April 2006  
w
10  
Pre-Production  
WM8976  
SPEAKER OUTPUT THD VERSUS POWER  
Speaker Power vs THD+N (8Ohm BTL Load)  
AVDD=SPKVDD=DBVDD=3.3, DCVDD=1.8  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.00  
50.00  
100.00  
150.00  
200.00  
250.00  
300.00  
350.00  
400.00  
450.00  
500.00  
Output Power (mW)  
Speaker Power vs THD+N (8Ohm BTL Load)  
AVDD=DBVDD=3.3V, SPKVDD=5V, DCVDD=1.8V  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.00  
100.00  
200.00  
300.00  
400.00  
500.00  
600.00  
700.00  
800.00  
900.00  
1000.00  
Output Power (mW)  
PP Rev 3.0 April 2006  
11  
w
WM8976  
Pre-Production  
POWER CONSUMPTION  
Typical current consumption for various scenarios is shown below.  
AVDD  
(3.0V)  
(mA)  
DCVDD  
(1.8V)  
(mA)  
0.0008  
0.0008  
1.0  
DBVDD1  
(3.0V)  
(mA)  
<0.0001  
<0.0001  
0.001  
TOTAL  
POWER  
(mW)  
0.12  
0.12  
14.1  
21.1  
29.4  
66.1  
MODE  
Off  
0.043  
Sleep (VREF maintained, no clocks)  
MIC Record (8kHz)2  
Stereo 16HP Playback (48kHz, quiescent)2  
Stereo 16HP Playback (48kHz, white noise)2  
Stereo 16HP Playback (48kHz, sine wave)2  
Notes:  
0.04  
4.1  
3.3  
5.4  
18  
6.2  
0.004  
7.3  
0.004  
6.7  
0.004  
1. DBVDD Current will increase with greater loading on digital I/O pins.  
2. 5 Band EQ is enabled.  
3. AVDD standby current will fall to nearer 15uA when thermal shutdown sensor is disabled.  
Table 1 Power Consumption  
ESTIMATING SUPPLY CURRENT  
When either the DAC or ADC is enabled approximately 7mA will be drawn from DCVDD when  
DCVDD=1.8V and fs=48kHz. When the PLL is enabled approximately 1.5mA additional current will  
be drawn from DCVDD.  
As a general rule, digital supply currents will scale in proportion to sample rates. Supply current for  
analogue and digital blocks will also be lower at lower supply voltages.  
Power consumed by the output drivers will depend greatly on the signal characteristics. A quiet  
signal, or a signal with long periods of silence will consume less power than a signal which is  
continuously loud.  
Estimated supply current for the analogue blocks is shown in Table 2. Note that power dissipated in  
the load is not shown.  
PP Rev 3.0 April 2006  
12  
w
Pre-Production  
WM8976  
REGISTER BIT  
AVDD CURRENT (mA)  
AVDD=3.3V  
BUFDCOPEN  
OUT4MIXEN  
OUT3MIXEN  
PLLEN  
0.1  
0.2  
0.2  
1.2 (with clocks applied)  
MICBEN  
0.5  
BIASEN  
0.3  
BUFIOEN  
VMIDSEL  
ROUT1EN  
LOUT1EN  
BOOSTENL  
INPPGAENL  
ADCENL  
0.1  
5K= >0.3, less than 0.1 for 75K300Ksettings  
0.4  
0.4  
0.2  
0.2  
2.6 (x64, ADCOSR=0)  
4.9 ( x128, ADCOSR=1)  
OUT4EN  
OUT3EN  
LOUT2EN  
ROUT2EN  
RMIXEN  
LMIXEN  
0.2  
0.2  
1mA from SPKVDD + 0.2mA from AVDD in 5V mode  
1mA from SPKVDD + 0.2mA from AVDD in 5V mode  
0.2  
0.2  
DACENR  
1.8 (x64, DACOSR=0)  
1.9 (x128, DACOSR=1)  
1.8 (x64, DACOSR=0)  
1.9 (x128, DACOSR=1)  
DACENL  
Table 2 AVDD Supply Current (AVDD=3.3V)  
PP Rev 3.0 April 2006  
13  
w
WM8976  
Pre-Production  
AUDIO PATHS OVERVIEW  
Figure 1 WM8976 Audio Signal Paths  
PP Rev 3.0 April 2006  
14  
w
Pre-Production  
WM8976  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
tMCLKL  
MCLK  
tMCLKH  
tMCLKY  
Figure 2 System Clock Timing Requirements  
Test Conditions  
DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, TA = +25oC  
PARAMETER  
SYMBOL  
TMCLKY  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK=SYSCLK (=256fs)  
MCLK input to PLL Note 1  
81.38  
20  
ns  
ns  
MCLK cycle time  
MCLK duty cycle  
TMCLKDS  
60:40  
40:60  
Note 1:  
PLL pre-scaling and PLL N and K values should be set appropriately so that SYSCLK is no greater than 12.288MHz.  
AUDIO INTERFACE TIMING – MASTER MODE  
Figure 3 Digital Audio Data Timing – Master Mode (see Control Interface)  
PP Rev 3.0 April 2006  
15  
w
WM8976  
Pre-Production  
Test Conditions  
DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, TA=+25oC, Master Mode, fs=48kHz,  
MCLK=256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
LRC propagation delay from BCLK falling edge  
ADCDAT propagation delay from BCLK falling edge  
DACDAT setup time to BCLK rising edge  
DACDAT hold time from BCLK rising edge  
tDL  
10  
10  
ns  
ns  
ns  
ns  
tDDA  
tDST  
tDHT  
10  
10  
AUDIO INTERFACE TIMING – SLAVE MODE  
Figure 4 Digital Audio Data Timing – Slave Mode  
Test Conditions  
DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, TA=+25oC, Slave Mode, fs=48kHz,  
MCLK= 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
tLRSU  
tLRH  
tDH  
50  
20  
20  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
LRC set-up time to BCLK rising edge  
LRC hold time from BCLK rising edge  
DACDAT hold time from BCLK rising edge  
DACDAT setup time to BCLK rising edge  
ADCDAT propagation delay from BCLK falling edge  
tDs  
tDD  
10  
Note:  
BCLK period should always be greater than or equal to MCLK period.  
PP Rev 3.0 April 2006  
16  
w
Pre-Production  
WM8976  
CONTROL INTERFACE TIMING – 3-WIRE MODE  
Figure 5 Control Interface Timing – 3-Wire Serial Control Mode  
Test Conditions  
DCVDD = 1.8V, DBVDD = AVDD = SPKVDD = 3.3V, DGND = AGND = SPKGND = 0V, TA=+25oC, Slave Mode, fs=48kHz,  
MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
tSCS  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
tps  
80  
200  
80  
80  
40  
40  
40  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
CSB pulse width high  
CSB rising to SCLK rising  
Pulse width of spikes that will be suppressed  
5
PP Rev 3.0 April 2006  
17  
w
WM8976  
Pre-Production  
CONTROL INTERFACE TIMING – 2-WIRE MODE  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t9  
Figure 6 Control Interface Timing – 2-Wire Serial Control Mode  
Test Conditions  
DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, TA=+25oC, Slave Mode, fs=48kHz,  
MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
0
526  
kHz  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
1.3  
600  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
0
900  
5
Pulse width of spikes that will be suppressed  
PP Rev 3.0 April 2006  
18  
w
Pre-Production  
WM8976  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8976 is a low power audio CODEC combining a high quality stereo audio DAC and mono  
ADC, with flexible line and microphone input and output processing. Applications for this device  
include multimedia phones, digital camcorders, and digital still cameras with record and playback  
capability.  
FEATURES  
The chip offers great flexibility in use, and so can support many different modes of operation as  
follows:  
MICROPHONE INPUT  
A microphone input is provided, allowing a microphone to be pseudo-differentially connected, with  
user defined gain using internal resistors. The provision of the common mode input pin allows for  
rejection of common mode noise on the microphone input (level depends on gain setting chosen). A  
microphone bias is output from the chip which can be used to bias the microphone. The signal  
routing can be configured to allow manual adjustment of mic level, or to allow the ALC loop to control  
the level of mic signal that is transmitted.  
Total gain through the microphone path of up to +55.25dB can be selected.  
PGA AND ALC OPERATION  
A programmable gain amplifier is provided in the input path to the ADC. This may be used manually  
or in conjunction with a mixed analogue/digital automatic level control (ALC) which keeps the  
recording volume constant.  
LINE INPUTS (AUXL, AUXR)  
The inputs, AUXL and AUXR, can be used as a stereo line input or as an input for warning tones (or  
‘beeps’) etc. The left input can be summed into the record path, along with the microphone preamp  
output, so allowing for mixing of audio with ‘backing music’ etc as required.  
ADC  
The ADC uses a 24-bit delta sigma oversampling architecture to deliver optimum performance with  
low power consumption.  
HI-FI DAC  
The hi-fi DAC provides high quality audio playback suitable for all portable audio hi-fi type  
applications, including MP3 players and portable disc players of all types.  
OUTPUT MIXERS  
Flexible mixing is provided on the outputs of the device. A stereo mixer is provided for the stereo  
headphone or line outputs, LOUT1/ROUT1, and additional summers on the OUT3/OUT4 outputs  
allow for an optional differential or stereo line output on these pins. Gain adjustment PGAs are  
provided for the LOUT1/ROUT1 and LOUT2/ROUT2 outputs, and signal switching is provided to  
allow for all possible signal combinations. The output buffers can be configured in several ways,  
allowing support of up to three sets of external transducers; ie stereo headphone, BTL speaker, and  
BTL earpiece may be connected simultaneously. Thermal implications should be considered before  
simultaneous full power operation of all outputs is attempted.  
Alternatively, if a speaker output is not required, the LOUT2 and ROUT2 pins might be used as a  
stereo headphone driver, (disable output invert buffer on ROUT2). In that case two sets of  
headphones might be driven, or the LOUT2 and ROUT2 pins used as a line output driver.  
PP Rev 3.0 April 2006  
19  
w
WM8976  
Pre-Production  
OUT3 and OUT4 can be configured to provide an additional stereo lineout from the output of the  
DACs, the mixers or the input microphone boost stages. Alternatively OUT4 can be configured as a  
mono mix of left and right DACs or mixers, or simply a buffered version of the chip midrail reference  
voltage. OUT3 can also be configured as a buffered VMID output. This voltage may then be used as  
a headphone ‘pseudo ground’ allowing removal of the large AC coupling capacitors often used in the  
output path.  
AUDIO INTERFACES  
The WM8976 has a standard audio interface, to support the transmission of data to and from the  
chip. This interface is a 3 wire standard audio interface which supports a number of audio data  
formats including I2S, DSP/PCM Mode (a burst mode in which LRC sync plus 2 data packed words  
are transmitted), MSB-First, left justified and MSB-First, right justified, and can operate in master or  
slave modes.  
CONTROL INTERFACES  
To allow full software control over all features, the WM8976 offers a choice of 2 or 3 wire control  
interface. It is fully compatible and an ideal partner for a wide range of industry standard  
microprocessors, controllers and DSPs.  
Selection between the modes is via the MODE pin. In 2 wire mode the address of the device is fixed  
as 0011010.  
CLOCKING SCHEMES  
WM8976 offers the normal audio DAC clocking scheme operation, where 256fs MCLK is provided to  
the DAC and ADC.  
A PLL is included which may be used to generate these clocks in the event that they are not  
available from the system controller. This PLL uses an input clock, typically the 12MHz USB or ilink  
clock, to generate high quality audio clocks. If this PLL is not required for generation of these clocks,  
it can be reconfigured to generate alternative clocks which may then be output on the GPIO pins and  
used elsewhere in the system.  
POWER CONTROL  
The design of the WM8976 has given much attention to power consumption without compromising  
performance. It operates at very low voltages, and includes the ability to power off any unused parts  
of the circuitry under software control, and includes standby and power off modes.  
OPERATION SCENARIOS  
Flexibility in the design of the WM8976 allows for a wide range of operational scenarios, some of  
which are proposed below:  
Multimedia phone; High quality playback to a stereo headset, a mono ear speaker or a loudspeaker  
is supported, allowing Hi-Fi playback to be mixed with voice and other analogue inputs while  
simultaneously transmitting a differential output from the microphone amplifier. A 5-band EQ enables  
Hi-Fi playback to be customised to suit the user's preferences and the music style, while  
programmable filtering allows fixed-frequency noise (e.g. 217Hz) to be reduced in the digital domain.  
Camcorder; The provision of a microphone preamplifier allows support for both internal or external  
microphones. All drivers for speaker, headphone and line output connections are integrated. The  
selectable ‘application filters’ after the ADC provide for features such as ‘wind noise’ reduction, or  
mechanical noise reducing filters.  
Digital still camera recording; Support for digital recording is similar to the camcorder case. But  
additionally if the DSC supports MP3 playback, and perhaps recording, the ability of the ADC to  
support full 48ks/s high quality recording increases device flexibility.  
AUXILIARY ANALOGUE INPUTS  
An analogue stereo FM tuner or other auxiliary analogue input can be connected to the AUX inputs of  
WM8976, and the stereo signal listened to via headphones.  
PP Rev 3.0 April 2006  
20  
w
Pre-Production  
WM8976  
INPUT SIGNAL PATH  
The WM8976 has flexible analogue inputs. An input PGA stage is followed by a boost/mix stage  
which drives into the hi-fi ADC. The input path has three input pins which can be configured in a  
variety of ways to accommodate single-ended or differential microphones. There is an auxiliary input  
pin which can be fed into to the input boost/mix stage as well as driving into the output path. A  
bypass path exists from the output of the boost/mix stage into the output left/right mixers.  
MICROPHONE INPUTS  
The WM8976 can accommodate a variety of microphone configurations including single ended and  
differential inputs. The inputs to the differential input PGA are LIN, LIP and L2.  
In single-ended microphone input configuration the microphone signal should be input to LIN and the  
internal NOR gate configured to clamp the non-inverting input of the input PGA to VMID.  
In differential mode the larger signal should be input to LIP or RIP and the smaller (e.g. noisy ground  
connections) should be input to LIN or RIN.  
Figure 7 Microphone Input PGA Circuit  
The input PGA is enabled by the IPPGAENL/R register bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Input PGA enable  
R2  
2
INPPGAENL  
0
Power  
Management  
2
0 = disabled  
1 = enabled  
Table 3 Input PGA Enable Register Settings  
PP Rev 3.0 April 2006  
21  
w
WM8976  
Pre-Production  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R44  
0
LIP2INPPGA  
1
Connect LIP pin to input PGA amplifier  
positive terminal.  
Input  
Control  
0 = LIP not connected to input PGA  
1 = input PGA amplifier positive terminal  
connected to LIP (constant input  
impedance)  
1
2
LIN2INPPGA  
L2_2INPPGA  
1
0
Connect LIN pin to input PGA negative  
terminal.  
0=LIN not connected to input PGA  
1=LIN connected to input PGA amplifier  
negative terminal.  
Connect L2 pin to input PGA positive  
terminal.  
0=L2 not connected to input PGA  
1=L2 connected to input PGA amplifier  
positive terminal (constant input  
impedance).  
Table 4 Input PGA Control  
INPUT PGA VOLUME CONTROL  
The input microphone PGA has a gain range from -12dB to +35.25dB in 0.75dB steps. The gain  
from the LIN input to the PGA output and from the L2 amplifier to the PGA output is always common  
and controlled by the register bits INPPGAVOLL[5:0]. These register bits also affect the LIP pin  
when LIP2INPPGA=1, the L2 pin when L2_2INPPGA=1 and the L2 pin when L2_2INPPGA=1.  
When the Automatic Level Control (ALC) is enabled the input PGA gains are controlled  
automatically and the INPPGAVOLL bits should not be used.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Input PGA volume  
R45  
5:0  
INPPGAVOLL  
010000  
Input PGA  
volume  
control  
000000 = -12dB  
000001 = -11.25db  
.
010000 = 0dB  
.
111111 = 35.25dB  
Mute control for input PGA:  
6
7
INPPGAMUTEL  
INPPGAZCL  
0
0
0=Input PGA not muted, normal  
operation  
1=Input PGA muted (and disconnected  
from the following input BOOST stage).  
Input PGA zero cross enable:  
0=Update gain when gain register  
changes  
1=Update gain on 1st zero cross after  
gain register write.  
8
8
INPPGAUPDATE Not  
latched  
INPPGAVOLL volume does not update  
until a 1 is written to INPPGAUPDATE  
R32  
ALCSEL  
0
ALC function select:  
0=ALC off  
ALC control  
1
1=ALC on  
Table 5 Input PGA Volume Control  
PP Rev 3.0 April 2006  
22  
w
Pre-Production  
WM8976  
AUXILLIARY INPUTS  
There are two auxilliary inputs, AUXL and AUXR which can be used for a variety of purposes such  
as stereo line inputs or as a ‘beep’ input signal to be mixed with the outputs.  
The AUXL input can be used as a line input to the input BOOST stage which has gain adjust of -  
12dB to +6dB in 3dB steps (plus off). See the INPUT BOOST section for further details.  
The AUXL/R inputs can also be mixed into the output channel mixers, with a gain of -15dB to +6dB  
plus off.  
In addition the AUXR input can be summed into the Right speaker output path (ROUT2) with a gain  
adjust of -15 to +6dB. This allows a ‘beep’ input to be output on the speaker outputs only without  
affecting the headphone or lineout signals.  
INPUT BOOST  
The input PGA stage is followed by an input BOOST circuit. The input BOOST circuit has 3  
selectable inputs: the input microphone PGA output, the AUX amplifier output and the L2 input pin  
(can be used as a line input, bypassing the input PGA). These three inputs can be mixed together  
and have individual gain boost/adjust as shown in Figure 8.  
Figure 8 Input Boost Stage  
The input PGA paths can have a +20dB boost (PGABOOSTL=1) , a 0dB pass through  
(PGABOOSTL=0) or be completely isolated from the input boost circuit (INPPGAMUTEL=1).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R47  
8
PGABOOSTL  
1
Boost enable for input PGA:  
Input BOOST  
control  
0 = PGA output has +0dB gain  
through input BOOST stage.  
1 = PGA output has +20dB gain  
through input BOOST stage.  
Table 6 Input BOOST Stage Control  
The Auxilliary amplifier path to the BOOST stage is controlled by the AUXL2BOOSTVOL[2:0]  
register bits. When AUXL2BOOSTVOL=000 this path is completely disconnected from the BOOST  
stage. Settings 001 through to 111 control the gain in 3dB steps from -12dB to +6dB.  
The L2 path to the BOOST stage is controlled by the LIP2BOOSTVOL[2:0] register bits. When  
L2_2BOOSTVOL=000 the L2 input pin is completely disconnected from the BOOST stage. Settings  
001 through to 111 control the gain in 3dB steps from -12dB to +6dB.  
PP Rev 3.0 April 2006  
23  
w
WM8976  
Pre-Production  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R47  
2:0  
AUXL2BOOSTVOL  
000  
Controls the auxilliary amplifer to  
the input boost stage:  
Input BOOST  
control  
000=Path disabled (disconnected)  
001=-12dB gain through boost  
stage  
010=-9dB gain through boost  
stage  
111=+6dB gain through boost  
stage  
6:4  
L2_2BOOSTVOL  
000  
Controls the L2 pin to the input  
boost stage:  
000=Path disabled (disconnected)  
001=-12dB gain through boost  
stage  
010=-9dB gain through boost  
stage  
111=+6dB gain through boost  
stage  
Table 7 Input BOOST Stage Control  
The BOOST stage is enabled under control of the BOOSTEN register bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2  
4
BOOSTENL  
0
Input BOOST enable  
Power  
management  
2
0 = Boost stage OFF  
1 = Boost stage ON  
Table 8 Input BOOST Enable Control  
MICROPHONE BIASING CIRCUIT  
The MICBIAS output provides a low noise reference voltage suitable for biasing electret type  
microphones and the associated external resistor biasing network. Refer to the Applications  
Information section for recommended external components. The MICBIAS voltage can be altered via  
the MBVSEL register bit.  
When MBVSEL=0, MICBIAS=0.9*AVDD and when MBVSEL=1,  
MICBIAS=0.65*AVDD. The output can be enabled or disabled using the MICBEN control bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Microphone Bias Enable  
R1  
4
MICBEN  
0
Power  
management 1  
0 = OFF (high impedance output)  
1 = ON  
Table 9 Microphone Bias Enable Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R44  
Input control  
8
MBVSEL  
0
Microphone Bias Voltage Control  
0 = 0.9 * AVDD  
1 = 0.65 * AVDD  
Table 10 Microphone Bias Voltage Control  
The internal MICBIAS circuitry is shown in Figure 9. Note that the maximum source current  
capability for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit  
the MICBIAS current to 3mA.  
PP Rev 3.0 April 2006  
24  
w
Pre-Production  
WM8976  
MBVSEL=0  
MICBIAS  
= 1.8 x VMID  
= 0.9 x AVDD  
VMID  
MB  
internal  
resistor  
MBVSEL=1  
MICBIAS  
= 1.3 x VMID  
= 0.65 x AVDD  
internal  
resistor  
AGND  
Figure 9 Microphone Bias Schematic  
ANALOGUE TO DIGITAL CONVERTER (ADC)  
The WM8976 uses a multi-bit, oversampled sigma-delta ADC. The use of multi-bit feedback and  
high oversampling rates reduces the effects of jitter and high frequency noise. The ADC Full Scale  
input level is proportional to AVDD. With a 3.3V supply voltage, the full scale level is 1.0Vrms. Any  
voltage greater than full scale may overload the ADC and cause distortion.  
ADC DIGITAL FILTERS  
The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data  
from the ADC to the correct sampling frequency to be output on the digital audio interface. The  
digital filter path for each ADC channel is illustrated in Figure 10.  
Figure 10 ADC Digital Filter Path  
The ADC is enabled by the ADCENL/R register bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Enable ADC:  
R2  
0
ADCENL  
0
Power  
management 2  
0 = ADC disabled  
1 = ADC enabled  
Table 11 ADC Enable Control  
PP Rev 3.0 April 2006  
25  
w
WM8976  
Pre-Production  
The polarity of the output signal can also be changed under software control using the ADCLPOL  
register bit. The oversampling rate of the ADC can be adjusted using the ADCOSR register bit.  
With ADCOSR=0 the oversample rate is 64x which gives lowest power operation and when  
ADCOSR=1 the oversample rate is 128x which gives best performance.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R14  
ADC Control  
0
ADCLPOL  
0
ADC polarity adjust:  
0=normal  
1=inverted  
3
ADCOSR  
0
ADC oversample rate select:  
0=64x (lower power)  
1=128x (best performance)  
Table 12 ADC Control  
SELECTABLE HIGH PASS FILTER  
A selectable high pass filter is provided. To disable this filter set HPFEN=0. The filter has two  
modes controlled by HPFAPP. In Audio Mode (HPFAPP=0) the filter is first order, with a cut-off  
frequency of 3.7Hz. In Application Mode (HPFAPP=1) the filter is second order, with a cut-off  
frequency selectable via the HPFCUT register. The cut-off frequencies when HPFAPP=1 are shown  
in Table 14.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
High Pass Filter Enable  
R14  
ADC Control  
8
7
HPFEN  
1
0=disabled  
1=enabled  
HPFAPP  
0
Select audio mode or application mode  
0=Audio mode (1st order, fc = ~3.7Hz)  
1=Application mode (2nd order, fc =  
HPFCUT)  
6:4  
Table 13 ADC Enable Control  
HPFCUT  
000  
Application mode cut-off frequency  
See Table 14 for details.  
HPFCUT  
[2:0]  
SR=101/100  
SR=011/010  
fs (kHz)  
22.05  
SR=001/000  
44.1  
8
11.025  
12  
16  
24  
32  
48  
000  
001  
010  
011  
100  
101  
110  
111  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
102  
131  
163  
204  
261  
327  
408  
102  
131  
163  
204  
261  
327  
408  
102  
131  
163  
204  
261  
327  
408  
Table 14 High Pass Filter Cut-off Frequencies (HPFAPP=1). Values in Hz.  
Note that the High Pass filter values (when HPFAPP=1) are calculated with the assumption that the  
SR register bits are set correctly for the actual sample rate as shown in Table 14.  
PP Rev 3.0 April 2006  
26  
w
Pre-Production  
WM8976  
PROGRAMMABLE NOTCH FILTER  
A programmable notch filter is provided. This filter has a variable centre frequency and bandwidth,  
programmable via two coefficients, a0 and a1. a0 and a1 are represented by the register bits  
NFA0[13:0] and NFA1[13:0]. Because these coefficient values require four register writes to setup  
there is an NFU (Notch Filter Update) flag which should be set only when all four registers are setup.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R27  
0
0
6:0  
NFA0[13:7]  
NFEN  
Notch Filter a0 coefficient, bits [13:7]  
Notch filter enable:  
Notch Filter 1  
7
8
0=Disabled  
1=Enabled  
0
NFU  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
Notch Filter a0 coefficient, bits [6:0]  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
Notch Filter a1 coefficient, bits [13:7]  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
Notch Filter a1 coefficient, bits [6:0]  
Notch filter update. The notch filter  
values used internally only update  
when one of the NFU bits is set high.  
R28  
0
0
6:0  
8
NFA0[6:0]  
NFU  
Notch Filter 2  
R29  
0
0
6:0  
8
NFA1[13:7]  
NFU  
Notch Filter 3  
R30  
0
0
0-6  
8
NFA1[6:0]  
NFU  
Notch Filter 4  
Table 15 Notch Filter Function  
The coefficients are calculated as follows:  
1tan(wb / 2)  
a0 =  
1+ tan(wb / 2)  
a1 = −(1+ a0 )cos(w0 )  
Where:  
w0 = 2πfc / fs  
wb = 2πfb / fs  
fc = centre frequency in Hz, fb = -3dB bandwidth in Hz, fs = sample frequency in Hz  
The actual register values can be determined from the coefficients as follows:  
NFA0 = -a0 x 213  
NFA1 = -a1 x 212  
PP Rev 3.0 April 2006  
w
27  
WM8976  
Pre-Production  
NOTCH FILTER WORKED EXAMPLE  
The following example illustrates how to calculate the a0 and a1 coefficients for a desired centre  
frequency and -3dB bandwidth.  
fc = 1000 Hz  
fb = 100 Hz  
fs = 48000 Hz  
w0 = 2πfc / fs  
wb = 2πfb / fs  
2π  
2π  
=
=
x (1000 / 48000) = 0.1308996939 rads  
x (100 / 48000) = 0.01308996939 rads  
1tan(wb / 2)  
1+ tan(wb / 2)  
1tan(0.01308996939/ 2)  
a0 =  
1+ tan(0.01308996939/ 2) = 0.9869949627  
=
a1 = −(1+ a0 )cos(w0 )  
(1+ 0.9869949627)cos(0.1308996939)  
=
=
-
1.969995945  
NFA0 = -a0 x 213 = -8085 (rounded to nearest whole number)  
NFA1 = -a1 x 212 = 8069 (rounded to nearest whole number)  
These values are then converted to a 14-bit sign / magnitude notation:  
NFA0[13] = 1; NFA0[12:0] = 13’h1F95; NFA0 = 14’h3F95 = 14’b11111110010101  
NFA1[13] = 0; NFA1[12:0] = 13’h1F85; NFA1 = 14’h1F85 = 14’b01111110000101  
DIGITAL ADC VOLUME CONTROL  
The output of the ADC can be digitally attenuated over a range from –127dB to 0dB in 0.5dB steps.  
The gain for a given eight-bit code X is given by:  
0.5 × (G-255) dB for 1 G 255;  
MUTE for G = 0  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R15  
7:0  
ADCVOLL  
[7:0]  
11111111  
( 0dB )  
ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
ADC Digital  
Volume  
1111 1111 = 0dB  
8
ADCVU  
Not  
latched  
ADC volume does not update until a 1 is  
written to ADCVU  
Table 16 ADC Digital Volume Control  
PP Rev 3.0 April 2006  
28  
w
Pre-Production  
WM8976  
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)  
The WM8976 has an automatic PGA gain control circuit, which can function as an input peak limiter  
or as an automatic level control (ALC).  
The Automatic Level Control (ALC) provides continuous adjustment of the input PGA in response to  
the amplitude of the input signal. A digital peak detector monitors the input signal amplitude and  
compares it to a register defined threshold level (ALCLVL).  
If the signal is below the threshold, the ALC will increase the gain of the PGA at a rate set by  
ALCDCY. If the signal is above the threshold, the ALC will reduce the gain of the PGA at a rate set  
by ALCATK.  
The ALC has two modes selected by the ALCMODE register: normal mode and peak limiter mode.  
The ALC/limiter function is enabled by setting the register bit R32[8] ALCSEL.  
REGISTER  
ADDRESS  
BIT  
LABEL  
ALCMIN  
DEFAULT  
DESCRIPTION  
R32 (20h)  
2:0  
000 (-12dB)  
Set minimum gain of PGA  
000 = -12dB  
ALC Control  
1
[2:0]  
001 = -6dB  
010 = 0dB  
011 = +6dB  
100 = +12dB  
101 = +18dB  
110 = +24dB  
111 = +30dB  
5:3  
ALCMAX  
[2:0]  
111  
(+35.25dB)  
Set Maximum Gain of PGA  
111 = +35.25dB  
110 = +29.25dB  
101 = +23.25dB  
100 = +17.25dB  
011 = +11.25dB  
010 = +5.25dB  
001 = -0.75dB  
000 = -6.75dB  
8:7  
3:0  
ALCSEL  
00  
ALC function select  
00 = ALC disabled  
01 = Right channel ALC enabled  
10 = Left channel ALC enabled  
11 = Both channels ALC enabled  
R33 (21h)  
ALCLVL  
[3:0]  
1011  
ALC target – sets signal level at ADC  
input  
ALC Control  
2
(-6dB)  
1111 = -1.5dBFS  
1110 = -1.5dBFS  
1101 = -3dBFS  
1100 = -4.5dBFS  
1011 = -6dBFS  
1010 = -7.5dBFS  
1001 = -9dBFS  
1000 = -10.5dBFS  
0111 = -12dBFS  
0110 = -13.5dBFS  
0101 = -15dBFS  
0100 = -16.5dBFS  
0011 = -18dBFS  
0010 = -19.5dBFS  
0001 = -21dBFS  
0000 = -22.5dBFS  
PP Rev 3.0 April 2006  
29  
w
WM8976  
Pre-Production  
REGISTER  
ADDRESS  
BIT  
LABEL  
ALCZC  
DEFAULT  
DESCRIPTION  
8
0 (zero  
cross off)  
ALC uses zero cross detection circuit.  
0 = Disabled (recommended)  
1 = Enabled  
7:4  
ALCHLD  
[3:0]  
0000  
ALC hold time before gain is  
increased.  
(0ms)  
0000 = 0ms  
0001 = 2.67ms  
0010 = 5.33ms  
0011 = 10.66ms  
0100 = 21.32ms  
0101 = 42.64ms  
0110 = 85.28ms  
0111 = 0.17s  
1000 = 0.34s  
1001 = 0.68s  
1010 or higher = 1.36s  
R34 (22h)  
8
ALCMODE  
0
Determines the ALC mode of  
operation:  
ALC Control  
3
0 = ALC mode (Normal Operation)  
1 = Limiter mode.  
7:4  
ALCDCY  
[3:0]  
0011  
Decay (gain ramp-up) time  
(ALCMODE ==0)  
(26ms/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
0000  
0001  
0010  
410us  
820us  
1.64ms  
3.38ms  
6.56ms  
13.1ms  
23.6ms  
47.2ms  
94.5ms  
… (time doubles with every step)  
1010  
or  
420ms  
3.36s  
24.2s  
higher  
0011  
Decay (gain ramp-up) time  
(ALCMODE ==1)  
(5.8ms/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
0000  
0001  
0010  
90.8us  
182us  
363us  
726us  
5.23ms  
10.5ms  
20.9ms  
1.45ms  
2.91ms  
… (time doubles with every step)  
1010 93ms 744ms 5.36s  
3:0  
ALCATK  
[3:0]  
0010  
ALC attack (gain ramp-down) time  
(ALCMODE == 0)  
(3.3ms/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
0000  
0001  
0010  
104us  
208us  
416us  
832us  
1.66ms  
3.33ms  
6ms  
12ms  
24ms  
… (time doubles with every step)  
1010  
or  
106ms  
852ms  
6.13s  
higher  
0010  
ALC attack (gain ramp-down) time  
(ALCMODE == 1)  
(726us/6dB)  
Per  
step  
Per  
6dB  
90% of  
range  
PP Rev 3.0 April 2006  
30  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000  
0001  
0010  
22.7us 182.4us 1.31ms  
45.4us  
90.8us  
363us  
726us  
2.62ms  
5.23ms  
… (time doubles with every step)  
1010  
or  
23.2ms  
186ms 1.34s  
higher  
Table 17 ALC Control Registers  
When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input  
gain update must be made by writing to the INPPGAVOLL/R register bits.  
NORMAL MODE  
In normal mode, the ALC will attempt to maintain a constant signal level by increasing or decreasing  
the gain of the PGA. The following diagram shows an example of this.  
Figure 11 ALC Normal Mode Operation  
PP Rev 3.0 April 2006  
31  
w
WM8976  
Pre-Production  
LIMITER MODE  
In limiter mode, the ALC will reduce peaks that go above the threshold level, but will not increase the  
PGA gain beyond the starting level. The starting level is the PGA gain setting when the ALC is  
enabled in limiter mode. If the ALC is started in limiter mode, this is the gain setting of the PGA at  
start-up. If the ALC is switched into limiter mode after running in ALC mode, the starting gain will be  
the gain at switchover. The diagram below shows an example of limiter mode.  
Figure 12 ALC Limiter Mode Operation  
ATTACK AND DECAY TIMES  
The attack and decay times set the update times for the PGA gain. The attack time is the time  
constant used when the gain is reducing. The decay time is the time constant used when the gain is  
increasing. In limiter mode, the time constants are faster than in ALC mode. The time constants  
are shown below in terms of a single gain step, a change of 6dB and a change of 90% of the PGAs  
gain range.  
Note that, these times will vary slightly depending on the sample rate used (specified by the SR  
register).  
PP Rev 3.0 April 2006  
32  
w
Pre-Production  
WM8976  
NORMAL MODE  
ALCMODE = 0 (Normal Mode)  
Attack Time (s)  
tATK6dB  
tATK  
tATK90%  
ALCATK  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
104µs  
208µs  
416µs  
832µs  
1.66ms  
3.33ms  
6.66ms  
13.3ms  
26.6ms  
53.2ms  
106ms  
213.2ms  
426ms  
852ms  
6ms  
12ms  
24ms  
48ms  
96ms  
192ms  
384ms  
767ms  
1.53s  
3.07s  
6.13s  
832µs  
1.66ms  
3.33ms  
6.66ms  
13.3ms  
26.6ms  
53.2ms  
106ms  
ALCMODE = 0 (Normal Mode)  
Decay Time (s)  
tDCY6dB  
tDCY  
tDCY90%  
ALCDCY  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
410µs  
820µs  
3.28ms  
6.56ms  
13.1ms  
26.2ms  
52.5ms  
105ms  
210ms  
420ms  
840ms  
1.68s  
23.6ms  
47.2ms  
94.5ms  
189ms  
378ms  
756ms  
1.51s  
3.02s  
6.05s  
12.1s  
24.2s  
1.64ms  
3.28ms  
6.56ms  
13.1ms  
26.2ms  
52.5ms  
105ms  
210ms  
420ms  
3.36s  
Table 18 ALC Normal Mode (Attack and Decay times)  
PP Rev 3.0 April 2006  
33  
w
WM8976  
Pre-Production  
LIMITER MODE  
ALCMODE = 1 (Limiter Mode)  
Attack Time (s)  
tATKLIM6dB  
tATKLIM  
22.7µs  
tATKLIM90%  
1.31ms  
ALCATK  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
182µs  
363µs  
726µs  
1.45ms  
2.91ms  
5.81ms  
11.6ms  
23.2ms  
46.5ms  
93ms  
45.4µS  
90.8µS  
182µS  
363µS  
726µS  
1.45ms  
2.9ms  
5.81ms  
11.6ms  
23.2ms  
2.62ms  
5.23ms  
10.5ms  
20.9ms  
41.8ms  
83.7ms  
167ms  
335ms  
669ms  
1.34s  
186ms  
ALCMODE = 1 (Limiter Mode)  
Attack Time (s)  
tDCYLIM6dB  
tDCYLIM  
90.8µs  
tDCYLIM90%  
ALCDCY  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
726µs  
1.45ms  
2.91ms  
5.81ms  
11.6ms  
23.2ms  
46.5ms  
93ms  
5.23ms  
10.5ms  
20.9ms  
41.8ms  
83.7ms  
167ms  
335ms  
669ms  
1.34s  
182µS  
363µS  
726µS  
1.45ms  
2.91ms  
5.81ms  
11.6ms  
23.2ms  
46.5ms  
93ms  
186ms  
372ms  
744ms  
2.68s  
5.36s  
Table 19 ALC Limiter Mode (Attack and Decay times)  
PP Rev 3.0 April 2006  
34  
w
Pre-Production  
WM8976  
MINIMUM AND MAXIMUM GAIN  
The ALCMIN and ALCMAX register bits set the minimum/maximum gain value that the PGA can be  
set to whilst under the control of the ALC. This has no effect on the PGA when ALC is not enabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R32  
5:3  
2:0  
ALCMAX  
ALCMIN  
111  
000  
Set Maximum Gain of PGA  
Set minimum gain of PGA  
ALC Control  
1
Table 20 ALC Max/Min Gain  
In normal mode, ALCMAX sets the maximum boost which can be applied to the signal. In limiter  
mode, ALCMAX will normally have no effect (assuming the starting gain value is less than the  
maximum gain specified by ALCMAX) because the maximum gain is set at the starting gain level.  
ALCMIN sets the minimum gain value which can be applied to the signal.  
Figure 13 ALC Min/Max Gain  
ALCMAX  
111  
110  
101  
100  
Maximum Gain (dB)  
35.25  
29.25  
23.25  
17.25  
11.25  
5.25  
011  
010  
001  
000  
-0.75  
-6.75  
Table 21 ALC Max Gain Values  
PP Rev 3.0 April 2006  
35  
w
WM8976  
Pre-Production  
ALCMIN  
000  
001  
Minimum Gain (dB)  
-12  
-6  
010  
0
011  
6
100  
101  
110  
111  
12  
18  
24  
30  
Table 22 ALC Min Gain Values  
Note that if the ALC gain setting strays outside the ALC operating range, either by starting the ALC  
outside of the range or changing the ALCMAX or ALCMIN settings during operation, the ALC will  
immediately adjust the gain to return to the ALC operating range. It is recommended that the ALC  
starting gain is set between the ALCMAX and ALCMIN limits.  
ALC HOLD TIME (NORMAL MODE ONLY)  
In Normal mode, the ALC has an adjustable hold time which sets a time delay before the ALC  
begins its decay phase (gain increasing). The hold time is set by the ALCHLD register.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R33  
7:4  
ALCHLD  
0000  
ALC hold time before gain is increased.  
ALC Control  
2
Table 23 ALC Hold Time  
If the hold time is exceeded this indicates that the signal has reached a new average level and the  
ALC will increase the gain to adjust for that new average level. If the signal goes above the  
threshold during the hold period, the hold phase is abandoned and the ALC returns to normal  
operation.  
PP Rev 3.0 April 2006  
36  
w
Pre-Production  
WM8976  
Figure 14 ALCLVL  
PP Rev 3.0 April 2006  
37  
w
WM8976  
Pre-Production  
Figure 15 ALC Hold Time  
tHOLD (s)  
ALCHLD  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
0
2.67ms  
5.34ms  
10.7ms  
21.4ms  
42.7ms  
85.4ms  
171ms  
342ms  
684ms  
1.37s  
Table 24 ALC Hold Time Values  
PP Rev 3.0 April 2006  
38  
w
Pre-Production  
WM8976  
PEAK LIMITER  
To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a  
limiter function. If the ADC input signal exceeds 87.5% of full scale (–1.16dB), the PGA gain is  
ramped down at the maximum attack rate (as when ALCATK = 0000), until the signal level falls  
below 87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.  
Note: If ALCATK = 0000, then the limiter makes no difference to the operation of the ALC. It is  
designed to prevent clipping when long attack times are used.  
NOISE GATE (NORMAL MODE ONLY)  
When the signal is very quiet and consists mainly of noise, the ALC function may cause “noise  
pumping”, i.e. loud hissing noise during silence periods. The WM8976 has a noise gate function that  
prevents noise pumping by comparing the signal level at the input pins against a noise gate  
threshold, NGTH. The noise gate cuts in when:  
Signal level at ADC [dBFS] < NGTH [dBFS] + PGA gain [dB] + Mic Boost gain [dB]  
This is equivalent to:  
Signal level at input pin [dBFS] < NGTH [dBFS]  
The PGA gain is then held constant (preventing it from ramping up as it normally would when the  
signal is quiet).  
The table below summarises the noise gate control register. The NGTH control bits set the noise  
gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 6dB steps.  
Levels at the extremes of the range may cause inappropriate operation, so care should be taken with  
set–up of the function. The noise gate only operates in conjunction with the ALC and cannot be used  
in limiter mode.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
000  
DESCRIPTION  
R35 (23h)  
2:0 NGTH  
Noise gate threshold:  
ALC Noise Gate  
Control  
000 = -39dB  
001 = -45dB  
010 = -51db  
011 = -57dB  
100 = -63dB  
101 = -69dB  
110 = -75dB  
111 = -81dB  
Noise gate function enable  
1 = enable  
3
NGATEN  
0
0 = disable  
Table 25 ALC Noise Gate Control  
The diagrams below show the response of the system to the same signal with and without noise  
gate.  
PP Rev 3.0 April 2006  
39  
w
WM8976  
Pre-Production  
Figure 16 ALC Operation Above Noise Gate Threshold  
PP Rev 3.0 April 2006  
40  
w
Pre-Production  
WM8976  
Figure 17 Noise Gate Operation  
OUTPUT SIGNAL PATH  
The WM8976 output signal paths consist of digital application filters, up-sampling filters, stereo Hi-Fi  
DACs, analogue mixers, speaker, stereo headphone and stereo line/mono/midrail output drivers.  
The digital filters and DAC are enabled by register bits DACENL And DACENR. The mixers and  
output drivers can be separately enabled by individual control bits (see Analogue Outputs). Thus it is  
possible to utilise the analogue mixing and amplification provided by the WM8976, irrespective of  
whether the DACs are enabled or not.  
The WM8976 DACs receive digital input data on the DACDAT pin. The digital filter block processes  
the data to provide the following functions:  
§
§
§
§
Digital volume control  
Graphic equaliser  
Digital peak limiter.  
Sigma-Delta Modulation  
High performance sigma-delta 24-bit audio DAC converts the digital data into an analogue signal.  
PP Rev 3.0 April 2006  
41  
w
WM8976  
Pre-Production  
Figure 18 DAC Digital Filter Path  
The analogue outputs from the DACs can then be mixed with the aux analogue inputs and the ADC  
analogue inputs. The mix is fed to the output drivers for headphone (LOUT1/ROUT1), speaker  
(LOUT2/ROUT2) or line (OUT3/OUT4). OUT3 and OUT4 have additional mixers which allow them  
to output different signals to the headphone and speaker outputs.  
DIGITAL PLAYBACK (DAC) PATH  
Digital data is passed to the WM8976 via the flexible audio interface and is then passed through a  
variety of advanced digital filters (as shown in Figure 18) to the hi-fi DACs. The DACs are enabled  
by the DACENL/R register bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R3  
0
DACENL  
0
Left channel DAC enable  
0 = DAC disabled  
Power  
Management 3  
1 = DAC enabled  
1
DACENR  
0
Right channel DAC enable  
0 = DAC disabled  
1 = DAC enabled  
Table 26 DAC Enable Control  
The WM8976 also has a Soft Mute function, which, when enabled, gradually attenuates the volume  
of the digital signal to zero. When disabled, the gain will ramp back up to the digital gain setting. This  
function is enabled by default. To play back an audio signal, this function must first be disabled by  
setting the SOFTMUTE bit to zero.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R10  
DAC Control  
0
DACPOLL  
0
Left DAC output polarity:  
0 = non-inverted  
1 = inverted (180 degrees phase shift)  
Right DAC output polarity:  
0 = non-inverted  
1
2
3
6
DACPOLR  
AMUTE  
0
0
0
0
1 = inverted (180 degrees phase shift)  
Automute enable  
0 = Amute disabled  
1 = Amute enabled  
DACOSR  
SOFTMUTE  
DAC oversampling rate:  
0=64x (lowest power)  
1=128x (best performance)  
Softmute enable:  
0=Enabled  
1=Disabled  
Table 27 DAC Control Register  
The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital  
interpolation filters. The bitstream data enters the multi-bit, sigma-delta DACs, which convert it to a  
high quality analogue audio signal. The multi-bit DAC architecture reduces high frequency noise and  
sensitivity to clock jitter. It also uses a Dynamic Element Matching technique for high linearity and  
low distortion.  
PP Rev 3.0 April 2006  
42  
w
Pre-Production  
WM8976  
The DAC output phase defaults to non-inverted. Setting DACPOLL will invert the DAC output phase  
on the left channel and DACPOLR inverts the phase on the right channel.  
AUTO-MUTE  
The DAC has an auto-mute function which applies an analogue mute when 1024 consecutive zeros  
are detected. The mute is released as soon as a non-zero sample is detected. Automute can be  
disabled using the AMUTE control bit.  
DIGITAL HI-FI DAC VOLUME (GAIN) CONTROL  
The signal volume from each Hi-Fi DAC can be controlled digitally. The gain and attenuation range  
is –127dB to 0dB in 0.5dB steps. The level of attenuation for an eight-bit code X is given by:  
0.5 × (X-255) dB for 1 X 255;  
MUTE for X = 0  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R11  
7:0  
DACVOLL  
[7:0]  
11111111  
( 0dB )  
Left DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Left DAC  
Digital Volume  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
8
DACVU  
Not  
latched  
DAC left and DAC right volume do  
not update until a 1 is written to  
DACVU (in reg 11 or 12)  
R12  
7:0  
DACVOLR  
[7:0]  
11111111  
( 0dB )  
Right DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Right DAC  
Digital Volume  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
8
DACVU  
Not  
latched  
DAC left and DAC right volume do  
not update until a 1 is written to  
DACVU (in reg 11 or 12)  
Table 28 DAC Digital Volume Control  
Note: An additional gain of up to +12dB can be added using the gain block embedded in the  
digital peak limiter circuit (see DAC OUTPUT LIMITER section).  
5-BAND EQUALISER  
A 5-band graphic equaliser function which can be used to change the output frequency levels to suit  
the environment. This can be applied to the ADC or DAC path and is described in the 5-BAND  
EQUALISER section for further details on this feature.  
3-D ENHANCEMENT  
The WM8976 has an advanced digital 3-D enhancement feature which can be used to vary the  
perceived stereo separation of the left and right channels. See the 3-D STEREO ENHANCEMENT  
section for further details on this feature.  
DAC DIGITAL OUTPUT LIMITER  
The WM8976 has a digital output limiter function. The operation of this is shown in Figure 19. In  
this diagram the upper graph shows the envelope of the input/output signals and the lower graph  
shows the gain characteristic.  
PP Rev 3.0 April 2006  
43  
w
WM8976  
Pre-Production  
Figure 19 DAC Digital Limiter Operation  
The limiter has a programmable upper threshold which is close to 0dB. Referring to Figure 19, in  
normal operation (LIMBOOST=000 => limit only) signals below this threshold are unaffected by the  
limiter. Signals above the upper threshold are attenuated at a specific attack rate (set by the  
LIMATK register bits) until the signal falls below the threshold. The limiter also has a lower threshold  
1dB below the upper threshold. When the signal falls below the lower threshold the signal is  
amplified at a specific decay rate (controlled by LIMDCY register bits) until a gain of 0dB is reached.  
Both threshold levels are controlled by the LIMLVL register bits. The upper threshold is 0.5dB above  
the value programmed by LIMLVL and the lower threshold is 0.5dB below the LIMLVL value.  
VOLUME BOOST  
The limiter has programmable upper gain which boosts signals below the threshold to compress the  
dynamic range of the signal and increase its perceived loudness. This operates as an ALC function  
with limited boost capability. The volume boost is from 0dB to +12dB in 1dB steps, controlled by the  
LIMBOOST register bits.  
The output limiter volume boost can also be used as a stand alone digital gain boost when the limiter  
is disabled.  
PP Rev 3.0 April 2006  
44  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
LIMATK  
DEFAULT  
DESCRIPTION  
R24  
3:0  
0010  
Limiter Attack time (per 6dB gain  
change) for 44.1kHz sampling. Note  
that these will scale proportionally with  
sample rate.  
DAC digital  
limiter control  
1
0000=94us  
0001=188s  
0010=375us  
0011=750us  
0100=1.5ms  
0101=3ms  
0110=6ms  
0111=12ms  
1000=24ms  
1001=48ms  
1010=96ms  
1011 to 1111=192ms  
7:4  
LIMDCY  
0011  
Limiter Decay time (per 6dB gain  
change) for 44.1kHz sampling. Note  
that these will scale proportionally with  
sample rate:  
0000=750us  
0001=1.5ms  
0010=3ms  
0011=6ms  
0100=12ms  
0101=24ms  
0110=48ms  
0111=96ms  
1000=192ms  
1001=384ms  
1010=768ms  
1011 to 1111=1.536s  
Enable the DAC digital limiter:  
0=disabled  
8
LIMEN  
0
1=enabled  
R25  
3:0  
LIMBOOST  
0000  
Limiter volume boost (can be used as a  
stand alone volume boost when  
LIMEN=0):  
DAC digital  
limiter control  
2
0000=0dB  
0001=+1dB  
0010=+2dB  
… (1dB steps)  
1011=+11dB  
1100=+12dB  
1101 to 1111=reserved  
PP Rev 3.0 April 2006  
45  
w
WM8976  
Pre-Production  
Programmable signal threshold level  
6:4  
LIMLVL  
000  
(determines level at which the limiter  
starts to operate)  
000=-1dB  
001=-2dB  
010=-3dB  
011=-4dB  
100=-5dB  
101 to 111=-6dB  
Table 29 DAC Digital Limiter Control  
5-BAND GRAPHIC EQUALISER  
A 5-band graphic equaliser (EQ) is provided, which can be applied to the ADC or DAC path, together  
with 3D enhancement, under control of the EQ3DMODE register bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R18  
EQ Control 1  
8
EQ3DMODE  
1
0 = Equaliser applied to ADC path  
1 = Equaliser and 3D Enhancement  
applied to DAC path  
Table 30 EQ and 3D Enhancement DAC or ADC Path Select  
The equaliser consists of low and high frequency shelving filters (Band 1 and 5) and three peak  
filters for the centre bands. Each has adjustable cut-off or centre frequency, and selectable boost  
(+/- 12dB in 1dB steps). The peak filters have selectable bandwidth.  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ1G  
EQ1C  
DEFAULT  
DESCRIPTION  
R18  
4:0  
01100  
(0dB)  
01  
Band 1 Gain Control. See Table 36 for  
details.  
EQ Band 1  
Control  
6:5  
Band 1 Cut-off Frequency:  
00=80Hz  
01=105Hz  
10=135Hz  
11=175Hz  
Table 31 EQ Band 1 Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ2G  
DEFAULT  
DESCRIPTION  
R19  
4:0  
01100  
(0dB)  
01  
Band 2 Gain Control. See Table 36 for  
details.  
EQ Band 2  
Control  
6:5  
EQ2C  
Band 2 Centre Frequency:  
00=230Hz  
01=300Hz  
10=385Hz  
11=500Hz  
8
EQ2BW  
0
Band 2 Bandwidth Control  
0=narrow bandwidth  
1=wide bandwidth  
Table 32 EQ Band 2 Control  
PP Rev 3.0 April 2006  
46  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ3G  
DEFAULT  
DESCRIPTION  
R20  
4:0  
01100  
(0dB)  
01  
Band 3 Gain Control. See Table 36 for  
details.  
EQ Band 3  
Control  
6:5  
EQ3C  
Band 3 Centre Frequency:  
00=650Hz  
01=850Hz  
10=1.1kHz  
11=1.4kHz  
8
EQ3BW  
0
Band 3 Bandwidth Control  
0=narrow bandwidth  
1=wide bandwidth  
Table 33 EQ Band 3 Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ4G  
DEFAULT  
DESCRIPTION  
R21  
4:0  
01100  
(0dB)  
01  
Band 4 Gain Control. See Table 36 for  
details  
EQ Band 4  
Control  
6:5  
EQ4C  
Band 4 Centre Frequency:  
00=1.8kHz  
01=2.4kHz  
10=3.2kHz  
11=4.1kHz  
8
EQ4BW  
0
Band 4 Bandwidth Control  
0=narrow bandwidth  
1=wide bandwidth  
Table 34 EQ Band 4 Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ5G  
EQ5C  
DEFAULT  
DESCRIPTION  
R22  
4:0  
01100  
(0dB)  
01  
Band 5 Gain Control. See Table 36 for  
details.  
EQ Band 5  
Gain Control  
6:5  
Band 5 Cut-off Frequency:  
00=5.3kHz  
01=6.9kHz  
10=9kHz  
11=11.7kHz  
Table 35 EQ Band 5 Control  
GAIN REGISTER  
GAIN  
+12dB  
+11dB  
+10dB  
00000  
00001  
00010  
…. (1dB steps)  
01100  
0dB  
-1dB  
01101  
11000  
-12dB  
11001 to 11111  
Table 36 Gain Register Table  
Reserved  
PP Rev 3.0 April 2006  
47  
w
WM8976  
Pre-Production  
3D STEREO ENHANCEMENT  
The WM8976 has a digital 3D enhancement option to increase the perceived separation between the  
left and right channels. Selection of 3D for playback is controlled by register bit EQ3DMODE.  
Switching this bit from record to playback or from playback to record may only be done when ADC  
and DAC are disabled. The WM8976 control interface will only allow EQ3DMODE to be changed  
when ADC and DAC are disabled (ie ADCENL = 0, ADCENR = 0, DACENL = 0 and DACENR = 0).  
The DEPTH3D setting controls the degree of stereo expansion.  
When 3D enhancement is used, it may be necessary to attenuate the signal by 6dB to avoid limiting.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Stereo depth  
R41 (29h)  
3D  
3:0  
DEPTH3D[3:0]  
0000  
0000: 0% (minimum 3D effect)  
0001: 6.67%  
....  
1110: 93.3%  
1111: 100% (maximum 3D effect)  
Table 37 3D Stereo Enhancement Function  
ANALOGUE OUTPUTS  
The WM8976 has three sets of stereo analogue outputs. These are:  
LOUT1 and ROUT1 which are normally used to drive a headphone load.  
LOUT2 and ROUT2 – normally used to drive an 8BTL speaker.  
OUT3 and OUT4 – can be configured as a stereo line out (OUT3 is left output and  
OUT4 is right output). OUT4 can also be used to provide a mono mix of left and right  
channels.  
LOUT2, ROUT2, OUT3 and OUT4 are supplied from SPKVDD and are capable of driving up to  
1.5Vrms signals as shown in Figure 20. LOUT1 and ROUT1 are supplied from AVDD and can only  
drive out a 1V rms signal (AVDD/3.3).  
LOUT1, ROUT1, LOUT2 and ROUT2 have individual analogue volume PGAs with -57dB to +6dB  
ranges.  
There are four output mixers in the output signal path, the left and right channel mixers which control  
the signals to speaker, headphone (and optionally the line outputs) and also dedicated OUT3 and  
OUT4 mixers.  
LEFT AND RIGHT OUTPUT CHANNEL MIXERS  
The left and right output channel mixers are shown in Figure 20. These mixers allow the AUX  
inputs, the ADC bypass and the DAC left and right channels to be combined as desired. This  
allows a mono mix of the DAC channels to be done as well as mixing in external line-in from the  
AUX or speech from the input bypass path.  
The AUX and bypass inputs have individual volume control from -15dB to +6dB and the DAC volume  
can be adjusted in the digital domain if required. The output of these mixers is connected to both  
the headphone (LOUT1 and ROUT1) and speaker (LOUT2 and ROUT2) and can optionally be  
connected to the OUT3 and OUT4 mixers.  
PP Rev 3.0 April 2006  
48  
w
Pre-Production  
WM8976  
Figure 20 Left/Right Output Channel Mixers  
PP Rev 3.0 April 2006  
49  
w
WM8976  
Pre-Production  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R49  
5
DACR2LMIX  
0
Right DAC output to left output  
mixer  
Output mixer  
control  
0 = not selected  
1 = selected  
6
0
1
DACL2RMIX  
DACL2LMIX  
BYPL2LMIX  
0
1
0
Left DAC output to right output mixer  
0 = not selected  
1 = selected  
R50  
Left DAC output to left output mixer  
0 = not selected  
Left channel  
output mixer  
control  
1 = selected  
Bypass path (from the input boost  
output) to left output mixer  
0 = not selected  
1 = selected  
4:2  
BYPLMIXVOL  
000  
Bypass volume contol to output  
channel mixer:  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
5
AUXL2LMIX  
0
Left Auxilliary input to left channel  
output mixer:  
0 = not selected  
1 = selected  
8:6  
AUXLMIXVOL  
000  
Aux left channel input to left mixer  
volume control:  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
PP Rev 3.0 April 2006  
50  
w
Pre-Production  
WM8976  
R51  
0
DACR2RMIX  
1
Right DAC output to right output  
mixer  
Right channel  
output mixer  
control  
0 = not selected  
1 = selected  
4:2  
BYPRMIXVOL  
000  
Right bypass volume control to  
output channel mixer:  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
5
AUXR2RMIX  
0
Right Auxiliary input to right channel  
output mixer:  
0 = not selected  
1 = selected  
8:6  
AUXRMIXVOL  
000  
Aux right channel input to right mixer  
volume control:  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
R3  
2
3
LMIXEN  
RMIXEN  
0
0
Left output channel mixer enable:  
0 = disabled  
Power  
management  
3
1= enabled  
Right output channel mixer enable:  
0 = disabled  
1 = enabled  
Table 38 Left and Right Output Mixer Control  
HEADPHONE OUTPUTS (LOUT1 AND ROUT1)  
The headphone outputs, LOUT1 and ROUT1 can drive a 16or 32headphone load, either  
through DC blocking capacitors, or DC coupled without any capacitor. Each headphone output has  
an analogue volume control PGA with a gain range of -57dB to +6dB as shown in Figure 23.  
Figure 21 Headphone Outputs LOUT1 and ROUT1  
PP Rev 3.0 April 2006  
51  
w
WM8976  
Pre-Production  
DESCRIPTION  
REGISTER  
ADDRESS  
BIT  
LABEL  
LOUT1ZC  
DEFAULT  
R52  
7
0
Headphone volume zero cross  
enable:  
LOUT1  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left headphone output mute:  
0 = Normal operation  
1 = Mute  
Volume  
control  
6
LOUT1MUTE  
LOUT1VOL  
0
5:0  
111001  
Left headphone output volume:  
000000 = -57dB  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
7
HPVU  
Not latched LOUT1 and ROUT1 volumes do not  
update until a 1 is written to HPVU  
(in reg 52 or 53)  
R53  
ROUT1ZC  
0
Headphone volume zero cross  
enable:  
ROUT1  
Volume  
control  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right headphone output mute:  
0 = Normal operation  
1 = Mute  
6
ROUT1MUTE  
ROUT1VOL  
0
5:0  
111001  
Right headphone output volume:  
000000 = -57dB  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
HPVU  
Not latched LOUT1 and ROUT1 volumes do not  
update until a 1 is written to HPVU  
(in reg 52 or 53)  
Table 39 OUT1 Volume Control  
Headphone Output using DC Blocking Capacitors:  
DC Coupled Headphone Output:  
Figure 22 Recommended Headphone Output Configurations  
When DC blocking capacitors are used, then their capacitance and the load resistance together  
determine the lower cut-off frequency, fc. Increasing the capacitance lowers fc, improving the bass  
response. Smaller capacitance values will diminish the bass response. Assuming a 16load and  
C1, C2 = 220µF:  
fc = 1 / 2π RLC1 = 1 / (2π x 16x 220µF) = 45 Hz  
PP Rev 3.0 April 2006  
52  
w
Pre-Production  
WM8976  
In the DC coupled configuration, the headphone “ground” is connected to the VMID pin. The  
OUT3/4 pins can be configured as a DC output driver by setting the OUT3MUTE and OUT4MUTE  
register bit. The DC voltage on VMID in this configuration is equal to the DC offset on the LOUT1  
and ROUT1 pins therefore no DC blocking capacitors are required. This saves space and material  
cost in portable applications.  
Note that OUT3 and OUT4 have an optional output boost of 1.5x. When these are configured in this  
output boost mode (OUT3BOOST/OUT4BOOST=1) then the VMID value of these outputs will be  
equal to 1.5xAVDD/2 and will not match the VMID of the headphone drivers. Do not use the DC  
coupled output mode in this configuration.  
It is recommended to connect the DC coupled outputs only to headphones, and not to the line input  
of another device. Although the built-in short circuit protection will prevent any damage to the  
headphone outputs, such a connection may be noisy, and may not function properly if the other  
device is grounded.  
SPEAKER OUTPUTS (LOUT2 AND ROUT2)  
The outputs LOUT2 and ROUT2 are designed to drive an 8BTL speaker but can optionally drive  
two headphone loads of 16/32or a line output (see Headphone Output and Line Output sections,  
respectively). Each output has an individual volume control PGA, an output boost/level shift bit, a  
mute and an enable as shown in Figure 23. LOUT2 and ROUT2 output the left and right channel  
mixer outputs respectively.  
The ROUT2 signal path also has an optional invert. The amplifier used for this invert can be used to  
mix in the AUXR signal with an adjustable gain range of -15dB -> +6dB. This allows a ‘beep’ signal  
to be applied only to the speaker output without affecting the HP or line outputs.  
Figure 23 Speaker Outputs LOUT2 and ROUT2  
PP Rev 3.0 April 2006  
53  
w
WM8976  
Pre-Production  
REGISTER  
ADDRESS  
BIT  
LABEL  
LOUT2ZC  
DEFAULT  
DESCRIPTION  
R54  
7
0
Speaker volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left speaker output mute:  
0 = Normal operation  
1 = Mute  
LOUT2 (SPK)  
Volume  
control  
6
LOUT2MUTE  
LOUT2VOL  
0
5:0  
111001  
Left speaker output volume:  
000000 = -57dB  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
7
SPKVU  
Not latched LOUT2 and ROUT2 volumes do not  
update until a 1 is written to SPKVU  
(in reg 54 or 55)  
R55  
ROUT2ZC  
0
Speaker volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right speaker output mute:  
0 = Normal operation  
1 = Mute  
ROUT2 (SPK)  
Volume  
control  
6
ROUT2MUTE  
ROUT2VOL  
0
5:0  
111001  
Right speaker output volume:  
000000 = -57dB  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
SPKVU  
Not latched LOUT2 and ROUT2 volumes do not  
update until a 1 is written to SPKVU  
(in reg 54 or 55)  
Table 40 Speaker Volume Control  
The signal output on LOUT2/ROUT2 comes from the Left/Right Mixer circuits and can be any  
combination of the DAC output, the Bypass path (output of the input boost stage) and the AUX input.  
The LOUT2/ROUT2 volume is controlled by the LOUT2VOL/ ROUT2VOL register bits. Gains over  
0dB may cause clipping if the signal is large. The LOUT2MUTE/ ROUT2MUTE register bits cause  
the speaker outputs to be muted (the output DC level is driven out). The output pins remain at the  
same DC level (DCOP), so that no click noise is produced when muting or un-muting  
The speaker output stages also have a selectable gain boost of 1.5x (3.52dB). When this boost is  
enabled the output DC level is also level shifted (from AVDD/2 to 1.5xAVDD/2) to prevent the signal  
from clipping. A dedicated amplifier BUFDCOP, as shown in Figure 23, is used to perform the DC  
level shift operation. This buffer must be enabled using the BUFDCOPEN register bit for this  
operating mode. It should also be noted that if SPKVDD is not equal to or greater than 1.5xAVDD  
this boost mode may result in signals clipping. Table 42 summarises the effect of the SPKBOOST  
control bits.  
PP Rev 3.0 April 2006  
54  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0 = speaker gain = -1;  
R49  
2
SPKBOOST  
0
Output control  
DC = AVDD / 2  
1 = speaker gain = +1.5;  
DC = 1.5 x AVDD / 2  
R1  
8
BUFDCOPEN  
0
Dedicated buffer for DC level shifting  
output stages when in 1.5x gain  
boost configuration.  
Power  
management  
1
0=Buffer disabled  
1=Buffer enabled (required for 1.5x  
gain boost)  
Table 41 Speaker Boost Stage Control  
SPKBOOST  
OUTPUT  
STAGE GAIN  
OUTPUT DC  
LEVEL  
OUTPUT STAGE  
CONFIGURATION  
0
1
1x (0dB)  
AVDD/2  
Inverting  
1.5x (3.52dB)  
1.5xAVDD/2  
Non-inverting  
Table 42 Output Boost Stage Details  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R43  
Beep control  
5
MUTERPGA2INV  
INVROUT2  
0
0
Mute input to INVROUT2 mixer  
Invert ROUT2 output  
AUXR input to ROUT2 inverter gain  
000 = -15dB  
4
3:1  
BEEPVOL  
000  
...  
111 = +6dB  
0
BEEPEN  
0
0 = mute AUXR beep input  
1 = enable AUXR beep input  
Table 43 AUXR – ROUT2 BEEP Mixer Function  
ZERO CROSS TIMEOUT  
A zero-cross timeout function is also provided so that if zero cross is enabled on the input or output  
PGAs the gain will automatically update after a timeout period if a zero cross has not occurred. This  
is enabled by setting SLOWCLKEN. The timeout period is dependent on the clock input to the digital  
and is equal to 221 * input clock period.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7  
0
SLOWCLKEN  
0
Slow clock enable. Used for both the  
jack insert detect debounce circuit and  
the zero cross timeout.  
Additional  
Control  
0 = slow clock disabled  
1 = slow clock enabled  
Table 44 Timeout Clock Enable Control  
PP Rev 3.0 April 2006  
55  
w
WM8976  
Pre-Production  
OUT3/OUT4 MIXERS AND OUTPUT STAGES  
The OUT3/OUT4 pins can provide an additional stereo line output, a mono output, or a pseudo  
ground connection for headphones. There is a dedicated analogue mixer for OUT3 and one for  
OUT4 as shown in Figure 24.  
The OUT3 and OUT4 output stages are powered from SPKVDD and SPKGND. The individually  
controllable outputs also incorporate an optional 1.5x boost and level shifting stage.  
Figure 24 OUT3 and OUT4 Mixers  
OUT3 can provide a buffered midrail headphone pseudo-ground, or a left line output.  
OUT4 can provide a buffered midrail headphone pseudo-ground, a right line output, or a mono mix  
output.  
PP Rev 3.0 April 2006  
56  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R56  
6
OUT3MUTE  
0
0 = Output stage outputs OUT3 mixer  
OUT3 mixer  
control  
1 = Output stage muted – drives out  
VMID. Can be used as VMID buffer in  
this mode.  
3
2
1
0
6
OUT4_2OUT3  
BYPL2OUT3  
LMIX2OUT3  
LDAC2OUT3  
OUT4MUTE  
0
0
0
1
0
OUT4 mixer output to OUT3  
0 = disabled  
1= enabled  
ADC input to OUT3  
0 = disabled  
1= enabled  
Left DAC mixer to OUT3  
0 = disabled  
1= enabled  
Left DAC output to OUT3  
0 = disabled  
1= enabled  
R57  
0 = Output stage outputs OUT4 mixer  
OUT4 mixer  
control  
1 = Output stage muted – drives out  
VMID. Can be used as VMID buffer in  
this mode.  
5
4
HALFSIG  
0
0
0=OUT4 normal output  
1=OUT4 attenuated by 6dB  
Left DAC mixer to OUT4  
0 = disabled  
LMIX2OUT4  
1= enabled  
3
1
0
LDAC2OUT4  
RMIX2OUT4  
RDAC2OUT4  
0
0
1
Left DAC to OUT4  
0 = disabled  
1= enabled  
Right DAC mixer to OUT4  
0 = disabled  
1= enabled  
Right DAC output to OUT4  
0 = disabled  
1= enabled  
Table 45 OUT3/OUT4 Mixer Registers  
The OUT3 and OUT4 output stages each have a selectable gain boost of 1.5x (3.52dB). When this  
boost is enabled the output DC level is also level shifted (from AVDD/2 to 1.5xAVDD/2) to prevent  
the signal from clipping. A dedicated amplifier BUFDCOP, as shown in Figure 25, is used to perform  
the DC level shift operation. This buffer must be enabled using the BUFDCOPEN register bit for this  
operating mode. It should also be noted that if SPKVDD is not equal to or greater than 1.5xAVDD  
this boost mode may result in signals clipping. Table 42 summarises the effect of the OUT3BOOST  
and OUT4BOOST control bits.  
PP Rev 3.0 April 2006  
57  
w
WM8976  
Pre-Production  
Figure 25 Outputs OUT3 and OUT4  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R49  
Output control  
3
OUT3BOOST  
0
0 = OUT3 output gain = -1;  
DC = AVDD / 2  
1 = OUT3 output gain = +1.5  
DC = 1.5 x AVDD / 2  
4
8
OUT4BOOST  
BUFDCOPEN  
0
0 = OUT4 output gain = -1;  
DC = AVDD / 2  
1 = OUT4 output gain = +1.5  
DC = 1.5 x AVDD / 2  
R1  
0
Dedicated buffer for DC level shifting  
output stages when in 1.5x gain  
boost configuration.  
Power  
management  
1
0=Buffer disabled  
1=Buffer enabled (required for 1.5x  
gain boost)  
Table 46 OUT3 and OUT4 Boost Stages Control  
OUT3BOOST/  
OUTPUT  
STAGE GAIN  
OUTPUT DC  
LEVEL  
OUTPUT STAGE  
CONFIGURATION  
OUT4BOOST  
0
1
1x  
AVDD/2  
Inverting  
1.5x  
1.5xAVDD/2  
Non-inverting  
Table 47 OUT3/OUT4 Output Boost Stage Details  
PP Rev 3.0 April 2006  
58  
w
Pre-Production  
WM8976  
OUTPUT PHASING  
The relative phases of the analogue outputs will depend upon the following factors:  
1. DACPOLL and DACPOLR invert bits: Setting these bits to 1 will invert the DAC output.  
2. Mixer configuration: The polarity of the signal will depend upon the route through the mixer path.  
For example, DACL can be directly input to the OUT3 mixer, giving a 180° phase shift at the OUT3  
mixer output. However, if DACL is input to the OUT3 mixer via the left mixer, an additional phase  
shift will be introduced, giving 0° phase shift at the OUT3 mixer output.  
3. Output boost set-up: When 1.5x boost is enabled on an output, no phase shift occurs. When 1.5x  
boost is not enabled, a 180° phase shift occurs.  
Figure 20 shows where these phase inversions can occur in the output signal path.  
Figure 26 Output Signal Path Phasing  
PP Rev 3.0 April 2006  
59  
w
WM8976  
Pre-Production  
Table 48 shows the polarities of the outputs in various configurations.  
Unless otherwise stated, polarity is shown with respect to left DAC output in non-inverting mode.  
Note that only registers relating to the mixer paths are shown here (Mixer enables, volume settings,  
output enables etc are not shown).  
CONFIGURATION  
MIXER PATH  
REGISTERS  
DIFFERENT  
FROM DEFAULT  
Default:  
0
0
0
0
0
0
0°  
1
0°  
1
0°  
1
0°  
1
180°  
1
180°  
1
Stereo DAC playback  
to LOUT1/ROUT1,  
LOUT2/ROUT2 and  
OUT4/OUT3  
DACs inverted  
1
0
1
0
0
0
0
1
0
0
0
0
180°  
180°  
180°  
180°  
0°  
0°  
1
1
1
1
1
1
Stereo DAC playback  
to LOUT1/ROUT1 and  
LOUT2/ROUT2 and  
0°  
0°  
0°  
0°  
0°  
0°  
1
1
1
1
1.5  
1.5  
OUT4/OUT3  
(Speaker boost  
enabled)  
Stereo DAC playback  
to LOUT1/ROUT1 and  
LOUT2/ROUT2 and  
0
0
0
0
0
0
0
0
1
0
1
0
180°  
1.5  
180°  
1.5  
0°  
1
0°  
1
180°  
1
180°  
1
OUT4/OUT3  
(OUT3 and OUT4  
boost enabled)  
Stereo playback to  
OUT3/OUT4 (DACs  
input to OUT3/OUT4  
mixers via left/right  
mixers)  
LDAC2OUT3=0  
RDAC2OUT4=0  
LMIX2OUT3=1  
RMIX2OUT4=1  
180°  
1
180°  
1
0°  
1
0°  
1
180°  
1
180°  
1
Differential output of  
mono mix of DACs via  
LOUT2/ROUT2 (e.g.  
BTL speaker drive)  
0
0
0
0
1
1
0
1
0
0
0
0
0°  
1
0°  
1
0°  
1
0°  
1
180°  
1
0°  
1
High power speaker  
drive  
0°  
1
0°  
1
0°  
1
0°  
1
0°  
180°  
1.5  
1.5  
Table 48 Relative Output Phases  
Note that differential output should not be set up by combining outputs in boost mode with outputs  
which are not in boost mode as this would cause a DC offset current on the outputs.  
PP Rev 3.0 April 2006  
60  
w
Pre-Production  
WM8976  
ENABLING THE OUTPUTS  
Each analogue output of the WM8976 can be separately enabled or disabled. The analogue mixer  
associated with each output has a separate enable. All outputs are disabled by default. To save  
power, unused parts of the WM8976 should remain disabled.  
Outputs can be enabled at any time, but it is not recommended to do so when BUFIO is disabled  
(BUFIOEN=0) or when BUFDCOP is disabled (BUFDCOPEN=0) when configured in output boost  
mode, as this may cause pop noise (see “Power Management” and “Applications Information”  
sections).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
2
BUFIOEN  
0
0
0
0
0
0
0
Unused input/output tie off buffer enable  
OUT3 mixer enable  
Power  
Management  
1
6
7
8
8
7
6
OUT3MIXEN  
OUT4MIXEN  
BUFDCOPEN  
ROUT1EN  
LOUT1EN  
SLEEP  
OUT4 mixer enable  
Output stage 1.5xAVDD/2 driver enable  
ROUT1 output enable  
R2  
Power  
Management  
2
LOUT1 output enable  
0 = normal device operation  
1 = residual current reduced in device  
standby mode if clocks still running  
R3  
2
3
5
6
7
8
LMIXEN  
0
0
0
0
0
0
Left mixer enable  
Right mixer enable  
ROUT2 output enable  
LOUT2 output enable  
OUT3 enable  
Power  
Management  
3
RMIXEN  
ROUT2EN  
LOUT2EN  
OUT3EN  
OUT4EN  
OUT4 enable  
Note: All “Enable” bits are 1 = ON, 0 = OFF  
Table 49 Output Stages Power Management Control  
THERMAL SHUTDOWN  
The speaker outputs can drive very large currents. To protect the WM8976 from overheating a  
thermal shutdown circuit is included. If the device temperature reaches approximately 1250C and the  
thermal shutdown circuit is enabled (TSDEN=1) then the speaker amplifiers will be disabled if  
TSDEN is set. The thermal shutdown may also be configured to generate an interrupt. See the GPIO  
and Interrupt Controller section for details.  
REGISTER  
ADDRESS  
BIT  
LABEL  
TSDEN  
DEFAULT  
DESCRIPTION  
R49  
1
1
Thermal Shutdown Enable  
0 : thermal shutdown disabled  
1 : thermal shutdown enabled  
Output  
control  
Table 50 Thermal Shutdown  
UNUSED ANALOGUE INPUTS/OUTPUTS  
Whenever an analogue input/output is disabled, it remains connected to a voltage source (either  
AVDD/2 or 1.5xAVDD/2 as appropriate) through a resistor. This helps to prevent pop noise when the  
output is re-enabled. The resistance between the voltage buffer and the output pins can be  
controlled using the VROI control bit. The default impedance is low, so that any capacitors on the  
outputs can charge up quickly at start-up. If a high impedance is desired for disabled outputs, VROI  
can then be set to 1, increasing the resistance to about 30k.  
REGISTER  
ADDRESS  
BIT  
LABEL  
VROI  
DEFAULT  
DESCRIPTION  
R49  
0
0
VREF (AVDD/2 or 1.5xAVDD/2) to  
analogue output resistance  
0: approx 1kΩ  
1: approx 30 kΩ  
Table 51 Disabled Outputs to VREF Resistance  
PP Rev 3.0 April 2006  
w
61  
WM8976  
Pre-Production  
A dedicated buffer is available for tying off unused analogue I/O pins as shown in Figure 27. This  
buffer can be enabled using the BUFIOEN register bit.  
If the SPKBOOST, OUT3BOOST or OUT4BOOST bits are set then the relevant outputs will be tied  
to the output of the DC level shift buffer at 1.5xAVDD/2 when disabled.  
Figure 27 summarises the tie-off options for the speaker and mono output pins.  
Figure 27 Unused Input/Output Pin Tie-off Buffers  
L/ROUT2EN/  
OUT3/4EN  
OUT3BOOST/  
VROI  
OUTPUT CONFIGURATION  
OUT4BOOST/  
SPKBOOST  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
X
X
1ktie-off to AVDD/2  
30ktie-off to AVDD/2  
1ktie-off to 1.5xAVDD/2  
30ktie-off to 1.5xAVDD/2  
Output enabled (DC level=AVDD/2)  
Output enabled (DC level=1.5xAVDD/2)  
Table 52 Unused Output Pin Tie-off Options  
PP Rev 3.0 April 2006  
62  
w
Pre-Production  
WM8976  
DIGITAL AUDIO INTERFACES  
The audio interface has four pins:  
ADCDAT: ADC data output  
DACDAT: DAC data input  
LRC: Data Left/Right alignment clock  
BCLK: Bit clock, for synchronisation  
The clock signals BCLK, and LRC can be outputs when the WM8976 operates as a master, or inputs  
when it is a slave (see Master and Slave Mode Operation, below).  
Five different audio data formats are supported:  
Left justified  
Right justified  
I2S  
DSP mode A  
DSP mode B  
All of these modes are MSB first. They are described in Audio Data Formats, below. Refer to the  
Electrical Characteristic section for timing information.  
MASTER AND SLAVE MODE OPERATION  
The WM8976 audio interface may be configured as either master or slave. As a master interface  
device the WM8976 generates BCLK and LRC and thus controls sequencing of the data transfer on  
ADCDAT and DACDAT. To set the device to master mode register bit MS should be set high. In  
slave mode (MS=0), the WM8976 responds with data to clocks it receives over the digital audio  
interfaces.  
AUDIO DATA FORMATS  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following an LRC  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequency and sample rate, there may be unused BCLK cycles before each LRC transition.  
Figure 28 Left Justified Audio Interface (assuming n-bit word length)  
PP Rev 3.0 April 2006  
63  
w
WM8976  
Pre-Production  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRC transition.  
All other bits are transmitted before (MSB first). Depending on word length, BCLK frequency and  
sample rate, there may be unused BCLK cycles after each LRC transition.  
Figure 29 Right Justified Audio Interface (assuming n-bit word length)  
In I2S mode, the MSB is available on the second rising edge of BCLK following a LRC transition. The  
other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency  
and sample rate, there may be unused BCLK cycles between the LSB of one sample and the MSB of  
the next.  
Figure 30 I2S Audio Interface (assuming n-bit word length)  
PP Rev 3.0 April 2006  
64  
w
Pre-Production  
WM8976  
In DSP/PCM mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A)  
rising edge of BCLK (selectable by LRP) following a rising edge of LRC. Right channel data  
immediately follows left channel data. Depending on word length, BCLK frequency and sample rate,  
there may be unused BCLK cycles between the LSB of the right channel data and the next sample.  
Figure 31 DSP/PCM Mode Audio Interface (mode A, LRP=0)  
Figure 32 DSP/PCM Mode Audio Interface (mode B, LRP=1)  
PP Rev 3.0 April 2006  
65  
w
WM8976  
Pre-Production  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R4  
0
DACMONO  
0
Selects between stereo and mono DAC  
operation:  
Audio  
Interface  
Control  
0=Stereo device operation  
1=Mono device operation. DAC data  
appears in ‘left’ phase of LRC  
1
2
ADCLRSWAP  
DACLRSWAP  
0
0
Controls whether ADC data appears in  
‘right’ or ‘left’ phases of LRC clock:  
0=ADC data appear in ‘left’ phase of  
LRC  
1=ADC data appears in ‘right’ phase of  
LRC  
Controls whether DAC data appears in  
‘right’ or ‘left’ phases of LRC clock:  
0=DAC data appear in ‘left’ phase of  
LRC  
1=DAC data appears in ‘right’ phase of  
LRC  
4:3  
6:5  
FMT  
WL  
10  
10  
Audio interface Data Format Select:  
00=Right Justified  
01=Left Justified  
10=I2S format  
11= DSP/PCM mode  
Word length  
00=16 bits  
01=20 bits  
10=24 bits  
11=32 bits (see note)  
LRC clock polarity  
0=normal  
7
8
LRP  
BCP  
1=inverted  
BCLK polarity  
0=normal  
1=inverted  
Table 53 Audio Interface Control  
Note: Right Justified Mode will only operate with a maximum of 24 bits. If 32-bit mode is selected,  
the device will operate in 24-bit mode.  
AUDIO INTERFACE CONTROL  
The register bits controlling audio format, word length and master / slave mode are summarised  
below. The audio interfaces can be controlled individually.  
Register bit MS selects audio interface operation in master or slave mode. In Master mode BCLK,  
and LRC are outputs. The frequency of BCLK in master mode are controlled with BCLKDIV. These  
are divided down versions of master clock.  
PP Rev 3.0 April 2006  
66  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R6  
0
MS  
0
Sets the chip to be master over LRC  
and BCLK  
Clock  
Generation  
Control  
0=BCLK and LRC clock are inputs  
1=BCLK and LRC clock are outputs  
generated by the WM8976 (MASTER)  
4:2  
7:5  
8
BCLKDIV  
MCLKDIV  
CLKSEL  
000  
010  
1
Configures the BCLK output frequency,  
for use when the chip is master over  
BCLK.  
000=divide by 1 (BCLK=SYSCLK)  
001=divide by 2 (BCLK=SYSCLK)  
010=divide by 4  
011=divide by 8  
100=divide by 16  
101=divide by 32  
110=reserved  
111=reserved  
Sets the scaling for either the MCLK or  
PLL clock output (under control of  
CLKSEL)  
000=divide by 1  
001=divide by 1.5  
010=divide by 2  
011=divide by 3  
100=divide by 4  
101=divide by 6  
110=divide by 8  
111=divide by 12  
Controls the source of the clock for all  
internal operation:  
0=MCLK  
1=PLL output  
Table 54 Clock Control  
PP Rev 3.0 April 2006  
67  
w
WM8976  
Pre-Production  
AUDIO SAMPLE RATES  
The WM8976 sample rates for the ADC and the DACs are set using the SR register bits. The  
cutoffs for the digital filters and the ALC attack/decay times stated are determined using these  
values and assume a 256fs master clock rate.  
If a sample rate that is not explicitly supported by the SR register settings is required then the  
closest SR value to that sample rate should be chosen, the filter characteristics and the ALC attack,  
decay and hold times will scale appropriately.  
REGISTER  
ADDRESS  
BIT  
LABEL  
SR  
DEFAULT  
000  
DESCRIPTION  
R7  
3:1  
Approximate sample rate (configures the  
coefficients for the internal digital filters):  
Additional  
Control  
000=48kHz  
001=32kHz  
010=24kHz  
011=16kHz  
100=12kHz  
101=8kHz  
110-111=reserved  
Table 55 Sample Rate Control  
MASTER CLOCK AND PHASE LOCKED LOOP (PLL)  
The WM8976 has an on-chip phase-locked loop (PLL) circuit that can be used to:  
Generate master clocks for the WM8976 audio functions from another external clock, e.g. in  
telecoms applications.  
Generate and output (on pin CSB/GPIO1 and/or GPI04) a clock for another part of the system that is  
derived from an existing audio master clock.  
Figure 33 shows the PLL and internal clocking arrangment on the WM8976.  
The PLL can be enabled or disabled by the PLLEN register bit.  
Note: In order to minimise current consumption, the PLL is disabled when the VMIDSEL[1:0] bits are  
set to 00b. VMIDSEL[1:0] must be set to a value other than 00b to enable the PLL.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
5
PLLEN  
0
PLL enable  
0=PLL off  
1=PLL on  
Power  
management 1  
Table 56 PLLEN Control Bit  
PP Rev 3.0 April 2006  
w
68  
Pre-Production  
WM8976  
Figure 33 PLL and Clock Select Circuit  
The PLL frequency ratio R = f2/f1 (see Figure 33) can be set using the register bits PLLK and PLLN:  
PLLN = int R  
PLLK = int (224 (R-PLLN))  
EXAMPLE:  
MCLK=12MHz, required clock = 12.288MHz.  
R should be chosen to ensure 5 < PLLN < 13. There is a fixed divide by 4 in the PLL and a  
selectable divide by N after the PLL which should be set to divide by 2 to meet this requirement.  
Enabling the divide by 2 sets the required f2 = 4 x 2 x 12.288MHz = 98.304MHz.  
R = 98.304 / 12 = 8.192  
PLLN = int R = 8  
k = int ( 224 x (8.192 – 8)) = 3221225 = 3126E9h  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R36  
4
PLLPRESCALE  
0
0 = MCLK input not divided (default)  
PLL N value  
1 = Divide MCLK by 2 before input  
to PLL  
3:0  
5:0  
PLLN  
1000  
0Ch  
Integer (N) part of PLL input/output  
frequency ratio. Use values greater  
than 5 and less than 13.  
R37  
PLLK [23:18]  
Fractional (K) part of PLL1  
input/output frequency ratio (treat as  
one 24-digit binary number).  
PLL K value  
1
R38  
8:0  
8:0  
PLLK [17:9]  
PLLK [8:0]  
093h  
0E9h  
PLL K Value  
2
R39  
PLL K Value  
3
Table 57 PLL Frequency Ratio Control  
PP Rev 3.0 April 2006  
69  
w
WM8976  
Pre-Production  
The PLL performs best when f2 is around 90MHz. Its stability peaks at N=8. Some example settings  
are shown in Table 58.  
MCLK  
(MHz)  
(F1)  
12  
DESIRED  
OUTPUT  
(MHz)  
F2  
PRESCALE  
DIVIDE  
POSTSCALE  
DIVIDE  
R
N
K
(MHz)  
(Hex)  
(Hex)  
11.29  
12.288  
11.29  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
7.5264  
8.192  
7
8
6
7
6
6
9
A
9
9
9
9
7
8
6
7
6
7
86C226  
3126E8  
F28BD4  
8FD525  
45A1CA  
D3A06E  
6872AF  
3D70A3  
2DB492  
FD809F  
1F76F7  
EE009E  
86C226  
3126E8  
F28BD4  
8FD525  
BOAC93  
482296  
12  
13  
6.947446  
7.561846  
6.272  
13  
12.288  
11.29  
14.4  
14.4  
19.2  
19.2  
19.68  
19.68  
19.8  
19.8  
24  
12.288  
11.29  
6.826667  
9.408  
12.288  
11.29  
10.24  
9.178537  
9.990243  
9.122909  
9.929697  
7.5264  
12.288  
11.29  
12.288  
11.29  
24  
12.288  
11.29  
8.192  
26  
6.947446  
7.561846  
6.690133  
7.281778  
26  
12.288  
11.29  
27  
27  
12.288  
Table 58 PLL Frequency Examples  
LOOPBACK  
Setting the LOOPBACK register bit enables digital loopback. When this bit is set the output data  
from the ADC audio interface is fed directly into the DAC data input.  
COMPANDING  
The WM8976 supports A-law and µ-law and companding and linear mode on both transmit (ADC)  
and receive (DAC) sides. Companding can be enabled on the DAC or ADC audio interfaces by  
writing the appropriate value to the DAC_COMP or ADC_COMP register bits respectively.  
PP Rev 3.0 April 2006  
70  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5  
0
LOOPBACK  
0
Digital loopback function  
0=No loopback  
Companding  
Control  
1=Loopback enabled, ADC data output  
is fed directly into left DAC data input.  
2:1  
4:3  
5
ADC_COMP  
DAC_COMP  
WL8  
0
0
0
ADC companding  
00=off (linear mode)  
01=reserved  
10=µ-law  
11=A-law  
DAC companding  
00=off (linear mode)  
01=reserved  
10=µ-law  
11=A-law  
0=off  
1=device operates in 8-bit mode  
Table 59 Companding Control  
Companding involves using a piecewise linear approximation of the following equations (as set out  
by ITU-T G.711 standard) for data compression:  
µ-law (where µ=255 for the U.S. and Japan):  
F(x) = ln( 1 + µ|x|) / ln( 1 + µ)  
A-law (where A=87.6 for Europe):  
F(x) = A|x| / ( 1 + lnA)  
-1  
x
1
} for x 1/A  
} for 1/A 1  
F(x) = ( 1 + lnA|x|) / (1 + lnA)  
x
The companded data is also inverted as recommended by the G.711 standard (all 8 bits are inverted  
for µ-law, all even data bits are inverted for A-law). The data will be transmitted as the first 8 MSBs  
of data.  
Companding converts 13 bits (µ-law) or 12 bits (A-law) to 8 bits using non-linear quantization. The  
input data range is separated into 8 levels, allowing low amplitude signals better precision than that  
of high amplitude signals. This is to exploit the operation of the human auditory system, where  
louder sounds do not require as much resolution as quieter sounds. The companded signal is an 8-  
bit word containing sign (1-bit), exponent (3-bits) and mantissa (4-bits).  
Setting the WL8 register bit allows the device to operate with 8-bit data. In this mode it is possible to  
use 8 BCLKs per LRC frame. When using DSP mode B, this allows 8-bit data words to be output  
consecutively every 8 BCLKs and can be used with 8-bit data words using the A-law and u-law  
companding functions.  
BIT7  
BIT[6:4]  
BIT[3:0]  
SIGN  
EXPONENT  
MANTISSA  
Table 60 8-bit Companded Word Composition  
PP Rev 3.0 April 2006  
71  
w
WM8976  
Pre-Production  
u-law Companding  
1
120  
100  
80  
60  
40  
20  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Normalised Input  
Figure 34 u-Law Companding  
A-law Companding  
1
120  
100  
80  
60  
40  
20  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.2  
0.4  
0.6  
0.8  
1
Normalised Input  
Figure 35 A-Law Companding  
GENERAL PURPOSE INPUT/OUTPUT  
The WM8976 has two dual purpose input/output pins.  
CSB/GPIO1: CSB / GPIO pin  
L2/GPIO2: Line input / headphone detection input  
The GPIO2 function is provided for use as a jack detection input.  
The GPIO1 function is provided for use as a jack detection input or a general purpose output.  
The default configuration for the CSB/GPIO1 pin is to be an input.  
When setup as an input, the CSB/GPIO1 pin can either be used as CSB or for jack detection,  
depending on how the MODE pin is set.  
Table 49 illustrates the functionality of the GPIO1 pin when used as a general purpose output.  
PP Rev 3.0 April 2006  
72  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R8  
2:0  
GPIO1SEL  
000  
CSB/GPIO1 pin function select:  
GPIO  
000= input (CSB/jack detection:  
depending on MODE setting)  
Control  
001= reserved  
010=Temp ok  
011=Amute active  
100=PLL clk o/p  
101=PLL lock  
110=logic 0  
111=logic 1  
3
GPIO1POL  
OPCLKDIV  
0
GPIO1 Polarity invert  
0=Non inverted  
1=Inverted  
5:4  
00  
PLL Output clock division ratio  
00=divide by 1  
01=divide by 2  
10=divide by 3  
11=divide by 4  
Table 61 CSB/GPIO Control  
Note: If MODE is set to 3 wire mode, CSB/GPIO1 shall be used as CSB input irrespective of the  
GPIO1SEL[2:] bits.  
Note that SLOWCLKEN must be enabled when using the Jack Detect function.  
For further details of the Jack detect operation see the OUTPUT SWITCHING section.  
OUTPUT SWITCHING (JACK DETECT)  
When the device is operated using a 2-wire interface the CSB/GPIO1 pin can be used as a switch  
control input to automatically disable one set of outputs and enable another the most common use  
for this functionality is as jack detect circuitry. The L2/GPIO2 and R2/GPIO3 pins can also be used  
for this purpose.  
The GPIO pins have an internal de-bounce circuit when in this mode in order to prevent the output  
enables from toggling multiple times due to input glitches. This de-bounce circuit is clocked from a  
slow clock with period 221 x MCLK and is enabled by the SLOWCLKEN bit.  
Notes:  
1. The SLOWCLKEN bit must be enabled for the jack detect circuitry to operate.  
2. The GPIOPOL bit is not relevant for jack detection, it is the signal detected at the pin which is  
used  
Switching on/off of the outputs is fully configurable by the user. Each output, OUT1, OUT2, OUT3  
and OUT4 has 2 associated enables. OUT1_EN_0, OUT2_EN_0, OUT3_EN_0 and OUT4_EN_0  
are the output enable signals which are used if the selected jack detection pin is at logic 0 (after de-  
bounce). OUT1_EN_1, OUT2_EN_1, OUT3_EN_1 and OUT4_EN_1 are the output enable signals  
which are used if the selected jack detection pin is at logic 1 (after de-bounce).  
The jack detection enables operate as follows:  
All OUT_EN signals have an AND function performed with their normal enable signals (in Table 49).  
When an output is normally enabled as per Table 49 the selected jack detection enable (controlled  
by selected jack detection pin polarity) is set 0; it will turn the output off. If the normal enable signal is  
already OFF (0), the jack detection signal will have no effect due to the AND function.  
During jack detection if the user desires an output to be un-changed whether the jack is in or not,  
both the JD_EN settings i.e. JD_EN0 and JD_EN1, should be set to 0000.  
PP Rev 3.0 April 2006  
73  
w
WM8976  
Pre-Production  
The VMID_EN signal has an OR function performed with the normal VMID driver enable. If the  
VMID_EN signal is to have no effect to normal functionality when jack detection is enabled, it should  
set to 0 for all JD_EN0 or JD_EN1 settings.  
If jack detection is not enabled (JD_EN=0), the output enables default to all 1s, allowing the outputs  
to be controlled as normal via the normal output enables found in Table 50.  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REGISTER  
ADDRESS  
R9  
GPIO control  
5:4  
JD_SEL  
00  
Pin selected as jack detection input  
00 = GPIO1  
01 = GPIO2  
10 = GPIO3  
11 = Reserved  
6
JD_EN  
0
Jack Detection Enable  
0 = disabled  
1 = enabled  
8:7  
3:0  
JD_VMID  
JD_EN0  
00  
[7] VMID_EN_0  
[8] VMID_EN_1  
R13  
0000  
Output enables when selected jack  
detection input is logic 0.  
[0]= OUT1_EN_0  
[1]= OUT2_EN_0  
[2]= OUT3_EN_0  
[3]= OUT4_EN_0  
7:4  
JD_EN1  
0000  
Output enables when selected jack  
detection input is logic 1  
0000-0011 = Reserved  
[4]= OUT1_EN_1  
[5]= OUT2_EN_1  
[6]= OUT3_EN_1  
[7]= OUT4_EN_1  
Table 62 Jack Detect Register Control Bits  
CONTROL INTERFACE  
SELECTION OF CONTROL MODE AND 2-WIRE MODE ADDRESS  
The control interface can operate as either a 3-wire or 2-wire MPU interface. The MODE pin  
determines the 2 or 3 wire mode as shown in Table 63.  
The WM8976 is controlled by writing to registers through a serial control interface. A control word  
consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is  
accessed. The remaining 9 bits (B8 to B0) are register bits, corresponding to the 9 bits in each  
control register.  
MODE  
Low  
INTERFACE FORMAT  
2 wire  
3 wire  
High  
Table 63 Control Interface Mode Selection  
PP Rev 3.0 April 2006  
74  
w
Pre-Production  
WM8976  
3-WIRE SERIAL CONTROL MODE  
In 3-wire mode, every rising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on  
CSB/GPIO1 pin latches in a complete control word consisting of the last 16 bits.  
Figure 36 3-Wire Serial Control Interface  
2-WIRE SERIAL CONTROL MODE  
The WM8976 supports software control via a 2-wire serial bus. Many devices can be controlled by  
the same bus, and each device has a unique 7-bit device address (this is not the same as the 7-bit  
address of each register in the WM8976).  
The WM8976 operates as a slave 2-wire device only. The controller indicates the start of data  
transfer with a high to low transition on SDIN while SCLK remains high. This indicates that a device  
address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in  
the next eight bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address  
received matches the address of the WM8976, then the WM8976 responds by pulling SDIN low on  
the next clock pulse (ACK). If the address is not recognised or the R/W bit is 1when operating in  
write only mode, the WM8976 returns to the idle condition and wait for a new start condition and  
valid address.  
During a write, once the WM8976 has acknowledged a correct address, the controller sends the first  
byte of control data (B15 to B8, i.e. the WM8976 register address plus the first bit of register data).  
The WM8976 then acknowledges the first data byte by pulling SDIN low for one clock pulse. The  
controller then sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register  
data), and the WM8976 acknowledges again by pulling SDIN low.  
Transfers are complete when there is a low to high transition on SDIN while SCLK is high. After a  
complete sequence the WM8976 returns to the idle state and waits for another start condition. If a  
start or stop condition is detected out of sequence at any point during data transfer (i.e. SDIN  
changes while SCLK is high), the device jumps to the idle condition.  
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 7 TO 0)  
ACK  
(LOW)  
SDIN  
SCLK  
START  
STOP  
register address and  
1st register data bit  
remaining 8 bits of  
register data  
Figure 37 2-Wire Serial Control Interface  
In 2-wire mode the WM8976 has a fixed device address, 0011010.  
RESETTING THE CHIP  
The WM8976 can be reset by performing a write of any value to the software reset register (address  
0 hex). This will cause all register values to be reset to their default values. In addition to this there  
is a Power-On Reset (POR) circuit which ensures that the registers are set to default when the  
device is powered up.  
PP Rev 3.0 April 2006  
75  
w
WM8976  
Pre-Production  
POWER SUPPLIES  
The WM8976 can use up to four separate power supplies:  
AVDD and AGND: Analogue supply, powers all analogue functions except the speaker output and  
mono output drivers. AVDD can range from 2.5V to 3.6V and has the most significant impact on  
overall power consumption (except for power consumed in the headphone). A large AVDD slightly  
improves audio quality.  
SPKVDD and SPKGND: Headphone and Speaker supplies, power the speaker and mono output  
drivers. SPKVDD can range from 2.5V to 5V. SPKVDD can be tied to AVDD, but it requires separate  
layout and decoupling capacitors to curb harmonic distortion. With a larger SPKVDD, louder  
headphone and speaker outputs can be achieved with lower distortion. If SPKVDD is lower than  
AVDD, the output signal may be clipped.  
DCVDD: Digital core supply, powers all digital functions except the audio and control interfaces.  
DCVDD can range from 1.71V to 3.6V, and has no effect on audio quality. The return path for  
DCVDD is DGND, which is shared with DBVDD.  
DBVDD can range from 1.71V to 3.6V. DBVDD return path is through DGND.  
It is possible to use the same supply voltage for all four supplies. However, digital and analogue  
supplies should be routed and decoupled separately on the PCB to keep digital switching noise out  
of the analogue signal paths.  
DCVDD should be greater than or equal to 1.9V when using the PLL.  
PP Rev 3.0 April 2006  
76  
w
Pre-Production  
WM8976  
RECOMMENDED POWER UP/DOWN SEQUENCE  
In order to minimise output pop and click noise, it is recommended that the WM8976 device is  
powered up and down using one of the following sequences:  
Power-up when NOT using the output 1.5x boost stage:  
1. Turn on external power supplies. Wait for supply voltage to settle.  
2. Mute all analogue outputs.  
3. Set L/RMIXEN = 1 and DACENL/R = 1 in register R3.  
4. Set BUFIOEN = 1 and VMIDSEL[1:0] to required value in register R1. Wait for the VMID supply  
to settle. *Refer notes 1 and 2.  
5. Set BIASEN = 1 in register R1.  
6. Set L/ROUT1EN = 1 in register R2.  
7. Enable other mixers as required.  
8. Enable other outputs as required.  
9. Set remaining registers.  
Power-up when using the output 1.5x boost stage:  
1. Turn on external power supplies. Wait for supply voltage to settle.  
2. Mute all analogue outputs.  
3. Enable unused output chosen from L/ROUT2, OUT3 or OUT4. If unused output not available,  
chose one of these outputs not required at power up.  
4. Set BUFDCOPEN = 1 and BUFIOEN = 1 in register R1.  
5. Set SPKBOOST = 1 in register R49.  
6. Set VMIDSEL[1:0] to required value in register R1. Wait for the VMID supply to settle. *Refer  
notes 1 and 2.  
7. Set L/RMIXEN = 1 and DACENL/R = 1 in register R3.  
8. Set BIASEN = 1 in register R1.  
9. Set L/ROUT2EN = 1 in register R3. *Note 3.  
10. Enable other mixers as required.  
11. Enable other outputs as required.  
12. Set remaining registers.  
Power Down (all cases):  
1. Mute all analogue outputs.  
2. Disable Power Management Register 1. R1 = 0x00.  
3. Disable Power Management Register 2. R2 = 0x00.  
4. Disable Power Management Register 3. R3 = 0x00.  
5. Remove external power supplies.  
PP Rev 3.0 April 2006  
77  
w
WM8976  
Pre-Production  
Notes:  
1. This step enables the internal device bias buffer and the VMID buffer for unassigned  
inputs/outputs. This will provide a startup reference voltage for all inputs and outputs. This will  
cause the inputs and outputs to ramp towards VMID (NOT using output 1.5x boost) or 1.5 x  
(AVDD/2) (using output 1.5x boost) in a way that is controlled and predictable (see note 2).  
2. Choose the value of the VMIDSEL bits based on the startup time (VMIDSEL=10 for slowest  
startup, VMIDSEL=11 for fastest startup). Startup time is defined by the value of the VMIDSEL  
bits (the reference impedance) and the external decoupling capacitor on VMID.  
3. Setting DACEN to off while operating in x1.5 boost mode will cause the VMID voltage to drop to  
AVDD/2 midrail level and cause an output pop.  
In addition to the power on sequence, it is recommended that the zero cross functions are used  
when changing the volume in the PGAs to avoid any audible pops or clicks.  
Vpor_on  
Vpora  
Vpor_off  
Power Supply  
POR  
DGND  
No Power  
POR Undefined  
Device Ready  
DNC  
Internal POR active  
POR  
I2S Clocks  
DNC  
tadcint  
tadcint  
ADC Internal  
State  
Power down  
Init  
Normal Operation  
PD  
Init  
Normal Operation  
Power down  
tmidrail_on  
tmidrail_off  
(Note 1)  
(Note 2)  
AVDD/2  
Analogue Inputs  
GD  
GD  
GD  
GD  
ADCDAT pin  
(Note 3)  
ADC enabled  
ADC off  
INPPGA enabled  
VMID enabled  
ADC enabled  
ADCEN bit  
INPPGAEN bit  
VMIDSEL/  
BIASEN bits (Note 4)  
Figure 38 ADC Power Up and Down Sequence (not to scale)  
SYMBOL  
tmidrail_on  
MIN  
TYPICAL  
500  
MAX  
UNIT  
ms  
s
tmidrail_off  
>10  
tadcint  
2/fs  
n/fs  
n/fs  
ADC Group Delay  
29/fs  
Table 64 Typical POR Operation (typical values, not tested)  
PP Rev 3.0 April 2006  
78  
w
Pre-Production  
WM8976  
Notes:  
1. The analogue input pin charge time, tmidrail_on, is determined by the VMID pin charge time. This  
time is dependent upon the value of VMID decoupling capacitor and VMID pin input resistance  
and AVDD power supply rise time.  
2. The analogue input pin discharge time, tmidrail_off, is determined by the analogue input coupling  
capacitor discharge time. The time, tmidrail_off, is measured using a 1µF capacitor on the  
analogue input but will vary dependent upon the value of input coupling capacitor.  
3. While the ADC is enabled there will be LSB data bit activity on the ADCDAT pin due to system  
noise but no significant digital output will be present.  
4. The VMIDSEL and BIASEN bits must be set to enable analogue input midrail voltage and for  
normal ADC operation.  
5. ADCDAT data output delay from power up - with power supplies starting from 0V - is determined  
primarily by the VMID charge time. ADC initialisation and power management bits may be set  
immediately after POR is released; VMID charge time will be significantly longer and will dictate  
when the device is stabilised for analogue input.  
6. ADCDAT data output delay at power up from device standby (power supplies already applied) is  
determined by ADC initialisation time, 2/fs.  
Figure 39 DAC Power Up and Down Sequence (not to scale)  
PP Rev 3.0 April 2006  
79  
w
WM8976  
Pre-Production  
SYMBOL  
tline_midrail_on  
tline_midrail_off  
thp_midrail_on  
MIN  
TYPICAL  
500  
1
MAX  
UNIT  
ms  
s
500  
6
ms  
s
thp__midrail_off  
tdacint  
2/fs  
29/fs  
n/fs  
n/fs  
DAC Group Delay  
Table 65 Typical POR Operation (typical values, not tested)  
Notes:  
1. The lineout charge time, tline_midrail_on, is mainly determined by the VMID pin charge time. This  
time is dependent upon the value of VMID decoupling capacitor and VMID pin input resistance  
and AVDD power supply rise time. The values above were measured using a 4.7µF capacitor.  
2. It is not advisable to allow DACDAT data input during initialisation of the DAC. If the DAC data  
value is not zero at point of initialisation, then this is likely to cause a pop noise on the analogue  
outputs. The same is also true if the DACDAT is removed at a non-zero value, and no mute  
function has been applied to the signal beforehand.  
3. The lineout discharge time, tline_midrail_off, is dependent upon the value of the lineout coupling  
capacitor and the leakage resistance path to ground. The values above were measured using a  
10µF output capacitor.  
4. The headphone charge time, thp_midrail_on, is dependent upon the value of VMID decoupling  
capacitor and VMID pin input resistance and AVDD power supply rise time. The values above  
were measured using a 4.7µF VMID decoupling capacitor.  
5. The headphone discharge time, thp_midrail_off, is dependent upon the value of the headphone  
coupling capacitor and the leakage resistance path to ground. The values above were  
measured using a 100µF capacitor.  
6. The VMIDSEL and BIASEN bits must be set to enable analogue output midrail voltage and for  
normal DAC operation.  
PP Rev 3.0 April 2006  
80  
w
Pre-Production  
WM8976  
POWER MANAGEMENT  
SAVING POWER BY REDUCING OVERSAMPLING RATE  
The default mode of operation of the ADC and DAC digital filters is in 64x oversampling mode.  
Under the control of ADCOSR and DACOSR the oversampling rate may be doubled. 64x  
oversampling results in a slight decrease in noise performance compared to 128x but lowers the  
power consumption of the device.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R10  
3
3
DACOSR128  
0
DAC oversample rate select  
0 = 64x (lowest power)  
1 = 128x (best SNR)  
DAC control  
R14  
ADCOSR128  
0
ADC oversample rate select  
0 = 64x (lowest power)  
1 = 128x (best SNR)  
ADC control  
Table 66 ADC and DAC Oversampling Rate Selection  
VMID  
The analogue circuitry will not work when VMID is disabled (VMIDSEL[1:0] = 00b). The impedance  
of the VMID resistor string, together with the decoupling capacitor on the VMID pin will determine the  
startup time of the VMID circuit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
1:0  
VMIDSEL  
00  
Reference string impedance to VMID pin  
(detemines startup time):  
Power  
management 1  
00=off (open circuit)  
01=75kꢀ  
10=300kꢀ  
11=5k(for fastest startup)  
Table 67 VMID Impedance Control  
BIASEN  
The analogue amplifiers will not operate unless BIASEN is enabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R1  
3
BIASEN  
0
Analogue amplifier bias control  
0=disabled  
Power  
management 1  
1=enabled  
Table 68 Analogue Bias Control  
PP Rev 3.0 April 2006  
w
81  
WM8976  
Pre-Production  
REGISTER MAP  
REGISTER  
NAME  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEF’T  
VAL  
ADDR  
B[15:9]  
DEC HEX  
(HEX)  
0
1
00  
01  
Software Reset  
Software reset  
Power managet 1 BUFDCOP OUT4MIX OUT3MIX PLLEN  
EN EN EN  
Power managet 2 ROUT1EN LOUT1EN SLEEP  
MICBEN BIASEN BUFIOEN  
VMIDSEL  
000  
000  
2
02  
0
BOOST  
ENL  
0
0
INPPGA  
ENL  
0
ADCENL  
3
4
03  
04  
Power managet 3  
Audio Interface  
OUT4EN  
BCP  
OUT3EN LOUT2EN ROUT2EN  
RMIXEN LMIXEN DACENR DACENL  
000  
050  
LRP  
WL  
FMT  
DAC  
ADC  
DAC  
MONO  
LRSWAP LRSWAP  
5
6
7
8
9
05  
06  
07  
08  
09  
Companding ctrl  
Clock Gen ctrl  
Additional ctrl  
GPIO Stuff  
0
0
0
WL8  
0
DAC_COMP  
BCLKDIV  
ADC_COMP  
LOOPBACK  
MS  
000  
140  
CLKSEL  
MCLKDIV  
0
0
0
0
0
0
0
SR  
LOWCLKEN 000  
0
OPCLKDIV  
GPIO1POL  
0
GPIO1SEL[2:0]  
0
000  
000  
000  
Jack detect control  
JD_VMID  
JD_EN  
SOFT  
MUTE  
0
0
JD_SEL  
0
0
0
10 0A DAC Control  
0
0
DACOSR AMUTE DACPOLR DACPOLL  
128  
11 0B Left DAC digital Vol DACVU  
12 0C Right DAC dig’l Vol DACVU  
DACVOLL  
DACVOLR  
0FF  
0FF  
000  
100  
13 0D  
ack Detect Control  
JD_EN1  
HPFCUT  
JD_EN0  
14 0E ADC Control  
HPFEN  
HPFAPP  
ADCOSR  
128  
ADCVOLL  
0
0
ADCLPOL  
15 0F ADC Digital Vol  
ADCVU  
EQ3DMODE  
EQ2BW  
EQ3BW  
EQ4BW  
0
0FF  
12C  
02C  
02C  
02C  
02C  
032  
000  
000  
000  
000  
000  
038  
00B  
032  
000  
008  
18 12  
19 13  
20 14  
21 15  
22 16  
24 18  
25 19  
EQ1 – low shelf  
EQ2 – peak 1  
EQ3 – peak 2  
EQ4 – peak 3  
EQ5 – high shelf  
DAC Limiter 1  
DAC Limiter 2  
0
0
0
0
0
EQ1C  
EQ1G  
EQ2G  
EQ3G  
EQ4G  
EQ5G  
EQ2C  
EQ3C  
EQ4C  
EQ5C  
LIMEN  
0
LIMDCY  
LIMATK  
LIMBOOST  
0
LIMLVL  
27 1B Notch Filter 1  
28 1C Notch Filter 2  
29 1D Notch Filter 3  
30 1E Notch Filter 4  
NFU  
NFEN  
NFA0[13:7]  
NFA0[6:0]  
NFA1[13:7]  
NFA1[6:0]  
NFU  
0
0
0
0
NFU  
NFU  
32 20  
33 21  
34 22  
35 23  
36 24  
ALC control 1  
ALC control 2  
ALC control 3  
Noise Gate  
PLL N  
ALCSEL  
0
0
ALCMAXGAIN  
ALCMINGAIN  
ALCHLD  
ALCDCY  
ALCLVL  
ALCATK  
ALCMODE  
0
0
0
0
0
0
0
0
NGEN  
NGTH  
0
PLLPRE  
SCALE  
PLLN[3:0]  
37 25  
38 26  
39 27  
41 29  
PLL K 1  
PLL K 2  
PLL K 3  
3D control  
0
0
0
PLLK[23:18]  
00C  
093  
0E9  
000  
000  
PLLK[17:9]  
PLLK[8:0]  
0
0
0
0
0
0
0
DEPTH3D  
43 2B Beep control  
0
0
MUTER INVROUT2  
PGA2INV  
BEEPVOL  
L2_2  
BEEPEN  
LIP2  
44 2C Input ctrl  
MBVSEL  
0
0
0
0
LIN2  
033  
010  
INPPGA INPPGA INPPGA  
45 2D INP PGA gain ctrl  
47 2F ADC Boost ctrl  
INPPGA NPPGAZCL INPPGA  
INPPGAVOLL  
UPDATE  
PGABOOSTL  
0
MUTEL  
0
0
L2_2BOOSTVOL  
DACR2  
0
AUXL2BOOSTVOL  
SPK TSDEN VROI  
100  
002  
49 31  
Output ctrl  
DACL2  
OUT4  
OUT3  
PP Rev 3.0 April 2006  
w
82  
Pre-Production  
WM8976  
RMIX  
LMIX  
BOOST  
BOOST  
BYPLMIXVOL  
0
BOOST  
50 32  
51 33  
52 34  
Left mixer ctrl  
AUXLMIXVOL  
AUXRMIXVOL  
AUXL2LMIX  
UXR2RMIX  
BYPL2LMIX DACL2LMIX  
001  
001  
039  
Right mixer ctrl  
0
DACR2RMIX  
LOUT1 (HP)  
volume ctrl  
HPVU  
HPVU  
SPKVU  
SPKVU  
0
LOUT1ZC LOUT1  
MUTE  
LOUT1VOL  
53 35  
54 36  
55 37  
56 38  
57 39  
ROUT1 (HP)  
volume ctrl  
ROUT1ZC ROUT1  
MUTE  
ROUT1VOL  
LOUT2VOL  
ROUT2VOL  
039  
039  
039  
001  
001  
LOUT2 (SPK)  
volume ctrl  
LOUT2ZC LOUT2  
MUTE  
ROUT2 (SPK)  
volume ctrl  
ROUT2ZC ROUT2  
MUTE  
OUT3 mixer ctrl  
0
OUT3  
MUTE  
OUT4  
MUTE  
0
0
OUT4_  
BYPL2  
OUT3  
0
LMIX2  
OUT3  
RMIX2  
OUT4  
LDAC2  
OUT3  
2OUT3  
LDAC2  
OUT4  
OUT4 (MONO)  
mixer ctrl  
0
0
HALFSIG  
LMIX2  
OUT4  
RDAC2  
OUT4  
Table 69 WM8976 Register Map  
PP Rev 3.0 April 2006  
83  
w
WM8976  
Pre-Production  
REGISTER BITS BY ADDRESS  
Notes  
1. Default values of N/A indicate non-latched data bits (e.g. software reset or volume update bits).  
2. Register bits marked as "Reserved" should not be changed from the default.  
REGISTER  
ADDRESS  
BIT  
[8:0]  
8
LABEL  
RESET  
DEFAULT  
DESCRIPTION  
REFER TO  
0 (00h)  
N/A  
0
Software reset  
Resetting the  
Chip  
1 (01h)  
BUFDCOPEN  
Dedicated buffer for DC level shifting output  
stages when in 1.5x gain boost configuration.  
Analogue  
Outputs  
0=Buffer disabled  
1=Buffer enabled (required for 1.5x gain boost)  
OUT4 mixer enable  
0=disabled  
7
6
5
OUT4MIXEN  
OUT3MIXEN  
PLLEN  
0
0
0
Power  
Management  
1=enabled  
OUT3 mixer enable  
0=disabled  
Power  
Management  
1=enabled  
PLL enable  
Master Clock  
and Phase  
Locked Loop  
(PLL)  
0=PLL off  
1=PLL on  
4
MICBEN  
BIASEN  
0
Microphone Bias Enable  
0 = OFF (high impedance output)  
1 = ON  
Input Signal  
Path  
3
0
Analogue amplifier bias control  
0=disabled  
Power  
Management  
1=enabled  
2
BUFIOEN  
VMIDSEL  
0
Unused input/output tie off buffer enable  
0=disabled  
Power  
Management  
1=enabled  
1:0  
00  
Reference string impedance to VMID pin  
00=off (open circuit)  
01=75kꢀ  
Power  
Management  
10=300kꢀ  
11=5kꢀ  
2 (02h)  
8
7
6
ROUT1EN  
LOUT1EN  
SLEEP  
0
0
0
ROUT1 output enable  
0=disabled  
Power  
Management  
1=enabled  
LOUT1 output enable  
0=disabled  
Power  
Management  
1=enabled  
0 = normal device operation  
Power  
Management  
1 = residual current reduced in device standby  
mode  
5
4
0
0
Reserved  
BOOSTENL  
INPPGAENL  
Input BOOST enable  
0 = Boost stage OFF  
1 = Boost stage ON  
Reserved  
Power  
Management  
3
2
0
0
Input PGA enable  
0 = disabled  
Power  
Management  
1 = enabled  
1
0
Reserved  
PP Rev 3.0 April 2006  
84  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
ADCENL  
DEFAULT  
DESCRIPTION  
REFER TO  
0
0
Enable ADC:  
Analogue to  
Digital  
Converter  
(ADC)  
0 = ADC disabled  
1 = ADC enabled  
3 (03h)  
8
OUT4EN  
OUT3EN  
LOUT2EN  
ROUT2EN  
RMIXEN  
LMIXEN  
DACENR  
DACENL  
BCP  
0
0
0
0
0
0
0
0
0
0
10  
OUT4 enable  
0 = disabled  
1 = enabled  
OUT3 enable  
0 = disabled  
1 = enabled  
LOUT2 enable  
0 = disabled  
1 = enabled  
ROUT2 enable  
0 = disabled  
1 = enabled  
Power  
Management  
7
Power  
Management  
6
Power  
Management  
5
Power  
Management  
3
Right output channel mixer enable:  
0 = disabled  
Analogue  
Outputs  
1 = enabled  
2
Left output channel mixer enable:  
0 = disabled  
Analogue  
Outputs  
1 = enabled  
1
Right channel DAC enable  
0 = DAC disabled  
1 = DAC enabled  
Left channel DAC enable  
0 = DAC disabled  
1 = DAC enabled  
BCLK polarity  
Analogue  
Outputs  
0
Analogue  
Outputs  
4 (04h)  
8
Digital Audio  
Interfaces  
0=normal  
1=inverted  
7
LRP  
LRC clock polarity  
0=normal  
Digital Audio  
Interfaces  
1=inverted  
6:5  
WL  
Word length  
Digital Audio  
Interfaces  
00=16 bits  
01=20 bits  
10=24 bits  
11=32 bits  
4:3  
FMT  
10  
Audio interface Data Format Select:  
00=Right Justified  
01=Left Justified  
10=I2S format  
Digital Audio  
Interfaces  
11= DSP/PCM mode  
2
1
DACLRSWAP  
ADCLRSWAP  
0
0
Controls whether DAC data appears in rightor  
leftphases of LRC clock:  
Digital Audio  
Interfaces  
0=DAC data appear in leftphase of LRC  
1=DAC data appears in rightphase of LRC  
Controls whether ADC data appears in rightor  
leftphases of LRC clock:  
Digital Audio  
Interfaces  
0=ADC data appear in leftphase of LRC  
1=ADC data appears in rightphase of LRC  
PP Rev 3.0 April 2006  
85  
w
WM8976  
Pre-Production  
REFER TO  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0
DACMONO  
0
Selects between stereo and mono DAC operation:  
0=Stereo device operation  
Digital Audio  
Interfaces  
1=Mono device operation. DAC data appears in  
leftphase of LRC  
5 (05h)  
8:6  
5
000  
0
Reserved  
WL8  
Companding Control 8-bit mode  
0=off  
Digital Audio  
Interfaces  
1=device operates in 8-bit mode  
DAC companding  
00=off (linear mode)  
01=reserved  
4:3  
2:1  
DAC_COMP  
00  
00  
Digital Audio  
Interfaces  
10=µ-law  
11=A-law  
ADC_COMP  
ADC companding  
00=off (linear mode)  
01=reserved  
Digital Audio  
Interfaces  
10=µ-law  
11=A-law  
0
LOOPBACK  
CLKSEL  
0
Digital loopback function  
0=No loopback  
Digital Audio  
Interfaces  
1=Loopback enabled, ADC data output is fed  
directly into DAC data input.  
6 (06h)  
8
1
Controls the source of the clock for all internal  
operation:  
Digital Audio  
Interfaces  
0=MCLK  
1=PLL output  
7:5  
MCLKDIV  
010  
Sets the scaling for either the MCLK or PLL clock  
output (under control of CLKSEL)  
Digital Audio  
Interfaces  
000=divide by 1  
001=divide by 1.5  
010=divide by 2  
011=divide by 3  
100=divide by 4  
101=divide by 6  
110=divide by 8  
111=divide by 12  
4:2  
BCLKDIV  
000  
Configures the BCLK output frequency, for use  
when the chip is master over BCLK.  
Digital Audio  
Interfaces  
000=divide by 1 (BCLK=MCLK)  
001=divide by 2 (BCLK=MCLK/2)  
010=divide by 4  
011=divide by 8  
100=divide by 16  
101=divide by 32  
110=reserved  
111=reserved  
1
0
0
0
Reserved  
MS  
Sets the chip to be master over LRC and BCLK  
0=BCLK and LRC clock are inputs  
Digital Audio  
Interfaces  
1=BCLK and LRC clock are outputs generated by  
the WM8976 (MASTER)  
PP Rev 3.0 April 2006  
86  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
7 (07h)  
8:4  
3:1  
00000  
000  
Reserved  
SR  
Approximate sample rate (configures the  
coefficients for the internal digital filters):  
Audio Sample  
Rates  
000=48kHz  
001=32kHz  
010=24kHz  
011=16kHz  
100=12kHz  
101=8kHz  
110-111=reserved  
0
SLOWCLKEN  
0
Slow clock enable. Used for both the jack insert  
detect debounce circuit and the zero cross  
timeout.  
Analogue  
Outputs  
0 = slow clock disabled  
1 = slow clock enabled  
Reserved  
8 (08h)  
8:6  
5:4  
000  
00  
OPCLKDIV  
GPIO1POL  
PLL Output clock division ratio  
00=divide by 1  
General  
Purpose  
Input/Output  
(GPIO)  
01=divide by 2  
10=divide by 3  
11=divide by 4  
3
0
GPIO1 Polarity invert  
0=Non inverted  
General  
Purpose  
Input/Output  
(GPIO)  
1=Inverted  
2:0  
GPIO1SEL  
[2:0]  
000  
CSB/GPIO1 pin function select:  
General  
Purpose  
Input/Output  
(GPIO)  
000= input (CSB/jack detection: depending on  
MODE setting)  
001= reserved  
010=Temp ok  
011=Amute active  
100=PLL clk o/p  
101=PLL lock  
110=logic 1  
111=logic 0  
9 (09h)  
8:7  
6
JD_VMID  
JD_EN  
00  
0
[7] VMID_EN_0  
[8] VMID_EN_1  
Output  
Switching  
(Jack Detect)  
Jack Detection Enable  
0=disabled  
Output  
Switching  
(Jack Detect)  
1=enabled  
5
4
0
0
Reserved  
JD_SEL  
Pin selected as jack detection input  
Output  
Switching  
(Jack Detect)  
0 = GPIO1  
1 = GPIO2  
Reserved  
3:0  
0
10 (0Ah)  
8:7  
6
00  
0
Reserved  
SOFTMUTE  
Softmute enable:  
0=Disabled  
1=Enabled  
Reserved  
Output Signal  
Path  
5:4  
00  
PP Rev 3.0 April 2006  
87  
w
WM8976  
Pre-Production  
REFER TO  
Power  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DAC oversample rate select  
3
DACOSR128  
0
Management  
0 = 64x (lowest power)  
1 = 128x (best SNR)  
2
1
0
8
AMUTE  
0
Automute enable  
Output Signal  
Path  
0 = Amute disabled  
1 = Amute enabled  
DACPOLR  
DACPOLL  
DACVU  
0
Right DAC output polarity:  
0 = non-inverted  
Output Signal  
Path  
1 = inverted (180 degrees phase shift)  
Left DAC output polarity:  
0 = non-inverted  
0
Output Signal  
Path  
1 = inverted (180 degrees phase shift)  
11 (0Bh)  
N/A  
DAC left and DAC right volume do not update until  
a 1 is written to DACVU (in reg 11 or 12)  
Digital to  
Analogue  
Converter  
(DAC)  
7:0  
DACVOLL  
11111111  
Left DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Digital to  
Analogue  
Converter  
(DAC)  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
12 (0Ch)  
8
DACVU  
N/A  
DAC left and DAC right volume do not update until  
a 1 is written to DACVU (in reg 11 or 12)  
Output Signal  
Path  
7:0  
DACVOLR  
11111111  
Right DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
Output Signal  
Path  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
13 (0Dh)  
8
0
Reserved  
7:4  
JD_EN1  
JD_EN0  
0000  
Output enabled when selected jack detection input Output  
is logic 1  
Switching  
(Jack Detect)  
[4]= OUT1_EN_1  
[5]= OUT2_EN_1  
[6]= OUT3_EN_1  
[7]= OUT4_EN_1  
3:0  
0000  
Output enabled when selected jack detection input Output  
is logic 0.  
Switching  
(Jack Detect)  
[0]= OUT1_EN_0  
[1]= OUT2_EN_0  
[2]= OUT3_EN_0  
[3]= OUT4_EN_0  
14 (0Eh)  
8
HPFEN  
1
Analogue to  
Digital  
Converter  
(ADC)  
High Pass Filter Enable  
0=disabled  
1=enabled  
7
HPFAPP  
HPFCUT  
0
Select audio mode or application mode  
0=Audio mode (1st order, fc = ~3.7Hz)  
1=Application mode (2nd order, fc = HPFCUT)  
Analogue to  
Digital  
Converter  
(ADC)  
6:4  
000  
Application mode cut-off frequency  
See Table 14 for details.  
Analogue to  
Digital  
Converter  
(ADC)  
PP Rev 3.0 April 2006  
88  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC oversample rate select  
REFER TO  
3
ADCOSR  
128  
0
Power  
Management  
0 = 64x (lowest power)  
1 = 128x (best SNR)  
Reserved  
2:1  
0
00  
0
ADCLPOL  
ADCVU  
ADC polarity adjust:  
0=normal  
Analogue to  
Digital  
Converter  
(ADC)  
1=inverted  
15 (0Fh)  
8
N/A  
ADC volume does not update until a 1 is written to  
ADCVU  
Analogue to  
Digital  
Converter  
(ADC)  
7:0  
ADCVOLL  
11111111  
ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
Analogue to  
Digital  
Converter  
(ADC)  
1111 1111 = 0dB  
16 (10h)  
18 (12h)  
8:0  
8
11111111  
1
Reserved  
EQ3DMODE  
EQ1C  
0 = Equaliser and 3D Enhancement applied to  
ADC path  
Output Signal  
Path  
1 = Equaliser and 3D Enhancement applied to  
DAC path  
7
0
Reserved  
6:5  
EQ Band 1 Cut-off Frequency:  
00=80Hz  
Output Signal  
Path  
01=105Hz  
10=135Hz  
11=175Hz  
4:0  
8
EQ1G  
01100  
0
EQ Band 1 Gain Control. See Table 36 for details.  
Output Signal  
Path  
19 (13h)  
EQ2BW  
EQ Band 2 Bandwidth Control  
0=narrow bandwidth  
1=wide bandwidth  
Output Signal  
Path  
7
0
Reserved  
6:5  
EQ2C  
01  
EQ Band 2 Centre Frequency:  
Output Signal  
Path  
00=230Hz  
01=300Hz  
10=385Hz  
11=500Hz  
4:0  
8
EQ2G  
01100  
0
EQ Band 2 Gain Control. See Table 36 for details.  
Output Signal  
Path  
20 (14h)  
EQ3BW  
EQ Band 3 Bandwidth Control  
0=narrow bandwidth  
1=wide bandwidth  
Output Signal  
Path  
7
0
Reserved  
6:5  
EQ3C  
EQ3G  
01  
EQ Band 3 Centre Frequency:  
Output Signal  
Path  
00=650Hz  
01=850Hz  
10=1.1kHz  
11=1.4kHz  
4:0  
01100  
EQ Band 3 Gain Control. See Table 36 for details.  
Output Signal  
Path  
PP Rev 3.0 April 2006  
89  
w
WM8976  
Pre-Production  
REFER TO  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ4BW  
DEFAULT  
DESCRIPTION  
21 (15h)  
8
0
EQ Band 4 Bandwidth Control  
0=narrow bandwidth  
1=wide bandwidth  
Output Signal  
Path  
7
0
Reserved  
6:5  
EQ4C  
01  
EQ Band 4 Centre Frequency:  
Output Signal  
Path  
00=1.8kHz  
01=2.4kHz  
10=3.2kHz  
11=4.1kHz  
4:0  
EQ4G  
EQ5C  
01100  
EQ Band 4 Gain Control. See Table 36 for details.  
Output Signal  
Path  
22 (16h)  
8:7  
6:5  
00  
01  
Reserved  
EQ Band 5 Cut-off Frequency:  
00=5.3kHz  
Output Signal  
Path  
01=6.9kHz  
10=9kHz  
11=11.7kHz  
4:0  
8
EQ5G  
LIMEN  
01100  
0
EQ Band 5 Gain Control. See Table 36 for details.  
Output Signal  
Path  
24 (18h)  
Output Signal  
Path  
Enable the DAC digital limiter:  
0=disabled  
1=enabled  
7:4  
LIMDCY  
0011  
Output Signal  
Path  
DAC Limiter Decay time (per 6dB gain change) for  
44.1kHz sampling. Note that these will scale with  
sample rate:  
0000=750us  
0001=1.5ms  
0010=3ms  
0011=6ms  
0100=12ms  
0101=24ms  
0110=48ms  
0111=96ms  
1000=192ms  
1001=384ms  
1010=768ms  
3:0  
LIMATK  
0010  
DAC Limiter Attack time (per 6dB gain change) for  
44.1kHz sampling. Note that these will scale with  
sample rate.  
Output Signal  
Path  
0000=94us  
0001=188s  
0010=375us  
0011=750us  
0100=1.5ms  
0101=3ms  
0110=6ms  
0111=12ms  
1000=24ms  
1001=48ms  
1010=96ms  
1011 to 1111=192ms  
25 (19h)  
8:7  
00  
Reserved  
PP Rev 3.0 April 2006  
90  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
LIMLVL  
DEFAULT  
DESCRIPTION  
REFER TO  
6:4  
000  
Output Signal  
Path  
Programmable signal threshold level (determines  
level at which the DAC limiter starts to operate)  
000=-1dB  
001=-2dB  
010=-3dB  
011=-4dB  
100=-5dB  
101 to 111=-6dB  
3:0  
LIMBOOST  
0000  
Output Signal  
Path  
DAC Limiter volume boost (can be used as a  
stand alone volume boost when LIMEN=0):  
0000=0dB  
0001=+1dB  
0010=+2dB  
(1dB steps)  
1011=+11dB  
1100=+12dB  
1101 to 1111=reserved  
27 (1Bh)  
8
NFU  
0
Notch filter update. The notch filter values used  
internally only update when one of the NFU bits is  
set high.  
Analogue to  
Digital  
Converter  
(ADC)  
7
NFEN  
NFA0[13:7]  
NFU  
0
Analogue to  
Digital  
Converter  
(ADC)  
Notch filter enable:  
0=Disabled  
1=Enabled  
6:0  
8
0000000  
0
Notch Filter a0 coefficient, bits [13:7]  
Analogue to  
Digital  
Converter  
(ADC)  
28 (1Ch)  
29 (1Dh)  
30 (1Eh)  
Notch filter update. The notch filter values used  
internally only update when one of the NFU bits is  
set high.  
Analogue to  
Digital  
Converter  
(ADC)  
7
0
Reserved  
6:0  
NFA0[6:0]  
NFU  
0000000  
Notch Filter a0 coefficient, bits [6:0]  
Analogue to  
Digital  
Converter  
(ADC)  
8
0
Notch filter update. The notch filter values used  
internally only update when one of the NFU bits is  
set high.  
Analogue to  
Digital  
Converter  
(ADC)  
7
0
Reserved  
6:0  
NFA1[13:7]  
NFU  
0000000  
Notch Filter a1 coefficient, bits [13:7]  
Analogue to  
Digital  
Converter  
(ADC)  
8
0
Notch filter update. The notch filter values used  
internally only update when one of the NFU bits is  
set high.  
Analogue to  
Digital  
Converter  
(ADC)  
7
0
Reserved  
6:0  
NFA1[6:0]  
0000000  
Notch Filter a1 coefficient, bits [6:0]  
Analogue to  
Digital  
Converter  
(ADC)  
PP Rev 3.0 April 2006  
91  
w
WM8976  
Pre-Production  
REFER TO  
REGISTER  
ADDRESS  
BIT  
LABEL  
ALCSEL  
DEFAULT  
DESCRIPTION  
ALC function select:  
32 (20h)  
8
0
Input Limiter/  
Automatic  
Level Control  
(ALC)  
0=ALC off  
1=ALC on  
7:6  
5:3  
00  
Reserved  
ALCMAXGAIN 111  
Set Maximum Gain of PGA  
111=+35.25dB  
110=+29.25dB  
101=+23.25dB  
100=+17.25dB  
011=+11.25dB  
010=+5.25dB  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
001=-0.75dB  
000=-6.75dB  
2:0  
ALCMINGAIN  
000  
Set minimum gain of PGA  
000=-12dB  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
001=-6dB  
010=0dB  
011=+6dB  
100=+12dB  
101=+18dB  
110=+24dB  
111=+30dB  
33 (21h)f  
7:4  
3:0  
ALCHLD  
ALCLVL  
0000  
1011  
ALC hold time before gain is increased.  
0000 = 0ms  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
0001 = 2.67ms  
0010 = 5.33ms  
(time doubles with every step)  
1111 = 43.691s  
ALC target sets signal level at ADC input  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
1111 : -1.5dBFS  
1110 : -1.5dBFS  
1101 : -3dBFS  
1100 : -4.5dBFS  
...... (-1.5dB steps)  
0001 : -21dBFS  
0000 : -22.5dBFS  
34 (22h)  
8
ALCMODE  
0
Determines the ALC mode of operation:  
0=ALC mode  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
1=Limiter mode  
7:4  
ALCDCY  
[3:0]  
0011  
Decay (gain ramp-up) time  
(ALCMODE ==0)  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
Per step  
Per 6dB  
90% of  
range  
0000  
0001  
0010  
410us  
820us  
1.64ms  
3.3ms  
6.6ms  
13.1ms  
24ms  
48ms  
192ms  
(time doubles with every step)  
1010 or  
higher  
420ms  
3.36s  
24.576s  
0011  
Decay (gain ramp-up) time  
(ALCMODE ==1)  
Per step  
Per 6dB  
726.4us  
90% of  
range  
0000  
90.8us  
5.26ms  
PP Rev 3.0 April 2006  
92  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
0001  
0010  
181.6us  
363.2us  
1.453ms  
2.905ms  
10.53ms  
21.06ms  
(time doubles with every step)  
1010 93ms 744ms  
5.39s  
3:0  
ALCATK  
0010  
ALC attack (gain ramp-down) time  
(ALCMODE == 0)  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
Per step  
Per 6dB  
90% of  
range  
0000  
0001  
0010  
104us  
208us  
416us  
832us  
6ms  
1.664ms  
3.328ms  
12ms  
24.1ms  
(time doubles with every step)  
1010 or  
higher  
106ms  
852ms  
6.18s  
0010  
ALC attack (gain ramp-down) time  
(ALCMODE == 1)  
Per step  
Per 6dB  
90% of  
range  
0000  
0001  
0010  
22.7us  
45.4us  
90.8us  
182.4us  
363.2us  
726.4us  
1.31ms  
2.62ms  
5.26ms  
(time doubles with every step)  
1010  
23.2ms  
186ms  
1.348s  
35 (23h)  
8:4  
3
00000  
0
Reserved  
NGEN  
NGTH  
ALC Noise gate function enable  
1 = enable  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
0 = disable  
2:0  
000  
ALC Noise gate threshold:  
000=-39dB  
Input Limiter/  
Automatic  
Level Control  
(ALC)  
001=-45dB  
010=-51db  
(6dB steps)  
111=-81dB  
36 (24h)  
8:5  
4
0000  
0
Reserved  
PLL  
0 = MCLK input not divided (default)  
Master Clock  
and Phase  
Locked Loop  
(PLL)  
PRESCALE  
1 = Divide MCLK by 2 before input to PLL  
3:0  
PLLN[3:0]  
1000  
Integer (N) part of PLL input/output frequency  
ratio. Use values greater than 5 and less than 13.  
Master Clock  
and Phase  
Locked Loop  
(PLL)  
37 (25h)  
8:6  
5:0  
000  
Reserved  
PLLK[23:18]  
PLLK[17:9]  
PLLK[8:0]  
01100  
Fractional (K) part of PLL1 input/output frequency  
ratio (treat as one 24-digit binary number).  
Master Clock  
and Phase  
Locked Loop  
(PLL)  
38 (26h)  
39 (27h)  
8:0  
8:0  
01001001  
1
Fractional (K) part of PLL1 input/output frequency  
ratio (treat as one 24-digit binary number).  
Master Clock  
and Phase  
Locked Loop  
(PLL)  
01110100  
1
Fractional (K) part of PLL1 input/output frequency  
ratio (treat as one 24-digit binary number).  
Master Clock  
and Phase  
Locked Loop  
(PLL)  
PP Rev 3.0 April 2006  
93  
w
WM8976  
Pre-Production  
REFER TO  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
40 (28h)  
8:0  
00000000  
0
Reserved  
41 (29h)  
8:4  
3:0  
00000  
0000  
Reserved  
DEPTH3D  
Stereo depth  
3D Stereo  
Enhancement  
0000: 0% (minimum 3D effect)  
0001: 6.67%  
....  
1110: 93.3%  
1111: 100% (maximum 3D effect)  
43 (2Bh)  
8:6  
5
000  
0
Reserved  
MUTERPGA  
2INV  
Mute input to INVROUT2 mixer  
Analogue  
Outputs  
4
INVROUT2  
0
Mute input to INVROUT2 mixer  
Analogue  
Outputs  
3:1  
BEEPVOL  
000  
AUXR input to ROUT2 inverter gain  
000 = -15dB  
Analogue  
Outputs  
...  
111 = +6dB  
0
8
BEEPEN  
MBVSEL  
0
0
0 = mute AUXR beep input  
1 = enable AUXR beep input  
Microphone Bias Voltage Control  
0 = 0.9 * AVDD  
Analogue  
Outputs  
44 (2Ch)  
Input Signal  
Path  
1 = 0.6 * AVDD  
7:3  
2
00000  
0
Reserved  
L2_2INP  
PGA  
Connect L2 pin to input PGA positive terminal.  
0=L2 not connected to input PGA  
Input Signal  
Path  
1=L2 connected to input PGA amplifier positive  
terminal (constant input impedance).  
1
0
LIN2INP  
PGA  
1
1
Connect LIN pin to input PGA negative terminal.  
0=LIN not connected to input PGA  
Input Signal  
Path  
1=LIN connected to input PGA amplifier negative  
terminal.  
LIP2INP  
PGA  
Connect LIP pin to input PGA amplifier positive  
terminal.  
Input Signal  
Path  
0 = LIP not connected to input PGA  
1 = input PGA amplifier positive terminal  
connected to LIP (constant input impedance)  
45 (2Dh)  
8
7
INPPGA  
UPDATE  
N/A  
0
INPPGAVOLL and INPPGAVOLR volume do not  
update until a 1 is written to INPPGAUPDATE (in  
reg 45 or 46)  
Input Signal  
Path  
INPPGAZCL  
Input PGA zero cross enable:  
Input Signal  
Path  
0=Update gain when gain register changes  
1=Update gain on 1st zero cross after gain register  
write.  
6
INPPGA  
MUTEL  
0
Mute control for input PGA:  
Input Signal  
Path  
0=Input PGA not muted, normal operation  
1=Input PGA muted (and disconnected from the  
following input BOOST stage).  
5:0  
INPPGA  
VOLL  
010000  
Input PGA volume  
000000 = -12dB  
000001 = -11.25db  
.
Input Signal  
Path  
010000 = 0dB  
.
111111 = 35.25dB  
PP Rev 3.0 April 2006  
94  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
8:0  
8
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
46 (2Eh)  
00001000  
0
Reserved  
47 (2Fh)  
PGA  
1
Boost enable for input PGA:  
Input Signal  
Path  
BOOSTL  
0 = PGA output has +0dB gain through input  
BOOST stage.  
1 = PGA output has +20dB gain through input  
BOOST stage.  
7
0
Reserved  
6:4  
L2_2  
000  
Controls the L2 pin to the input boost stage:  
000=Path disabled (disconnected)  
001=-12dB gain through boost stage  
010=-9dB gain through boost stage  
Input Signal  
Path  
BOOSTVOL  
111=+6dB gain through boost stage  
3
0
Reserved  
2:0  
AUXL2  
000  
Controls the auxilliary amplifer to the input boost  
stage:  
Input Signal  
Path  
BOOSTVOL  
000=Path disabled (disconnected)  
001=-12dB gain through boost stage  
010=-9dB gain through boost stage  
111=+6dB gain through boost stage  
48 (30h)  
49 (31h)  
8:0  
10000000  
0
Reserved  
8:7  
6
00  
0
Reserved  
DACL2RMIX  
DACR2LMIX  
Left DAC output to right output mixer  
0 = not selected  
Analogue  
Outputs  
1 = selected  
5
4
0
0
Right DAC output to left output mixer  
0 = not selected  
Analogue  
Outputs  
1 = selected  
OUT4  
0 = OUT4 output gain = -1;  
DC = AVDD / 2  
Analogue  
Outputs  
BOOST  
1 = OUT4 output gain = +1.5  
DC = 1.5 x AVDD / 2  
0 = OUT3 output gain = -1;  
DC = AVDD / 2  
3
2
OUT3  
0
0
Analogue  
Outputs  
BOOST  
1 = OUT3 output gain = +1.5  
DC = 1.5 x AVDD / 2  
0 = speaker gain = -1;  
DC = AVDD / 2  
SPKBOOST  
Analogue  
Outputs  
1 = speaker gain = +1.5;  
DC = 1.5 x AVDD / 2  
1
0
TSDEN  
VROI  
1
0
Thermal Shutdown Enable  
0 : thermal shutdown disabled  
1 : thermal shutdown enabled  
Analogue  
Outputs  
VREF (AVDD/2 or 1.5xAVDD/2) to analogue  
output resistance  
Analogue  
Outputs  
0: approx 1kΩ  
1: approx 30 kΩ  
PP Rev 3.0 April 2006  
95  
w
WM8976  
Pre-Production  
REFER TO  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
50 (32h)  
8:6  
AUXLMIX  
VOL  
000  
Aux left channel input to left mixer volume control:  
Analogue  
Outputs  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
5
AUXL2L  
MIX  
0
Left Auxilliary input to left channel output mixer:  
0 = not selected  
Analogue  
Outputs  
1 = selected  
4:2  
BYPLMIX  
VOL  
000  
Bypass volume contol to left output channel mixer: Analogue  
Outputs  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
1
BYPL2L  
MIX  
0
Bypass path (from the input boost output) to left  
output mixer  
Analogue  
Outputs  
0 = not selected  
1 = selected  
0
DACL2L  
MIX  
1
Left DAC output to left output mixer  
0 = not selected  
Analogue  
Outputs  
1 = selected  
51 (33h)  
8:6  
AUXRMIX  
VOL  
000  
Aux right channel input to right mixer volume  
control:  
Analogue  
Outputs  
000 = -15dB  
001 = -12dB  
101 = 0dB  
110 = +3dB  
111 = +6dB  
5
AUXR2R  
MIX  
0
Right Auxilliary input to right channel output mixer:  
Analogue  
Outputs  
0 = not selected  
1 = selected  
4:1  
0
0000  
1
Reserved  
DACR2R  
MIX  
Right DAC output to right output mixer  
0 = not selected  
1 = selected  
Analogue  
Outputs  
52 (34h)  
8
7
HPVU  
N/A  
0
LOUT1 and ROUT1 volumes do not update until a  
1 is written to HPVU (in reg 52 or 53)  
Analogue  
Outputs  
LOUT1ZC  
Headphone volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left headphone output mute:  
0 = Normal operation  
1 = Mute  
Analogue  
Outputs  
6
LOUT1  
MUTE  
0
Analogue  
Outputs  
5:0  
LOUT1VOL  
111001  
Left headphone output volume:  
000000 = -57dB  
Analogue  
Outputs  
...  
111001 = 0dB  
...  
111111 = +6dB  
PP Rev 3.0 April 2006  
96  
w
Pre-Production  
WM8976  
REGISTER  
ADDRESS  
BIT  
LABEL  
HPVU  
DEFAULT  
DESCRIPTION  
REFER TO  
53 (35h)  
54 (36h)  
55 (37h)  
56 (38h)  
8
N/A  
0
LOUT1 and ROUT1 volumes do not update until a  
1 is written to HPVU (in reg 52 or 53)  
Analogue  
Outputs  
7
ROUT1ZC  
Headphone volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right headphone output mute:  
0 = Normal operation  
1 = Mute  
Analogue  
Outputs  
6
ROUT1  
MUTE  
0
Analogue  
Outputs  
5:0  
ROUT1VOL  
111001  
Right headphone output volume:  
000000 = -57dB  
Analogue  
Outputs  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
7
SPKVU  
N/A  
0
LOUT2 and ROUT2 volumes do not update until a  
1 is written to SPKVU (in reg 54 or 55)  
Analogue  
Outputs  
LOUT2ZC  
Speaker volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left speaker output mute:  
0 = Normal operation  
1 = Mute  
Analogue  
Outputs  
6
LOUT2  
MUTE  
0
Analogue  
Outputs  
5:0  
LOUT2VOL  
111001  
Left speaker output volume:  
000000 = -57dB  
Analogue  
Outputs  
...  
111001 = 0dB  
...  
111111 = +6dB  
8
7
SPKVU  
N/A  
0
LOUT2 and ROUT2 volumes do not update until a  
1 is written to SPKVU (in reg 54 or 55)  
Analogue  
Outputs  
ROUT2ZC  
Speaker volume zero cross enable:  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right speaker output mute:  
0 = Normal operation  
1 = Mute  
Analogue  
Outputs  
6
ROUT2  
MUTE  
0
Analogue  
Outputs  
5:0  
ROUT2VOL  
111001  
Right speaker output volume:  
000000 = -57dB  
Analogue  
Outputs  
...  
111001 = 0dB  
...  
111111 = +6dB  
8:7  
6
00  
0
Reserved  
OUT3MUTE  
0 = Output stage outputs OUT3 mixer  
Analogue  
Outputs  
1 = Output stage muted drives out VMID. Can  
be used as VMID buffer in this mode.  
5:4  
3
00  
0
Reserved  
OUT4_2OUT3  
BYPL2OUT3  
OUT4 mixer output to OUT3  
0 = disabled  
Analogue  
Outputs  
1= enabled  
2
0
ADC input to OUT3  
0 = disabled  
Analogue  
Outputs  
1= enabled  
PP Rev 3.0 April 2006  
97  
w
WM8976  
Pre-Production  
REFER TO  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Left DAC mixer to OUT3  
1
LMIX2OUT3  
0
Analogue  
Outputs  
0 = disabled  
1= enabled  
0
LDAC2OUT3  
OUT4MUTE  
1
Left DAC output to OUT3  
0 = disabled  
Analogue  
Outputs  
1= enabled  
57 (39h)  
8:7  
6
00  
0
Reserved  
0 = Output stage outputs OUT4 mixer  
Analogue  
Outputs  
1 = Output stage muted drives out VMID. Can  
be used as VMID buffer in this mode.  
5
4
HALFSIG  
0
0
0=OUT4 normal output  
1=OUT4 attenuated by 6dB  
Left DAC mixer to OUT4  
0 = disabled  
Analogue  
Outputs  
LMIX2OUT4  
Analogue  
Outputs  
1= enabled  
3
LDAC2OUT4  
0
Left DAC to OUT4  
0 = disabled  
Analogue  
Outputs  
1= enabled  
2
1
0
0
Reserved  
RMIX2OUT4  
RDAC2OUT4  
Right DAC mixer to OUT4  
0 = disabled  
Analogue  
Outputs  
1= enabled  
0
1
Right DAC output to OUT4  
0 = disabled  
Analogue  
Outputs  
1= enabled  
PP Rev 3.0 April 2006  
98  
w
Pre-Production  
WM8976  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
ADC Filter  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.454fs  
+/- 0.025  
UNIT  
Passband  
+/- 0.025dB  
-6dB  
0
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.546fs  
-60  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
21/fs  
ADC High Pass Filter  
High Pass Filter Corner  
Frequency  
-3dB  
3.7  
Hz  
-0.5dB  
10.4  
-0.1dB  
21.6  
DAC Filter  
Passband  
+/- 0.035dB  
-6dB  
0
0.454fs  
0.5fs  
Passband Ripple  
Stopband  
+/-0.035  
dB  
dB  
0.546fs  
-55  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
29/fs  
Table 70 Digital Filter Characteristics  
TERMINOLOGY  
1. Stop Band Attenuation (dB) the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple any variation of the frequency response in the pass-band region  
PP Rev 3.0 April 2006  
99  
w
WM8976  
Pre-Production  
DAC FILTER RESPONSES  
3.05  
3
20  
0
2.95  
2.9  
-20  
-40  
2.85  
2.8  
-60  
-80  
2.75  
2.7  
-100  
-120  
-140  
-160  
2.65  
2.6  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
Frequency (fs)  
2
2.5  
Frequency (fs)  
Figure 40 DAC Digital Filter Frequency Response  
(128xOSR)  
Figure 41 DAC Digital Filter Ripple (128xOSR)  
3.05  
3
20  
0
2.95  
2.9  
-20  
-40  
2.85  
2.8  
-60  
-80  
2.75  
2.7  
-100  
-120  
-140  
-160  
2.65  
2.6  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
Frequency (fs)  
2
2.5  
Frequency (fs)  
Figure 42 DAC Digital Filter Frequency Response (64xOSR) Figure 43 DAC Digital Filter Ripple (64xOSR)  
ADC FILTER RESPONSES  
0.2  
0
0.15  
-20  
-40  
0.1  
0.05  
0
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 44 ADC Digital Filter Frequency Response  
Figure 45 ADC Digital Filter Ripple  
PP Rev 3.0 April 2006  
100  
w
Pre-Production  
WM8976  
HIGHPASS FILTER  
The WM8976 has a selectable digital highpass filter in the ADC filter path. This filter has two  
modes, audio and applications. In audio mode the filter is a 1st order IIR with a cut-off of around  
3.7Hz. In applications mode the filter is a 2nd order high pass filter with a selectable cut-off  
frequency.  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
Frequency (Hz)  
Figure 46 ADC Highpass Filter Response, HPFAPP=0  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
Frequency (Hz)  
Frequency (Hz)  
Figure 47 ADC Highpass Filter Responses (48kHz),  
HPFAPP=1, all cut-off settings shown.  
Figure 48 ADC Highpass Filter Responses (24kHz),  
HPFAPP=1, all cut-off settings shown.  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
200  
400  
600  
800  
1000  
1200  
Frequency (Hz)  
Figure 49 ADC Highpass Filter Responses (12kHz),  
HPFAPP=1, all cut-off settings shown.  
PP Rev 3.0 April 2006  
101  
w
WM8976  
Pre-Production  
5-BAND EQUALISER  
The WM8976 has a 5-band equaliser which can be applied to either the ADC path or the DAC path.  
The plots from Figure 50 to Figure 63 show the frequency responses of each filter with a sampling  
frequency of 48kHz, firstly showing the different cut-off/centre frequencies with a gain of ±12dB, and  
secondly a sweep of the gain from -12dB to +12dB for the lowest cut-off/centre frequency of each  
filter.  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 50 EQ Band 1 Low Frequency Shelf Filter Cut-offs  
Figure 51 EQ Band 1 Gains for Lowest Cut-off Frequency  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 52 EQ Band 2 – Peak Filter Centre Frequencies,  
EQ2BW=0  
Figure 53 EQ Band 2 – Peak Filter Gains for Lowest Cut-off  
Frequency, EQ2BW=0  
15  
10  
5
0
-5  
-10  
-15  
10-2  
10-1  
100  
101  
102  
103  
104  
Frequency (Hz)  
Figure 54 EQ Band 2 – EQ2BW=0, EQ2BW=1  
PP Rev 3.0 April 2006  
102  
w
Pre-Production  
WM8976  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 55 EQ Band 3 – Peak Filter Centre Frequencies, EQ3BFigure 56 EQ Band 3 – Peak Filter Gains for Lowest Cut-off  
Frequency, EQ3BW=0  
15  
10  
5
0
-5  
-10  
-15  
10-2  
10-1  
100  
101  
102  
103  
104  
Frequency (Hz)  
Figure 57 EQ Band 3 – EQ3BW=0, EQ3BW=1  
PP Rev 3.0 April 2006  
103  
w
WM8976  
Pre-Production  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 58 EQ Band 4 – Peak Filter Centre Frequencies, EQ3BFigure 59 EQ Band 4 – Peak Filter Gains for Lowest Cut-off  
Frequency, EQ4BW=0  
15  
10  
5
0
-5  
-10  
-15  
10-2  
10-1  
100  
101  
102  
103  
104  
Frequency (Hz)  
Figure 60 EQ Band 4 – EQ3BW=0, EQ3BW=1  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 61 EQ Band 5 High Frequency Shelf Filter Cut-offs Figure 62 EQ Band 5 Gains for Lowest Cut-off Frequency  
PP Rev 3.0 April 2006  
w
104  
Pre-Production  
WM8976  
Figure 63 shows the result of having the gain set on more than one channel simultaneously. The  
blue traces show each band (lowest cut-off/centre frequency) with ±12dB gain. The red traces show  
the cumulative effect of all bands with +12dB gain and all bands -12dB gain, with EqxBW=0 for the  
peak filters.  
20  
15  
10  
5
0
-5  
-10  
-15  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Figure 63 Cumulative Frequency Boost/Cut  
PP Rev 3.0 April 2006  
105  
w
WM8976  
Pre-Production  
APPLICATION INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 64 Recommended External Component Diagram  
PP Rev 3.0 April 2006  
106  
w
Pre-Production  
WM8976  
PACKAGE DIAGRAM  
FL: 32 PIN QFN PLASTIC PACKAGE 5 X 5 X 0.9 mm BODY, 0.50 mm LEAD PITCH  
DM033.D  
D
DETAIL 1  
D2  
32  
25  
L
1
24  
INDEX AREA  
(D/2 X E/2)  
4
EXPOSED  
GROUND  
PADDLE  
6
A
E2  
E
17  
8
aaa  
C
2 X  
16 15  
9
1
bbb  
b
aaa  
C
2 X  
B
M
C
A
B
e
TOP VIEW  
BOTTOM VIEW  
ccc  
C
A3  
A
5
0.08  
C
R = 0.3MM  
A1  
C
SIDE VIEW  
SEATING PLANE  
EXPOSED  
GROUND  
DETAIL 2  
PADDLE  
W
T
A3  
DETAIL 1  
G
H
b
Exposed lead  
Half etch tie bar  
DETAIL 2  
Dimensions (mm)  
Symbols  
NOM  
0.90  
0.02  
0.20 REF  
0.25  
MIN  
0.80  
MAX  
1.00  
0.05  
NOTE  
A
A1  
A3  
b
0
1
0.18  
3.30  
3.30  
0.30  
3.55  
D
5.00  
2
2
D2  
E
E2  
3.45  
5.00  
3.45  
3.55  
e
0.50 BSC  
0.213  
G
H
L
0.1  
0.40  
0.1  
0.30  
0.50  
T
W
0.2  
Tolerances of Form and Position  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
REF:  
JEDEC, MO-220, VARIATION VHHD-5.  
NOTES:  
1. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.  
2. FALLS WITHIN JEDEC, MO-220, VARIATION VHHD-5.  
3. ALL DIMENSIONS ARE IN MILLIMETRES.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEDEC 95-1 SPP-002.  
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
6. REFER TO APPLICATION NOTE WAN_0118 FOR FURTHER INFORMATION REGARDING PCB FOOTPRINTS AND QFN PACKAGE SOLDERING.  
7. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
PP Rev 3.0 April 2006  
107  
w
WM8976  
Pre-Production  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation  
of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WMs  
standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support  
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used  
by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical  
components in life support devices or systems without the express written approval of an officer of the company. Life  
support devices or systems are devices or systems that are intended for surgical implant into the body, or support or  
sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be  
reasonably expected to result in a significant injury to the user. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that  
any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual  
property right of WM covering or relating to any combination, machine, or process in which such products or services might  
be or are used. WMs publication of information regarding any third partys products or services does not constitute WMs  
approval, license, warranty or endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for any such use.  
Resale of WMs products or services with statements different from or beyond the parameters stated by WM for that  
product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and  
deceptive business practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PP Rev 3.0 April 2006  
w
108  

相关型号:

WM8976_11

Stereo CODEC with Speaker Driver
WOLFSON

WM8978

STEREO CODEC WITH SPEAKER DRIVER
WOLFSON

WM8978GEFL

STEREO CODEC WITH SPEAKER DRIVER
WOLFSON

WM8978GEFL/RV

STEREO CODEC WITH SPEAKER DRIVER
WOLFSON

WM8978GEFL/V

STEREO CODEC WITH SPEAKER DRIVER
WOLFSON

WM8978_06

Stereo CODEC With Speaker Driver
WOLFSON

WM8978_11

Stereo CODEC with Speaker Driver
WOLFSON

WM8980

STEREO CODEC WITH SPEAKER DRIVER AND BUFFER
WOLFSON

WM8980CGEFL/RV

Stereo CODEC with Speaker Driver and Video Buffer
WOLFSON

WM8980CGEFL/V

Stereo CODEC with Speaker Driver and Video Buffer
WOLFSON

WM8980GEFL/RV

STEREO CODEC WITH SPEAKER DRIVER AND BUFFER
WOLFSON

WM8980GEFL/V

STEREO CODEC WITH SPEAKER DRIVER AND BUFFER
WOLFSON